2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) | 979-8-3503-6547-4/24/$31.00 ©2024 IEEE | DOI: 10.1109/CVPRW63382.2024.00799

2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)

ELSA: Exploiting Layer-wise N:M Sparsity for Vision Transformer Acceleration

Ning-Chi Huang!, Chi-Chih Chang!, Wei-Cheng Lin!,
Endri Taka?, Diana Marculescu?, and Kai-Chiang Wu'!

!National Yang Ming Chiao Tung University, 2University of Texas at Austin

nchuang@cs.nycu.edu.tw, brianl009.en08@nycu.edu.tw, weicheng.lin.csll@nycu.edu.tw,

endri.taka@Qutexas.edu, dianam@utexas.edu, kcw@cs.nctu.edu.tw

Abstract

N:M sparsity is an emerging model compression method
supported by more and more accelerators to speed up sparse
matrix multiplication in deep neural networks. Most existing
N:M sparsity methods compress neural networks with a
uniform setting for all layers in a network or heuristically
determine the layer-wise configuration by considering the
number of parameters in each layer. However, very few
methods have been designed for obtaining a layer-wise cus-
tomized N:M sparse configuration for vision transformers
(ViTs), which usually consist of transformer blocks involving
the same number of parameters.

In this work, to address the challenge of selecting suitable
sparse configuration for ViTs on N:M sparsity-supporting
accelerators, we propose ELSA, Exploiting Layer-wise N: M
Sparsity for ViTs. Considering not only all N:M sparsity
levels supported by a given accelerator but also the expected
throughput improvement, our methodology can reap the ben-
efits of accelerators supporting mixed sparsity by trading
off negligible accuracy loss with both memory usage and
inference time reduction for ViT models. For instance, our
approach achieves a noteworthy 2.9x reduction in FLOPs
to both Swin-B and DeiT-B with only a marginal degradation
of accuracy on ImageNet. Our code is publicly available at
https://github.com/ningchihuang/ELSA.

1. Introduction

In recent years, transformer-based neural networks have
been modified for artificial intelligence tasks that include not
only natural language processing but also computer vision,
such as image classification [5, 18, 32] and object detection
[3, 39]. Consisting of a series of transformer blocks that
can effectively capture dependencies between patches in a
given image, transformer-based neural networks demonstrate
outstanding performance on vision tasks and replace convo-
lutional neural networks (CNN5s) as the state-of-the-art. For

2160-7516/24/$31.00 ©2024 IEEE
DOI 10.1109/CVPRW63382.2024.00799

example, DeiT-B can achieve a Top-1 accuracy of 81.8% on
the ImageNet dataset by utilizing 12 transformer blocks and
17.6G parameters. However, it is challenging to deploy such
huge models on smartphones or embedded devices, given
their limited memory budget and computational resources.
Furthermore, most of these devices are power-constrained.

Find a better
sparse mask

[15,37]

Given N & M

N:M Trair}ing [21, 24, 38]
sparsity algorithm

Find N & M

Figure 1. Three categories of methodologies for N:M semi-
structured pruning

Various model compression methods have been proposed
to reduce the requirements of memory usage and com-
putational cost for model inference, such as quantization
[17, 19] and pruning/sparsifying [4, 10, 14, 34, 36]. To main-
tain the application accuracy, unstructured pruning methods
[6, 8, 10, 25] have been presented to remove neurons or
connections from a deep neural network (DNN) that do
not significantly impact accuracy and only retain important
weights for computation. On the other hand, the remain-
ing data in the weight matrix are irregularly distributed and
require a high cost of encoding/indexing which induces over-
head when these compressed data are sent from memory to
processing units. In contrast, structured pruning methods
[14, 23, 34] are able to remove rows, columns, or chan-
nels that do not significantly impact the accuracy of a DNN
model. Although structured pruning methods have little or
no memory overhead on data encoding, the application ac-
curacy decreases dramatically when a larger compression
ratio is applied for reducing the model size. To overcome the
problems mentioned above, fine-grained structured pruning
(also called semi-structured pruning) has been introduced for
better trade-off among the model size, compression overhead
and application accuracy.

8006

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 01,2024 at 03:13:36 UTC from IEEE Xplore. Restrictions apply.

Utilizing N:M sparsity is a type of fine-grained struc-
tured pruning method which splits every contiguous M data
chunks into a group of which only N out of the M in each
group are kept for computation (i.e., the other M —N data in
the group are pruned) [24, 31, 37, 38]. Resulting sparse data
representations have a lower cost on data encoding (each
remaining data only needs logs M bits for the index). Com-
pared to unstructured pruning, N:M sparsity is considered
to be a hardware-friendly method for model compression.

