10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Downloaded from genome.cshlp.org on September 30, 2024 - Published by Cold Spring Harbor Laboratory Press

Graph-based self-supervised learning for repeat detection in
metagenomic assembly

Ali Azizpour', Advait Balaji2, Todd J. Treangen?, and Santiago Segarral

! Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
{aa210,segarra}@rice.edu
2 Department of Computer Science, Rice University, Houston, TX, USA
{advait,treangen}@rice.edu

Running title: Graph-based self-supervised repeat detection

Abstract. Repetitive DNA (repeats) poses significant challenges for accurate and efficient genome as-
sembly and sequence alignment. This is particularly true for metagenomic data, where genome dynamics
such as horizontal gene transfer, gene duplication, and gene loss/gain complicate accurate genome as-
sembly from metagenomic communities. Detecting repeats is a crucial first step in overcoming these
challenges. To address this issue, we propose GraSSRep, a novel approach that leverages the assembly
graph’s structure through graph neural networks (GNNs) within a self-supervised learning framework
to classify DNA sequences into repetitive and non-repetitive categories. Specifically, we frame this prob-
lem as a node classification task within a metagenomic assembly graph. In a self-supervised fashion, we
rely on a high-precision (but low-recall) heuristic to generate pseudo-labels for a small proportion of
the nodes. We then use those pseudo-labels to train a GNN embedding and a random forest classifier to
propagate the labels to the remaining nodes. In this way, GraSSRep combines sequencing features with
pre-defined and learned graph features to achieve state-of-the-art performance in repeat detection. We
evaluate our method using simulated and synthetic metagenomic datasets. The results on the simulated
data highlight our GraSSRep’s robustness to repeat attributes, demonstrating its effectiveness in han-
dling the complexity of repeated sequences. Additionally, our experiments with synthetic metagenomic
datasets reveal that incorporating the graph structure and the GNN enhances our detection perfor-
mance. Finally, in comparative analyses, GraSSRep outperforms existing repeat detection tools with
respect to precision and recall.

Keywords: Metagenomics - Repeat detection - Graph neural network - Self-supervised learning -
RECOMB24

http://genome.cshlp.org/
http://www.cshlpress.com

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

Downloaded from genome.cshlp.org on September 30, 2024 - Published by Cold Spring Harbor Laboratory Press

2 A. Azizpour et al.
Introduction

Metagenomics is a scientific discipline that involves analyzing genetic material obtained from complex uncul-
tured samples housing DNA from diverse organisms (Wooley et al. 2010). This field utilizes high-throughput
sequencing and bioinformatic techniques to characterize and compare the genomic diversity and functional
potential of entire microbial communities without the need for isolating and culturing individual organ-
isms (Yang et al. 2021). The resulting data can provide insights into the ecological roles and evolutionary
relationships of the microorganisms present in the sample (Schatz et al. 2010).

However, the sequencing of DNA from such samples poses unique challenges. One of the major challenges
in the metagenomic assembly is the presence of repeats (Ghurye et al. 2016, Lapidus and Korobeynikov 2021),
which are sequences of DNA that are similar or identical to sequences elsewhere in the genome (Treangen
and Salzberg 2012). The challenges posed by repeats in isolated genomes have primarily been addressed
through the use of long-read technologies (Koren and Phillippy 2015). However, metagenomics presents a
more complex problem as microbial mixtures often contain multiple closely related genomes that differ in
just a few locations due to structural variants (Martin et al. 2023), such as horizontal gene transfer (Soucy
et al. 2015), gene duplication, and gene loss/gain (Iranzo et al. 2019). Reads spanning the length of individual
strains are required to fully resolve these genome-scale repeats present in microbiomes.

These repetitive elements, while natural and abundant in genomes, complicate the process of genome
assembly and comparison (Treangen et al. 2009). They intricately tangle the assembly graph, making it diffi-
cult to distinguish the order, orientation, and copy number variation of genomes comprising the microbiome
under study, resulting in fragmented assemblies. Moreover, repeats introduce ambiguities for comparative
genomics, hindering differentiation between identical or similar regions and complicating the understanding
of gene functions, regulatory elements, and their role in genetic disorders (Treangen and Salzberg 2012). To
overcome these obstacles, precise identification and annotation of repeated sequences is necessary. Unraveling
the complexities of repeated sequences is not only crucial for enhancing genome assembly but also essential
for deciphering intricate regulatory mechanisms and evolutionary processes. Indeed, identifying these repeats
is foundational for understanding genome stability, gene expression, and disease susceptibility, making the
development of accurate repeat detection methods vital for advancing genomic research (Girgis 2015).

Graphs are powerful tools for visualizing complex relationships
between various objects, such as DNA sequences. Graph-based algo-
rithms can effectively represent the interconnections and overlapping
patterns within genomes (Koutrouli et al. 2020), where the nodes in
the graph represent unique DNA sequences. Due to the tangled na-
ture of repeated sequences within the assembly graph, exploiting
graph structure becomes particularly advantageous. As an illustra-
tive example, Figure 1 portrays the assembly graph obtained from
a simulated metagenome with two organisms. In this scenario, three
random sequences are generated. Two of these sequences are inserted
as intra-genome repeats in each organism, while the third one is in-
serted in both organisms, serving as an inter-genome repeat. This
graph is visualized using Bandage (Wick et al. 2015), where the
length of each node is proportional to the length of the correspond-
ing contig. A node labeled as a repeat (which is colored red in the
figure) represents a unique DNA sequence that occurs in several po-
sitions of the metagenome sample. The graph reveals that repeats Figure 1. Assembly graph represen-
are represented by central and well-connected nodes, indicating the tation with repeat contigs in red.
potential of utilizing the inherent graph structure in genomic data
for identifying repeated sequences. However, graph structure is usu-
ally not enough to tell apart the repeat nodes from some of the non-repeat ones. This motivates an approach
that combines graph features with sequencing information such as read coverage or length of the DNA
sequence.

Previous studies have employed pre-specified graph features in combination with machine learning tech-
niques to address the challenge of detecting repeats, treating it as a node classification problem (Ghurye
and Pop 2016, Ghurye et al. 2019). In this context, the nodes of the graph represent DNA sequences, and the

http://genome.cshlp.org/
http://www.cshlpress.com

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

Downloaded from genome.cshlp.org on September 30, 2024 - Published by Cold Spring Harbor Laboratory Press

Graph-based self-supervised learning for repeat detection in metagenomic assembly 3

objective is to classify them into repeats and non-repeats. However, given the vast amount of genomic data,
there remains ample opportunity for enhancement through learning discriminative graph features. One of
the promising ways to achieve this is by employing graph neural networks (GNNs) (Wu et al. 2020). GNNs
have the unique ability to learn distinctive and valuable features for the nodes within the graphs. Unlike
predefined features, GNNs generate these characteristics through trainable iterative computations, making
them adaptive to the specific data. These features have shown promising results in many other fields (Glaze
et al. 2023, Cutura et al. 2021, Zhao et al. 2023, Chowdhury et al. 2021), emphasizing the efficiency of uti-
lizing GNNs to classify nodes accurately and uncover the complexities within large graphs (Hamilton et al.
2017b).

