
Graph-based self-supervised learning for repeat detection in1

metagenomic assembly2

Ali Azizpour1, Advait Balaji2, Todd J. Treangen2, and Santiago Segarra13

1 Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA4

{aa210,segarra}@rice.edu5

2 Department of Computer Science, Rice University, Houston, TX, USA6

{advait,treangen}@rice.edu7

Running title: Graph-based self-supervised repeat detection8

Abstract. Repetitive DNA (repeats) poses significant challenges for accurate and efficient genome as-9

sembly and sequence alignment. This is particularly true for metagenomic data, where genome dynamics10

such as horizontal gene transfer, gene duplication, and gene loss/gain complicate accurate genome as-11

sembly from metagenomic communities. Detecting repeats is a crucial first step in overcoming these12

challenges. To address this issue, we propose GraSSRep, a novel approach that leverages the assembly13

graph’s structure through graph neural networks (GNNs) within a self-supervised learning framework14

to classify DNA sequences into repetitive and non-repetitive categories. Specifically, we frame this prob-15

lem as a node classification task within a metagenomic assembly graph. In a self-supervised fashion, we16

rely on a high-precision (but low-recall) heuristic to generate pseudo-labels for a small proportion of17

the nodes. We then use those pseudo-labels to train a GNN embedding and a random forest classifier to18

propagate the labels to the remaining nodes. In this way, GraSSRep combines sequencing features with19

pre-defined and learned graph features to achieve state-of-the-art performance in repeat detection. We20

evaluate our method using simulated and synthetic metagenomic datasets. The results on the simulated21

data highlight our GraSSRep’s robustness to repeat attributes, demonstrating its effectiveness in han-22

dling the complexity of repeated sequences. Additionally, our experiments with synthetic metagenomic23

datasets reveal that incorporating the graph structure and the GNN enhances our detection perfor-24

mance. Finally, in comparative analyses, GraSSRep outperforms existing repeat detection tools with25

respect to precision and recall.26

Keywords: Metagenomics · Repeat detection · Graph neural network · Self-supervised learning ·27

RECOMB2428

 Cold Spring Harbor Laboratory Press on September 30, 2024 - Published by genome.cshlp.orgDownloaded from

http://genome.cshlp.org/
http://www.cshlpress.com

2 A. Azizpour et al.

Introduction29

Metagenomics is a scientific discipline that involves analyzing genetic material obtained from complex uncul-30

tured samples housing DNA from diverse organisms (Wooley et al. 2010). This field utilizes high-throughput31

sequencing and bioinformatic techniques to characterize and compare the genomic diversity and functional32

potential of entire microbial communities without the need for isolating and culturing individual organ-33

isms (Yang et al. 2021). The resulting data can provide insights into the ecological roles and evolutionary34

relationships of the microorganisms present in the sample (Schatz et al. 2010).35

However, the sequencing of DNA from such samples poses unique challenges. One of the major challenges36

in the metagenomic assembly is the presence of repeats (Ghurye et al. 2016, Lapidus and Korobeynikov 2021),37

which are sequences of DNA that are similar or identical to sequences elsewhere in the genome (Treangen38

and Salzberg 2012). The challenges posed by repeats in isolated genomes have primarily been addressed39

through the use of long-read technologies (Koren and Phillippy 2015). However, metagenomics presents a40

more complex problem as microbial mixtures often contain multiple closely related genomes that differ in41

just a few locations due to structural variants (Martin et al. 2023), such as horizontal gene transfer (Soucy42

et al. 2015), gene duplication, and gene loss/gain (Iranzo et al. 2019). Reads spanning the length of individual43

strains are required to fully resolve these genome-scale repeats present in microbiomes.44

These repetitive elements, while natural and abundant in genomes, complicate the process of genome45

assembly and comparison (Treangen et al. 2009). They intricately tangle the assembly graph, making it diffi-46

cult to distinguish the order, orientation, and copy number variation of genomes comprising the microbiome47

under study, resulting in fragmented assemblies. Moreover, repeats introduce ambiguities for comparative48

genomics, hindering differentiation between identical or similar regions and complicating the understanding49

of gene functions, regulatory elements, and their role in genetic disorders (Treangen and Salzberg 2012). To50

overcome these obstacles, precise identification and annotation of repeated sequences is necessary. Unraveling51

the complexities of repeated sequences is not only crucial for enhancing genome assembly but also essential52

for deciphering intricate regulatory mechanisms and evolutionary processes. Indeed, identifying these repeats53

is foundational for understanding genome stability, gene expression, and disease susceptibility, making the54

development of accurate repeat detection methods vital for advancing genomic research (Girgis 2015).55

Figure 1. Assembly graph represen-
tation with repeat contigs in red.

Graphs are powerful tools for visualizing complex relationships56

between various objects, such as DNA sequences. Graph-based algo-57

rithms can effectively represent the interconnections and overlapping58

patterns within genomes (Koutrouli et al. 2020), where the nodes in59

the graph represent unique DNA sequences. Due to the tangled na-60

ture of repeated sequences within the assembly graph, exploiting61

graph structure becomes particularly advantageous. As an illustra-62

tive example, Figure 1 portrays the assembly graph obtained from63

a simulated metagenome with two organisms. In this scenario, three64

random sequences are generated. Two of these sequences are inserted65

as intra-genome repeats in each organism, while the third one is in-66

serted in both organisms, serving as an inter-genome repeat. This67

graph is visualized using Bandage (Wick et al. 2015), where the68

length of each node is proportional to the length of the correspond-69

ing contig. A node labeled as a repeat (which is colored red in the70

figure) represents a unique DNA sequence that occurs in several po-71

sitions of the metagenome sample. The graph reveals that repeats72

are represented by central and well-connected nodes, indicating the73

potential of utilizing the inherent graph structure in genomic data74

for identifying repeated sequences. However, graph structure is usu-75

ally not enough to tell apart the repeat nodes from some of the non-repeat ones. This motivates an approach76

that combines graph features with sequencing information such as read coverage or length of the DNA77

sequence.78

Previous studies have employed pre-specified graph features in combination with machine learning tech-79

niques to address the challenge of detecting repeats, treating it as a node classification problem (Ghurye80

and Pop 2016, Ghurye et al. 2019). In this context, the nodes of the graph represent DNA sequences, and the81

 Cold Spring Harbor Laboratory Press on September 30, 2024 - Published by genome.cshlp.orgDownloaded from

http://genome.cshlp.org/
http://www.cshlpress.com

Graph-based self-supervised learning for repeat detection in metagenomic assembly 3

objective is to classify them into repeats and non-repeats. However, given the vast amount of genomic data,82

there remains ample opportunity for enhancement through learning discriminative graph features. One of83

the promising ways to achieve this is by employing graph neural networks (GNNs) (Wu et al. 2020). GNNs84

have the unique ability to learn distinctive and valuable features for the nodes within the graphs. Unlike85

predefined features, GNNs generate these characteristics through trainable iterative computations, making86

them adaptive to the specific data. These features have shown promising results in many other fields (Glaze87

et al. 2023, Čutura et al. 2021, Zhao et al. 2023, Chowdhury et al. 2021), emphasizing the efficiency of uti-88

lizing GNNs to classify nodes accurately and uncover the complexities within large graphs (Hamilton et al.89

