

1 Graph-based self-supervised learning for repeat detection in 2 metagenomic assembly

3 Ali Azizpour¹, Advait Balaji², Todd J. Treangen², and Santiago Segarra¹

4 ¹ Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA

5 {aa210,segarra}@rice.edu

6 ² Department of Computer Science, Rice University, Houston, TX, USA

7 {advait,treangen}@rice.edu

8 **Running title:** Graph-based self-supervised repeat detection

9 **Abstract.** Repetitive DNA (repeats) poses significant challenges for accurate and efficient genome as-
10 sembly and sequence alignment. This is particularly true for metagenomic data, where genome dynamics
11 such as horizontal gene transfer, gene duplication, and gene loss/gain complicate accurate genome as-
12 sembly from metagenomic communities. Detecting repeats is a crucial first step in overcoming these
13 challenges. To address this issue, we propose GraSSRep, a novel approach that leverages the assembly
14 graph's structure through graph neural networks (GNNs) within a self-supervised learning framework
15 to classify DNA sequences into repetitive and non-repetitive categories. Specifically, we frame this prob-
16 lem as a node classification task within a metagenomic assembly graph. In a self-supervised fashion, we
17 rely on a high-precision (but low-recall) heuristic to generate pseudo-labels for a small proportion of
18 the nodes. We then use those pseudo-labels to train a GNN embedding and a random forest classifier to
19 propagate the labels to the remaining nodes. In this way, GraSSRep combines sequencing features with
20 pre-defined and learned graph features to achieve state-of-the-art performance in repeat detection. We
21 evaluate our method using simulated and synthetic metagenomic datasets. The results on the simulated
22 data highlight our GraSSRep's robustness to repeat attributes, demonstrating its effectiveness in han-
23 dling the complexity of repeated sequences. Additionally, our experiments with synthetic metagenomic
24 datasets reveal that incorporating the graph structure and the GNN enhances our detection perfor-
25 mance. Finally, in comparative analyses, GraSSRep outperforms existing repeat detection tools with
26 respect to precision and recall.

27 **Keywords:** Metagenomics · Repeat detection · Graph neural network · Self-supervised learning ·
28 RECOMB24

29

Introduction

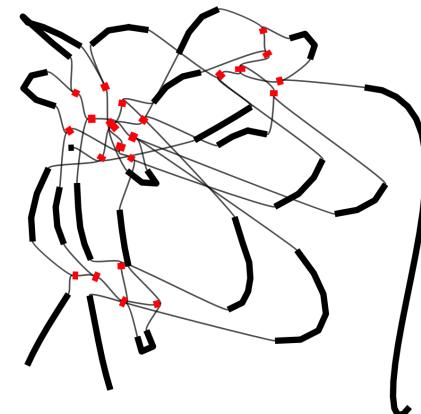
30 Metagenomics is a scientific discipline that involves analyzing genetic material obtained from complex uncultured samples housing DNA from diverse organisms (Wooley et al. 2010). This field utilizes high-throughput sequencing and bioinformatic techniques to characterize and compare the genomic diversity and functional potential of entire microbial communities without the need for isolating and culturing individual organisms (Yang et al. 2021). The resulting data can provide insights into the ecological roles and evolutionary relationships of the microorganisms present in the sample (Schatz et al. 2010).

31 However, the sequencing of DNA from such samples poses unique challenges. One of the major challenges in the metagenomic assembly is the presence of repeats (Ghurye et al. 2016, Lapidus and Korbeynikov 2021), which are sequences of DNA that are similar or identical to sequences elsewhere in the genome (Treangen and Salzberg 2012). The challenges posed by repeats in isolated genomes have primarily been addressed through the use of long-read technologies (Koren and Phillippy 2015). However, metagenomics presents a more complex problem as microbial mixtures often contain multiple closely related genomes that differ in just a few locations due to structural variants (Martin et al. 2023), such as horizontal gene transfer (Soucy et al. 2015), gene duplication, and gene loss/gain (Irango et al. 2019). Reads spanning the length of individual strains are required to fully resolve these genome-scale repeats present in microbiomes.

32 These repetitive elements, while natural and abundant in genomes, complicate the process of genome assembly and comparison (Treangen et al. 2009). They intricately tangle the assembly graph, making it difficult to distinguish the order, orientation, and copy number variation of genomes comprising the microbiome under study, resulting in fragmented assemblies. Moreover, repeats introduce ambiguities for comparative genomics, hindering differentiation between identical or similar regions and complicating the understanding of gene functions, regulatory elements, and their role in genetic disorders (Treangen and Salzberg 2012). To overcome these obstacles, precise identification and annotation of repeated sequences is necessary. Unraveling the complexities of repeated sequences is not only crucial for enhancing genome assembly but also essential for deciphering intricate regulatory mechanisms and evolutionary processes. Indeed, identifying these repeats is foundational for understanding genome stability, gene expression, and disease susceptibility, making the development of accurate repeat detection methods vital for advancing genomic research (Girgis 2015).

33 Graphs are powerful tools for visualizing complex relationships between various objects, such as DNA sequences. Graph-based algorithms can effectively represent the interconnections and overlapping patterns within genomes (Koutrouli et al. 2020), where the nodes in the graph represent unique DNA sequences. Due to the tangled nature of repeated sequences within the assembly graph, exploiting graph structure becomes particularly advantageous. As an illustrative example, Figure 1 portrays the assembly graph obtained from a simulated metagenome with two organisms. In this scenario, three random sequences are generated. Two of these sequences are inserted as intra-genome repeats in each organism, while the third one is inserted in both organisms, serving as an inter-genome repeat. This graph is visualized using Bandage (Wick et al. 2015), where the length of each node is proportional to the length of the corresponding contig. A node labeled as a repeat (which is colored red in the figure) represents a unique DNA sequence that occurs in several positions of the metagenome sample. The graph reveals that repeats are represented by central and well-connected nodes, indicating the potential of utilizing the inherent graph structure in genomic data for identifying repeated sequences. However, graph structure is usually not enough to tell apart the repeat nodes from some of the non-repeat ones. This motivates an approach that combines graph features with sequencing information such as read coverage or length of the DNA sequence.

34 Previous studies have employed pre-specified graph features in combination with machine learning techniques to address the challenge of detecting repeats, treating it as a node classification problem (Ghurye and Pop 2016, Ghurye et al. 2019). In this context, the nodes of the graph represent DNA sequences, and the



35 **Figure 1.** Assembly graph representation with repeat contigs in red.

82 objective is to classify them into repeats and non-repeats. However, given the vast amount of genomic data,
 83 there remains ample opportunity for enhancement through learning discriminative graph features. One of
 84 the promising ways to achieve this is by employing graph neural networks (GNNs) (Wu et al. 2020). GNNs
 85 have the unique ability to learn distinctive and valuable features for the nodes within the graphs. Unlike
 86 predefined features, GNNs generate these characteristics through trainable iterative computations, making
 87 them adaptive to the specific data. These features have shown promising results in many other fields (Glaze
 88 et al. 2023, Čutura et al. 2021, Zhao et al. 2023, Chowdhury et al. 2021), emphasizing the efficiency of uti-
 89 lizing GNNs to classify nodes accurately and uncover the complexities within large graphs (Hamilton et al.
 90 2017b).

91 However, one of the primary challenges in genomic data analysis is the fact that most of the data is
 92 unlabeled, particularly in distinguishing between repeat and non-repeat sequences. This characteristic of
 93 the data prevents the application of supervised or semi-supervised learning techniques for classifying DNA
 94 sequences (Kipf and Welling 2016). In the absence of labeled data points offering insights into each class,
 95 these conventional methods become ineffective. To overcome this issue, self-supervised learning emerges as
 96 a natural and powerful alternative to leverage the vast unsupervised data (Jaiswal et al. 2020). In self-
 97 supervised learning, specific data points (nodes) are initially given (potentially noisy) labels. Subsequently,
 98 machine learning algorithms are employed, coupled with fine-tuning steps, to refine the model's performance.
 99 This approach ensures the ability to classify data points without requiring access to their true labels.