However, one of the primary challenges in genomic data analysis is the fact that most of the data is
unlabeled, particularly in distinguishing between repeat and non-repeat sequences. This characteristic of
the data prevents the application of supervised or semi-supervised learning techniques for classifying DNA
sequences (Kipf and Welling 2016). In the absence of labeled data points offering insights into each class,
these conventional methods become ineffective. To overcome this issue, self-supervised learning emerges as
a natural and powerful alternative to leverage the vast unsupervised data (Jaiswal et al. 2020). In self-
supervised learning, specific data points (nodes) are initially given (potentially noisy) labels. Subsequently,
machine learning algorithms are employed, coupled with fine-tuning steps, to refine the model’s performance.
This approach ensures the ability to classify data points without requiring access to their true labels.

In this paper, we propose GraSSRep, a novel graph-based algorithm to identify and detect the repeated
sequences in the metagenomic assembly in a self-supervised manner. Our contributions are threefold: 1)
By leveraging GNNs, we devise the first method that learns (rather than pre-specifies) graph features for
repeat detection; 2) We establish the first algorithm that uses self-supervised learning for repeat detection,
leveraging existing methods to generate noisy labels that we then refine and expand using our learnable
architecture; 3) Through numerical experiments, we demonstrate the robustness of our methodology, the
value of each of its steps, and the performance gain compared with the state of the art.

Methods

Given paired-end reads, our goal is to identify repeated DNA sequences in the metagenome (see Experimental
setup for the precise criteria used to define a repeat). An overview of our method specifically designed for
this task is illustrated in Figure 2. In the subsequent sections, we provide a detailed explanation of each step
involved in the pipeline.

Step 1: Assembly graph construction

In the initial step, we construct an assembly graph in order to leverage graph features for repeat detection.
To do so, we assemble the input reads to contigs and obtain the assembly graph as illustrated in Figure 2(A).
Here, we use the popular metagenomic assembler, metaSpades (Nurk et al. 2017), which employs the multi-
sized de Bruijn graph to derive the contigs and the connections between them. We consider these assembled
contigs as the nodes V of our assembly graph, where [V| = N. We denote by A € {0,1}V*¥ the adjacency
matrix of the corresponding unweighted graph, where A;; = 1 if there is an edge between contig ¢ and j, and
A;; = 0 otherwise. Note that assembly graphs can also be generated similarly using alternative metagenomic
assemblers like MEGAHIT (Li et al. 2015) and metaFlye (Kolmogorov et al. 2020), either by assembling
the contigs and connecting them using read-mapping information or by directly utilizing the assembly graph
provided by the assembler. We plan to support these additional assembly graph formats in the future. We
specifically choose metaSpades because it is a well-known state-of-the-art short read assembler that is easy
to use and offers high accuracy. The most significant benefit of metaSpades is that it provides the assem-
bly graph directly alongside the assembled contigs. This feature fits seamlessly into our pipeline and allows
us to bypass the additional step of read-mapping to identify connections between contigs. This integrated
process not only simplifies our workflow but also accelerates graph construction, making metaSpades the
optimal choice for our framework. However, we can alternatively construct our assembly graph manually by
assembling the reads and utilizing read-mapping data; this is discussed in further detail in Alternative graph
construction in the Supplemental material.

http://genome.cshlp.org/
http://www.cshlpress.com

131

Downloaded from genome.cship.org on September 30, 2024 - Published by Cold Spring Harbor Laboratory Press

4 A. Azizpour et al.
(A) Steps 1 and 2 (B) Step 3
— OeO¥OR0. (O—3, @
= G NXL IO | QN XL 1O -
_:—_E Assembly %o) & @4} @ 9 © Repeas (%)
- _ O Non-repeats(\')
Read pairs G=(V,AX) Pseudo-labels O Unlabeled (1)
(C) Step 4 Embeddings learned by hg, l (D) Step 3
. Qe oy Zentl O]
X, A~ z —-YGNN % T | et | YRF - :
[rumimans} 1
: (5) s e u oo
GNN:gq (3) e e ® U= e
[=sscasma)
© s, y
X

Figure 2. Overview of GraSSRep. (A) Reads are assembled into contigs, forming the nodes of the assembly
graph. The graph structure (edges) is provided by metaSpades. Also, feature vectors are computed for each
contig. (B) contigs with distinctive sequencing features are selected as training nodes and labeled. (C) The
assembly graph is input into a GNN. Embeddings are generated for each contig and combined with the
initial features. A random forest classifier predicts labels for all contigs based on the augmented feature
vectors. (D) Sequencing features are employed to identify outliers within each predicted class, leading to the
reassignment of their class labels.

Step 2: Feature extraction

We compute features of the contigs that are informative in determining which contigs are repetitive. We
consider two types of features: sequencing and graph-based. Sequencing features (contig length and mean
coverage) are obtained during the sequencing process before constructing the contig graph and used in
Steps 3 and 5. In addition, we incorporate four graph-based features that are widely used in the literature:
betweenness centrality, k-core value, degree, and clustering coefficient. Previous studies have emphasized
the significance of betweenness centrality (Segarra and Ribeiro 2015) in identifying repeats (Ghurye and
Pop 2016). Additionally, KOMB (Balaji et al. 2022) has underscored the crucial role of the k-core value
in anomaly detection within contigs. Furthermore, the degree of nodes indicates their connectivity strength
with other contigs, aiding in the identification of repeated regions. We also consider the clustering coefficient
due to its substantial impact on node classification tasks, as well as its demonstrated positive effects and
favorable outcomes in various related domains (Zaki et al. 2013). We store the graph-based features in a
matrix X € RV*4 where every row contains the four graph-based features of a given node (contig) in the
graph. Thus, we define our featured graph of interest G = (V, A, X) as shown in Figure 2(A).

Step 3: Selection of the training nodes

Recall that we do not have any prior information (labels) on whether any contig is a repeat or not. In this
context, the idea of self-supervised learning is first to do a high-confidence classification of a subset of the
contigs (assigning potentially noisy labels, denominated pseudo-labels, to a subset of the nodes) and then
use those nodes as a training set for a machine learning model that can classify the remaining contigs. We
generate this set of pseudo-labels using the sequencing features from Step 2. In generating pseudo-labels, it
is important only to consider those for which we have a high level of confidence, so that the training process
based on these pseudo-labels is reliable.