2017b).90

However, one of the primary challenges in genomic data analysis is the fact that most of the data is91

unlabeled, particularly in distinguishing between repeat and non-repeat sequences. This characteristic of92

the data prevents the application of supervised or semi-supervised learning techniques for classifying DNA93

sequences (Kipf and Welling 2016). In the absence of labeled data points offering insights into each class,94

these conventional methods become ineffective. To overcome this issue, self-supervised learning emerges as95

a natural and powerful alternative to leverage the vast unsupervised data (Jaiswal et al. 2020). In self-96

supervised learning, specific data points (nodes) are initially given (potentially noisy) labels. Subsequently,97

machine learning algorithms are employed, coupled with fine-tuning steps, to refine the model’s performance.98

This approach ensures the ability to classify data points without requiring access to their true labels.99

In this paper, we propose GraSSRep, a novel graph-based algorithm to identify and detect the repeated100

sequences in the metagenomic assembly in a self-supervised manner. Our contributions are threefold: 1)101

By leveraging GNNs, we devise the first method that learns (rather than pre-specifies) graph features for102

repeat detection; 2) We establish the first algorithm that uses self-supervised learning for repeat detection,103

leveraging existing methods to generate noisy labels that we then refine and expand using our learnable104

architecture; 3) Through numerical experiments, we demonstrate the robustness of our methodology, the105

value of each of its steps, and the performance gain compared with the state of the art.106

Methods107

Given paired-end reads, our goal is to identify repeated DNA sequences in the metagenome (see Experimental108

setup for the precise criteria used to define a repeat). An overview of our method specifically designed for109

this task is illustrated in Figure 2. In the subsequent sections, we provide a detailed explanation of each step110

involved in the pipeline.111

Step 1: Assembly graph construction112

In the initial step, we construct an assembly graph in order to leverage graph features for repeat detection.113

To do so, we assemble the input reads to contigs and obtain the assembly graph as illustrated in Figure 2(A).114

Here, we use the popular metagenomic assembler, metaSpades (Nurk et al. 2017), which employs the multi-115

sized de Bruijn graph to derive the contigs and the connections between them. We consider these assembled116

contigs as the nodes V of our assembly graph, where |V| = N . We denote by A ∈ {0, 1}N×N the adjacency117

matrix of the corresponding unweighted graph, where Aij = 1 if there is an edge between contig i and j, and118

Aij = 0 otherwise. Note that assembly graphs can also be generated similarly using alternative metagenomic119

assemblers like MEGAHIT (Li et al. 2015) and metaFlye (Kolmogorov et al. 2020), either by assembling120

the contigs and connecting them using read-mapping information or by directly utilizing the assembly graph121

provided by the assembler. We plan to support these additional assembly graph formats in the future. We122

specifically choose metaSpades because it is a well-known state-of-the-art short read assembler that is easy123

to use and offers high accuracy. The most significant benefit of metaSpades is that it provides the assem-124

bly graph directly alongside the assembled contigs. This feature fits seamlessly into our pipeline and allows125

us to bypass the additional step of read-mapping to identify connections between contigs. This integrated126

process not only simplifies our workflow but also accelerates graph construction, making metaSpades the127

optimal choice for our framework. However, we can alternatively construct our assembly graph manually by128

assembling the reads and utilizing read-mapping data; this is discussed in further detail in Alternative graph129

construction in the Supplemental material.130

 Cold Spring Harbor Laboratory Press on September 30, 2024 - Published by genome.cshlp.orgDownloaded from

http://genome.cshlp.org/
http://www.cshlpress.com

4 A. A zi z p o u r e t al.

1 3 5

2

7

4 6 8

90

1 3 5

2

7

4 6 8

90

ℎ ! !
𝑓 ! "𝑍

0

1

2

3

4

5

6

7

8

9

R a n d o m
F or est

0 2
3

6
7

8

9

41

5

(A) St e ps 1 a n d 2 (B) St e p 3

(C) St e p 4 (D) St e p 5

R e a d p airs Ps e u d o -l a b els

Ass e m bl y

N o n -r e p e at s ()

R e p e at s ()

E m b e d di n gs l e ar n e d b y ℎ # !

U nl a b el e d ()

0 2
3

6
7

8

9

41

5
: 𝑔 "

Fi g u r e 2. O v er vi e w of Gr a S S R e p. (A) R e a d s ar e a s s e m bl e d i nt o c o nti g s, f or mi n g t h e n o d e s of t h e a s s e m bl y
gr a p h. T h e gr a p h str u ct ur e (e d g e s) i s pr o vi d e d b y m et a S p a d e s. Al s o, f e at ur e v e ct or s ar e c o m p ut e d f or e a c h
c o nti g. (B) c o nti g s wit h di sti n cti v e s e q u e n ci n g f e at ur e s ar e s el e ct e d a s tr ai ni n g n o d e s a n d l a b el e d. (C) T h e
a s s e m bl y gr a p h i s i n p ut i nt o a G N N. E m b e d di n g s ar e g e n er at e d f or e a c h c o nti g a n d c o m bi n e d wit h t h e
i niti al f e at ur e s. A r a n d o m f or e st cl a s si fi er pr e di ct s l a b el s f or all c o nti g s b a s e d o n t h e a u g m e nt e d f e at ur e
v e ct or s. (D) S e q u e n ci n g f e at ur e s ar e e m pl o y e d t o i d e ntif y o utli er s wit hi n e a c h pr e di ct e d cl a s s, l e a di n g t o t h e
r e a s si g n m e nt of t h eir cl a s s l a b el s.

S t e p 2: F e a t u r e e x t r a c ti o n1 3 1

We c o m p ut e f e at ur e s of t h e c o nti g s t h at ar e i nf or m ati v e i n d et er mi ni n g w hi c h c o nti g s ar e r e p etiti v e. We1 3 2

c o n si d er t w o t y p e s of f e at ur e s: s e q u e n ci n g a n d gr a p h- b a s e d. S e q u e n ci n g f e at ur e s (c o nti g l e n gt h a n d m e a n1 3 3

c o v e r a g e) ar e o bt ai n e d d uri n g t h e s e q u e n ci n g pr o c e s s b ef or e c o n str u cti n g t h e c o nti g gr a p h a n d u s e d i n1 3 4

St e p s 3 a n d 5. I n a d diti o n, w e i n c or p or at e f o ur gr a p h- b a s e d f e at ur e s t h at ar e wi d el y u s e d i n t h e lit er at ur e:1 3 5

b et w e e n n e s s c e ntr alit y, k- c or e v al u e, d e gr e e, a n d cl u st eri n g c o e ffi ci e nt. Pr e vi o u s st u di e s h a v e e m p h a si z e d1 3 6

t h e si g ni fi c a n c e of b et w e e n n e s s c e ntr alit y (S e g arr a a n d Ri b eir o 2 0 1 5) i n i d e ntif yi n g r e p e at s (G h ur y e a n d1 3 7