100 In this paper, we propose GraSSRep, a novel graph-based algorithm to identify and detect the repeated
 101 sequences in the metagenomic assembly in a self-supervised manner. Our contributions are threefold: 1)
 102 By leveraging GNNs, we devise the first method that learns (rather than pre-specifies) graph features for
 103 repeat detection; 2) We establish the first algorithm that uses self-supervised learning for repeat detection,
 104 leveraging existing methods to generate noisy labels that we then refine and expand using our learnable
 105 architecture; 3) Through numerical experiments, we demonstrate the robustness of our methodology, the
 106 value of each of its steps, and the performance gain compared with the state of the art.

107 Methods

108 Given paired-end reads, our goal is to identify repeated DNA sequences in the metagenome (see Experimental
 109 setup for the precise criteria used to define a repeat). An overview of our method specifically designed for
 110 this task is illustrated in Figure 2. In the subsequent sections, we provide a detailed explanation of each step
 111 involved in the pipeline.

112 Step 1: Assembly graph construction

113 In the initial step, we construct an assembly graph in order to leverage graph features for repeat detection.
 114 To do so, we assemble the input reads to contigs and obtain the assembly graph as illustrated in Figure 2(A).
 115 Here, we use the popular metagenomic assembler, metaSpades (Nurk et al. 2017), which employs the multi-
 116 sized de Bruijn graph to derive the contigs and the connections between them. We consider these assembled
 117 contigs as the nodes \mathcal{V} of our assembly graph, where $|\mathcal{V}| = N$. We denote by $\mathbf{A} \in \{0, 1\}^{N \times N}$ the adjacency
 118 matrix of the corresponding unweighted graph, where $A_{ij} = 1$ if there is an edge between contig i and j , and
 119 $A_{ij} = 0$ otherwise. Note that assembly graphs can also be generated similarly using alternative metagenomic
 120 assemblers like MEGAHIT (Li et al. 2015) and metaFlye (Kolmogorov et al. 2020), either by assembling
 121 the contigs and connecting them using read-mapping information or by directly utilizing the assembly graph
 122 provided by the assembler. We plan to support these additional assembly graph formats in the future. We
 123 specifically choose metaSpades because it is a well-known state-of-the-art short read assembler that is easy
 124 to use and offers high accuracy. The most significant benefit of metaSpades is that it provides the assem-
 125 bly graph directly alongside the assembled contigs. This feature fits seamlessly into our pipeline and allows
 126 us to bypass the additional step of read-mapping to identify connections between contigs. This integrated
 127 process not only simplifies our workflow but also accelerates graph construction, making metaSpades the
 128 optimal choice for our framework. However, we can alternatively construct our assembly graph manually by
 129 assembling the reads and utilizing read-mapping data; this is discussed in further detail in Alternative graph
 130 construction in the Supplemental material.

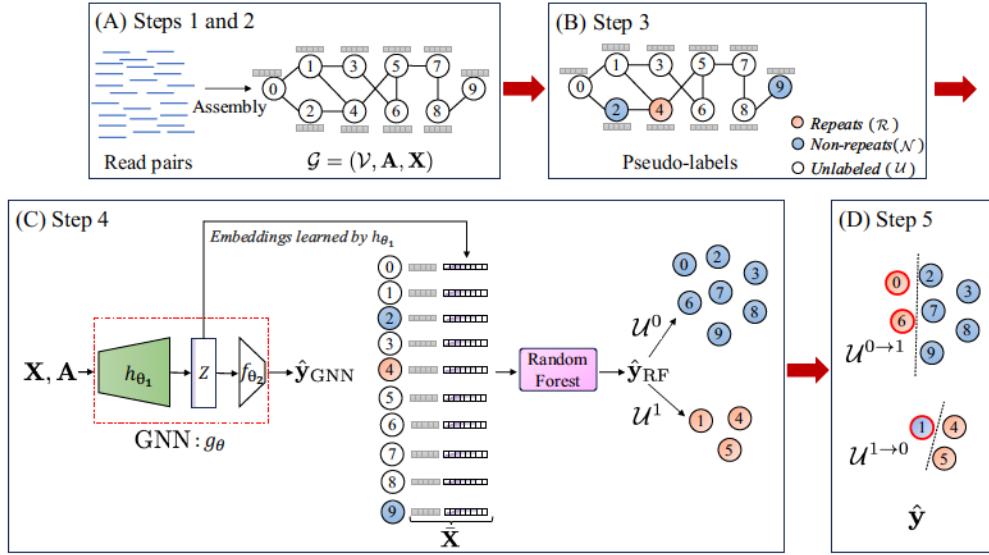


Figure 2. Overview of GraSSRep. (A) Reads are assembled into contigs, forming the nodes of the assembly graph. The graph structure (edges) is provided by metaSpades. Also, feature vectors are computed for each contig. (B) contigs with distinctive sequencing features are selected as training nodes and labeled. (C) The assembly graph is input into a GNN. Embeddings are generated for each contig and combined with the initial features. A random forest classifier predicts labels for all contigs based on the augmented feature vectors. (D) Sequencing features are employed to identify outliers within each predicted class, leading to the reassignment of their class labels.

131 Step 2: Feature extraction

132 We compute features of the contigs that are informative in determining which contigs are repetitive. We
 133 consider two types of features: sequencing and graph-based. Sequencing features (contig length and mean
 134 coverage) are obtained during the sequencing process before constructing the contig graph and used in
 135 Steps 3 and 5. In addition, we incorporate four graph-based features that are widely used in the literature:
 136 betweenness centrality, k-core value, degree, and clustering coefficient. Previous studies have emphasized
 137 the significance of betweenness centrality (Segarra and Ribeiro 2015) in identifying repeats (Ghurye and
 138 Pop 2016). Additionally, KOMB (Balaji et al. 2022) has underscored the crucial role of the k-core value
 139 in anomaly detection within contigs. Furthermore, the degree of nodes indicates their connectivity strength
 140 with other contigs, aiding in the identification of repeated regions. We also consider the clustering coefficient
 141 due to its substantial impact on node classification tasks, as well as its demonstrated positive effects and
 142 favorable outcomes in various related domains (Zaki et al. 2013). We store the graph-based features in a
 143 matrix $\mathbf{X} \in \mathbb{R}^{N \times 4}$, where every row contains the four graph-based features of a given node (contig) in the
 144 graph. Thus, we define our featured graph of interest $\mathcal{G} = (\mathcal{V}, \mathcal{A}, \mathbf{X})$ as shown in Figure 2(A).

145 Step 3: Selection of the training nodes

146 Recall that we do not have any prior information (labels) on whether any contig is a repeat or not. In this
 147 context, the idea of self-supervised learning is first to do a high-confidence classification of a subset of the
 148 contigs (assigning potentially noisy labels, denominated pseudo-labels, to a subset of the nodes) and then
 149 use those nodes as a training set for a machine learning model that can classify the remaining contigs. We
 150 generate this set of pseudo-labels using the sequencing features from Step 2. In generating pseudo-labels, it
 151 is important only to consider those for which we have a high level of confidence, so that the training process
 152 based on these pseudo-labels is reliable.