In defining our pseudo-labels, we rely on the fact that shorter contigs with higher coverage are highly likely
to be repetitive, while very long contigs with lower coverage are more likely to be non-repeat contigs (Ghurye

http://genome.cshlp.org/
http://www.cshlpress.com

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

Downloaded from genome.cshlp.org on September 30, 2024 - Published by Cold Spring Harbor Laboratory Press

Graph-based self-supervised learning for repeat detection in metagenomic assembly 5

and Pop 2016). More precisely, let us define as x&e“ and z$°¥ the length (number of base pairs) and coverage

(mean number of reads mapped to the base pairs in the contig) of node %, respectively. We set a percentile
p (with 0 < p < 50) based on which we define the following thresholds: 7{ is the p-th percentile of the
lengths among all contigs in V, Tklﬁgh is the (100 — p)-th percentile of the lengths among all contigs, and 7Y
is the (100 — p)-th percentile of the coverages among all contigs. Based on these thresholds, we divide the

contigs into three sets, the repeats R, the non-repeats A/, and the unlabeled i/, as follows

low

R={ieV| xie“ < T A i > TV N={ieV] xie“ > T}lg’gh A i < T (1)

and U = V\ (RUN). In (1), contigs shorter than the lower length threshold and with a coverage surpassing
the coverage threshold are included in the training set with a repeat pseudo-label (R). Conversely, contigs
exceeding the higher length threshold and having a coverage below the coverage threshold are added to the
training set with a non-repeat pseudo-label (N'). If a contig does not meet any of these conditions, it suggests
that sequencing features alone are not sufficient to determine its classification. Consequently, these contigs
are not included in the training set (). A simple example of how the assembly graph is divided into three
subsets after this step is depicted in Figure 2(B).

Step 4: contig classification via self-supervised learning

We leverage self-supervised learning by training a graph-based model on R (binary label of 1) and N (binary
label of 0) and use that model to classify the nodes in U.

Consider the graph G = (V, A, X) generated in Steps 1 and 2 and denote by gs a GNN parameterized by
6 (Wu et al. 2020). This GNN takes the graph structure A and the node features X as input and produces
labels yonn for the nodes at the output. To generate these labels, gg can be viewed as an end-to-end network
that is structured as follows

yonn = go(X, A) = fo,(he, (X, A)), (2)

where hg, consists of graph convolutional layers followed by an activation function (Agarap 2018). Each
layer in hy, generates new observations for every node based on its neighboring nodes. These convolutional
layers are succeeded by fp,, which represents a fully connected neural network (Haykin 1998). The purpose
of this network is to predict the final label for each node based on the features derived from the last layer of
ho, . Note that we provide here a generic functional description of our methodology whereas in Experimental
setup, we detail the specific architecture used in the experiments.

We denote the output of the convolutional layers by Z = hg, (X, A) € RV*? where d is a pre-specified
embedding dimension. The i-th row z; of Z represents new features for contig i, learned in such a way that
the final linear layer, fy,, can predict the class of the contigs based on these features. These embeddings
enable us to achieve our objective of understanding the graph-based characteristics of repeat and non-repeat
contigs. Notice that the features in z; not only depend on graph features of node 7 but also on the features
of its local neighborhood through the aggregation of the trainable convolutional layers in hy,.

In order to learn the parameters § = {6, U6}, the GNN undergoes an end-to-end training based on the
pseudo-labels R and N identified in Step 3. This training process involves minimizing a loss function that
compares the predicted labels yann with the pseudo-labels

6" = argmin > L([gonn(0)]i; 1) + D L{Fern()]i;0), (3)

iER 1EN

where L represents a classification loss (such as cross-entropy loss (De Boer et al. 2005)) and we have made
explicit the dependence of yann with 6. In essence, in (3) we look for the GNN parameters 6* such that the
predicted labels for the nodes in R are closest to 1 while the predicted labels for the nodes in N are closest
to 0. Intuitively, the intermediate embeddings Z obtained using the optimal parameters 8* encode learning-
based features relevant for the classification beyond the pre-defined ones in Step 2. Thus, we construct the
augmented feature matrix X = [X,Z] € RV *(4+d) by concatenating the initial graph-based features with
those generated by the GNN.

A random forest (RF) classifier is then trained on the pseudo-labels RUN having the augmented features
X as input. The RF is trained by creating multiple decision trees from different subsets of the dataset (a
process known as bootstrapping), with each tree using a random subset of features. When making predictions,

http://genome.cshlp.org/
http://www.cshlpress.com

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

Downloaded from genome.cshlp.org on September 30, 2024 - Published by Cold Spring Harbor Laboratory Press

6 A. Azizpour et al.

the individual trees’ outputs are combined through majority voting, producing a reliable and precise ensemble
model (Breiman 2001). The RF classifier combines the explanatory power of the original graph-based features
X found to be relevant in previous works with the learning-based features Z to generate the predicted labels
yrr- An overview of how the labels of the training contigs are propagated to all contigs in Step 4 is shown
in Figure 2(C).

Notice that the sequencing features x'°™ and z°V are not used in computing yrr other than in the
generation of the pseudo-labels. If we were to include these features as inputs to the RF, then the classifier
can simply learn the conditions in (1) and obtain zero training error by ignoring all the graph features. This
would directly defeat the purpose of our self-supervised framework. Instead, the current pipeline can distill
the graph-based attributes associated with repeats and non-repeats, enabling us to generalize this knowledge
to classify other contigs effectively.

len cov

Step 5: Fine-tuning the labels

In the final step of our method, we enhance the performance of our predictions through a fine-tuning process.
We first assign the pseudo-labels of the training nodes in R and N as their final predicted labels. Our primary
focus is then directed toward the non-training contigs in Y. These contigs have been classified by the RF
in Step 4 relying solely on their graph-based features and embeddings learned by the GNN. At this point,
reconsidering sequencing features becomes crucial, as they hold valuable information that can significantly
contribute to determining the accurate labels of the contigs.

To do so, we divide the contigs in U into two disjoint sets: those predicted as repeats (label 1) by yrr
form the set U! and those predicted as non-repeats (label 0) by yrr form the set ¢4°. Within each set, our
objective is to identify outliers using the sequencing features z'*» and 2°°¥ and modify their labels accordingly,
similar to Step 3. Within each set, specific thresholds are computed based on the distribution of sequencing
features of the contigs in that set. More precisely, for ¢! we define p{f{éh as the (100 — p)-th percentile of the
contigs’ lengths and pj5y and the p-th percentile of the coverage. Conversely, for U° we define p{ﬁ’vlv as the
p-th percentile of the contigs’ lengths and Phigh and the (100 — p)-th percentile of the coverage. Based on
these thresholds, we identify outliers based on the following criteria

U= (i U 2l > gl A B < pim) UOTT = (e U [<ol A e > gt (@)

In (4), we change the label from repeat to non-repeat (U/*~°) for those contigs that are longer than a threshold
and have low coverage. Similarly, we change the label from non-repeat to repeat (U4°~!) for short contigs
with high coverage. This process is illustrated in Figure 2(D). Notice that we used the same percentile p to
compute the thresholds p here as that one used to compute the thresholds 7 in Step 3. Naturally, we could
select a different percentile here, but we use the same one as this shows good empirical results and reduces
the number of hyperparameters.