P o p 2 0 1 6). A d diti o n all y, K O M B (B al aji et al. 2 0 2 2) h a s u n d er s c or e d t h e cr u ci al r ol e of t h e k- c or e v al u e1 3 8

i n a n o m al y d et e cti o n wit hi n c o nti g s. F urt h er m or e, t h e d e gr e e of n o d e s i n di c at e s t h eir c o n n e cti vit y str e n gt h1 3 9

wit h ot h er c o nti g s, ai di n g i n t h e i d e nti fi c ati o n of r e p e at e d r e gi o n s. We al s o c o n si d er t h e cl u st eri n g c o e ffi ci e nt1 4 0

d u e t o it s s u b st a nti al i m p a ct o n n o d e cl a s si fi c ati o n t a s k s, a s w ell a s it s d e m o n str at e d p o siti v e e ff e ct s a n d1 4 1

f a v or a bl e o ut c o m e s i n v ari o u s r el at e d d o m ai n s (Z a ki et al. 2 0 1 3). We st or e t h e gr a p h- b a s e d f e at ur e s i n a1 4 2

m atri x X ∈ R N × 4 , w h er e e v er y r o w c o nt ai n s t h e f o ur gr a p h- b a s e d f e at ur e s of a gi v e n n o d e (c o nti g) i n t h e1 4 3

gr a p h. T h u s, w e d e fi n e o ur f e at ur e d gr a p h of i nt er e st G = (V , A , X) a s s h o w n i n Fi g ur e 2(A).1 4 4

S t e p 3: S el e c ti o n of t h e t r ai ni n g n o d e s1 4 5

R e c all t h at w e d o n ot h a v e a n y pri or i nf or m ati o n (l a b el s) o n w h et h er a n y c o nti g i s a r e p e at or n ot. I n t hi s1 4 6

c o nt e xt, t h e i d e a of s elf- s u p er vi s e d l e ar ni n g i s fir st t o d o a hi g h- c o n fi d e n c e cl a s si fi c ati o n of a s u b s et of t h e1 4 7

c o nti g s (a s si g ni n g p ot e nti all y n oi s y l a b el s, d e n o mi n at e d p s e u d o-l a b el s, t o a s u b s et of t h e n o d e s) a n d t h e n1 4 8

u s e t h o s e n o d e s a s a tr ai ni n g s et f or a m a c hi n e l e ar ni n g m o d el t h at c a n cl a s sif y t h e r e m ai ni n g c o nti g s. We1 4 9

g e n er at e t hi s s et of p s e u d o-l a b el s u si n g t h e s e q u e n ci n g f e at ur e s fr o m St e p 2. I n g e n er ati n g p s e u d o-l a b el s, it1 5 0

i s i m p ort a nt o nl y t o c o n si d er t h o s e f or w hi c h w e h a v e a hi g h l e v el of c o n fi d e n c e, s o t h at t h e tr ai ni n g pr o c e s s1 5 1

b a s e d o n t h e s e p s e u d o-l a b el s i s r eli a bl e.1 5 2

I n d e fi ni n g o ur p s e u d o-l a b el s, w e r el y o n t h e f a ct t h at s h ort er c o nti g s wit h hi g h er c o v er a g e ar e hi g hl y li k el y1 5 3

t o b e r e p etiti v e, w hil e v er y l o n g c o nti g s wit h l o w er c o v er a g e ar e m or e li k el y t o b e n o n- r e p e at c o nti g s (G h ur y e1 5 4

 C ol d S pri n g H ar b or L a b or at or y Pr e s s o n S e pt e m b er 3 0, 2 0 2 4 - P u bli s h e d b y g e n o m e. c s hl p. or gD o w nl o a d e d fr o m

http://genome.cshlp.org/
http://www.cshlpress.com

Graph-based self-supervised learning for repeat detection in metagenomic assembly 5

and Pop 2016). More precisely, let us define as xlen
i and xcov

i the length (number of base pairs) and coverage155

(mean number of reads mapped to the base pairs in the contig) of node i, respectively. We set a percentile156

p (with 0 ≤ p ≤ 50) based on which we define the following thresholds: τ lenlow is the p-th percentile of the157

lengths among all contigs in V, τ lenhigh is the (100− p)-th percentile of the lengths among all contigs, and τ cov158

is the (100 − p)-th percentile of the coverages among all contigs. Based on these thresholds, we divide the159

contigs into three sets, the repeats R, the non-repeats N , and the unlabeled U , as follows160

R = {i ∈ V |xlen
i < τ lenlow ∧ xcov

i > τ cov}, N = {i ∈ V |xlen
i > τ lenhigh ∧ xcov

i < τ cov}, (1)

and U = V \ (R∪N). In (1), contigs shorter than the lower length threshold and with a coverage surpassing161

the coverage threshold are included in the training set with a repeat pseudo-label (R). Conversely, contigs162

exceeding the higher length threshold and having a coverage below the coverage threshold are added to the163

training set with a non-repeat pseudo-label (N). If a contig does not meet any of these conditions, it suggests164

that sequencing features alone are not sufficient to determine its classification. Consequently, these contigs165

are not included in the training set (U). A simple example of how the assembly graph is divided into three166

subsets after this step is depicted in Figure 2(B).167

Step 4: contig classification via self-supervised learning168

We leverage self-supervised learning by training a graph-based model on R (binary label of 1) and N (binary169

label of 0) and use that model to classify the nodes in U .170

Consider the graph G = (V,A,X) generated in Steps 1 and 2 and denote by gθ a GNN parameterized by171

θ (Wu et al. 2020). This GNN takes the graph structure A and the node features X as input and produces172

labels ŷGNN for the nodes at the output. To generate these labels, gθ can be viewed as an end-to-end network173

that is structured as follows174

ŷGNN = gθ(X,A) = fθ2(hθ1(X,A)), (2)

where hθ1 consists of graph convolutional layers followed by an activation function (Agarap 2018). Each175

layer in hθ1 generates new observations for every node based on its neighboring nodes. These convolutional176

layers are succeeded by fθ2 , which represents a fully connected neural network (Haykin 1998). The purpose177

of this network is to predict the final label for each node based on the features derived from the last layer of178

hθ1 . Note that we provide here a generic functional description of our methodology whereas in Experimental179

setup, we detail the specific architecture used in the experiments.180

We denote the output of the convolutional layers by Z = hθ1(X,A) ∈ RN×d, where d is a pre-specified181

embedding dimension. The i-th row zi of Z represents new features for contig i, learned in such a way that182

the final linear layer, fθ2 , can predict the class of the contigs based on these features. These embeddings183

enable us to achieve our objective of understanding the graph-based characteristics of repeat and non-repeat184

contigs. Notice that the features in zi not only depend on graph features of node i but also on the features185

of its local neighborhood through the aggregation of the trainable convolutional layers in hθ1 .186

In order to learn the parameters θ = {θ1 ∪ θ2}, the GNN undergoes an end-to-end training based on the187

pseudo-labels R and N identified in Step 3. This training process involves minimizing a loss function that188

compares the predicted labels ŷGNN with the pseudo-labels189

θ⋆ = argmin
θ

∑
i∈R

L([ŷGNN(θ)]i, 1) +
∑
i∈N

L([ŷGNN(θ)]i, 0), (3)

where L represents a classification loss (such as cross-entropy loss (De Boer et al. 2005)) and we have made190

explicit the dependence of ŷGNN with θ. In essence, in (3) we look for the GNN parameters θ⋆ such that the191

predicted labels for the nodes in R are closest to 1 while the predicted labels for the nodes in N are closest192

to 0. Intuitively, the intermediate embeddings Z obtained using the optimal parameters θ⋆ encode learning-193

based features relevant for the classification beyond the pre-defined ones in Step 2. Thus, we construct the194

augmented feature matrix X̄ = [X,Z] ∈ RN×(4+d) by concatenating the initial graph-based features with195

those generated by the GNN.196

A random forest (RF) classifier is then trained on the pseudo-labels R∪N having the augmented features197