153 In defining our pseudo-labels, we rely on the fact that shorter contigs with higher coverage are highly likely
 154 to be repetitive, while very long contigs with lower coverage are more likely to be non-repeat contigs (Ghurye

155 and Pop 2016). More precisely, let us define as x_i^{len} and x_i^{cov} the length (number of base pairs) and coverage
 156 (mean number of reads mapped to the base pairs in the contig) of node i , respectively. We set a percentile
 157 p (with $0 \leq p \leq 50$) based on which we define the following thresholds: $\tau_{\text{low}}^{\text{len}}$ is the p -th percentile of the
 158 lengths among all contigs in \mathcal{V} , $\tau_{\text{high}}^{\text{len}}$ is the $(100 - p)$ -th percentile of the lengths among all contigs, and τ^{cov}
 159 is the $(100 - p)$ -th percentile of the coverages among all contigs. Based on these thresholds, we divide the
 160 contigs into three sets, the repeats \mathcal{R} , the non-repeats \mathcal{N} , and the unlabeled \mathcal{U} , as follows

$$\mathcal{R} = \{i \in \mathcal{V} \mid x_i^{\text{len}} < \tau_{\text{low}}^{\text{len}} \wedge x_i^{\text{cov}} > \tau^{\text{cov}}\}, \quad \mathcal{N} = \{i \in \mathcal{V} \mid x_i^{\text{len}} > \tau_{\text{high}}^{\text{len}} \wedge x_i^{\text{cov}} < \tau^{\text{cov}}\}, \quad (1)$$

161 and $\mathcal{U} = \mathcal{V} \setminus (\mathcal{R} \cup \mathcal{N})$. In (1), contigs shorter than the lower length threshold and with a coverage surpassing
 162 the coverage threshold are included in the training set with a repeat pseudo-label (\mathcal{R}). Conversely, contigs
 163 exceeding the higher length threshold and having a coverage below the coverage threshold are added to the
 164 training set with a non-repeat pseudo-label (\mathcal{N}). If a contig does not meet any of these conditions, it suggests
 165 that sequencing features alone are not sufficient to determine its classification. Consequently, these contigs
 166 are not included in the training set (\mathcal{U}). A simple example of how the assembly graph is divided into three
 167 subsets after this step is depicted in Figure 2(B).

168 Step 4: contig classification via self-supervised learning

169 We leverage self-supervised learning by training a graph-based model on \mathcal{R} (binary label of 1) and \mathcal{N} (binary
 170 label of 0) and use that model to classify the nodes in \mathcal{U} .

171 Consider the graph $\mathcal{G} = (\mathcal{V}, \mathbf{A}, \mathbf{X})$ generated in Steps 1 and 2 and denote by g_θ a GNN parameterized by
 172 θ (Wu et al. 2020). This GNN takes the graph structure \mathbf{A} and the node features \mathbf{X} as input and produces
 173 labels $\hat{\mathbf{y}}_{\text{GNN}}$ for the nodes at the output. To generate these labels, g_θ can be viewed as an end-to-end network
 174 that is structured as follows

$$\hat{\mathbf{y}}_{\text{GNN}} = g_\theta(\mathbf{X}, \mathbf{A}) = f_{\theta_2}(h_{\theta_1}(\mathbf{X}, \mathbf{A})), \quad (2)$$

175 where h_{θ_1} consists of graph convolutional layers followed by an activation function (Agarap 2018). Each
 176 layer in h_{θ_1} generates new observations for every node based on its neighboring nodes. These convolutional
 177 layers are succeeded by f_{θ_2} , which represents a fully connected neural network (Haykin 1998). The purpose
 178 of this network is to predict the final label for each node based on the features derived from the last layer of
 179 h_{θ_1} . Note that we provide here a generic functional description of our methodology whereas in Experimental
 180 setup, we detail the specific architecture used in the experiments.

181 We denote the output of the convolutional layers by $\mathbf{Z} = h_{\theta_1}(\mathbf{X}, \mathbf{A}) \in \mathbb{R}^{N \times d}$, where d is a pre-specified
 182 embedding dimension. The i -th row \mathbf{z}_i of \mathbf{Z} represents new features for contig i , learned in such a way that
 183 the final linear layer, f_{θ_2} , can predict the class of the contigs based on these features. These embeddings
 184 enable us to achieve our objective of understanding the graph-based characteristics of repeat and non-repeat
 185 contigs. Notice that the features in \mathbf{z}_i not only depend on graph features of node i but also on the features
 186 of its local neighborhood through the aggregation of the trainable convolutional layers in h_{θ_1} .

187 In order to learn the parameters $\theta = \{\theta_1 \cup \theta_2\}$, the GNN undergoes an end-to-end training based on the
 188 pseudo-labels \mathcal{R} and \mathcal{N} identified in Step 3. This training process involves minimizing a loss function that
 189 compares the predicted labels $\hat{\mathbf{y}}_{\text{GNN}}$ with the pseudo-labels

$$\theta^* = \operatorname{argmin}_\theta \sum_{i \in \mathcal{R}} \mathcal{L}([\hat{\mathbf{y}}_{\text{GNN}}(\theta)]_i, 1) + \sum_{i \in \mathcal{N}} \mathcal{L}([\hat{\mathbf{y}}_{\text{GNN}}(\theta)]_i, 0), \quad (3)$$

190 where \mathcal{L} represents a classification loss (such as cross-entropy loss (De Boer et al. 2005)) and we have made
 191 explicit the dependence of $\hat{\mathbf{y}}_{\text{GNN}}$ with θ . In essence, in (3) we look for the GNN parameters θ^* such that the
 192 predicted labels for the nodes in \mathcal{R} are closest to 1 while the predicted labels for the nodes in \mathcal{N} are closest
 193 to 0. Intuitively, the intermediate embeddings \mathbf{Z} obtained using the optimal parameters θ^* encode learning-
 194 based features relevant for the classification beyond the pre-defined ones in Step 2. Thus, we construct the
 195 augmented feature matrix $\bar{\mathbf{X}} = [\mathbf{X}, \mathbf{Z}] \in \mathbb{R}^{N \times (4+d)}$ by concatenating the initial graph-based features with
 196 those generated by the GNN.

197 A random forest (RF) classifier is then trained on the pseudo-labels $\mathcal{R} \cup \mathcal{N}$ having the augmented features
 198 $\bar{\mathbf{X}}$ as input. The RF is trained by creating multiple decision trees from different subsets of the dataset (a
 199 process known as bootstrapping), with each tree using a random subset of features. When making predictions,

200 the individual trees' outputs are combined through majority voting, producing a reliable and precise ensemble
 201 model (Breiman 2001). The RF classifier combines the explanatory power of the original graph-based features
 202 \mathbf{X} found to be relevant in previous works with the learning-based features \mathbf{Z} to generate the predicted labels
 203 $\hat{\mathbf{y}}_{\text{RF}}$. An overview of how the labels of the training contigs are propagated to all contigs in Step 4 is shown
 204 in Figure 2(C).

205 Notice that the sequencing features x^{len} and x^{cov} are not used in computing $\hat{\mathbf{y}}_{\text{RF}}$ other than in the
 206 generation of the pseudo-labels. If we were to include these features as inputs to the RF, then the classifier
 207 can simply learn the conditions in (1) and obtain zero training error by ignoring all the graph features. This
 208 would directly defeat the purpose of our self-supervised framework. Instead, the current pipeline can distill
 209 the graph-based attributes associated with repeats and non-repeats, enabling us to generalize this knowledge
 210 to classify other contigs effectively.

211 Step 5: Fine-tuning the labels

212 In the final step of our method, we enhance the performance of our predictions through a fine-tuning process.
 213 We first assign the pseudo-labels of the training nodes in \mathcal{R} and \mathcal{N} as their final predicted labels. Our primary
 214 focus is then directed toward the non-training contigs in \mathcal{U} . These contigs have been classified by the RF
 215 in Step 4 relying solely on their graph-based features and embeddings learned by the GNN. At this point,
 216 reconsidering sequencing features becomes crucial, as they hold valuable information that can significantly
 217 contribute to determining the accurate labels of the contigs.