As illustrated in Fig. 1, methodologies for converting a
dense neural network to its N:M sparse counterpart can be
classified into three categories: (1) Methodologies focusing
on finding a better sparse mask with a given N: M, such as
CAP [15] and LBC [37], precisely estimate the importance
(or the sensitivity to pruning) of each weight and decide the
mask based on the importance score; (2) Methods that ob-
tain the target /V: M sparse network through sparse training
algorithms or strategies, such as ASP [24], SR-STE [38],
and STEP [21], are usually proposed to reduce the accuracy
loss induced by fine-grained structured pruning by retraining
the neural network or updating the weights; (3) Different
from the previous two categories, which typically enforce a
given/fixed sparsity level across all layers in the whole neural
network, i.e., uniform sparsity, methods in the third category
find the best N: M sparse configuration for different layers
in the network, i.e., layer-wise N: M sparsity. To the best of
our knowledge, DominoSearch [31] is the only methodology
employing N:M layer-wise sparsity currently.

However, very few methods have been designed for ob-
taining a layer-wise customized N:M sparse configuration
for vision transformers (ViTs). Most of the methods target-
ing layer-wise sparsity for CNNs decide the compression
ratio or the sparsity setting by considering the number of
neurons or parameters in each layer [6, 25, 31]. Those meth-
ods compress the layers containing more parameters with
higher sparsity; in contrast, the layers with fewer parameters
will have lower resulting sparsity. Because ViTs usually
consist of transformer blocks involving the same number of
parameters, deciding the layer-wise IN: M sparse configura-
tion according to the number of parameters is likely to have
limited impact on ViTs.

To this end, we propose ELSA, a sparsity exploration
framework for exploiting layer-wise N: M sparsity on ac-
celerating ViTs. Considering not only all N:M sparsity
levels supported by a given accelerator but also the expected
throughput improvement, our methodology can reap the ben-
efits of accelerators supporting mixed sparsity by trading
off negligible accuracy loss with both memory usage and
inference time reduction for ViT models. Additionally, our
approach can obtain multiple target models with varying
compression ratios through a single training process.

Our contributions are summarized as follows:

* To the best of our knowledge, this is the first work explor-

ing layer-wise IN:M sparse configurations for the linear
modules (matrices in linear projection and multi-layer per-
ceptron layers) in vision transformers.

* Our proposed methodology can consider the N: M sparsity
levels supported by a given accelerator and search layer-
wise INV:M sparse neural networks with high accuracy. On
the other hand, the sparse configurations obtained by our
method can provide an insight about the practicality of
different NV:M sparsity levels for hardware designers to
build accelerators supporting mixed N:M sparsity.

* Considering not only the application accuracy but also the
hardware efficiency, our methodology can obtain multi-
ple layer-wise sparse configurations with high accuracy
and a significant reduction in FLOPs, which is highly cor-
related to the throughput improvement on mixed N:M
sparsity-supporting accelerators. For instance, our ap-
proach achieves a noteworthy 2.9 x reduction in FLOPs to
DeiT-B with only a marginal degradation of accuracy on
ImageNet classification.

2. Preliminaries and Related Work

To support DNN models compressed via N:M sparsity, sev-
eral accelerators have been presented [1, 7, 12, 20, 28]. For
example, the Sparse Tensor Cores in NVIDIA Ampere GPU
can support 2:4 sparsity which allows a DNN model to halve
its parameter counts and ideally achieve 2 x speedup on the
operations of compressed 2:4 sparse matrices [28]. In addi-
tion, the architectures presented in S2TA [20] and VEGETA
[12] support 4:8 weight sparsity and configurable N:4 spar-
sity in their systolic array-based accelerators, respectively,
to yield speedup and energy efficiency.

Weight matrix with N:M sparsity

where M=4 and N=2 Non-zero values Indices

1)2]1]2

0[2]0]2

1/3/0|2

0[3/01

12|1]2

0]3]0(3

2[3[0[3] Sparsity mode control

0[2[1]2 (N:M=1:4/2:4/4:4)

select Activation matrix
Result matrix (dense) (dense)

Processing Elements
for

Matrix Multiplication

Figure 2. Accelerator for mixed sparsity where weight matrix are
pruned by N:M semi-structured pruning

Fig. 2 illustrates a conceptual view of a configurable ac-
celerator with N:M sparsity support. The upper part of
Fig. 2 shows a weight matrix compressed by 2:4 sparsity.
The white grids in the matrix denote values that are less sig-
nificant in their 4-element group, and thus are pruned to zero.
With 2:4 sparsity being applied, only the most significant two

8007

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 01,2024 at 03:13:36 UTC from IEEE Xplore. Restrictions apply.

weights in the group will be retained after compressing the
matrix into sparse format, where non-zeros and their 2-bit
indices (for distinguishing the original position of the non-
zeros from the 4-element group in IV:4 sparsity) are stored.
Therefore, not only the remaining weights but also the over-
head of the corresponding data for indexing can be reduced,
thereby making N:M sparsity more hardware-friendly than
unstructured pruning.