X̄ as input. The RF is trained by creating multiple decision trees from different subsets of the dataset (a198

process known as bootstrapping), with each tree using a random subset of features. When making predictions,199

 Cold Spring Harbor Laboratory Press on September 30, 2024 - Published by genome.cshlp.orgDownloaded from

http://genome.cshlp.org/
http://www.cshlpress.com

6 A. Azizpour et al.

the individual trees’ outputs are combined through majority voting, producing a reliable and precise ensemble200

model (Breiman 2001). The RF classifier combines the explanatory power of the original graph-based features201

X found to be relevant in previous works with the learning-based features Z to generate the predicted labels202

ŷRF. An overview of how the labels of the training contigs are propagated to all contigs in Step 4 is shown203

in Figure 2(C).204

Notice that the sequencing features xlen and xcov are not used in computing ŷRF other than in the205

generation of the pseudo-labels. If we were to include these features as inputs to the RF, then the classifier206

can simply learn the conditions in (1) and obtain zero training error by ignoring all the graph features. This207

would directly defeat the purpose of our self-supervised framework. Instead, the current pipeline can distill208

the graph-based attributes associated with repeats and non-repeats, enabling us to generalize this knowledge209

to classify other contigs effectively.210

Step 5: Fine-tuning the labels211

In the final step of our method, we enhance the performance of our predictions through a fine-tuning process.212

We first assign the pseudo-labels of the training nodes in R and N as their final predicted labels. Our primary213

focus is then directed toward the non-training contigs in U . These contigs have been classified by the RF214

in Step 4 relying solely on their graph-based features and embeddings learned by the GNN. At this point,215

reconsidering sequencing features becomes crucial, as they hold valuable information that can significantly216

contribute to determining the accurate labels of the contigs.217

To do so, we divide the contigs in U into two disjoint sets: those predicted as repeats (label 1) by ŷRF218

form the set U1 and those predicted as non-repeats (label 0) by ŷRF form the set U0. Within each set, our219

objective is to identify outliers using the sequencing features xlen and xcov and modify their labels accordingly,220

similar to Step 3. Within each set, specific thresholds are computed based on the distribution of sequencing221

features of the contigs in that set. More precisely, for U1 we define ρlenhigh as the (100− p)-th percentile of the222

contigs’ lengths and ρcovlow and the p-th percentile of the coverage. Conversely, for U0 we define ρlenlow as the223

p-th percentile of the contigs’ lengths and ρcovhigh and the (100 − p)-th percentile of the coverage. Based on224

these thresholds, we identify outliers based on the following criteria225

U1→0 = {i ∈ U1 |xlen
i > ρlenhigh ∧ xcov

i < ρcovlow}, U0→1 = {i ∈ U0 |xlen
i < ρlenlow ∧ xcov

i > ρcovhigh}. (4)

In (4), we change the label from repeat to non-repeat (U 1→0) for those contigs that are longer than a threshold226

and have low coverage. Similarly, we change the label from non-repeat to repeat (U0→1) for short contigs227

with high coverage. This process is illustrated in Figure 2(D). Notice that we used the same percentile p to228

compute the thresholds ρ here as that one used to compute the thresholds τ in Step 3. Naturally, we could229

select a different percentile here, but we use the same one as this shows good empirical results and reduces230

the number of hyperparameters.231

Summarizing, the final labels ŷ predicted by our model are given by232

[ŷ]i =

{
1 for all i ∈ R ∪ (U1 \ U1→0) ∪ U0→1,

0 for all i ∈ N ∪ (U0 \ U0→1) ∪ U1→0.
(5)

In (5), we see that the contigs deemed as repeats ([ŷ]i = 1) by our method are those i) assigned a repeat233

pseudo-label in Step 3 (R), ii) classified as repeats by our RF in Step 4 and not deemed as outliers in Step234

5 (U1 \ U1→0), or iii) classified as non-repeats in Step 4 but later deemed as outliers in Step 5 (U 0→1).235

Conversely, contigs classified as non-repeats are those i) assigned a non-repeat pseudo-label in Step 3 (N),236

ii) classified as non-repeats by our RF in Step 4 and not deemed as outliers in Step 5 (U0 \ U0→1), or iii)237

classified as repeats in Step 4 but later deemed as outliers in Step 5 (U 1→0).238

Results239

In the following sections, we present a comprehensive analysis of our algorithm’s performance across various240

settings.241

 Cold Spring Harbor Laboratory Press on September 30, 2024 - Published by genome.cshlp.orgDownloaded from

http://genome.cshlp.org/
http://www.cshlpress.com

Graph-based self-supervised learning for repeat detection in metagenomic assembly 7

Experimental setup242

Datasets We test GraSSRep in three types of datasets.243

Simulated data: To represent distinct organisms, we generate two random backbone genomes with244

an equal probability of observing each base. Subsequently, a random sequence of length L is generated245

for each backbone and integrated into the genome with a copy number of C, serving as an intra-genome246

repeat. Additionally, an inter-genome repeat of length L is randomly generated and inserted C times in both247

genomes, representing an inter-genome repeat. Unlike the backbone genomes, repeats exhibit a non-uniform248

distribution of bases, resulting in distinctive characteristics unique to each repeat, setting them apart from249

the backbone genome. Consequently, we have two genomes, both containing a repeat content of 2 × L × C250

within a fixed length of 5 million base pairs for each organism. As a result, the characteristics of the repeats251

within the genomes can be controlled by adjusting the values of L and C. Finally, simulated reads, each252

101 base pairs in length, are generated using wgsim (https://github.com/lh3/wgsim) with default values for253

error (2%) and mutation (0.1%).254

Shakya 1: In this dataset, we analyze the reference genomes of a synthetic metagenome called Shakya,255

which consists of 64 organisms, including 48 bacteria and 16 archaea (Shakya et al. 2013). Based on these256

reference genomes, read pairs are generated using wgsim, akin to the previous dataset. However, unlike the257

simulated data, all the backbone genomes in this dataset are real organisms, containing intricate repeat258

patterns that are beyond our control. The generated reads are 101 base pairs long with a high coverage259

(≃ 50), and are produced without any errors or mutations, in order to identify exact repeats in the data.260

Shakya 2: Read pairs from the Shakya (Shakya et al. 2013) study were obtained from the European261

Nucleotide Archive (ENA – Run:SRR606249), all with a length of 101. We have no influence over coverage262

or read errors in this set of reads, mirroring real-world settings. This characteristic enables us to evaluate263

GraSSRep under realistic scenarios.264

Assembly In all experiments, contigs are assembled using the default values of metaSpades v3.13.0 for265

k -mer size, which are k = 21, k = 33, and k = 55. Also, in the error-free case (Shakya 1 dataset), we utilize266

the --only-assembler option of metaSpades and disable the read error correction step.267

To assess our model accurately, it is crucial to have the ground truth labels for the contigs. To identify268

these labels, all contigs are aligned to the reference genomes using NUCmer (Marçais et al. 2018) (with the269