218 To do so, we divide the contigs in \mathcal{U} into two disjoint sets: those predicted as repeats (label 1) by $\hat{\mathbf{y}}_{\text{RF}}$
 219 form the set \mathcal{U}^1 and those predicted as non-repeats (label 0) by $\hat{\mathbf{y}}_{\text{RF}}$ form the set \mathcal{U}^0 . Within each set, our
 220 objective is to identify outliers using the sequencing features x^{len} and x^{cov} and modify their labels accordingly,
 221 similar to Step 3. Within each set, specific thresholds are computed based on the distribution of sequencing
 222 features of the contigs in that set. More precisely, for \mathcal{U}^1 we define $\rho_{\text{high}}^{\text{len}}$ as the $(100 - p)$ -th percentile of the
 223 contigs' lengths and $\rho_{\text{low}}^{\text{cov}}$ and the p -th percentile of the coverage. Conversely, for \mathcal{U}^0 we define $\rho_{\text{low}}^{\text{len}}$ as the
 224 p -th percentile of the contigs' lengths and $\rho_{\text{high}}^{\text{cov}}$ and the $(100 - p)$ -th percentile of the coverage. Based on
 225 these thresholds, we identify outliers based on the following criteria

$$\mathcal{U}^{1 \rightarrow 0} = \{i \in \mathcal{U}^1 \mid x_i^{\text{len}} > \rho_{\text{high}}^{\text{len}} \wedge x_i^{\text{cov}} < \rho_{\text{low}}^{\text{cov}}\}, \quad \mathcal{U}^{0 \rightarrow 1} = \{i \in \mathcal{U}^0 \mid x_i^{\text{len}} < \rho_{\text{low}}^{\text{len}} \wedge x_i^{\text{cov}} > \rho_{\text{high}}^{\text{cov}}\}. \quad (4)$$

226 In (4), we change the label from repeat to non-repeat ($\mathcal{U}^{1 \rightarrow 0}$) for those contigs that are longer than a threshold
 227 and have low coverage. Similarly, we change the label from non-repeat to repeat ($\mathcal{U}^{0 \rightarrow 1}$) for short contigs
 228 with high coverage. This process is illustrated in Figure 2(D). Notice that we used the same percentile p to
 229 compute the thresholds ρ here as that one used to compute the thresholds τ in Step 3. Naturally, we could
 230 select a different percentile here, but we use the same one as this shows good empirical results and reduces
 231 the number of hyperparameters.

232 Summarizing, the final labels $\hat{\mathbf{y}}$ predicted by our model are given by

$$[\hat{\mathbf{y}}]_i = \begin{cases} 1 & \text{for all } i \in \mathcal{R} \cup (\mathcal{U}^1 \setminus \mathcal{U}^{1 \rightarrow 0}) \cup \mathcal{U}^{0 \rightarrow 1}, \\ 0 & \text{for all } i \in \mathcal{N} \cup (\mathcal{U}^0 \setminus \mathcal{U}^{0 \rightarrow 1}) \cup \mathcal{U}^{1 \rightarrow 0}. \end{cases} \quad (5)$$

233 In (5), we see that the contigs deemed as repeats ($[\hat{\mathbf{y}}]_i = 1$) by our method are those i) assigned a repeat
 234 pseudo-label in Step 3 (\mathcal{R}), ii) classified as repeats by our RF in Step 4 and not deemed as outliers in Step
 235 5 ($\mathcal{U}^1 \setminus \mathcal{U}^{1 \rightarrow 0}$), or iii) classified as non-repeats in Step 4 but later deemed as outliers in Step 5 ($\mathcal{U}^{0 \rightarrow 1}$).
 236 Conversely, contigs classified as non-repeats are those i) assigned a non-repeat pseudo-label in Step 3 (\mathcal{N}),
 237 ii) classified as non-repeats by our RF in Step 4 and not deemed as outliers in Step 5 ($\mathcal{U}^0 \setminus \mathcal{U}^{0 \rightarrow 1}$), or iii)
 238 classified as repeats in Step 4 but later deemed as outliers in Step 5 ($\mathcal{U}^{1 \rightarrow 0}$).

239 Results

240 In the following sections, we present a comprehensive analysis of our algorithm's performance across various
 241 settings.

242 **Experimental setup**243 **Datasets** We test GraSSRep in three types of datasets.244 **Simulated data:** To represent distinct organisms, we generate two random backbone genomes with
245 an equal probability of observing each base. Subsequently, a random sequence of length L is generated
246 for each backbone and integrated into the genome with a copy number of C , serving as an intra-genome
247 repeat. Additionally, an inter-genome repeat of length L is randomly generated and inserted C times in both
248 genomes, representing an inter-genome repeat. Unlike the backbone genomes, repeats exhibit a non-uniform
249 distribution of bases, resulting in distinctive characteristics unique to each repeat, setting them apart from
250 the backbone genome. Consequently, we have two genomes, both containing a repeat content of $2 \times L \times C$
251 within a fixed length of 5 million base pairs for each organism. As a result, the characteristics of the repeats
252 within the genomes can be controlled by adjusting the values of L and C . Finally, simulated reads, each
253 101 base pairs in length, are generated using wgsim (<https://github.com/lh3/wgsim>) with default values for
254 error (2%) and mutation (0.1%).255 **Shakya 1:** In this dataset, we analyze the reference genomes of a synthetic metagenome called Shakya,
256 which consists of 64 organisms, including 48 bacteria and 16 archaea (Shakya et al. 2013). Based on these
257 reference genomes, read pairs are generated using wgsim, akin to the previous dataset. However, unlike the
258 simulated data, all the backbone genomes in this dataset are real organisms, containing intricate repeat
259 patterns that are beyond our control. The generated reads are 101 base pairs long with a high coverage
260 ($\simeq 50$), and are produced without any errors or mutations, in order to identify exact repeats in the data.261 **Shakya 2:** Read pairs from the Shakya (Shakya et al. 2013) study were obtained from the European
262 Nucleotide Archive (ENA – Run:SRR606249), all with a length of 101. We have no influence over coverage
263 or read errors in this set of reads, mirroring real-world settings. This characteristic enables us to evaluate
264 GraSSRep under realistic scenarios.265 **Assembly** In all experiments, contigs are assembled using the default values of metaSpades v3.13.0 for
266 k -mer size, which are $k = 21$, $k = 33$, and $k = 55$. Also, in the error-free case (Shakya 1 dataset), we utilize
267 the `--only-assembler` option of metaSpades and disable the read error correction step.268 To assess our model accurately, it is crucial to have the ground truth labels for the contigs. To identify
269 these labels, all contigs are aligned to the reference genomes using NUCmer (Marçais et al. 2018) (with the
270 `--maxmatch` option). Contigs are marked as repeats if they meet specific criteria. Generally, this criterion
271 includes aligning at more than one location with at least 95% identity and 95% alignment length, indicating
272 non-identical repeats. However, in error-free cases like the Shakya 1 dataset, the criterion is aligning at more
273 than one location with 100% identity and 100% alignment length, which indicates exact repeats through the
274 reference genomes.275 **Method design and hyperparameter choices** To select and label the training nodes, a threshold value p
276 ranging between 30 and 40 is employed in Step 3, depending on the presence of noise in the data. Specifically,
277 $p = 35$ in instances where noise is present (simulated data and Shakya 2), ensuring robustness in the
278 presence of data irregularities. However, for noiseless cases (Shakya 1), we set $p = 20$, leading to a stricter
279 definition of repeat pseudo-labels. Previous studies have demonstrated that this choice yields effective repeat
280 detection (Ghurye et al. 2019). However, in the simulated dataset, during the fine-tuning step, we observed
281 that setting $p = 0$ (indicating no need for fine-tuning) yielded superior results. This phenomenon primarily
282 arises due to the presence of only two organisms in the dataset, leading to smaller and simpler assembly
283 graphs. Consequently, the fine-tuning step becomes unnecessary as the labels generated by RF suffice for
284 accurate classification.285 In Step 4, the first component of the GNN, h_{θ_1} , consists of two consecutive GraphSAGE convolutional
286 layers, each followed by a ReLU activation function (Hamilton et al. 2017a). The node representation update
287 in these layers can be mathematically defined as follows:

$$\mathbf{z}_v^{(l+1)} = \text{ReLU} \left(\left[\mathbf{W}_k \cdot \text{Mean} \left(\left\{ \mathbf{z}_u^{(l)}, \forall u \in \text{Neigh}(v) \right\} \right), \mathbf{B}_k \mathbf{z}_v^{(l)} \right] \right), \quad \forall v \in \mathcal{V},$$

288 where $\mathbf{z}_v^{(l)}$ represents the node embedding of the node v at layer l , $\text{Neigh}(v)$ represents the set of neighboring
289 nodes of node v , and Mean is an aggregation function that combines the embeddings of neighboring nodes.