The bottom part of Fig. 2 shows how to produce the ac-
curate result of matrix multiplication from a sparse weight
matrix and a dense activation matrix. By decoding the in-
dices of the remaining N non-zeros from each original M -
element group in the weight matrix, the corresponding acti-
vation/input data for matrix multiplication can be selected
and loaded into the processing units. Compared to the cor-
responding dense matrix multiplication, when the sparsity
level of the current weight matrix is 2:4, only 50% of the
multiply-and-accumulate operations in the matrix multipli-
cation will be performed. With indices of sparse matrix,
control signals, associate MUXs and processing elements for
sparse matrix multiplication, accelerators supporting N: M
sparsity can effectively accelerate matrix multiplication.

If an accelerator supporting various levels of N: M spar-
sity (e.g., IN:4 sparsity) became available, it would be possi-
ble to obtain higher throughput by using customized, layer-
wise N :M sparsity without significant accuracy loss (com-
pared to aggressively applying uniform sparsity, e.g., 1:4
sparsity). In this scenario, an effective method for finding a
layer-wise sparsity setting for different DNNs on the accel-
erator becomes a necessity.

However, it is challenging to apply a suitable sparse con-
figuration to ViT models so as to achieve speedups from
mixed sparsity-supporting accelerators with negligible ac-
curacy loss. For example, when a ViT model including 48
weight matrices is served on an accelerator supporting 1:4,
2:4 sparse matrix multiplication, and 4:4 dense matrix mul-
tiplication, there will be 3*® combinations for the resulting
sparsity configurations. Furthermore, when a higher com-
pression ratio is applied to accelerate operations, some es-
sential values in the matrix are probable to be pruned, which
causes non-negligible accuracy loss. Accordingly, mitigat-
ing this accuracy loss necessitates extensive fine-tuning over
a substantial number of epochs to maintain the accuracy of
the compressed model. Therefore, an efficient methodology
is required for determining a suitable layer-wise sparse con-
figuration among the many possible combinations without
resorting to exhaustive search and fine-tuning.

3. Methodology

Problem Formulation Assuming the availability of an
accelerator supporting mixed N: M sparsity levels for matrix
multiplication operations, one can apply the N:M semi-
structured pruning to the linear modules of ViTs in the pur-

suit of computational efficiency. Consider a pretrained clas-
sic ViT comprising B transformer blocks, each including
four linear modules, as depicted in Fig. 3. Assuming the
accelerator supports a set of K different sparsity levels S =
{(N1:My),...,(Ng:Mg)}, our objective is to determine
a sparse configuration (i.e., a sequence of sparsity levels)
denoted as v = (s',...,s"), where s' € Sand L = 4B.
This configuration « is then used to convert the pretrained
weight values, represented as W = (Wl, ce W(L)) from a
dense to a sparse representation. To harness the acceleration
potential of the sparsity-supporting accelerator while mini-
mizing associated performance degradation, it is essential to
determine the optimal sparse configuration.

ﬁl‘ransformer Encoder Block h
Attention MLP
Linear Project
FC2
XX
GELU
FC1
Q. Ki V.
(Norm] [Norm]
N — — /

T
D: Matrices to apply N:M sparsity

Figure 3. A classic transformer block and the matrices to be sparsi-
fied in our methodology

Challenge Deploying a ViT model on accelerators support-
ing flexible sparse matrix multiplication typically involves
two steps: (1) determining the N:M sparsity level for each
matrix in the model, followed by (2) fine-tuning the model
to mitigate the accuracy loss resulting from sparsification.
However, deciding the layer-wise sparsity configurations
for ViTs can be more challenging compared to convolution-
based models, primarily because ViTs comprise multiple
transformer blocks involving the same number of parame-
ters. Consequently, previous heuristic-based approaches to
sparsity level selection, as previously employed in the con-
text of convolutional models [6, 16, 25], confront difficulties
in selecting configurations that offer both superior accuracy
and substantial computational speed-ups on ViTs.

Furthermore, the process of sparsification often results in
a significant degradation of accuracy, especially when ma-
trices are pruned in a more structured manner (i.e., through
structured or semi-structured pruning). This necessitates
extensive fine-tuning over a substantial number of epochs to
restore the application accuracy of the given model, enabling
a precise evaluation of the chosen sparse configurations.

8008

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 01,2024 at 03:13:36 UTC from IEEE Xplore. Restrictions apply.

To address the significant fine-tuning demands, we in-
novatively adopt the principles of supernets [2, 9, 30]. It
was originally designed to avoid training each candidate net-
work from scratch to accurately evaluate the corresponding
performance while searching network architecture hyper-
parameters, such as the kernel size and the number of chan-
nels for CNNs. Through customized encoding strategies, all
candidate networks within the search space, referred to as
subnets, are encoded into an over-parameterized supernet.
These subnets are then trained jointly, effectively amortiz-
ing the fine-tuning requirements for evaluating each spe-
cific/chosen combination of architecture hyper-parameters.
By training only once, we can yield the network correspond-
ing to any specific network configuration by directly inherit-
ing from the supernet without exhaustively training each of
them one by one.