--maxmatch option). Contigs are marked as repeats if they meet specific criteria. Generally, this criterion270

includes aligning at more than one location with at least 95% identity and 95% alignment length, indicating271

non-identical repeats. However, in error-free cases like the Shakya 1 dataset, the criterion is aligning at more272

than one location with 100% identity and 100% alignment length, which indicates exact repeats through the273

reference genomes.274

Method design and hyperparameter choices To select and label the training nodes, a threshold value p275

ranging between 30 and 40 is employed in Step 3, depending on the presence of noise in the data. Specifically,276

p = 35 in instances where noise is present (simulated data and Shakya 2), ensuring robustness in the277

presence of data irregularities. However, for noiseless cases (Shakya 1), we set p = 20, leading to a stricter278

definition of repeat pseudo-labels. Previous studies have demonstrated that this choice yields effective repeat279

detection (Ghurye et al. 2019). However, in the simulated dataset, during the fine-tuning step, we observed280

that setting p = 0 (indicating no need for fine-tuning) yielded superior results. This phenomenon primarily281

arises due to the presence of only two organisms in the dataset, leading to smaller and simpler assembly282

graphs. Consequently, the fine-tuning step becomes unnecessary as the labels generated by RF suffice for283

accurate classification.284

In Step 4, the first component of the GNN, hθ1 , consists of two consecutive GraphSAGE convolutional285

layers, each followed by a ReLU activation function (Hamilton et al. 2017a). The node representation update286

in these layers can be mathematically defined as follows:287

z(l+1)
v = ReLU

([
Wk ·Mean

({
z(l)u , ∀u ∈ Neigh(v)

})
,Bkz

(l)
v

])
, ∀v ∈ V ,

where z
(l)
v represents the node embedding of the node v at layer l, Neigh(v) represents the set of neighboring288

nodes of node v, and Mean is an aggregation function that combines the embeddings of neighboring nodes.289

 Cold Spring Harbor Laboratory Press on September 30, 2024 - Published by genome.cshlp.orgDownloaded from

https://github.com/lh3/wgsim
https://www.ebi.ac.uk/ena/browser/view/SRR606249
http://genome.cshlp.org/
http://www.cshlpress.com

8 A. Azizpour et al.

Moreover, Bk and Wk represent the linear transformation matrix for the self and neighbor embeddings,290

respectively. In this equation, z
(l+1)
v represents the updated embedding of the node v at the next layer291

(l + 1). Both the first and second convolutional layers have 16 hidden channels. More details on tuning the292

GNN structure hyperparameters are provided in GNN hyperparameter tuning in the Supplemental material.293

This results in d = 16 new features being generated for each node, represented as Z ∈ RN×16. Since hθ1 has294

two graph convolutional layers, the final embeddings combine the features within the 2-hop neighborhoods of295

each node. Additionally, the second component of the GNN, fθ2 , comprises a single fully connected layer that296

transforms the newly learned features, Z, into binary classes using a linear transformation matrix T ∈ R16×2.297

The GNN is trained for 2000 epochs, utilizing cross-entropy as the loss function and employing the Adam298

optimizer (Kingma and Ba 2014) with a learning rate of 0.001.299

The RF classifier utilizes 100 trees in the forest to generate its results. The split criterion for each decision300

tree is determined using the Gini impurity measure, ensuring the creation of optimal splits at each node.301

Finally, to account for the randomness inherent in the training process, both the training and testing steps302

are repeated for 10 iterations in each case. The reported results are averaged across these iterations, providing303

a robust and reliable evaluation. As figures of merit, we report the classification accuracy, precision, recall,304

and F1-score (harmonic mean of precision and recall).305

Evaluation on varying repeat characteristics306

We leverage the simulated dataset introduced in Experimental setup to examine the effect of three crucial307

characteristics that are beyond our control within the real datasets:308

A) Length of the repeats. To measure the impact of repeat length, we fix the copy number of both309

inserted intra-genome and inter-genome repeats at C = 25 and vary their length from L = 150 to L = 1000310

base pairs, leading to a copy content ranging from 0.15% to 1% in the reference genomes.311

B) Copy number of the repeats. We set the length of the inserted repeats to L = 400 base pairs and312

adjust their copy number from C = 10 to C = 150, increasing the complexity of the dataset. This results in313

a copy content ranging between 0.16% and 2.4% in the reference genomes.314

C) Coverage. We generate backbone data by inserting repeats of L = 400 base pairs in length with a315

copy number of C = 25 to have 0.4% copy content in the reference genomes. The number of generated read316

pairs is varied, ranging from 0.25 to 2.5 million base pairs. Consequently, the coverage ranges from 5 to 50,317

allowing us to analyze the algorithm’s performance under different coverage levels.318

These adjustments enable a detailed evaluation of our algorithm’s robustness and adaptability across319

a spectrum of repeat characteristics and coverage scenarios. Note that due to errors and mutations in the320

generated reads, our analysis considers a repeat as having at least 95% identity over 95% of the length.321

Consequently, more than just three contigs are identified as repeats in this context, each with copy numbers322

that may differ from the exact number of inserted repeats.323

Since the backbone and inserted repeats are generated randomly in the simulated datasets, we conduct 10324

trials for each case to ensure robust results for each condition. Specifically, for each scenario, we generate 10325

datasets with the same desired characteristics for repeat length, copy number, or coverage. We then calculate326

the results for each trial and report the average across these trials for all metrics. Additionally, the figures327

depict the error for the F1 Score across these 10 trials as a shaded purple area. We use the interquartile328

range to quantify the error, i.e., the error lower bound corresponds to the 25th percentile, and the upper329

bound corresponds to the 75th percentile across the 10 samples.330

As illustrated in Figure 3(A), our approach demonstrates resilience to variations in repeat length, with331

all metrics remaining stable as the repeat length increases. Consistently achieving an average F1-score above332

99% indicates that our approach can effectively detect repeated contigs even when longer repeats are present333

in the dataset.334

Figure 3(B) shows the performance attained when varying the copy number. Our method consistently335

achieves an average F1-score exceeding 97%, and for copy numbers below 70, it consistently surpasses 99%.336

Additionally, the average precision is higher than 99% in almost all cases. However, we observe a decreasing337

trend in the average recall, which results in a corresponding decrease in the F1-score as the copy number338

increases. This drop occurs because a higher copy number for the repeats creates a more tangled assembly339

graph with a lot of connections between the assembled contigs, making it more challenging to detect all the340

 Cold Spring Harbor Laboratory Press on September 30, 2024 - Published by genome.cshlp.orgDownloaded from

http://genome.cshlp.org/
http://www.cshlpress.com

Graph-based self-supervised learning for repeat detection in metagenomic assembly 9

Figure 3. Assessing the method across various repeat characteristics. (A) The model remains stable in met-
rics even with increasing repeat length. (B) The method is robust to the copy number variation, consistently
achieving an F1-score above 90%. (C) Higher sequencing coverage improves the model’s performance.

repeats. Note that for copy numbers less than 10, the assembly graph remains untangled, and repeats are341

detected with 100% accuracy using coverage or degree without requiring additional complex steps.342