290 Moreover, \mathbf{B}_k and \mathbf{W}_k represent the linear transformation matrix for the self and neighbor embeddings,
 291 respectively. In this equation, $\mathbf{z}_v^{(l+1)}$ represents the updated embedding of the node v at the next layer
 292 ($l + 1$). Both the first and second convolutional layers have 16 hidden channels. More details on tuning the
 293 GNN structure hyperparameters are provided in GNN hyperparameter tuning in the Supplemental material.
 294 This results in $d = 16$ new features being generated for each node, represented as $\mathbf{Z} \in \mathbb{R}^{N \times 16}$. Since h_{θ_1} has
 295 two graph convolutional layers, the final embeddings combine the features within the 2-hop neighborhoods of
 296 each node. Additionally, the second component of the GNN, f_{θ_2} , comprises a single fully connected layer that
 297 transforms the newly learned features, \mathbf{Z} , into binary classes using a linear transformation matrix $\mathbf{T} \in \mathbb{R}^{16 \times 2}$.
 298 The GNN is trained for 2000 epochs, utilizing cross-entropy as the loss function and employing the Adam
 299 optimizer (Kingma and Ba 2014) with a learning rate of 0.001.

300 The RF classifier utilizes 100 trees in the forest to generate its results. The split criterion for each decision
 301 tree is determined using the Gini impurity measure, ensuring the creation of optimal splits at each node.
 302 Finally, to account for the randomness inherent in the training process, both the training and testing steps
 303 are repeated for 10 iterations in each case. The reported results are averaged across these iterations, providing
 304 a robust and reliable evaluation. As figures of merit, we report the classification accuracy, precision, recall,
 305 and F1-score (harmonic mean of precision and recall).

306 Evaluation on varying repeat characteristics

307 We leverage the simulated dataset introduced in Experimental setup to examine the effect of three crucial
 308 characteristics that are beyond our control within the real datasets:

309 **A) Length of the repeats.** To measure the impact of repeat length, we fix the copy number of both
 310 inserted intra-genome and inter-genome repeats at $C = 25$ and vary their length from $L = 150$ to $L = 1000$
 311 base pairs, leading to a copy content ranging from 0.15% to 1% in the reference genomes.

312 **B) Copy number of the repeats.** We set the length of the inserted repeats to $L = 400$ base pairs and
 313 adjust their copy number from $C = 10$ to $C = 150$, increasing the complexity of the dataset. This results in
 314 a copy content ranging between 0.16% and 2.4% in the reference genomes.

315 **C) Coverage.** We generate backbone data by inserting repeats of $L = 400$ base pairs in length with a
 316 copy number of $C = 25$ to have 0.4% copy content in the reference genomes. The number of generated read
 317 pairs is varied, ranging from 0.25 to 2.5 million base pairs. Consequently, the coverage ranges from 5 to 50,
 318 allowing us to analyze the algorithm's performance under different coverage levels.

319 These adjustments enable a detailed evaluation of our algorithm's robustness and adaptability across
 320 a spectrum of repeat characteristics and coverage scenarios. Note that due to errors and mutations in the
 321 generated reads, our analysis considers a repeat as having at least 95% identity over 95% of the length.
 322 Consequently, more than just three contigs are identified as repeats in this context, each with copy numbers
 323 that may differ from the exact number of inserted repeats.

324 Since the backbone and inserted repeats are generated randomly in the simulated datasets, we conduct 10
 325 trials for each case to ensure robust results for each condition. Specifically, for each scenario, we generate 10
 326 datasets with the same desired characteristics for repeat length, copy number, or coverage. We then calculate
 327 the results for each trial and report the average across these trials for all metrics. Additionally, the figures
 328 depict the error for the F1 Score across these 10 trials as a shaded purple area. We use the interquartile
 329 range to quantify the error, i.e., the error lower bound corresponds to the 25th percentile, and the upper
 330 bound corresponds to the 75th percentile across the 10 samples.

331 As illustrated in Figure 3(A), our approach demonstrates resilience to variations in repeat length, with
 332 all metrics remaining stable as the repeat length increases. Consistently achieving an average F1-score above
 333 99% indicates that our approach can effectively detect repeated contigs even when longer repeats are present
 334 in the dataset.

335 Figure 3(B) shows the performance attained when varying the copy number. Our method consistently
 336 achieves an average F1-score exceeding 97%, and for copy numbers below 70, it consistently surpasses 99%.
 337 Additionally, the average precision is higher than 99% in almost all cases. However, we observe a decreasing
 338 trend in the average recall, which results in a corresponding decrease in the F1-score as the copy number
 339 increases. This drop occurs because a higher copy number for the repeats creates a more tangled assembly
 340 graph with a lot of connections between the assembled contigs, making it more challenging to detect all the

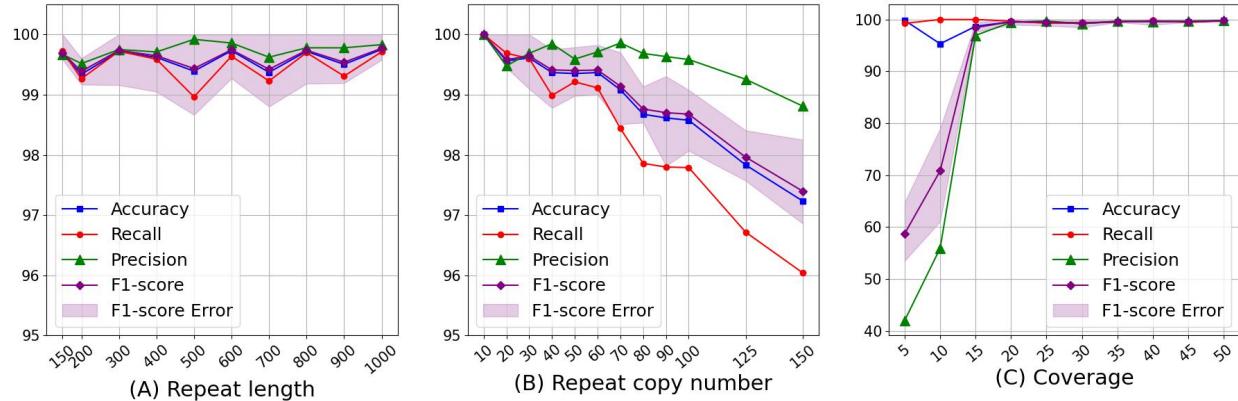


Figure 3. Assessing the method across various repeat characteristics. (A) The model remains stable in metrics even with increasing repeat length. (B) The method is robust to the copy number variation, consistently achieving an F1-score above 90%. (C) Higher sequencing coverage improves the model’s performance.

341 repeats. Note that for copy numbers less than 10, the assembly graph remains untangled, and repeats are
 342 detected with 100% accuracy using coverage or degree without requiring additional complex steps.

343 As demonstrated in Figure 3(C), the model’s performance exhibits a constant improvement with increased
 344 coverage, as expected. Specifically, when coverage is higher than 20 (corresponding to 1 million reads), the
 345 model achieves an almost perfect rate of nearly 100% for all metrics.

