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Abstract—In this paper, we present concepts towards a HLS-
driven dynamic monitoring and debugging framework. Tradi-
tionally, in-situ debugging and dynamic monitoring is accessible
during the early design stages through costly co-simulation
cycles and through invasive tools and interfaces. We propose
a methodology where dynamic monitoring is embedded into
the high level synthesis description of machine learning (ML)
accelerators within the open source hls4ml tool. We discuss the
usage of the framework for monitoring FIFO channel utilization,
which is a critical structure utilized to implement streaming based
ML accelerators on FPGAs.

Index Terms—dynamic monitoring, HLS, FIFO

I. INTRODUCTION

FPGA HLS tools have been gaining more popularity among
designers partly due to the increasing tool flow support from
FPGA manufacturers or vendors. These tools allow software
developers to express designs in high-level languages, and then
translate the code into FPGA board configuration files auto-
matically. Intel introduced oneAPI, which supports a uniform
platform for programming across CPU, GPU, and FPGA using
Data Parallel C++ [1]. Xilinx provides Vitis tools [2] [3] with
similar functionality for OpenCL, C and C++ kernels. These
examples and many more emerging HLS tools make FPGAs
accessible to a wide range of developers. Utilizing these
platforms, open-source tools like hls4ml [4] and FINN [5]
provide workflows to create hardware implementations on
FPGAs for machine learning algorithms, which further bridge
the gap between software models and accelerator inference.

To aid application characterization and architecture design
space exploration, advanced profiling and debugging tools
have been developed for CPUs (such as, Intel Advisor tool [6],
Pin tool [7]), and GPUs (such as, Nvidia Visual Profiler [8]
SASSI [9]). Similarly, it is necessary to have a dynamic
monitoring tool that is easy to use and provides more detail
on the behavior of the accelerator when running on FPGAs.
Furthermore, CPUs and GPUs are equipped with hardware
performance counters that provide detailed insight into the
execution and behavior of the workloads. These monitoring
infrastructures support run-time dynamic management mech-
anisms and they also provide a rich set of features that can
be used to build performance models. Performance counters
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(a) PXI platform

(b) Pynq-Z2 SoC platform

Fig. 1: PXI and Pynq-Z2 platforms with hls4ml accelerator.

have been used to model performance, power and temperature
characteristics for CPUs and GPUs [10]–[13].

There are several logic analyzers focusing on in situ FPGA
debugging, such as SignalTap [14] and ChipScope [15].
Specifically tailored for HLS generated circuits, Goeders and
Wilton [16] proposed a debugging system that allows users to
set breakpoints and replay the execution; Pietro et al. [17] ex-
amined ways to automate circuit bug detection. One common
aspect of these methods is that they require modifications of
the HLS compilers and thus, are not applicable for users of
commercial HLS tools. Our approach can similarly be used for
debugging and more, but it is implemented at the code-level
by the designer, hence, it does not require any modification
of the HLS tool. We demonstrate its utility through a design
flow using hls4ml with the Vitis HLS 2023.2 backend.

II. MONITORING FIFO CHANNELS FOR VERIFICATION
AND OPTIMIZATION OF STREAMING ML ACCELERATORS

Recent HLS accelerator designs mostly focus on streaming
architectures that connect computing elements by FIFOs. This
architecture has a simple control logic which can be compiled
and optimized by the tools at higher efficiency. Standard
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streaming architectures utilize FIFOs with a finite amount of
memory allocated to them to facilitate data transfer. When
the writer places new data in the FIFO, the receiver ideally
consumes the data at some frequency such that the FIFO does
not overflow or underflow or initiate a deadlock.

Layer hls4ml
default/

Vitis
C-Sim

hls4ml
co-sim

FIFO opt.

Vitis
co-sim
DDD

input_1_cpy1 146880 1112 73945
input_1_cpy2 146880 2 3
zp2d_out 148676 146562 146549
conv2d_out 146880 2 2
relu_out 146880 2 2
zp2d_1_out 148676 36622 131374
conv2d_1_out 146880 2 2
relu_1_out 146880 2 2
zp2d_2_out 148676 679 684
conv2d_2_out 146880 2 2
relu_2_out 146880 2 2
zp2d_3_out 148676 679 684
conv2d_3_out 146880 2 2
relu_3_out 146880 2 2
zp2d_4_out 148676 679 684
conv2d_4_out 146880 2 2
relu_4_out 146880 2 2
zp2d_5_out 148676 679 684
conv2d_5_out 146880 2 2
relu_5_out 146880 2 2

zp2d_6_out 148676 679 684
conv2d_6_out 146880 2 2
lambda_out 146880 146880 146880
add_out 146880 66 3
lambda_1_out 1321920 2 3
Time: Our method 3.5h – 1 day 10 days

TABLE I: Suggested FIFO depths for super resolution NN
with skip connection according to hls4ml default algorithm,
hls4ml FIFO optimization, and Vitis DDD.