Summarizing, the final labels y predicted by our model are given by

5
0 forall ie N U @UO\U'7Y) uuyt=0. 5)

. 1 forall i€ R U U \U™0) u U1,

[yl = {
In (5), we see that the contigs deemed as repeats ([y]; = 1) by our method are those i) assigned a repeat
pseudo-label in Step 3 (R), ii) classified as repeats by our RF in Step 4 and not deemed as outliers in Step
5 (U \ U'™0), or iii) classified as non-repeats in Step 4 but later deemed as outliers in Step 5 (U°~1).
Conversely, contigs classified as non-repeats are those i) assigned a non-repeat pseudo-label in Step 3 (N),
ii) classified as non-repeats by our RF in Step 4 and not deemed as outliers in Step 5 (U° \ U°~1), or iii)
classified as repeats in Step 4 but later deemed as outliers in Step 5 (U'~0).

Results

In the following sections, we present a comprehensive analysis of our algorithm’s performance across various
settings.

http://genome.cshlp.org/
http://www.cshlpress.com

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

Downloaded from genome.cshlp.org on September 30, 2024 - Published by Cold Spring Harbor Laboratory Press

Graph-based self-supervised learning for repeat detection in metagenomic assembly 7

Experimental setup

Datasets We test GraSSRep in three types of datasets.

Simulated data: To represent distinct organisms, we generate two random backbone genomes with
an equal probability of observing each base. Subsequently, a random sequence of length L is generated
for each backbone and integrated into the genome with a copy number of C, serving as an intra-genome
repeat. Additionally, an inter-genome repeat of length L is randomly generated and inserted C' times in both
genomes, representing an inter-genome repeat. Unlike the backbone genomes, repeats exhibit a non-uniform
distribution of bases, resulting in distinctive characteristics unique to each repeat, setting them apart from
the backbone genome. Consequently, we have two genomes, both containing a repeat content of 2 x L x C'
within a fixed length of 5 million base pairs for each organism. As a result, the characteristics of the repeats
within the genomes can be controlled by adjusting the values of L and C. Finally, simulated reads, each
101 base pairs in length, are generated using wgsim (https://github.com/lh3/wgsim) with default values for
error (2%) and mutation (0.1%).

Shakya 1: In this dataset, we analyze the reference genomes of a synthetic metagenome called Shakya,
which consists of 64 organisms, including 48 bacteria and 16 archaea (Shakya et al. 2013). Based on these
reference genomes, read pairs are generated using wgsim, akin to the previous dataset. However, unlike the
simulated data, all the backbone genomes in this dataset are real organisms, containing intricate repeat
patterns that are beyond our control. The generated reads are 101 base pairs long with a high coverage
(=~ 50), and are produced without any errors or mutations, in order to identify exact repeats in the data.

Shakya 2: Read pairs from the Shakya (Shakya et al. 2013) study were obtained from the European
Nucleotide Archive (ENA — Run:SRR606249), all with a length of 101. We have no influence over coverage
or read errors in this set of reads, mirroring real-world settings. This characteristic enables us to evaluate
GraSSRep under realistic scenarios.

Assembly In all experiments, contigs are assembled using the default values of metaSpades v3.13.0 for
k-mer size, which are k = 21, k = 33, and k = 55. Also, in the error-free case (Shakya 1 dataset), we utilize
the --only-assembler option of metaSpades and disable the read error correction step.

To assess our model accurately, it is crucial to have the ground truth labels for the contigs. To identify
these labels, all contigs are aligned to the reference genomes using NUCmer (Margais et al. 2018) (with the
--maxmatch option). Contigs are marked as repeats if they meet specific criteria. Generally, this criterion
includes aligning at more than one location with at least 95% identity and 95% alignment length, indicating
non-identical repeats. However, in error-free cases like the Shakya 1 dataset, the criterion is aligning at more
than one location with 100% identity and 100% alignment length, which indicates exact repeats through the
reference genomes.

Method design and hyperparameter choices To select and label the training nodes, a threshold value p
ranging between 30 and 40 is employed in Step 3, depending on the presence of noise in the data. Specifically,
p = 35 in instances where noise is present (simulated data and Shakya 2), ensuring robustness in the
presence of data irregularities. However, for noiseless cases (Shakya 1), we set p = 20, leading to a stricter
definition of repeat pseudo-labels. Previous studies have demonstrated that this choice yields effective repeat
detection (Ghurye et al. 2019). However, in the simulated dataset, during the fine-tuning step, we observed
that setting p = 0 (indicating no need for fine-tuning) yielded superior results. This phenomenon primarily
arises due to the presence of only two organisms in the dataset, leading to smaller and simpler assembly
graphs. Consequently, the fine-tuning step becomes unnecessary as the labels generated by RF suffice for
accurate classification.

In Step 4, the first component of the GNN, hy,, consists of two consecutive GraphSAGE convolutional
layers, each followed by a ReLU activation function (Hamilton et al. 2017a). The node representation update
in these layers can be mathematically defined as follows:

2T = ReLU ([Wk - Mean ({zg),Vu € Neigh(v)}) ,Bkzg)}) , Ywey,

where sz) represents the node embedding of the node v at layer [, Neigh(v) represents the set of neighboring

nodes of node v, and Mean is an aggregation function that combines the embeddings of neighboring nodes.

https://github.com/lh3/wgsim
https://www.ebi.ac.uk/ena/browser/view/SRR606249
http://genome.cshlp.org/
http://www.cshlpress.com

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

Downloaded from genome.cshlp.org on September 30, 2024 - Published by Cold Spring Harbor Laboratory Press

8 A. Azizpour et al.

Moreover, By and W, represent the linear transformation matrix for the self and neighbor embeddings,
respectively. In this equation, zq(fﬂ) represents the updated embedding of the node v at the next layer
(I +1). Both the first and second convolutional layers have 16 hidden channels. More details on tuning the
GNN structure hyperparameters are provided in GNN hyperparameter tuning in the Supplemental material.
This results in d = 16 new features being generated for each node, represented as Z € RV*16_ Since hy, has
two graph convolutional layers, the final embeddings combine the features within the 2-hop neighborhoods of
each node. Additionally, the second component of the GNN, fy,, comprises a single fully connected layer that
transforms the newly learned features, Z, into binary classes using a linear transformation matrix T € R16%2,
The GNN is trained for 2000 epochs, utilizing cross-entropy as the loss function and employing the Adam
optimizer (Kingma and Ba 2014) with a learning rate of 0.001.