In this work, we propose to extend these principles to
address the exploration complexities of obtaining suitable
layer-wise N:M sparse networks. Specifically, we design
a supernet construction scheme aimed at incorporating all
candidate N:M sparse networks, each corresponding to
an N:M sparse configuration a within the search space
A=8x8Ex---x8.

L

By harnessing this supernet, we can directly derive spe-
cific sparse networks without the need for additional fine-
tuning. This not only facilitates evaluation of specific sparse
configurations « but also expedites their deployment on hard-
ware accelerators to enhance computational throughput.

Detailed description of the algorithms for our supernet
construction and training will be provided in the subsequent
subsections.

3.1. Supernet Construction —
All Sparsity Configurations in One Supernet

We initiate our layer-wise sparsity exploration by first con-
structing a supernet, which involves the determination of
all layers that are utilized to perform matrix multiplication
in a ViT model, such as the linear projection and multi-
layer perceptron layers. For example, DeiT-S consists of
12 transformer blocks, each containing 4 target layers (i.e.,
gkv, linear projection, fcl and fc2); thus, the sparsity con-
figuration of the 48 layers should be determined before de-
ploying a sparse DeiT-S model on an accelerator supporting
mixed sparsity. Subsequently, all supported sparsity levels
of a given accelerator are encoded as possible choices avail-
able to each layer. If an accelerator offers 1:4, 2:4, and 4:4
sparsity options, each target layer within our supernet will
contain 3 sparsity choices, where one of them will be cho-
sen at a time, and the corresponding sparsity level will be
applied for sparse matrix multiplication when the layer is
computed. Moreover, each combination of sparsity choices
for a given ViT model is regarded as a sparse configuration,

which can be utilized to derive a sparse subnet within our
supernet. After constructing a supernet that contains all spar-
sity configurations, we train the supernet before searching
for a suitable configuration.

: .~ Shared weights
Module
Module

Dynamic masking according
to the chosen sparsity level

1:4 2:4

=

Figure 4. Shared weight values and dynamic masking for each
layer in a transformer-based model (including all linear projection
and multi-layer perceptron layers)

Module

4:4 } (dense)

Subset-Superset Relationship We notice the subset-
superset relationship among different N: M sparsity levels
and utilize it to construct the supernet. Specifically, the non-
zeros selected under higher IN: M sparsity level form a subset
of those selected under lower ones when the same criteria
for pruning is applied. For the N:4 sparsity levels illustrated
in Fig. 4, the cells of darker color mean their values are more
significant; both 1:4 and 2:4 sparsities select their non-zeros
according to the significance of those weights. It can be seen
that the weight selected when 1:4 sparsity is applied must
be also selected when 2:4 sparsity is applied. Furthermore,
those weights are all included in the dense matrix (i.e., using
4:4 sparsity).

Leveraging this relationship, instead of building up a
supernet that has different instances of sparse weights for
each sparsity level in each matrix and thus causing huge
memory overhead for the supernet training, we only maintain
a stack of weight matrices W4 = (Wslup7 R WSLUP), where
W, denotes the shared weight matrix for the i linear
module. That is, all N:M sparsity choices share the same
weight matrix in each layer within our supernet.

Dynamic Masking During the process of both train-
ing and evaluation, given a sparse configuration a@ =
(51, ce, sL), we generate the sparse networks W4 (a) =
(Wip(sh), ..., Wk (s")) by dynamically projecting the
shared parameters Wslup of ™ linear modules into corre-
sponding sparse matrix Wéup(sl) according to the specific
N:M sparsity level s'. To achieve this, we treat M con-
secutive parameters as a group G = {w1,...,wy }, where
G C Wslup. We prune the M — N parameters that have

8009

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 01,2024 at 03:13:36 UTC from IEEE Xplore. Restrictions apply.

the least significant saliency score p(-), i.e., the importance
score for each weight. As Fig. 4 illustrates, when 1:4 sparsity
is chosen, three parameters in each 4-element group will be
pruned. Mathematically, we define ¢ as the N™ smallest
saliency score among G, and the mask value m; for weight
elements in a group can be calculated as:

Sampling Strategy Before we delve into our proposed
prior distribution for candidate configuration, we first review
the vanilla approach. In the conventional method [9], all can-
didate configuration are treated equally. Specifically, sparse
configuration are sampled by uniformly selecting the sparsity
level s; from S for each i linear module independently.

Leveraging insights from the central limit theorem [22], it
becomes evident that under this vanilla sampling paradigm,
the computational cost distribution F () will approximately
converge to a normal distribution. Given the architecture of
our weight-sharing supernet, when a particular sparse con-
figuration «v is sampled, similar configurations with nearly
identical computational costs are also indirectly trained. This
biases the training towards architectures with computational
costs clustering around the mean, leaving architectures with
extremal computational costs, especially those with higher
sparsity, subject to undertraining.