346 Ablation study of the steps of the algorithm

347 We focus on the behavior of our method (see ‘Methods’ Section) across different steps using the Shakya 1
 348 dataset. After assembling and constructing the graph, we have $N = 51549$ contigs as the nodes of the graph,
 349 out of which 13842 contigs are exact repeats (total length of the contig repeated with 100% identity).

350 To begin, our evaluation involves assessing the method across various steps of the pipeline. Specifically,
 351 we examine the outcomes relative to the baseline, the results produced by the GNN (\hat{y}_{GNN}), the outputs
 352 generated by RF (\hat{y}_{RF}), and finally, after the fine-tuning step (\hat{y}). In this context, the term “baseline” refers
 353 to a straightforward heuristic used to classify the contigs. This heuristic relies on Step 3 and labels nodes
 354 according to the following criteria

$$[\hat{y}_{base}]_i = \begin{cases} 1 & \text{for all } i \in \mathcal{R}, \\ 0 & \text{for all } i \in \mathcal{N} \cup \mathcal{U}. \end{cases} \quad (6)$$

355 This approach allows us to test the effectiveness of sequencing features in node labeling in the absence of
 356 graph-based features.

357 In Figure 4(A), it is evident that the F1-score consistently rises throughout the pipeline, emphasizing the
 358 importance of each step in achieving optimal results. The baseline method exhibits high precision (98.3%)
 359 but low recall (40.9%), indicating appropriate node selection for determining pseudo-labels but an inability
 360 to identify most repeats. This observation underscores that sequencing features alone are insufficient for
 361 detecting repeats. This limitation is modified by the GNN, which significantly boosts the recall to 68.6%,
 362 effectively identifying more repeats, which suggests that graph structure is significant in detecting the repeats.
 363 Subsequent application of the RF further amplifies this increase in recall to 80.2%. However, this enhanced
 364 recall comes at the cost of reduced precision compared to the baseline. To address this precision loss, the
 365 fine-tuning step effectively identifies outliers, leading to a precision increase from 72.6% at the output of the
 366 RF to 83.8% for the final estimation. In summary, our approach yields a 88.9% F1-score without any prior
 367 labels on the contigs, representing a substantial improvement of 31.2% over the baseline method.

368 Moreover, we investigate the impact of the GNN and the embeddings it generates. To assess this, we per-
 369 form two analyses. First, we exclude \mathbf{Z} from the feature matrix fed to the RF, resulting in $\bar{\mathbf{X}} = [\mathbf{X}] \in \mathbb{R}^{N \times 4}$

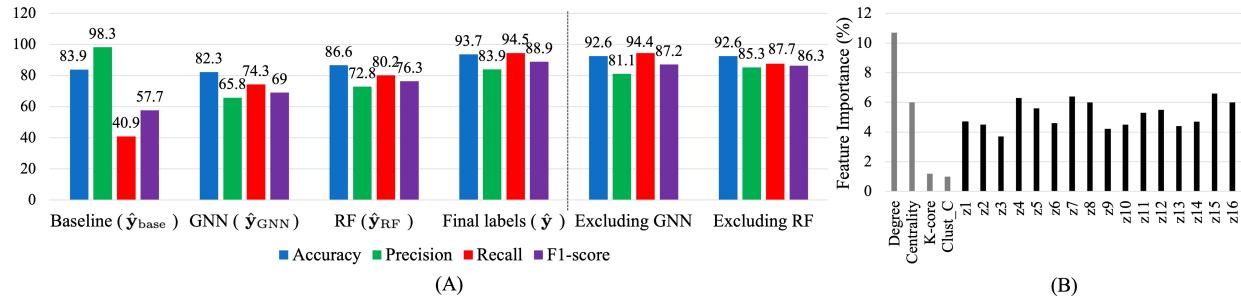


Figure 4. Behavior of GraSSRep across different steps. (A) Progression of the method's performance throughout the different steps, highlighting the effectiveness of each step in improving repeat detection. We also test the impact of excluding the GNN embeddings and RF step applied to the augmented feature vectors. (B) High importance of GNN-generated embeddings in RF classification.

370 aiming to observe the method's performance only based on the initial graph-based features. As depicted in
 371 Figure 4(A) under 'Excluding GNN', this exclusion leads to a decrease in all performance metrics. This
 372 decline suggests that embeddings play a crucial role in enhancing the reliability of repeat detection. Second,
 373 we calculate the importance of the features fed to the RF by averaging the impurity decrease from each
 374 feature across trees. The more a feature decreases the impurity, the more important it is. These importance
 375 values are then plotted in Figure 4(B). The plot indicates that all learned embeddings (labeled z1 through
 376 z16) exhibit high importance. This finding emphasizes the utility of the embeddings generated by the GNN
 377 in improving the overall performance of the method. Further discussion on the effect of the GNN can be
 378 found in GNN effect in the Supplemental material. Moreover, by removing the intermediate RF step and
 379 directly applying the fine-tuning process to the GNN-generated labels, we evaluate the effect of the RF step.
 380 As illustrated in Figure 4(A) under 'Excluding RF', this omission also results in a decrease in all performance
 381 metrics, highlighting the essential role of the RF in balancing the influence of initial features and the learned
 382 embeddings.

383 Additionally, we perform an ablation study on the percentile value p used to define the thresholds in Steps
 384 3 and 5. The analysis in Ablation study on the percentile value p in the Supplemental material reveals that
 385 our approach is robust to this hyperparameter, particularly within the range of 30 to 40, which corresponds
 386 to the range used in our experiments.

387 Lastly, if we replicate the analysis in Figure 4 with an alternative graph construction method, we ob-
 388 serve that all outcomes align consistently as outlined in Alternative graph construction in the Supplemental
 389 material. This illustrates the versatility of our tool, demonstrating its efficacy across diverse graph structures.

390 Comparison with existing repeat detection methods

391 We present a comprehensive comparison of our method with several existing repeat detection methods using
 392 contigs assembled from the reads downloaded from ENA (Shakya 2). The ground truth labels are obtained
 393 in the same manner as described in Experimental setup, using the reference genomes from the Shakya 1
 394 dataset.

395 We consider five widely recognized methods for this comparison. Opera (Gao et al. 2011) and SOPRA (Da-
 396 yarian et al. 2010) identify repetitive contigs by filtering out those with coverage 1.5 and 2.5 times higher
 397 than the average coverage of all contigs, respectively, without considering any graph structure. Similarly,
 398 the MIP scaffolder (Salmela et al. 2011) utilizes both high coverage (more than 2.5 times the average) and
 399 a high degree (≥ 50) within the assembly graph to detect the repeats. However, as the degree of contigs
 400 in the graph provided by metaSpades typically does not reach 50, we utilize an adaptive approach. In this
 401 alternative, we adjust the threshold from 50 to the 75-th percentile of the degrees observed in the graph.
 402 Additionally, Bambus2 (Koren et al. 2011) categorizes a contig as a repeat if the betweenness centrality,
 403 divided by the contig length, exceeds the upper bound of the range within c standard deviations above the
 404 mean on this feature. Here, c represents a hyperparameter of this method, and the optimal outcome on our

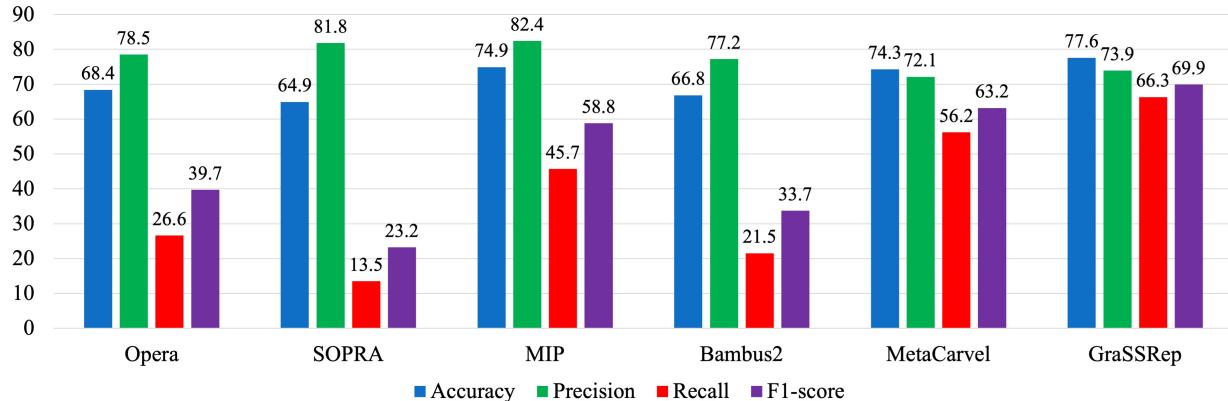


Figure 5. GraSSRep compared to the other repeat detection methods.