As demonstrated in Figure 3(C), the model’s performance exhibits a constant improvement with increased343

coverage, as expected. Specifically, when coverage is higher than 20 (corresponding to 1 million reads), the344

model achieves an almost perfect rate of nearly 100% for all metrics.345

Ablation study of the steps of the algorithm346

We focus on the behavior of our method (see ‘Methods’ Section) across different steps using the Shakya 1347

dataset. After assembling and constructing the graph, we have N = 51549 contigs as the nodes of the graph,348

out of which 13842 contigs are exact repeats (total length of the contig repeated with 100% identity).349

To begin, our evaluation involves assessing the method across various steps of the pipeline. Specifically,350

we examine the outcomes relative to the baseline, the results produced by the GNN (ŷGNN), the outputs351

generated by RF (ŷRF), and finally, after the fine-tuning step (ŷ). In this context, the term “baseline” refers352

to a straightforward heuristic used to classify the contigs. This heuristic relies on Step 3 and labels nodes353

according to the following criteria354

[ŷbase]i =

{
1 for all i ∈ R,

0 for all i ∈ N ∪ U .
(6)

This approach allows us to test the effectiveness of sequencing features in node labeling in the absence of355

graph-based features.356

In Figure 4(A), it is evident that the F1-score consistently rises throughout the pipeline, emphasizing the357

importance of each step in achieving optimal results. The baseline method exhibits high precision (98.3%)358

but low recall (40.9%), indicating appropriate node selection for determining pseudo-labels but an inability359

to identify most repeats. This observation underscores that sequencing features alone are insufficient for360

detecting repeats. This limitation is modified by the GNN, which significantly boosts the recall to 68.6%,361

effectively identifying more repeats, which suggests that graph structure is significant in detecting the repeats.362

Subsequent application of the RF further amplifies this increase in recall to 80.2%. However, this enhanced363

recall comes at the cost of reduced precision compared to the baseline. To address this precision loss, the364

fine-tuning step effectively identifies outliers, leading to a precision increase from 72.6% at the output of the365

RF to 83.8% for the final estimation. In summary, our approach yields a 88.9% F1-score without any prior366

labels on the contigs, representing a substantial improvement of 31.2% over the baseline method.367

Moreover, we investigate the impact of the GNN and the embeddings it generates. To assess this, we per-368

form two analyses. First, we exclude Z from the feature matrix fed to the RF, resulting in X̄ = [X] ∈ RN×4
369

 Cold Spring Harbor Laboratory Press on September 30, 2024 - Published by genome.cshlp.orgDownloaded from

http://genome.cshlp.org/
http://www.cshlpress.com

10 A. Azizpour et al.

Figure 4. Behavior of GraSSRep across different steps. (A) Progression of the method’s performance
throughout the different steps, highlighting the effectiveness of each step in improving repeat detection.
We also test the impact of excluding the GNN embeddings and RF step applied to the augmented feature
vectors. (B) High importance of GNN-generated embeddings in RF classification.

aiming to observe the method’s performance only based on the initial graph-based features. As depicted in370

Figure 4(A) under ‘Excluding GNN’, this exclusion leads to a decrease in all performance metrics. This371

decline suggests that embeddings play a crucial role in enhancing the reliability of repeat detection. Second,372

we calculate the importance of the features fed to the RF by averaging the impurity decrease from each373

feature across trees. The more a feature decreases the impurity, the more important it is. These importance374

values are then plotted in Figure 4(B). The plot indicates that all learned embeddings (labeled z1 through375

z16) exhibit high importance. This finding emphasizes the utility of the embeddings generated by the GNN376

in improving the overall performance of the method. Further discussion on the effect of the GNN can be377

found in GNN effect in the Supplemental material. Moreover, by removing the intermediate RF step and378

directly applying the fine-tuning process to the GNN-generated labels, we evaluate the effect of the RF step.379

As illustrated in Figure 4(A) under ‘Excluding RF’, this omission also results in a decrease in all performance380

metrics, highlighting the essential role of the RF in balancing the influence of initial features and the learned381

embeddings.382

Additionally, we perform an ablation study on the percentile value p used to define the thresholds in Steps383

3 and 5. The analysis in Ablation study on the percentile value p in the Supplemental material reveals that384

our approach is robust to this hyperparameter, particularly within the range of 30 to 40, which corresponds385

to the range used in our experiments.386

Lastly, if we replicate the analysis in Figure 4 with an alternative graph construction method, we ob-387

serve that all outcomes align consistently as outlined in Alternative graph construction in the Supplemental388

material. This illustrates the versatility of our tool, demonstrating its efficacy across diverse graph structures.389

Comparison with existing repeat detection methods390

We present a comprehensive comparison of our method with several existing repeat detection methods using391

contigs assembled from the reads downloaded from ENA (Shakya 2). The ground truth labels are obtained392

in the same manner as described in Experimental setup, using the reference genomes from the Shakya 1393

dataset.394

We consider five widely recognized methods for this comparison. Opera (Gao et al. 2011) and SOPRA (Da-395

yarian et al. 2010) identify repetitive contigs by filtering out those with coverage 1.5 and 2.5 times higher396

than the average coverage of all contigs, respectively, without considering any graph structure. Similarly,397

the MIP scaffolder (Salmela et al. 2011) utilizes both high coverage (more than 2.5 times the average) and398

a high degree (≥ 50) within the assembly graph to detect the repeats. However, as the degree of contigs399

in the graph provided by metaSpades typically does not reach 50, we utilize an adaptive approach. In this400

alternative, we adjust the threshold from 50 to the 75-th percentile of the degrees observed in the graph.401

Additionally, Bambus2 (Koren et al. 2011) categorizes a contig as a repeat if the betweenness centrality,402

divided by the contig length, exceeds the upper bound of the range within c standard deviations above the403

mean on this feature. Here, c represents a hyperparameter of this method, and the optimal outcome on our404

 Cold Spring Harbor Laboratory Press on September 30, 2024 - Published by genome.cshlp.orgDownloaded from

http://genome.cshlp.org/
http://www.cshlpress.com

Graph-based self-supervised learning for repeat detection in metagenomic assembly 11

Figure 5. GraSSRep compared to the other repeat detection methods.

dataset was achieved with c = 0. Lastly, Metacarvel (Ghurye et al. 2019) employs four more complex graph-405

based features alongside coverage in a two-step process. First, any contig with a high betweenness centrality406

(≥ three standard deviations plus the mean) on the assembly graph is marked as a repeat. Moreover, a407

contig is identified as a repeat if it falls within the upper quartile for at least three of these features: mean408

coverage, degree, ratio of skewed edges (based on coverage), and ratio of incident edges invalidated during409

the orientation phase of the contigs; see (Ghurye et al. 2019) for details. Notably, since we utilize a contig410

graph instead of a scaffold graph, we do not incorporate the latest feature and adjust the flag threshold from411

three to two in the second step.412

As illustrated in Figure 5, GraSSRep outperforms all other methods, particularly demonstrating superior413

capability in detecting repeats with a higher recall rate (66.3% versus the next best alternative at 56.2%).414

Thus far, we have focused on the practical unsupervised setting where no repeat labels are available.415

For completeness, we now consider the case where repeat labels for some contigs are available. This setting416

might arise, e.g., if we have knowledge about specific organisms present in the metagenomic sample and417

their corresponding reference genomes are accessible. GraSSRep can seamlessly accommodate this case. In418

our pipeline, we can leverage this prior knowledge to substitute Step 3. Instead of pseudo-labels, we employ419

the known node labels as our training set, leading to a semi-supervised (instead of self-supervised) setting.420