To motivate and ensure a more balanced exploration
across the architectural spectrum, we employ a two-step
sampling strategy. This process starts by discretizing the
computational costs into distinct levels, represented as
C1,Cs,...,Ck, where C; corresponds to the minimum
computational cost (Ciower), and Cg corresponds to the
user-specified maximum computational cost (Cypper). Math-
ematically, this discretization can be defined by denoting
a set of intervals T = {[C;, Cit1)1<i<k—1}. With these
intervals, the sampling unfolds in two stages: first, a com-
putational cost interval I = [C;, Ci11) is chosen uniformly
from 7, and then, within this selected interval, an architecture
is uniformly sampled. Based on this strategic approach, we
can ensure the balanced training for architectures of different
computational costs, thereby alleviating the undertraining
issue for the extremal architectures of high sparsity.

Enhanced Training Recipe Training a supernet is chal-
lenging due to the concurrent training of multiple architec-
tures. This complexity necessitates a simplification of the
training process to facilitate convergence. Regularization
methods (e.g., dropPath, dropout), commonly included in
the training process of ViTs, are disabled in our approach.
In the dynamic environment of a supernet, where parameters
are continuously masked and varied, additional regulariza-
tion could create training difficulties, obstructing effective
learning across the various networks encapsulated within the
supernet.

Inspired by prior work in model compression [29, 35],
we incorporate knowledge distillation [11], a technique
premised on a teacher-student paradigm to further augment
and stabilize our supernet training. Specifically, the uncom-
pressed model is adopt to be the teacher in our implemen-
tation. During training, a mini-batch of data X is initially
forwarded through this uncompressed model to produce pre-
diction logits. Subsequently, the sparse subnetworks sam-

Algorithm 1 Sparse Supernet Training

Input: pretrained parameter W, max iteration T',

training data D, learning rate 7,
computational budget Cypper

Output: trained supernet weights W%

1: Init supernet’s weight W 4 with pretrained weight W
2: Define computational cost intervals 7 by Cypper
3 fort=1,...,Tdo

4:

Sample a interval [= [C}, C;11) w.rt
I~U(I)
Choose an configuration

4. Experiments

Table 1. Experimental results of the proposed ELSA methodology
on various vision transformers. Accuracy denotes the Top-1 accu-
racy measure on the ImageNet-1K validation set.

Model ‘ Sparsity Pattern ‘ FLOPs ‘ Accuracy
DeiT-S \ Dense | 47G | 798%
ELSA-DeiT-S-2:4 | Uniform2:4 | 2.5G (1.00x) | 79.1%
. , g | 226 114x) | 79.0%
ELSA-DeiT-S-N:4 | Layer-wise N:4 ‘ 2.0G (1.25%) 78.3%
DeiT-B ‘ Dense ‘ 17.6G ‘ 81.8%
ELSA-DeiT-B-2:4 | Uniform2:4 | 9.2G (1.00x) | 81.6%
. , g | 70G(130%) | 81.6%
ELSA-DeiT-B-N:4 | Layer-wise N:4 6.0G (1.53x) ’1.4%
Swin-S ‘ Dense ‘ 8.7G ‘ 83.2%
ELSA-Swin-S-2:4 | Uniform 2:4 | 4.6G (1.00x) | 82.8%
. ‘ g | 40G(1.15%) | 82.8%
ELSA-Swin-S-N:4 | Layer-wise N:4 3.5G (1.31%) 82.5%
Swin-B \ Dense | 154G | 835%
ELSA-Swin-B-2:4 | Uniform2:4 | 8.0G (1.00x) | 83.1%
. , s | 6:0G(133%) | 83.0%
ELSA-Swin-B-N:4 | Layer-wise N:4 5.3G (1.51x) 32.8%

Dataset and Benchmarks Our experiments are conducted
on the ImageNet-1k dataset for image classification tasks.
We apply our methodology to DeiT, which includes mul-
tiple transformer encoder blocks, and to the improved
Swin-Transformer, which employs a hierarchical design and
shifted window approach.

Settings The sparse supernet is trained starting from
the pretrained weights of the uncompressed models. The
training lasts for 150 epochs. For the supernet training,
we mostly keep the original hyper-parameters of each
compression target. We employ an AdamW [13] optimizer
with an initial learning rate of be — 5, a weight decay of
0.005 and a batch size of 1024. We define the computation
cost F(-) as the FLOPs, and user-defined threshold Cypper
as 50% FLOPs of the dense models in all supernet training.
Also, dropout and dropPath [33] are both disabled while
training the supernet.