405 dataset was achieved with $c = 0$. Lastly, Metacarvel (Ghurye et al. 2019) employs four more complex graph-
 406 based features alongside coverage in a two-step process. First, any contig with a high betweenness centrality
 407 (\geq three standard deviations plus the mean) on the assembly graph is marked as a repeat. Moreover, a
 408 contig is identified as a repeat if it falls within the upper quartile for at least three of these features: mean
 409 coverage, degree, ratio of skewed edges (based on coverage), and ratio of incident edges invalidated during
 410 the orientation phase of the contigs; see (Ghurye et al. 2019) for details. Notably, since we utilize a contig
 411 graph instead of a scaffold graph, we do not incorporate the latest feature and adjust the flag threshold from
 412 three to two in the second step.

413 As illustrated in Figure 5, GraSSRep outperforms all other methods, particularly demonstrating superior
 414 capability in detecting repeats with a higher recall rate (66.3% versus the next best alternative at 56.2%).

415 Thus far, we have focused on the practical unsupervised setting where no repeat labels are available.
 416 For completeness, we now consider the case where repeat labels for some contigs are available. This setting
 417 might arise, e.g., if we have knowledge about specific organisms present in the metagenomic sample and
 418 their corresponding reference genomes are accessible. GraSSRep can seamlessly accommodate this case. In
 419 our pipeline, we can leverage this prior knowledge to substitute Step 3. Instead of pseudo-labels, we employ
 420 the known node labels as our training set, leading to a semi-supervised (instead of self-supervised) setting.
 421 Our analysis in Incorporating prior knowledge in the Supplemental material shows that performance can be
 422 markedly improved in the case where labels are available for a fraction of the contigs.

423 Discussion

424 We tackled the challenging task of detecting repetitive sequences (repeats) in metagenomics data when we
 425 only have access to paired-end reads. We introduced GraSSRep, a novel method that leverages the inherent
 426 structure of the assembly graph by employing GNNs to extract specific features for the contigs. Moreover,
 427 adopting a self-supervised learning framework, we generated noisy pseudo-labels for a subset of the contigs,
 428 which were then used to train a graph-based classifier on the rest of the contigs.

429 Experimental studies using simulated datasets demonstrated the robustness of GraSSRep across diverse
 430 repeat characteristics and its resilience not only to repeat length but also to copy number variations. This
 431 ensures its applicability across various datasets and scenarios. Moreover, using synthetic datasets, we show
 432 the value of every step in our algorithm in enhancing repeat detection performance. This highlights the
 433 importance of each step and its role in achieving the best results. Furthermore, the GNN step effectively learns
 434 distinctive and important features for the repeat detection task based on the dataset, thereby enhancing the
 435 pipeline's ability to detect more repeats using the graph structure.

436 Additionally, we observed performance gain compared to existing repeat detection tools. This superiority
 437 comes from the combined value of incorporating learnable graph features (through the GNN) and considering
 438 a self-supervised framework. Notice that even if we fix the embedding dimension at $d = 16$, the graph features
 439 learned by the GNN depend on the specific dataset under consideration. In this way, our trainable architecture

440 can distill the key graph features that characterize repeats in the specific metagenomic sample. This adaptive
 441 approach stands in contrast to other methods, which often rely on fixed features. Moreover, since the RF
 442 is not pre-trained but rather trained based on the pseudo-labels, different features may vary in importance
 443 based on context. In this way, our self-supervised framework allows us to adapt to the metagenomic data at
 444 hand, and we do not have to worry about generalization issues of pre-trained models.

445 One limitation of our work is its dependence on the initial pseudo-labels. Specifically, in order to effectively
 446 generalize the labels from the initial training set to the other unlabeled nodes, we need sufficient samples in
 447 both repeat and non-repeat sets of training contigs from a diverse set of organisms. However, this process can
 448 be hindered by unbalanced coverage across different organisms. When some organisms exhibit significantly
 449 higher coverage compared to the rest of the community, the contigs generated from these organisms tend to
 450 dominate the high percentile of coverage and are detected as repeats in Step 3. Consequently, our training set
 451 becomes biased towards a few organisms, impeding the detection of repeats of other organisms. To address
 452 this issue, we plan to develop a more systematic approach to training set selection in future work.

453 Furthermore, it is worth noting that while we selected the indicated reference genomes for the Shakya
 454 community for ground truth detection and evaluation of our method, previous studies (Ondov et al. 2019)
 455 have identified additional reference genomes present in the community. Consequently, some repeats may be
 456 missing from the ground truth set, as their reference genomes are not included in the community and thus
 457 not identified as true repeats.

458 A natural extension of our approach is its integration into widely used assemblers. This integration would
 459 replace their existing repeat detection modules with GraSSRep, yielding potential improvements in assembly
 460 quality. We also intend to apply our method to real datasets, particularly in environments like hot springs
 461 where widely accessible reference genomes are scarce. Lastly, the overall pipeline of GraSSRep can potentially
 462 address other problems in genomics where graph structures can be used to identify specific genetic markers
 463 in the absence of prior knowledge. For instance, we intend to leverage our approach for the identification of
 464 transposable elements, which play important roles in eukaryotic/mammalian genomes.

465 Software Availability

466 An implementation of GraSSRep, along with the code to reproduce our results, can be found as Supplemental
 467 Code and at our GitHub repository (<https://github.com/aliaaz99/GraSSRep>).

468 Competing interest statement

469 The authors declare no competing interests.

470 Acknowledgment

471 This work was supported by the NSF under award EF-2126387. A.A., A.B., T.J.T., and S.S. conceived and
 472 designed the study. A.A. and S.S. developed the methods and theory. A.A. and A.B. performed the experiments. A.A.,
 473 T.J.T., and S.S. conducted the analyses. All authors analyzed and discussed the results. A.A. and S.S. drafted the initial
 474 manuscript, which was reviewed and edited by all authors. All authors read and approved the final manuscript.

Bibliography

473 Agarap AF. 2018. Deep learning using rectified linear units (relu). *arXiv doi:1803.08375* .

474 Balaji A, Sapoval N, Seto C, Elworth RL, Fu Y, Nute MG, Savidge T, Segarra S, and Treangen TJ. 2022.

475 KOMB: K-core based de novo characterization of copy number variation in microbiomes. *CSBJ* **20**:

476 3208–3222.

477 Breiman L. 2001. Random forests. *Machine Learning* **45**: 5–32.

478 Chowdhury A, Verma G, Rao C, Swami A, and Segarra S. 2021. Unfolding WMMSE using graph neural

479 networks for efficient power allocation. *IEEE Trans SP* **20**: 6004–6017.

480 Čutura G, Li B, Swami A, and Segarra S. 2021. Deep demixing: Reconstructing the evolution of epidemics

481 using graph neural networks. In *EUSIPCO*, pp. 2204–2208.

482 Dayarian A, Michael TP, and Sengupta AM. 2010. SOPRA: Scaffolding algorithm for paired reads via

483 statistical optimization. *BMC Bioinformatics* **11**: 1–21.