Our analysis in Incorporating prior knowledge in the Supplemental material shows that performance can be421

markedly improved in the case where labels are available for a fraction of the contigs.422

Discussion423

We tackled the challenging task of detecting repetitive sequences (repeats) in metagenomics data when we424

only have access to paired-end reads. We introduced GraSSRep, a novel method that leverages the inherent425

structure of the assembly graph by employing GNNs to extract specific features for the contigs. Moreover,426

adopting a self-supervised learning framework, we generated noisy pseudo-labels for a subset of the contigs,427

which were then used to train a graph-based classifier on the rest of the contigs.428

Experimental studies using simulated datasets demonstrated the robustness of GraSSRep across diverse429

repeat characteristics and its resilience not only to repeat length but also to copy number variations. This430

ensures its applicability across various datasets and scenarios. Moreover, using synthetic datasets, we show431

the value of every step in our algorithm in enhancing repeat detection performance. This highlights the432

importance of each step and its role in achieving the best results. Furthermore, the GNN step effectively learns433

distinctive and important features for the repeat detection task based on the dataset, thereby enhancing the434

pipeline’s ability to detect more repeats using the graph structure.435

Additionally, we observed performance gain compared to existing repeat detection tools. This superiority436

comes from the combined value of incorporating learnable graph features (through the GNN) and considering437

a self-supervised framework. Notice that even if we fix the embedding dimension at d = 16, the graph features438

learned by the GNN depend on the specific dataset under consideration. In this way, our trainable architecture439

 Cold Spring Harbor Laboratory Press on September 30, 2024 - Published by genome.cshlp.orgDownloaded from

http://genome.cshlp.org/
http://www.cshlpress.com

12 A. Azizpour et al.

can distill the key graph features that characterize repeats in the specific metagenomic sample. This adaptive440

approach stands in contrast to other methods, which often rely on fixed features. Moreover, since the RF441

is not pre-trained but rather trained based on the pseudo-labels, different features may vary in importance442

based on context. In this way, our self-supervised framework allows us to adapt to the metagenomic data at443

hand, and we do not have to worry about generalization issues of pre-trained models.444

One limitation of our work is its dependence on the initial pseudo-labels. Specifically, in order to effectively445

generalize the labels from the initial training set to the other unlabeled nodes, we need sufficient samples in446

both repeat and non-repeat sets of training contigs from a diverse set of organisms. However, this process can447

be hindered by unbalanced coverage across different organisms. When some organisms exhibit significantly448

higher coverage compared to the rest of the community, the contigs generated from these organisms tend to449

dominate the high percentile of coverage and are detected as repeats in Step 3. Consequently, our training set450

becomes biased towards a few organisms, impeding the detection of repeats of other organisms. To address451

this issue, we plan to develop a more systematic approach to training set selection in future work.452

Furthermore, it is worth noting that while we selected the indicated reference genomes for the Shakya453

community for ground truth detection and evaluation of our method, previous studies (Ondov et al. 2019)454

have identified additional reference genomes present in the community. Consequently, some repeats may be455

missing from the ground truth set, as their reference genomes are not included in the community and thus456

not identified as true repeats.457

A natural extension of our approach is its integration into widely used assemblers. This integration would458

replace their existing repeat detection modules with GraSSRep, yielding potential improvements in assembly459

quality. We also intend to apply our method to real datasets, particularly in environments like hot springs460

where widely accessible reference genomes are scarce. Lastly, the overall pipeline of GraSSRep can potentially461

address other problems in genomics where graph structures can be used to identify specific genetic markers462

in the absence of prior knowledge. For instance, we intend to leverage our approach for the identification of463

transposable elements, which play important roles in eukaryotic/mammalian genomes.464

Software Availability465

An implementation of GraSSRep, along with the code to reproduce our results, can be found as Supplemental466

Code and at our GitHub repository (https://github.com/aliaaz99/GraSSRep).467

Competing interest statement468

The authors declare no competing interests.469

Acknowledgment470

471 This work was supported by the NSF under award EF-2126387. A.A., A.B., T.J.T., and S.S. conceived and
designed the study. A.A. and S.S. developed the methods and theory. A.A. and A.B. performed the experiments. A.A.,
T.J.T., and S.S. conducted the analyses. All authors analyzed and discussed the results. A.A. and S.S. drafted the initial
manuscript, which was reviewed and edited by all authors. All authors read and approved the final manuscript.

 Cold Spring Harbor Laboratory Press on September 30, 2024 - Published by genome.cshlp.orgDownloaded from

https://github.com/aliaaz99/GraSSRep
http://genome.cshlp.org/
http://www.cshlpress.com

Bibliography472

Agarap AF. 2018. Deep learning using rectified linear units (relu). arXiv doi:1803.08375 .473

Balaji A, Sapoval N, Seto C, Elworth RL, Fu Y, Nute MG, Savidge T, Segarra S, and Treangen TJ. 2022.474

KOMB: K-core based de novo characterization of copy number variation in microbiomes. CSBJ 20:475

3208–3222.476

Breiman L. 2001. Random forests. Machine Learning 45: 5–32.477

Chowdhury A, Verma G, Rao C, Swami A, and Segarra S. 2021. Unfolding WMMSE using graph neural478

networks for efficient power allocation. IEEE Trans SP 20: 6004–6017.479

Čutura G, Li B, Swami A, and Segarra S. 2021. Deep demixing: Reconstructing the evolution of epidemics480

using graph neural networks. In EUSIPCO, pp. 2204–2208.481

Dayarian A, Michael TP, and Sengupta AM. 2010. SOPRA: Scaffolding algorithm for paired reads via482

statistical optimization. BMC Bioinformatics 11: 1–21.483

De Boer PT, Kroese DP, Mannor S, and Rubinstein RY. 2005. A tutorial on the cross-entropy method. Ann484

Oper Res 134: 19–67.485

Gao S, Sung WK, and Nagarajan N. 2011. Opera: reconstructing optimal genomic scaffolds with high-486

throughput paired-end sequences. J Comput Biol 18: 1681–1691.487

Ghurye J and Pop M. 2016. Better identification of repeats in metagenomic scaffolding. In WABI, pp.488

174–184. Springer.489

Ghurye J, Treangen T, Fedarko M, Hervey WJ, and Pop M. 2019. MetaCarvel: linking assembly graph490

motifs to biological variants. Genome Biol 20: 1–14.491

Ghurye JS, Cepeda-Espinoza V, and Pop M. 2016. Metagenomic Assembly: Overview, Challenges and492

Applications. Yale J Biol Med 89: 353.493

Girgis HZ. 2015. Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the genomic scale.494

BMC Bioinformatics 16: 1–19.495

Glaze N, Bayer A, Jiang X, Savitz S, and Segarra S. 2023. Graph representation learning for stroke recurrence496

prediction. In ICASSP, pp. 1–5.497

Hamilton W, Ying Z, and Leskovec J. 2017a. Inductive representation learning on large graphs. NeurIPS498

30.499

Hamilton WL, Ying R, and Leskovec J. 2017b. Representation learning on graphs: Methods and applications.500

arXiv doi:1709.05584 .501

Haykin S. 1998. Neural networks: a comprehensive foundation. Prentice Hall PTR.502