4.1. Pruning Results on ImageNet-1K

In our methodology, we employ N as a power-of-two to
define our search space and engage in a cohesive training
process of a supernet. This supernet houses various sparse
subnetworks. Using evolutionary search, we strategically

navigate the search space to identify the best layer-wise spar-
sity configurations. Our results are presented in Table 1. All
models are directly inherited from the supernet, necessitating
no additional adjustments, fine-tuning or post-training.

ec]
N
w

ee}
N
o

1.9x

L]
2.9x

©
=
5

©
=
o

©
o
U

—o— ELSA (Ours)
—e— Uncompressed (Baseline)

ImageNet Top-1 Accuracy (%)
[e2]
o
=}

8 17 18
FLOPs (G)

Figure 7. Result of sparsity exploration on DeiT-B

Comparison with the Dense Model (uniform 4:4) As
shown in Table 1, our approach demonstrates the capabil-
ity to significantly reduce FLOPs through exploring N: M
sparsity while maintaining model performance. For instance,
when applying our pruning strategy to DeiT-B, we achieve
a noteworthy 2.9x reduction in computational costs, with
only a marginal decline in accuracy as depicted in Fig. 7.
Pursuing a FLOP reduction of approximately 50%, our em-
ployment of an evolutionary search approach has directed
us towards the uniform 2:4 sparsity setting from our well-
trained supernet. Furthermore, the sparse network with uni-
form 2:4 sparsity setting can facilitate an almost twofold
reduction in computational costs with only 0.2% reduction
in accuracy. Similar efficiency is observed in the case of the
Swin-Transformer models, thus confirming the robustness
of our methodology.

Benefits of Layer-wise Sparsity The adoption of layer-
wise sparsity serves as a foundational aspect of our method-
ology, presenting notable advantages in comparison to the
conventional 2:4 sparse configuration. As demonstrated by
the DeiT-B model, our approach, through the exploration of
layer-wise sparsity, has achieved improved efficiency, man-
ifesting a 1.53 x reduction in FLOPs (6.0G vs. 9.2G). In
addition, the reduction in FLOPs is highly correlated to the
speedup obtained by deploying the sparsified network on
N:M sparsity-supporting accelerators. This result indicates
the capacity of layer-wise sparsity to harness heightened
rates of hardware acceleration, a trend that is also evident in
the Swin-B model. Notably, the Swin-B model reported a
1.51x enhancement in computational cost efficiency (5.3G
vs. 8G) as a direct consequence of our method.

8012

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 01,2024 at 03:13:36 UTC from IEEE Xplore. Restrictions apply.

It is worth mentioning that the FLOPs reduction yielded
by our semi-structured sparsity exploration can theoretically
be translated into runtime speed-ups when paired with emerg-
ing N:M sparsity-supporting hardware accelerators. Assum-
ing optimal hardware utilization, a network with 2:4 sparsity
can attain nearly a 2x speed enhancement on platforms like
the NVIDIA Ampere GPU [28]. Likewise, sparse networks
employing layer-wise N:4 sparsity, such as ELSA-DeiT-B-
N:4, could expect speed-ups of up to 2.9x when deployed
on VEGETA [12]. Moreover, it is crucial to emphasize the
adaptability of our methodology, which allows for the ex-
ploration of various semi-structured sparsity patterns. This
adaptability facilitates seamless integration with different
hardware designs, such as S2TA [20], which targets /N:8
sparsity, aiding the identification of efficient configurations
for developing well-trained sparse networks without com-
promising accuracy.

©
B
=)

[e0]
w
(92
[]

[oe]
SAJ
o

-34% (extra)

<

©
N
<)

ELSA (Ours)
ER
—&— DominoSearch
—e— Uncompressed (Baseline)

ImageNet Top-1 Accuracy (%)
= 9]
w (9]

©
=
o

7 8 9 15
FLOPs (G)

Figure 8. Comparisons of ELSA with other search methods on
Swin-B

4.2. Comparison to Other Sparse Configuration
Search Methods

To demonstrate the efficacy of our methodology in identify-

ing an optimal layer-wise sparse configuration, we compare

our approach to other prevailing sparsity selection paradigms.

The methods under comparison are:

¢ Erddos-Rényi (ER) [25]: Originally designed to determine
layer-wise unstructured sparsity, ER employs a heuristic
based on the sum of input and output channels. We modi-
fied ER for semi-structured sparsity by initially deciding
the unstructured sparsity level and subsequently rounding
it to the closest N: M sparsity level. For instance, within
an IN:4 search space, if the unstructured sparsity level is
70%, we would select 1:4 (approximately 75% zero pa-
rameters) as the final semi-structured sparse configuration.

* DominoSearch [31]: Tailored specifically for CNNs,
DominoSearch is an N:M sparsity level selection ap-
proach. During its operation, each cluster of M consecu-
tive weights in a pruning target (e.g., linear layers) is allo-

cated a threshold, which is determined analytically based
on weight magnitude. To delve into layer-wise redun-
dancy, DominoSearch adds an extra regularization penalty,
which incrementally pushes the preserved weights towards
the predetermined threshold until the desired sparsity is
attained.

For our experiments, the aforementioned strategies were
employed on pretrained ViTs to decide the sparsity level
for each targeted linear module. Once the sparsity levels
are determined, we derive the sparse sub-networks from the
fully-trained supernet and evaluate their performance on the
ImageNet-1k validation dataset.