Existing HLS tools for estimating the proper FIFO size
in streaming architectures rely primarily on C-simulation
and co-simulation. While this technique offers a convenient
and relatively accurate software-based method of determining
FIFO usage, multiple sources of overhead and uncertainty
can impede development. Large or complex neural networks
can generate excessive co-simulation runtimes that exceed
synthesis and place and route runtimes. Additionally, these
simulations can be highly CPU and memory intensive. Finally,
the behavior observed in co-simulation does not always match
its hardware implementation. In some cases, this can result
in either unnecessary over-utilization of the FPGA resources
or underallocation of the necessary FIFO resources leading to
reader/writer stalls and undetermined behavior due to data loss,
deadlocks, or decreases in overall throughput and reliability.
Here, we utilize new synthesizable functions of the Vitis
HLS stream non-blocking API to enable quick profiling of
hardware-implemented FIFOs, thus avoiding lengthy simula-
tion times and yielding accurate FIFO size estimates. Although
this feature is available in the tool version, its utilization within
extended design automation flows is undefined. In this paper,
we present a verification flow involving hls4ml in conjunction
with Vitis HLS, where dynamic FIFO monitoring is realized.

A. Existing FIFO Size Estimation Methods in HLS
Current FIFO size optimization methods for Vitis HLS are

mainly in C-simulation and co-simulation. Open-source tools,
like hls4ml, also provide their own ways of optimizing it.
These methods decrease the number of co-simulation cycles
needed but they are not up-to-date with Vitis and our method-
ology is the first automated approach for utilizing the FIFO
tracking feature of Vitis within hls4ml.

1) C-simulation: C-simulation is an early step in functional
verification during the design process. It is a quick process
and can be used to initially determine the appropriate FIFO
sizes. However, it often overestimates the size needed to
avoid deadlocks, as pragmas, which apply dataflow/function-
level pipelining are disregarded during c-simulation. As model
architectures grow larger, the inherent inaccuracies of C-
simulation can lead to excessive memory usage on the host
CPU for simulation and on the FPGA for the final design.

2) Manual Co-simulation: Co-simulation provides a more
detailed view of FIFO fullness during the development pro-
cess. It allows designers to manually tune the FIFO size
through step-by-step tuning. However, this requires intuition
and analysis from the designer. As the model becomes larger,
converging on the optimal FIFO sizes becomes more difficult
and the time commitment becomes too costly.

3) Dynamic Estimation using Co-simulation: Similar to the
manual simulation, newer Vitis tools incorporate Dynamic
Deadlock Detection (DDD) algorithms which incrementally
increase FIFO depths throughout the design until performance
no longer improves and no FIFO writers are blocked. More-
over, this process involves the execution of multiple successive
co-simulations and as such, larger designs can generate exces-
sive runtimes which impede development.

4) hls4ml FIFO Optimization Flow: hls4ml translates neu-
ral network models from high-level languages such as Py-
Torch, Keras, and ONNX to an HLS representation. hls4ml
utilizes a FIFO-based streaming approach to construct a neural
network architecture where FIFOs transport layer activations
from one layer to the next. By default, these FIFOs are sized
to match the output size of the corresponding layer. However,
typical hls4ml implementations utilize only a small fraction
of the full allocated FIFO capacities, thus inflating BRAM
resource usage beyond what is necessary.

Currently, hls4ml only offers co-simulation based tools for
FIFO depth optimization with Vivado HLS. In contrast to the
Vitis DDD scheme, this tool executes only a single neural
network inference in co-simulation, and extracts the necessary
signals to identify the maximum occupancy of each transport
FIFO in the network. These maximum values are then in-
cremented by 1 and back-annotated to the HLS architecture.
While quicker than Vitis DDD, this scheme fails to account
for successive inputs which can result in undersized FIFOs,
impede throughput, and yield a higher initiation interval.
Excessive runtimes are also a staple of this optimization with
larger neural networks.

5) Size and Capacity Function of HLS Stream API: Newer
versions of the Xilinx design suite include new synthesizable
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methods in the HLS stream non-blocking API for stream
control and live diagnostics. Two of these methods include
“.capacity()”, and “.size()”, which return the hardware imple-
mented runtime capacity and the current occupancy of the
FIFO-based stream. We leverage this new feature to develop
a Xilinx HLS-based framework for active FIFO monitoring in
hardware for ML accelerators generated with hls4ml.