The RF classifier utilizes 100 trees in the forest to generate its results. The split criterion for each decision
tree is determined using the Gini impurity measure, ensuring the creation of optimal splits at each node.
Finally, to account for the randomness inherent in the training process, both the training and testing steps
are repeated for 10 iterations in each case. The reported results are averaged across these iterations, providing
a robust and reliable evaluation. As figures of merit, we report the classification accuracy, precision, recall,
and Fl-score (harmonic mean of precision and recall).

Evaluation on varying repeat characteristics

We leverage the simulated dataset introduced in Experimental setup to examine the effect of three crucial
characteristics that are beyond our control within the real datasets:

A) Length of the repeats. To measure the impact of repeat length, we fix the copy number of both
inserted intra-genome and inter-genome repeats at C' = 25 and vary their length from L = 150 to L = 1000
base pairs, leading to a copy content ranging from 0.15% to 1% in the reference genomes.

B) Copy number of the repeats. We set the length of the inserted repeats to L = 400 base pairs and
adjust their copy number from C' = 10 to C' = 150, increasing the complexity of the dataset. This results in
a copy content ranging between 0.16% and 2.4% in the reference genomes.

C) Coverage. We generate backbone data by inserting repeats of L = 400 base pairs in length with a
copy number of C' = 25 to have 0.4% copy content in the reference genomes. The number of generated read
pairs is varied, ranging from 0.25 to 2.5 million base pairs. Consequently, the coverage ranges from 5 to 50,
allowing us to analyze the algorithm’s performance under different coverage levels.

These adjustments enable a detailed evaluation of our algorithm’s robustness and adaptability across
a spectrum of repeat characteristics and coverage scenarios. Note that due to errors and mutations in the
generated reads, our analysis considers a repeat as having at least 95% identity over 95% of the length.
Consequently, more than just three contigs are identified as repeats in this context, each with copy numbers
that may differ from the exact number of inserted repeats.

Since the backbone and inserted repeats are generated randomly in the simulated datasets, we conduct 10
trials for each case to ensure robust results for each condition. Specifically, for each scenario, we generate 10
datasets with the same desired characteristics for repeat length, copy number, or coverage. We then calculate
the results for each trial and report the average across these trials for all metrics. Additionally, the figures
depict the error for the F1 Score across these 10 trials as a shaded purple area. We use the interquartile
range to quantify the error, i.e., the error lower bound corresponds to the 25th percentile, and the upper
bound corresponds to the 75th percentile across the 10 samples.

As illustrated in Figure 3(A), our approach demonstrates resilience to variations in repeat length, with
all metrics remaining stable as the repeat length increases. Consistently achieving an average F1-score above
99% indicates that our approach can effectively detect repeated contigs even when longer repeats are present
in the dataset.

Figure 3(B) shows the performance attained when varying the copy number. Our method consistently
achieves an average Fl-score exceeding 97%, and for copy numbers below 70, it consistently surpasses 99%.
Additionally, the average precision is higher than 99% in almost all cases. However, we observe a decreasing
trend in the average recall, which results in a corresponding decrease in the F1l-score as the copy number
increases. This drop occurs because a higher copy number for the repeats creates a more tangled assembly
graph with a lot of connections between the assembled contigs, making it more challenging to detect all the

http://genome.cshlp.org/
http://www.cshlpress.com

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

Downloaded from genome.cshlp.org on September 30, 2024 - Published by Cold Spring Harbor Laboratory Press
Graph-based self-supervised learning for repeat detection in metagenomic assembly 9

100 100
99 S 99

98 98

100+

90

80

704

97| —=— Accuracy 97/ —*— Accuracy Accuracy

—e— Recall —e— Recall 601 —e— Recall

—4&— Precision —&— Precision —4a— Precision
971 _+— Fl-score 971 s Fl-score 501 —— Fl-score

Fl-score Error Fl-score Error F1l-score Error

95 95 40+ :

@“qp“ O)QQ o ()QQ & SO QQQ \IQQQ OO AR O O ® op\/gg \}s @Q O D O R P S PP

(A) Repeat length (B) Repeat copy number (C) Coverage

Figure 3. Assessing the method across various repeat characteristics. (A) The model remains stable in met-
rics even with increasing repeat length. (B) The method is robust to the copy number variation, consistently
achieving an Fl-score above 90%. (C) Higher sequencing coverage improves the model’s performance.

repeats. Note that for copy numbers less than 10, the assembly graph remains untangled, and repeats are
detected with 100% accuracy using coverage or degree without requiring additional complex steps.

As demonstrated in Figure 3(C), the model’s performance exhibits a constant improvement with increased
coverage, as expected. Specifically, when coverage is higher than 20 (corresponding to 1 million reads), the
model achieves an almost perfect rate of nearly 100% for all metrics.

Ablation study of the steps of the algorithm

We focus on the behavior of our method (see ‘Methods’ Section) across different steps using the Shakya 1
dataset. After assembling and constructing the graph, we have N = 51549 contigs as the nodes of the graph,
out of which 13842 contigs are exact repeats (total length of the contig repeated with 100% identity).

To begin, our evaluation involves assessing the method across various steps of the pipeline. Specifically,
we examine the outcomes relative to the baseline, the results produced by the GNN (yann), the outputs
generated by RF (yrr), and finally, after the fine-tuning step (y). In this context, the term “baseline” refers
to a straightforward heuristic used to classify the contigs. This heuristic relies on Step 3 and labels nodes
according to the following criteria

R 1 for all 1 € R, 6

[Fbascl: 0 forall ie N UU. ©)
This approach allows us to test the effectiveness of sequencing features in node labeling in the absence of
graph-based features.

In Figure 4(A), it is evident that the F1-score consistently rises throughout the pipeline, emphasizing the
importance of each step in achieving optimal results. The baseline method exhibits high precision (98.3%)
but low recall (40.9%), indicating appropriate node selection for determining pseudo-labels but an inability
to identify most repeats. This observation underscores that sequencing features alone are insufficient for
detecting repeats. This limitation is modified by the GNN, which significantly boosts the recall to 68.6%,
effectively identifying more repeats, which suggests that graph structure is significant in detecting the repeats.
Subsequent application of the RF further amplifies this increase in recall to 80.2%. However, this enhanced
recall comes at the cost of reduced precision compared to the baseline. To address this precision loss, the
fine-tuning step effectively identifies outliers, leading to a precision increase from 72.6% at the output of the
RF to 83.8% for the final estimation. In summary, our approach yields a 88.9% F1-score without any prior
labels on the contigs, representing a substantial improvement of 31.2% over the baseline method.