From the visual representation in Fig. 8, it is evident that
our approach consistently outperforms the baseline method-
ologies on the Swin-B architecture. Our methodology ex-
hibits a more favorable trade-off between FLOPs and accu-
racy. Notably, our method manages to identify a sparsity
configuration that achieves a significant extra 34% reduction
in FLOPs compared to the DominoSearch strategy, while
still maintaining comparable, if not superior, accuracy. Ad-
ditionally, an improvement of 0.8% in Top-1 Accuracy is
observed when aligning the FLOPs. Lastly, the plots empha-
size that our results consistently reside on the Pareto frontier,
indicating a better balance between computational efficiency
and performance. This visual evidence underscores the ef-
fectiveness of our proposed layer-wise sparsity exploration
technique in ViTs. For a detailed visualization of the sparse
configurations searched by the discussed algorithms, please
see the corresponding section in the Appendix.

5. Conclusion

This paper presents ELSA, a first-of-its-kind layer-wise
N:M sparsity exploration methodology for accelerating
ViTs. We address the challenge of selecting suitable
layer-wise sparse configurations for ViTs on N:M sparsity-
supporting accelerators. Leveraging the subset-superset re-
lationship among N:M sparsity levels, we construct the su-
pernet with all N: M sparsity choices sharing their weights
and applying dynamic masking to extract the sparse matrix,
resulting in both reduction of training overhead and improve-
ment of convergence of sparse subnets. With our proposed
ELSA methodology, we can yield not only sparsified ViT
models with high accuracy but also sparse configurations
with effective reduction in FLOPs, which is highly correlated
to the speedups yielded by mixed sparsity-supporting accel-
erators. We anticipate that our work will establish a robust
baseline for future research in sparse ViT models with N: M
sparsity and offer valuable insights for upcoming hardware
and software co-design studies.

8013

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 01,2024 at 03:13:36 UTC from IEEE Xplore. Restrictions apply.

References

(1]

(2]

(3]

[4

—

(5]

(6]

(7]

[8

—

(9]

[10]

[11]

[12]

Abhimanyu Rajesh Bambhaniya, Amir Yazdanbakhsh,
Suvinay Subramanian, and Tushar Krishna. Accelerating
attention based models via HW-SW co-design using fine-
grained sparsification. In Architecture and System Support
for Transformer Models (ASSYST @ISCA 2023), 2023. 2
Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once-for-all: Train one network and specialize it
for efficient deployment. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. 4

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-
to-end object detection with transformers. In European con-
ference on computer vision, pages 213-229. Springer, 2020.
1

Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, and
Zhangyang Wang. Chasing sparsity in vision transformers:
An end-to-end exploration. In NeurIPS, pages 19974—19988,
2021. 1

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale, 2021. 1

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro,
and Erich Elsen. Rigging the lottery: Making all tickets
winners. In International Conference on Machine Learning,
pages 2943-2952. PMLR, 2020. 1, 2, 3

Chao Fang, Aojun Zhou, and Zhongfeng Wang. An algo-
rithm—hardware co-optimized framework for accelerating n:m
sparse transformers. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 30(11):1573-1586, 2022. 2
Elias Frantar and Dan Alistarh. Optimal brain compression:
A framework for accurate post-training quantization and prun-
ing. In Advances in Neural Information Processing Systems
35: Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA, Novem-
ber 28 - December 9, 2022, 2022. 1

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-
shot neural architecture search with uniform sampling. In
ECCV, pages 544-560, 2020. 4, 6

Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for efficient neural network.
Advances in neural information processing systems, 28, 2015.
1

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
Distilling the knowledge in a neural network. CoRR,
abs/1503.02531, 2015. 6

Geonhwa Jeong, Sana Damani, Abhimanyu Rajeshkumar
Bambhaniya, Eric Qin, Christopher J. Hughes, Sreenivas
Subramoney, Hyesoon Kim, and Tushar Krishna. Vegeta:
Vertically-integrated extensions for sparse/dense gemm tile
acceleration on cpus. In 2023 IEEE International Symposium

[13]

(14]

(15]

[16]

(171

(18]

(19]

[20]

(21]

(22]

(23]

(24]

[25]

8014

on High-Performance Computer Architecture (HPCA), pages
259-272,2023. 2,8

Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2017. 7

Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng, Wei
Niu, Mengshu Sun, Xuan Shen, Geng Yuan, Bin Ren, Hao
Tang, Minghai Qin, and Yanzhi Wang. Spvit: Enabling faster
vision transformers via latency-aware soft token pruning. In
Computer Vision — ECCV 2022, pages 620-640, Cham, 2022.
Springer Nature Switzerland. 1

Denis Kuznedelev, Eldar Kurtic, Elias Frantar, and Dan Al-
istarh. CAP: correlation-aware pruning for highly-accurate
sparse vision models. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023,2023. 1, 2

Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and
Jinwoo Shin. Layer-adaptive sparsity for the magnitude-based
pruning. arXiv preprint arXiv:2010.07611, 2020. 3

Yang Lin, Tianyu Zhang, Peiqin Sun, Zheng Li, and Shuchang
Zhou. FQ-ViT: Fully quantized vision transformer without
retraining. CoRR, 2021. 1