B. Comparison of Co-simulation-based FIFO Sizing Methods

We present a comparison between the default hls4ml FIFO
depths (equal to layer output sizes), the hls4ml FIFO optimiza-
tion results, and the Vitis DDD reported maximum depths. We
utilize a relatively large super resolution model which features
a skip connection to emphasize the advantages, shortcomings,
and differences between the current software methods of
FIFO depth calculation and optimization. Deadlocks are also
commonly characteristic of neural network architectures with
skip connections. The architecture of this neural network is
shown in Table I. The model input is copied to input_1_cpy1
and input_1_cpy2 creating two branches which merge at
add_out. Furthermore, Table I outlines the by-layer FIFO
depths recommended by each method. hls4ml sets the size
of each transport FIFO of the network equal to the size of the
previous layer’s output. For example, since the model input is
a 680x216 image with three color channels, hls4ml defines the
input stream depth of 146,880. Vitis HLS C-simulation reports
verify that this depth is reached. However, as previously
mentioned, pipelining is not applied during C-simulation, and
thus hls4ml utilizes a more conservative configuration strategy.

hls4ml’s FIFO optimization suggested depths are also shown
in Table I. They reflect the maximum achieved occupancy of
each network FIFO during a single co-simulation inference
execution plus one. We observe a ˜90.4% decrease in resource
consumption across LUTs, BRAMs, and FFs. Finally, Vitis
DDD yields similar results to the hls4ml FIFO optimiza-
tion, yielding an ˜88.5% reduction in resources across LUTs,
BRAMs, and FFs. The latter two methods are often successful
in identifying the optimal FIFO sizes and reducing overall
resource consumption. However, lengthy runtimes paired with
exorbitant CPU usage render these solutions less than ideal. In
this case, hls4ml’s optimization runtime exceeded one day and
Vitis DDD lasted 10 days. Given that the total duration from
C-synthesis to bitstream generation is three and a half hours
for this model, an in-hardware monitoring solution would
decrease development time. Additionally, the disagreement
between these two methods highlights the potential inac-
curacy of software-based simulation. Thus, a more robust,
time-efficient, and less compute-intense profiling scheme will
greatly decrease development time.

C. FIFO Monitoring in Hardware Neural Networks

One way to overcome the limitations of software simulation-
based methods discussed above is to set these hyperpara-
maters by monitoring the hardware directly instead. Thus,
we implement a profiling scheme for in situ monitoring of
FIFO occupancy utilizing the new Vitis HLS Stream API

features previously mentioned. For this work, we implemented
and tested our framework using two hls4ml models. Both
consist of two convolutional layers, one dense layer, and ReLU
activations. However, one model is completely “linear” from
input to output, and the second features a skip connection in
similar fashion to the super resolution model.

1) HLS Framework Implementation: We modify the exist-
ing hls4ml template convolutional and ReLU activation layers
to incorporate a “.size()” API call at the layer input to fetch
the current depth of the stream. This depth value, size_moc,
is exposed at the top-level IP output so that it can be viewed
in real time by IP core monitoring tools. It is implemented
with an “ap_vld” port-level protocol which asserts a separate
valid signal when a new depth value is valid for reading.
Thus, we also incorporate conditional logic to latch only the
maximum achieved stream occupancy to the IP output. These
maximum occupancy values can then be back-annotated to the
HLS model to achieve the optimal resource consumption.
1 template <class data_T , ...>
2 void f(hls::stream <data_T > &data , unsigned &

size_moc , ...) {
3 STREAM_DATA_READ_IN:
4 for (int i = 0; i < N; i++) {
5 ...
6 data_T in_data;
7 io_section: {
8 #pragma HLS protocol fixed
9 size_moc = data.size();

10 in_data = data.read();
11 }
12 ...
13 }

Listing 1: Probing functions for FIFO fullness
measurement

D. Experimental Hardware Setup

We target two platforms to demonstrate the operation of our
FIFO monitoring framework: Python productivity for Zynq
for PYNQ-Z2, and the National Instruments PCI eXtensions
for Instrumentation (PXI). The results presented here will
primarily reflect our implementation on a Pynq-Z2 SoC and
an NI PXIe-7915 co-processor which is equipped with a
XCKU060 FPGA. Furthermore, the Pynq stack is applicable
to many FPGA boards and hls4ml users can benefit from the
accelerator system template for Vitis HLS we develop here.

1) HLS4ML Vitis HLS Accelerator Development for Pynq:
Currently hls4ml does not have official support for the Vitis
HLS accelerator. We first extend it to support it. We create a
system template to insert the streaming IP into the Pynq sys-
tem, using a wrapper to bridge the gap between the streaming
IP and the DMA. The DMA controls the data transfer between
the hls4ml IP and the PS system through a Jupyter Notebook.
The Pynq-Z2 platform is illustrated in Fig. 1.