Moreover, we investigate the impact of the GNN and the embeddings it generates. To assess this, we per-
form two analyses. First, we exclude Z from the feature matrix fed to the RF, resultingin X = [X] € RV*4

http://genome.cshlp.org/
http://www.cshlpress.com

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

Downloaded from genome.cshlp.org on September 30, 2024 - Published by Cold Spring Harbor Laboratory Press

10 A. Azizpour et al.
120 12
98.3 8
100 93.7 94 926 944 92.6 <10
839 823 866 025 3 ome sLigmS’2 853877863 3
80 e 874‘3 69 72.8 : § 8
57.7 . S
60 g 6
40.9] 'g 4
40 g
20 g 2 |
= (N |
0 N N N PEEORAITRRNRRIScO oIS
Baseline (¥base) GNN (yoNN) RF (Yyrr) Final labels (¥) Excluding GNN Excluding RF @E 8 g‘ NNNNNNTN
QAeEME
m Accuracy M Precision ®mRecall ®mF1-score] ©
(A (B)

Figure4. Behavior of GraSSRep across different steps. (A) Progression of the method’s performance
throughout the different steps, highlighting the effectiveness of each step in improving repeat detection.
We also test the impact of excluding the GNN embeddings and RF step applied to the augmented feature
vectors. (B) High importance of GNN-generated embeddings in RF classification.

aiming to observe the method’s performance only based on the initial graph-based features. As depicted in
Figure 4(A) under ‘Excluding GNN’; this exclusion leads to a decrease in all performance metrics. This
decline suggests that embeddings play a crucial role in enhancing the reliability of repeat detection. Second,
we calculate the importance of the features fed to the RF by averaging the impurity decrease from each
feature across trees. The more a feature decreases the impurity, the more important it is. These importance
values are then plotted in Figure 4(B). The plot indicates that all learned embeddings (labeled z1 through
z16) exhibit high importance. This finding emphasizes the utility of the embeddings generated by the GNN
in improving the overall performance of the method. Further discussion on the effect of the GNN can be
found in GNN effect in the Supplemental material. Moreover, by removing the intermediate RF step and
directly applying the fine-tuning process to the GNN-generated labels, we evaluate the effect of the RF step.
As illustrated in Figure 4(A) under ‘Excluding RF’, this omission also results in a decrease in all performance
metrics, highlighting the essential role of the RF in balancing the influence of initial features and the learned
embeddings.

Additionally, we perform an ablation study on the percentile value p used to define the thresholds in Steps
3 and 5. The analysis in Ablation study on the percentile value p in the Supplemental material reveals that
our approach is robust to this hyperparameter, particularly within the range of 30 to 40, which corresponds
to the range used in our experiments.

Lastly, if we replicate the analysis in Figure 4 with an alternative graph construction method, we ob-
serve that all outcomes align consistently as outlined in Alternative graph construction in the Supplemental
material. This illustrates the versatility of our tool, demonstrating its efficacy across diverse graph structures.

Comparison with existing repeat detection methods

We present a comprehensive comparison of our method with several existing repeat detection methods using
contigs assembled from the reads downloaded from ENA (Shakya 2). The ground truth labels are obtained
in the same manner as described in Experimental setup, using the reference genomes from the Shakya 1
dataset.

We consider five widely recognized methods for this comparison. Opera (Gao et al. 2011) and SOPRA (Da-
yarian et al. 2010) identify repetitive contigs by filtering out those with coverage 1.5 and 2.5 times higher
than the average coverage of all contigs, respectively, without considering any graph structure. Similarly,
the MIP scaffolder (Salmela et al. 2011) utilizes both high coverage (more than 2.5 times the average) and
a high degree (> 50) within the assembly graph to detect the repeats. However, as the degree of contigs
in the graph provided by metaSpades typically does not reach 50, we utilize an adaptive approach. In this
alternative, we adjust the threshold from 50 to the 75-th percentile of the degrees observed in the graph.
Additionally, Bambus2 (Koren et al. 2011) categorizes a contig as a repeat if the betweenness centrality,
divided by the contig length, exceeds the upper bound of the range within ¢ standard deviations above the
mean on this feature. Here, ¢ represents a hyperparameter of this method, and the optimal outcome on our

http://genome.cshlp.org/
http://www.cshlpress.com

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

Downloaded from genome.cshlp.org on September 30, 2024 - Published by Cold Spring Harbor Laboratory Press

Graph-based self-supervised learning for repeat detection in metagenomic assembly 11
90
81.8 82.4

30 78.5 74.9 77.2 74375 | 77.673.9 o
70 68.4 64.9 66.8 632 66.3
60 58.8 562
50 45.7

39.7
40 337
26.6

30 232 215
20 135

10 .

0

Opera SOPRA MIP Bambus2 MetaCarvel GraSSRep

m Accuracy M Precision MRecall mF1-score

Figure 5. GraSSRep compared to the other repeat detection methods.

dataset was achieved with ¢ = 0. Lastly, Metacarvel (Ghurye et al. 2019) employs four more complex graph-
based features alongside coverage in a two-step process. First, any contig with a high betweenness centrality
(> three standard deviations plus the mean) on the assembly graph is marked as a repeat. Moreover, a
contig is identified as a repeat if it falls within the upper quartile for at least three of these features: mean
coverage, degree, ratio of skewed edges (based on coverage), and ratio of incident edges invalidated during
the orientation phase of the contigs; see (Ghurye et al. 2019) for details. Notably, since we utilize a contig
graph instead of a scaffold graph, we do not incorporate the latest feature and adjust the flag threshold from
three to two in the second step.

As illustrated in Figure 5, GraSSRep outperforms all other methods, particularly demonstrating superior
capability in detecting repeats with a higher recall rate (66.3% versus the next best alternative at 56.2%).

Thus far, we have focused on the practical unsupervised setting where no repeat labels are available.
For completeness, we now consider the case where repeat labels for some contigs are available. This setting
might arise, e.g., if we have knowledge about specific organisms present in the metagenomic sample and
their corresponding reference genomes are accessible. GraSSRep can seamlessly accommodate this case. In
our pipeline, we can leverage this prior knowledge to substitute Step 3. Instead of pseudo-labels, we employ
the known node labels as our training set, leading to a semi-supervised (instead of self-supervised) setting.
Our analysis in Incorporating prior knowledge in the Supplemental material shows that performance can be
markedly improved in the case where labels are available for a fraction of the contigs.

Discussion

We tackled the challenging task of detecting repetitive sequences (repeats) in metagenomics data when we
only have access to paired-end reads. We introduced GraSSRep, a novel method that leverages the inherent
structure of the assembly graph by employing GNNs to extract specific features for the contigs. Moreover,
adopting a self-supervised learning framework, we generated noisy pseudo-labels for a subset of the contigs,
which were then used to train a graph-based classifier on the rest of the contigs.