484 De Boer PT, Kroese DP, Mannor S, and Rubinstein RY. 2005. A tutorial on the cross-entropy method. *Ann*

485 *Oper Res* **134**: 19–67.

486 Gao S, Sung WK, and Nagarajan N. 2011. Opera: reconstructing optimal genomic scaffolds with high-

487 throughput paired-end sequences. *J Comput Biol* **18**: 1681–1691.

488 Ghurye J and Pop M. 2016. Better identification of repeats in metagenomic scaffolding. In *WABI*, pp.

489 174–184. Springer.

490 Ghurye J, Treangen T, Fedarko M, Hervey WJ, and Pop M. 2019. MetaCarvel: linking assembly graph

491 motifs to biological variants. *Genome Biol* **20**: 1–14.

492 Ghurye JS, Cepeda-Espinoza V, and Pop M. 2016. Metagenomic Assembly: Overview, Challenges and

493 Applications. *Yale J Biol Med* **89**: 353.

494 Gigris HZ. 2015. Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the genomic scale.

495 *BMC Bioinformatics* **16**: 1–19.

496 Glaze N, Bayer A, Jiang X, Savitz S, and Segarra S. 2023. Graph representation learning for stroke recurrence

497 prediction. In *ICASSP*, pp. 1–5.

498 Hamilton W, Ying Z, and Leskovec J. 2017a. Inductive representation learning on large graphs. *NeurIPS*

499 **30**.

500 Hamilton WL, Ying R, and Leskovec J. 2017b. Representation learning on graphs: Methods and applications.

501 *arXiv doi:1709.05584* .

502 Haykin S. 1998. *Neural networks: a comprehensive foundation*. Prentice Hall PTR.

503 Iranzo J, Wolf YI, Koonin EV, and Sela I. 2019. Gene gain and loss push prokaryotes beyond the homologous

504 recombination barrier and accelerate genome sequence divergence. *Nat Commun* **10**: 5376.

505 Jaiswal A, Babu AR, Zadeh MZ, Banerjee D, and Makedon F. 2020. A survey on contrastive self-supervised

506 learning. *Technologies* **9**: 2.

507 Kingma DP and Ba J. 2014. Adam: A method for stochastic optimization. *arXiv doi:1412.6980* .

508 Kipf TN and Welling M. 2016. Semi-supervised classification with graph convolutional networks. *arXiv*

509 *doi:1609.02907* .

510 Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB, Kuhn K, Yuan J, Polevikov E,

511 Smith TP, et al.. 2020. metaFlye: scalable long-read metagenome assembly using repeat graphs. *Nat*

512 *Methods* **17**: 1103–1110.

513 Koren S and Phillippy AM. 2015. One chromosome, one contig: complete microbial genomes from long-read

514 sequencing and assembly. *COMICR* **23**: 110–120.

515 Koren S, Treangen TJ, and Pop M. 2011. Bambus 2: scaffolding metagenomes. *Bioinformatics* **27**: 2964–2971.

516 Koutrouli M, Karatzas E, Paez-Espino D, and Pavlopoulos GA. 2020. A guide to conquer the biological

517 network era using graph theory. *Front Bioeng Biotechnol* **8**: 34.

518 Langmead B and Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nat Methods* **9**: 357–359.

519 Lapidus AL and Korobeynikov AI. 2021. Metagenomic data assembly—the way of decoding unknown mi-

520 croorganisms. *Front Microbiol* **12**: 613791.

521 Li D, Liu CM, Luo R, Sadakane K, and Lam TW. 2015. MEGAHIT: an ultra-fast single-node solution for

522 large and complex metagenomics assembly via succinct de Bruijn graph. *Bioinformatics* **31**: 1674–1676.

523 Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, and Zimin A. 2018. MUMmer4: A fast and
524 versatile genome alignment system. *PLoS Comput Biol* **14**: e1005944.

525 Martin S, Ayling M, Patrono L, Caccamo M, Murcia P, and Leggett RM. 2023. Capturing variation in
526 metagenomic assembly graphs with MetaCortex. *Bioinformatics* **39**: btad020.

527 Nurk S, Meleshko D, Korobeynikov A, and Pevzner PA. 2017. metaSPAdes: a new versatile metagenomic
528 assembler. *Genome Res* **27**: 824–834.

529 Ondov BD, Starrett GJ, Sappington A, Kostic A, Koren S, Buck CB, and Phillippy AM. 2019. Mash screen:
530 high-throughput sequence containment estimation for genome discovery. *Genome Biol* **20**: 1–13.

531 Salmela L, Mäkinen V, Välimäki N, Ylinen J, and Ukkonen E. 2011. Fast scaffolding with small independent
532 mixed integer programs. *Bioinformatics* **27**: 3259–3265.

533 Schatz MC, Delcher AL, and Salzberg SL. 2010. Assembly of large genomes using second-generation se-
534 quencing. *Genome Res* **20**: 1165–1173.

535 Segarra S and Ribeiro A. 2015. Stability and continuity of centrality measures in weighted graphs. *IEEE
536 Trans SP* **64**: 543–555.

537 Shakya M, Quince C, Campbell JH, Yang ZK, Schadt CW, and Podar M. 2013. Comparative metagenomic
538 and rRNA microbial diversity characterization using archaeal and bacterial synthetic communities. *Environ
539 Microbiol* **15**: 1882–1899.

540 Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, and Birol I. 2009. ABySS: a parallel assembler for
541 short read sequence data. *Genome Res* **19**: 1117–1123.

542 Soucy SM, Huang J, and Gogarten JP. 2015. Horizontal gene transfer: building the web of life. *Nat Rev
543 Genet* **16**: 472–482.

544 Treangen TJ, Abraham AL, Touchon M, and Rocha EP. 2009. Genesis, effects and fates of repeats in
545 prokaryotic genomes. *FEMS Microbiol Rev* **33**: 539–571.

546 Treangen TJ and Salzberg SL. 2012. Repetitive DNA and next-generation sequencing: computational chal-
547 lenges and solutions. *Nat Rev Genet* **13**: 36–46.

548 Wick RR, Schultz MB, Zobel J, and Holt KE. 2015. Bandage: interactive visualization of de novo genome
549 assemblies. *Bioinformatics* **31**: 3350–3352.

550 Wooley JC, Godzik A, and Friedberg I. 2010. A primer on metagenomics. *PLoS Comput Biol* **6**: 1–13.

551 Wu Z, Pan S, Chen F, Long G, Zhang C, and Philip SY. 2020. A comprehensive survey on graph neural
552 networks. *IEEE Trans. Neural Netw. Learn. Syst.* **32**: 4–24.

553 Yang C, Chowdhury D, Zhang Z, Cheung WK, Lu A, Bian Z, and Zhang L. 2021. A review of computational
554 tools for generating metagenome-assembled genomes from metagenomic sequencing data. *CSBJ* **19**: 6301–
555 6314.

556 Zaki N, Efimov D, and Berengueres J. 2013. Protein complex detection using interaction reliability assessment
557 and weighted clustering coefficient. *BMC Bioinformatics* **14**: 1–9.

558 Zhao Z, Verma G, Rao C, Swami A, and Segarra S. 2023. Link scheduling using graph neural networks.
559 *IEEE Trans SP* **22**: 3997–4012.

Graph-based self-supervised learning for repeat detection in metagenomic assembly

Ali Azizpour, Advait Balaji, Todd J. Treangen, et al.

Genome Res. published online July 19, 2024

Access the most recent version at doi:[10.1101/gr.279136.124](https://doi.org/10.1101/gr.279136.124)

P<P	Published online July 19, 2024 in advance of the print journal.
Accepted Manuscript	Peer-reviewed and accepted for publication but not copyedited or typeset; accepted manuscript is likely to differ from the final, published version.
Creative Commons License	This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see https://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/ .
Email Alerting Service	Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here .

To subscribe to *Genome Research* go to:
<https://genome.cshlp.org/subscriptions>