2) HLS4ML Vitis HLS Accelerator Development for Na-
tional Instruments PXI: Similar to Pynq, we begin developing
a PXI-based accelerator by starting with the hls4ml Vivado
HLS accelerator template. The NI LabVIEW FPGA pack-
age greatly simplifies the process of integrating custom IPs
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and seamlessly manages DMA communication with the host
system. LabVIEW FPGA provides vhdl-implemented versions
of the standard library functions in their graphical language,
G. Through LabVIEW, we integrate the hls4ml model IP,
implement the surrounding AXI-stream control logic, and
design front panel user interface indicators to display the
model output, latency, and maximum depth values obtained
from the hardware. The template design we develop here can
be utilized to implement any hls4ml model with a streaming
interface. The PXI platform is illustrated in Fig. 1.

E. Results

1) CNN without skip connection: First, we target a “lin-
ear” CNN architecture with no skip connections or abnormal
architectural elements. Table II shows the actual hardware
implemented maximum occupancy for the Conv2D and ReLU
transport FIFOs. Also shown are the default hls4ml FIFO con-
figuration for this neural network and the Vitis co-simulation
DDD maximum depths for comparison. The hardware results
indicate the true FIFO occupancy for this model on this FPGA.
In testing, we back-annotated these maximum depth values
(plus one) to the hls4ml model configuration to validate the
optimized version of the model. The model exhibited the
correct behavior with the FIFO depths from Vitis DDD and
from the hardware monitoring framework.

Layer hls4ml
Defaults

Vitis
Co-sim
DDD

PXI
Hardware

Pynq-Z2
Hardware

conv2d 64 55/56 57 57
relu 36 1 1 1
conv2d_1 36 19 19 19
relu_1 16 1 1 1
dense 16 1 1 1

TABLE II: Comparison of hls4ml default depths, Vitis co-
simulation suggested depths, and hardware-implemented FIFO
monitoring results on hls4ml CNN with no skip connection.

2) CNN with skip connection: Next, we target a similar
CNN with a skip connection incorporated into its architecture.
In this test, we aim to demonstrate the ability of this framework
to combat deadlocks in non-linear streaming neural network
and other firmware architectures. As such, we purposefully
induce a deadlock in co-simulation and hardware by setting
all FIFO depths to two or less. In contrast, hardware inference
using the previously presented linear architecture was success-
ful even with FIFOs of this truncated size. This highlights the
importance of carefully considering FIFO sizes when utilizing
different streaming architecture configurations. Upon sizing
the model’s FIFOs according to the depths (plus one) reported
by our hardware monitors, the hardware model with a skip
connection also completed execution and produced the correct
output. The hardware reported depths are in Table III.

3) Resource Impact: The addition of these FIFO monitors
within the microarchitecture has a negligible impact on re-
source usage on PXI. The increased usage on Pynq-Z2 is
because of the ILA initiation, which can be greatly decreased

Layer hls4ml
De-

faults

Deadlock Vitis
Co-sim
DDD

PXI
Hardware

Pynq-Z2
Hardware

conv2d 100 2 82/84 86 86
relu 64 2 1 1 1
conv2d_1 100 2 70 70 70
relu_1 64 2 1 1 1
dense 64 1 1 1 1

TABLE III: Comparison of hls4ml default depths, Vitis co-
simulation FIFO suggested depths, and hardware-implemented
FIFO monitoring results on hls4ml CNN with skip connection.

by buffering results to the PS side in the future development.
The resource comparison between before and after the addition
of these monitors for each model is shown in Table IV.

Board CNN
w/

skip?

FIFO
Monitors
Enabled?

BRAMDSP48 Register LUT

PXI N N 4.3% 0.0% 7.3% 12.9%
PXI N Y 4.3% 0.0% 7.4% 13.2%
PXI Y N 4.4% 0.0% 7.6% 13.2%
PXI Y Y 4.4% 0.0% 7.7% 13.4%

Pynq-
Z2

N N 8.6% 0.0% 6.3% 8.5%

Pynq-
Z2

N Y 13.6% 0.0% 9.8% 12.9%

Pynq-
Z2

Y N 17.5% 0.0% 8.7% 9.7%

Pynq-
Z2

Y Y 22.5% 0.0% 12.2% 14.1%

TABLE IV

III. CONCLUSION

In this paper, we present a systematic framework to dynam-
ically monitor FIFO structures within HLS-based FPGA ML
accelerators. This is accomplished by providing the necessary
architectural interfaces so that users can seamlessly insert
a monitoring utility into their design at the HLS program-
ming stage without involving intrusive in-situ debugging and
time and CPU-intensive co-simulation tools. The framework
imposes little impact on the accelerator’s performance and
requires insignificant area overhead. With this monitoring
ability, users can better understand the run-time behavior of
the FPGA designs.

The framework is general and easily extendable. In future
work, we will investigate other useful performance metrics
and add them to the framework. We will also add support
for monitoring a greater variety of hls4ml layers and expand
testing to large assortment of architectures. We will also
investigate how to compress the dynamic information saved
at execution time within optimized trace buffer structures so
that a longer history can be maintained and accessed by users
post deployment.
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