Experimental studies using simulated datasets demonstrated the robustness of GraSSRep across diverse
repeat characteristics and its resilience not only to repeat length but also to copy number variations. This
ensures its applicability across various datasets and scenarios. Moreover, using synthetic datasets, we show
the value of every step in our algorithm in enhancing repeat detection performance. This highlights the
importance of each step and its role in achieving the best results. Furthermore, the GNN step effectively learns
distinctive and important features for the repeat detection task based on the dataset, thereby enhancing the
pipeline’s ability to detect more repeats using the graph structure.

Additionally, we observed performance gain compared to existing repeat detection tools. This superiority
comes from the combined value of incorporating learnable graph features (through the GNN) and considering
a self-supervised framework. Notice that even if we fix the embedding dimension at d = 16, the graph features
learned by the GNN depend on the specific dataset under consideration. In this way, our trainable architecture

http://genome.cshlp.org/
http://www.cshlpress.com

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

Downloaded from genome.cshlp.org on September 30, 2024 - Published by Cold Spring Harbor Laboratory Press

12 A. Azizpour et al.

can distill the key graph features that characterize repeats in the specific metagenomic sample. This adaptive
approach stands in contrast to other methods, which often rely on fixed features. Moreover, since the RF
is not pre-trained but rather trained based on the pseudo-labels, different features may vary in importance
based on context. In this way, our self-supervised framework allows us to adapt to the metagenomic data at
hand, and we do not have to worry about generalization issues of pre-trained models.

One limitation of our work is its dependence on the initial pseudo-labels. Specifically, in order to effectively
generalize the labels from the initial training set to the other unlabeled nodes, we need sufficient samples in
both repeat and non-repeat sets of training contigs from a diverse set of organisms. However, this process can
be hindered by unbalanced coverage across different organisms. When some organisms exhibit significantly
higher coverage compared to the rest of the community, the contigs generated from these organisms tend to
dominate the high percentile of coverage and are detected as repeats in Step 3. Consequently, our training set
becomes biased towards a few organisms, impeding the detection of repeats of other organisms. To address
this issue, we plan to develop a more systematic approach to training set selection in future work.

Furthermore, it is worth noting that while we selected the indicated reference genomes for the Shakya
community for ground truth detection and evaluation of our method, previous studies (Ondov et al. 2019)
have identified additional reference genomes present in the community. Consequently, some repeats may be
missing from the ground truth set, as their reference genomes are not included in the community and thus
not identified as true repeats.

A natural extension of our approach is its integration into widely used assemblers. This integration would
replace their existing repeat detection modules with GraSSRep, yielding potential improvements in assembly
quality. We also intend to apply our method to real datasets, particularly in environments like hot springs
where widely accessible reference genomes are scarce. Lastly, the overall pipeline of GraSSRep can potentially
address other problems in genomics where graph structures can be used to identify specific genetic markers
in the absence of prior knowledge. For instance, we intend to leverage our approach for the identification of
transposable elements, which play important roles in eukaryotic/mammalian genomes.

Software Availability

An implementation of GraSSRep, along with the code to reproduce our results, can be found as Supplemental
Code and at our GitHub repository (https://github.com/aliaaz99/GraSSRep).

Competing interest statement

The authors declare no competing interests.

Acknowledgment

This work was supported by the NSF under award EF-2126387. A.A., A.B., T.J.T., and S.S. conceived and

designed the study. A.A. and S.S. developed the methods and theory. A.A. and A.B. performed the experiments. A.A.,
T.J.T., and S.S. conducted the analyses. All authors analyzed and discussed the results. A.A. and S.S. drafted the initial
manuscript, which was reviewed and edited by all authors. All authors read and approved the final manuscript.

https://github.com/aliaaz99/GraSSRep
http://genome.cshlp.org/
http://www.cshlpress.com

472

473

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Downloaded from genome.cshlp.org on September 30, 2024 - Published by Cold Spring Harbor Laboratory Press

Bibliography

Agarap AF. 2018. Deep learning using rectified linear units (relu). arXiv doi:1805.08375 .

Balaji A, Sapoval N, Seto C, Elworth RL, Fu Y, Nute MG, Savidge T, Segarra S, and Treangen TJ. 2022.
KOMB: K-core based de novo characterization of copy number variation in microbiomes. CSBJ 20:
3208-3222.

Breiman L. 2001. Random forests. Machine Learning 45: 5-32.

Chowdhury A, Verma G, Rao C, Swami A, and Segarra S. 2021. Unfolding WMMSE using graph neural
networks for efficient power allocation. IEEFE Trans SP 20: 6004—6017.

Cutura G, Li B, Swami A, and Segarra S. 2021. Deep demixing: Reconstructing the evolution of epidemics
using graph neural networks. In EUSIPCO, pp. 2204-2208.

Dayarian A, Michael TP, and Sengupta AM. 2010. SOPRA: Scaffolding algorithm for paired reads via
statistical optimization. BMC Bioinformatics 11: 1-21.

De Boer PT, Kroese DP, Mannor S, and Rubinstein RY. 2005. A tutorial on the cross-entropy method. Ann
Oper Res 134: 19-67.

Gao S, Sung WK, and Nagarajan N. 2011. Opera: reconstructing optimal genomic scaffolds with high-
throughput paired-end sequences. J Comput Biol 18: 1681-1691.

Ghurye J and Pop M. 2016. Better identification of repeats in metagenomic scaffolding. In WABI, pp.
174-184. Springer.

Ghurye J, Treangen T, Fedarko M, Hervey WJ, and Pop M. 2019. MetaCarvel: linking assembly graph
motifs to biological variants. Genome Biol 20: 1-14.

Ghurye JS, Cepeda-Espinoza V, and Pop M. 2016. Metagenomic Assembly: Overview, Challenges and
Applications. Yale J Biol Med 89: 353.

Girgis HZ. 2015. Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the genomic scale.
BMC' Bioinformatics 16: 1-19.

Glaze N, Bayer A, Jiang X, Savitz S, and Segarra S. 2023. Graph representation learning for stroke recurrence
prediction. In ICASSP, pp. 1-5.

Hamilton W, Ying Z, and Leskovec J. 2017a. Inductive representation learning on large graphs. NeurlPS
30.

Hamilton WL, Ying R, and Leskovec J. 2017b. Representation learning on graphs: Methods and applications.
arXiv doi:1709.05584 .

Haykin S. 1998. Neural networks: a comprehensive foundation. Prentice Hall PTR.

Iranzo J, Wolf YI, Koonin EV, and Sela I. 2019. Gene gain and loss push prokaryotes beyond the homologous
recombination barrier and accelerate genome sequence divergence. Nat Commun 10: 5376.