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 10012-10022, 2021. 1
Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma,
and Wen Gao. Post-training quantization for vision trans-
former. In NeurIPS, pages 28092-28103, 2021. 1

Zhi-Gang Liu, Paul N. Whatmough, Yuhao Zhu, and Matthew
Mattina. S2ta: Exploiting structured sparsity for energy-
efficient mobile cnn acceleration. In 2022 IEEE Interna-
tional Symposium on High-Performance Computer Architec-
ture (HPCA), pages 573-586, 2022. 2, 8

Yucheng Lu, Shivani Agrawal, Suvinay Subramanian, Oleg
Rybakov, Christopher De Sa, and Amir Yazdanbakhsh. STEP:
learning N: M structured sparsity masks from scratch with
precondition. In International Conference on Machine Learn-
ing, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA,
pages 22812-22824. PMLR, 2023. 1, 2

James E. Marengo, David L. Farnsworth, and Lucas Stefanic.
A geometric derivation of the irwin-hall distribution. Int. J.
Math. Math. Sci., 2017:3571419:1-3571419:6, 2017. 6

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen
heads really better than one? In Advances in Neural Infor-
mation Processing Systems. Curran Associates, Inc., 2019.
1

Asit K. Mishra, Jorge Albericio Latorre, Jeff Pool, Darko
Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu, and
Paulius Micikevicius. Accelerating sparse deep neural net-
works. CoRR, abs/2104.08378, 2021. 1, 2

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone,
Phuong H Nguyen, Madeleine Gibescu, and Antonio Liotta.
Scalable training of artificial neural networks with adaptive
sparse connectivity inspired by network science. Nature com-
munications, 9(1):2383, 2018. 1, 2, 3, 8

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 01,2024 at 03:13:36 UTC from IEEE Xplore. Restrictions apply.

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]

(38]

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,
and Jan Kautz. Pruning convolutional neural networks for re-
source efficient inference. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. 5

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,
and Jan Kautz. Importance estimation for neural network
pruning. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20,
2019, pages 11264-11272. Computer Vision Foundation /
IEEE, 2019. 5

Nvidia. A100 tensor core gpu architecture. Technical report,
2020. 2, 8

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie
Zhou, and Cho-Jui Hsieh. DynamicViT: Efficient vision
transformers with dynamic token sparsification. In NeurlPS,
pages 13937-13949, 2021. 6

Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lym-
beropoulos, Bodhi Priyantha, Jie Liu, and Diana Marculescu.
Single-path NAS: designing hardware-efficient convnets in
less than 4 hours. In ECML PKDD, 2019. 4

Wei Sun, Aojun Zhou, Sander Stuijk, Rob G. J. Wijnhoven,
Andrew Nelson, Hongsheng Li, and Henk Corporaal. Domi-
nosearch: Find layer-wise fine-grained n:m sparse schemes
from dense neural networks. In Advances in Neural Informa-
tion Processing Systems, 2021. 1,2, 8

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Herve Jegou. Training
data-efficient image transformers amp; distillation through
attention. In Proceedings of the 38th International Conference
on Machine Learning, pages 10347-10357. PMLR, 2021. 1

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob
Fergus. Regularization of neural networks using dropconnect.
In Proceedings of the 30th International Conference on Ma-
chine Learning, pages 1058-1066, Atlanta, Georgia, USA,
2013. PMLR. 7

Fang Yu, Kun Huang, Meng Wang, Yuan Cheng, Wei Chu,
and Li Cui. Width & depth pruning for vision transformers. In
Proceedings of the AAAI Conference on Artificial Intelligence,
pages 3143-3151, 2022. 1

Shixing Yu, Tianlong Chen, Jiayi Shen, Huan Yuan, Jianchao
Tan, Sen Yang, Ji Liu, and Zhangyang Wang. Unified visual
transformer compression. In /CLR, 2022. 6

Jinnian Zhang, Houwen Peng, Kan Wu, Mengchen Liu,
Bin Xiao, Jianlong Fu, and Lu Yuan. Minivit: Compress-
ing vision transformers with weight multiplexing. CoRR,
abs/2204.07154, 2022. 1

Yuxin Zhang, Mingbao Lin, Zhihang Lin, Yiting Luo, Ke
Li, Fei Chao, Yongjian Wu, and Rongrong Ji. Learning best
combination for efficient N: M sparsity. In Advances in Neural
Information Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, NeurlPS 2022,
New Orleans, LA, USA, November 28 - December 9, 2022,
2022. 1,2

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie
Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng Li. Learning

n: m fine-grained structured sparse neural networks from
scratch. arXiv preprint arXiv:2102.04010, 2021. 1,2

[39] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,

8015

and Jifeng Dai. Deformable {detr}: Deformable transformers
for end-to-end object detection. In International Conference
on Learning Representations, 2021. 1

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 01,2024 at 03:13:36 UTC from IEEE Xplore. Restrictions apply.