Iranzo J, Wolf YI, Koonin EV, and Sela I. 2019. Gene gain and loss push prokaryotes beyond the homologous503

recombination barrier and accelerate genome sequence divergence. Nat Commun 10: 5376.504

Jaiswal A, Babu AR, Zadeh MZ, Banerjee D, and Makedon F. 2020. A survey on contrastive self-supervised505

learning. Technologies 9: 2.506

Kingma DP and Ba J. 2014. Adam: A method for stochastic optimization. arXiv doi:1412.6980 .507

Kipf TN and Welling M. 2016. Semi-supervised classification with graph convolutional networks. arXiv508

doi:1609.02907 .509

Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB, Kuhn K, Yuan J, Polevikov E,510

Smith TP, et al.. 2020. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat511

Methods 17: 1103–1110.512

Koren S and Phillippy AM. 2015. One chromosome, one contig: complete microbial genomes from long-read513

sequencing and assembly. COMICR 23: 110–120.514

Koren S, Treangen TJ, and Pop M. 2011. Bambus 2: scaffolding metagenomes. Bioinformatics 27: 2964–2971.515

Koutrouli M, Karatzas E, Paez-Espino D, and Pavlopoulos GA. 2020. A guide to conquer the biological516

network era using graph theory. Front Bioeng Biotechnol 8: 34.517

Langmead B and Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359.518

Lapidus AL and Korobeynikov AI. 2021. Metagenomic data assembly–the way of decoding unknown mi-519

croorganisms. Front Microbiol 12: 613791.520

Li D, Liu CM, Luo R, Sadakane K, and Lam TW. 2015. MEGAHIT: an ultra-fast single-node solution for521

large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31: 1674–1676.522

 Cold Spring Harbor Laboratory Press on September 30, 2024 - Published by genome.cshlp.orgDownloaded from

http://genome.cshlp.org/
http://www.cshlpress.com

14 A. Azizpour et al.

Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, and Zimin A. 2018. MUMmer4: A fast and523

versatile genome alignment system. PLoS Comput Biol 14: e1005944.524

Martin S, Ayling M, Patrono L, Caccamo M, Murcia P, and Leggett RM. 2023. Capturing variation in525

metagenomic assembly graphs with MetaCortex. Bioinformatics 39: btad020.526

Nurk S, Meleshko D, Korobeynikov A, and Pevzner PA. 2017. metaSPAdes: a new versatile metagenomic527

assembler. Genome Res 27: 824–834.528

Ondov BD, Starrett GJ, Sappington A, Kostic A, Koren S, Buck CB, and Phillippy AM. 2019. Mash screen:529

high-throughput sequence containment estimation for genome discovery. Genome Biol 20: 1–13.530

Salmela L, Mäkinen V, Välimäki N, Ylinen J, and Ukkonen E. 2011. Fast scaffolding with small independent531

mixed integer programs. Bioinformatics 27: 3259–3265.532

Schatz MC, Delcher AL, and Salzberg SL. 2010. Assembly of large genomes using second-generation se-533

quencing. Genome Res 20: 1165–1173.534

Segarra S and Ribeiro A. 2015. Stability and continuity of centrality measures in weighted graphs. IEEE535

Trans SP 64: 543–555.536

Shakya M, Quince C, Campbell JH, Yang ZK, Schadt CW, and Podar M. 2013. Comparative metagenomic537

and rRNAmicrobial diversity characterization using archaeal and bacterial synthetic communities. Environ538

Microbiol 15: 1882–1899.539

Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, and Birol I. 2009. ABySS: a parallel assembler for540

short read sequence data. Genome Res 19: 1117–1123.541

Soucy SM, Huang J, and Gogarten JP. 2015. Horizontal gene transfer: building the web of life. Nat Rev542

Genet 16: 472–482.543

Treangen TJ, Abraham AL, Touchon M, and Rocha EP. 2009. Genesis, effects and fates of repeats in544

prokaryotic genomes. FEMS Microbiol Rev 33: 539–571.545

Treangen TJ and Salzberg SL. 2012. Repetitive DNA and next-generation sequencing: computational chal-546

lenges and solutions. Nat Rev Genet 13: 36–46.547

Wick RR, Schultz MB, Zobel J, and Holt KE. 2015. Bandage: interactive visualization of de novo genome548

assemblies. Bioinformatics 31: 3350–3352.549

Wooley JC, Godzik A, and Friedberg I. 2010. A primer on metagenomics. PLoS Comput Biol 6: 1–13.550

Wu Z, Pan S, Chen F, Long G, Zhang C, and Philip SY. 2020. A comprehensive survey on graph neural551

networks. IEEE Trans. Neural Netw. Learn. Syst. 32: 4–24.552

Yang C, Chowdhury D, Zhang Z, Cheung WK, Lu A, Bian Z, and Zhang L. 2021. A review of computational553

tools for generating metagenome-assembled genomes from metagenomic sequencing data. CSBJ 19: 6301–554

6314.555

Zaki N, Efimov D, and Berengueres J. 2013. Protein complex detection using interaction reliability assessment556

and weighted clustering coefficient. BMC Bioinformatics 14: 1–9.557

Zhao Z, Verma G, Rao C, Swami A, and Segarra S. 2023. Link scheduling using graph neural networks.558

IEEE Trans SP 22: 3997–4012.559

 Cold Spring Harbor Laboratory Press on September 30, 2024 - Published by genome.cshlp.orgDownloaded from

http://genome.cshlp.org/
http://www.cshlpress.com

 10.1101/gr.279136.124Access the most recent version at doi:
 published online July 19, 2024Genome Res.

Ali Azizpour, Advait Balaji, Todd J. Treangen, et al.

metagenomic assembly
Graph-based self-supervised learning for repeat detection in

P<P

Published online July 19, 2024 in advance of the print journal.

Manuscript

Accepted

manuscript is likely to differ from the final, published version.
Peer-reviewed and accepted for publication but not copyedited or typeset; accepted

License

Commons
Creative

.http://creativecommons.org/licenses/by-nc/4.0/as described at
under a Creative Commons License (Attribution-NonCommercial 4.0 International),

). After six months, it is availablehttps://genome.cshlp.org/site/misc/terms.xhtml
first six months after the full-issue publication date (see
This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the

Service
Email Alerting

 click here.top right corner of the article or

Receive free email alerts when new articles cite this article - sign up in the box at the

 https://genome.cshlp.org/subscriptions
go to: Genome Research To subscribe to

Published by Cold Spring Harbor Laboratory Press

 Cold Spring Harbor Laboratory Press on September 30, 2024 - Published by genome.cshlp.orgDownloaded from

http://genome.cshlp.org/lookup/doi/10.1101/gr.279136.124
https://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=protocols;10.1101/gr.279136.124&return_type=article&return_url=http://genome.cshlp.org/content/10.1101/gr.279136.124.full.pdf
http://genome.cshlp.org/cgi/adclick/?ad=57163&adclick=true&url=https%3A%2F%2Fwww.usascientific.com%2Fvortex_mixer%3Futm_source%3DCSHL%26utm_medium%3DeTOC_VMX%26utm_campaign%3DVMX
https://genome.cshlp.org/subscriptions
http://genome.cshlp.org/
http://www.cshlpress.com

	Graph-based self-supervised learning for repeat detection in metagenomic assembly