Jaiswal A, Babu AR, Zadeh MZ, Banerjee D, and Makedon F. 2020. A survey on contrastive self-supervised
learning. Technologies 9: 2.

Kingma DP and Ba J. 2014. Adam: A method for stochastic optimization. arXiv doi:1412.6980 .

Kipf TN and Welling M. 2016. Semi-supervised classification with graph convolutional networks. arXiv
doi:1609.02907 .

Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB, Kuhn K, Yuan J, Polevikov E,
Smith TP, et al.. 2020. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat
Methods 17: 1103-1110.

Koren S and Phillippy AM. 2015. One chromosome, one contig: complete microbial genomes from long-read
sequencing and assembly. COMICR 23: 110-120.

Koren S, Treangen TJ, and Pop M. 2011. Bambus 2: scaffolding metagenomes. Bioinformatics 27: 2964-2971.

Koutrouli M, Karatzas E, Paez-Espino D, and Pavlopoulos GA. 2020. A guide to conquer the biological
network era using graph theory. Front Bioeng Biotechnol 8: 34.

Langmead B and Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357-359.

Lapidus AL and Korobeynikov AI. 2021. Metagenomic data assembly—the way of decoding unknown mi-
croorganisms. Front Microbiol 12: 613791.

Li D, Liu CM, Luo R, Sadakane K, and Lam TW. 2015. MEGAHIT: an ultra-fast single-node solution for
large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31: 1674-1676.

http://genome.cshlp.org/
http://www.cshlpress.com

523

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

Downloaded from genome.cshlp.org on September 30, 2024 - Published by Cold Spring Harbor Laboratory Press

14 A. Azizpour et al.

Marcais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, and Zimin A. 2018. MUMmer4: A fast and
versatile genome alignment system. PLoS Comput Biol 14: e1005944.

Martin S, Ayling M, Patrono L, Caccamo M, Murcia P, and Leggett RM. 2023. Capturing variation in
metagenomic assembly graphs with MetaCortex. Bioinformatics 39: btad020.

Nurk S, Meleshko D, Korobeynikov A, and Pevzner PA. 2017. metaSPAdes: a new versatile metagenomic
assembler. Genome Res 27: 824-834.

Ondov BD, Starrett GJ, Sappington A, Kostic A, Koren S, Buck CB, and Phillippy AM. 2019. Mash screen:
high-throughput sequence containment estimation for genome discovery. Genome Biol 20: 1-13.

Salmela L, Méakinen V, Valiméki N, Ylinen J, and Ukkonen E. 2011. Fast scaffolding with small independent
mixed integer programs. Bioinformatics 27: 3259-3265.

Schatz MC, Delcher AL, and Salzberg SL. 2010. Assembly of large genomes using second-generation se-
quencing. Genome Res 20: 1165-1173.

Segarra S and Ribeiro A. 2015. Stability and continuity of centrality measures in weighted graphs. IEEE
Trans SP 64: 543-555.

Shakya M, Quince C, Campbell JH, Yang ZK, Schadt CW, and Podar M. 2013. Comparative metagenomic
and rRNA microbial diversity characterization using archaeal and bacterial synthetic communities. Environ
Microbiol 15: 1882-1899.

Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, and Birol I. 2009. ABySS: a parallel assembler for
short read sequence data. Genome Res 19: 1117-1123.

Soucy SM, Huang J, and Gogarten JP. 2015. Horizontal gene transfer: building the web of life. Nat Rev
Genet 16: 472-482.

Treangen TJ, Abraham AL, Touchon M, and Rocha EP. 2009. Genesis, effects and fates of repeats in
prokaryotic genomes. FEMS Microbiol Rev 33: 539-571.

Treangen TJ and Salzberg SL. 2012. Repetitive DNA and next-generation sequencing: computational chal-
lenges and solutions. Nat Rev Genet 13: 36—46.

Wick RR, Schultz MB, Zobel J, and Holt KE. 2015. Bandage: interactive visualization of de novo genome
assemblies. Bioinformatics 31: 3350-3352.

Wooley JC, Godzik A, and Friedberg I. 2010. A primer on metagenomics. PLoS Comput Biol 6: 1-13.

Wu Z, Pan S, Chen F, Long G, Zhang C, and Philip SY. 2020. A comprehensive survey on graph neural
networks. IEEFE Trans. Neural Netw. Learn. Syst. 32: 4-24.

Yang C, Chowdhury D, Zhang Z, Cheung WK, Lu A, Bian Z, and Zhang L. 2021. A review of computational
tools for generating metagenome-assembled genomes from metagenomic sequencing data. CSBJ 19: 6301—
6314.

Zaki N, Efimov D, and Berengueres J. 2013. Protein complex detection using interaction reliability assessment
and weighted clustering coefficient. BMC' Bioinformatics 14: 1-9.

Zhao Z, Verma G, Rao C, Swami A, and Segarra S. 2023. Link scheduling using graph neural networks.
IEEFE Trans SP 22: 3997-4012.

http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshlp.org on September 30, 2024 - Published by Cold Spring Harbor Laboratory Press

ENOME
ESEARCH

Graph-based self-supervised learning for repeat detection in
metagenomic assembly

Ali Azizpour, Advait Balaji, Todd J. Treangen, et al.

Genome Res. published online July 19, 2024
Access the most recent version at doi:10.1101/gr.279136.124

P<P Published online July 19, 2024 in advance of the print journal.

Accepted Peer-reviewed and accepted for publication but not copyedited or typeset; accepted
Manuscript manuscript is likely to differ from the final, published version.

Creative This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the
Commons first six months after the full-issue publication date (see
License https://genome.cship.org/site/misc/terms.xhtml). After six months, it is available
under a Creative Commons License (Attribution-NonCommercial 4.0 International),
as described at http://creativecommons.org/licenses/by-nc/4.0/.

Email Alerting Receive free email alerts when new articles cite this article - sign up in the box at the
Service top right corner of the article or click here.

-— ush
r \® The NEW Vortex Mixer sciemntic

To subscribe to Genome Research go to:
https://genome.cshlp.org/subscriptions

Published by Cold Spring Harbor Laboratory Press

http://genome.cshlp.org/lookup/doi/10.1101/gr.279136.124
https://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=protocols;10.1101/gr.279136.124&return_type=article&return_url=http://genome.cshlp.org/content/10.1101/gr.279136.124.full.pdf
http://genome.cshlp.org/cgi/adclick/?ad=57163&adclick=true&url=https%3A%2F%2Fwww.usascientific.com%2Fvortex_mixer%3Futm_source%3DCSHL%26utm_medium%3DeTOC_VMX%26utm_campaign%3DVMX
https://genome.cshlp.org/subscriptions
http://genome.cshlp.org/
http://www.cshlpress.com

	Graph-based self-supervised learning for repeat detection in metagenomic assembly

