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Abstract—Extreme data rate scientific experiments create mas-
sive amounts of data that require efficient ML edge processing.
This leads to unique validation challenges for VLSI imple-
mentations of ML algorithms: enabling bit-accurate functional
simulations for performance validation in experimental software
frameworks, verifying those ML models are robust under extreme
quantization and pruning, and enabling ultra-fine-grained model
inspection for efficient fault tolerance. We discuss approaches to
developing and validating reliable algorithms at the scientific edge
under such strict latency, resource, power, and area requirements
in extreme experimental environments. We study metrics for
developing robust algorithms, present preliminary results and
mitigation strategies, and conclude with an outlook of these and
future directions of research towards the longer-term goal of
developing autonomous scientific experimentation methods for
accelerated scientific discovery.

Index Terms—real-time systems, neural networks, digital sim-
ulation, reliability assesment, VLSI, VLSI testing

I. MOTIVATION

Ground-breaking science requires instruments that push
sensing technology with increasing spatial and temporal reso-
lution to explore nature at unprecedented scales and in extreme
environments. This has led to a data generation explosion,
with more and more data being generated in next-generation
experiments. For example, particle physics experiments look
for extremely rare collision events (one in a billion billion) that
can answer fundamental questions about the fabric of space-
time or the nature of dark matter. Alternatively, microscopy
experiments take hundreds of thousands of images per second
to understand material properties that can advance comput-
ing, quantum science, and basic energy research. There are
many other applications in a wide range of domain sciences,
including fusion, nuclear physics, neuroscience, and quantum
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Fig. 1. Many scientific and edge ML benchmark tasks [] must process
incoming data at a high rate leading to extreme low-latency and high-
bandwidth requirements. Applications illustrated here range across particle
physics (LHC, DUNE), nuclear physics (EIC), material science (X-ray diffrac-
tion, microscopy), neuroscience, fusion energy, quantum information science,
superconducting magnet research, and particle accelerators. This can be
compared against traditional internet-of-things and mobile device applications
which are less stringent.

computing, that can benefit from real-time, low-latency edge
processing [1].

Many of these experiments create terabytes to petabytes of
data per second, and at this rate these data cannot be stored and
processed with traditional methods in off-the-shelf computing
clusters. Instead, scientists must process the data as close as
possible to the experimental sensor—-at the edge. This is
similar in some ways to autonomous vehicles and other smart
sensing applications, but it occurs at unprecedented data rates
and latency requirements for data processing. An illustration
of this is provided in Fig. 1, which shows various benchmark
tasks for different scientific applications as well as their input
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bandwidth and processing latency requirements.
These challenges require efficient, specialized compute

hardware at the extreme edge, e.g., FPGAs, ASICs, and
systems on chip (SoCs). These platforms are common to many
scientific experiments. This also has implications for the com-
puter architectures [2] that need to meet these extreme low-
latency requirements: (i) often all neural network (NN) param-
eters must fit on-chip; and (ii) fully on-chip inference often re-
quires hardware-software codesign with custom/reconfigurable
logic to meet latency and bandwidth constraints. Per-sensor
compression and efficient aggregation of information, while
preserving scientific fidelity, can significantly impact experi-
ment data flow, analysis, control, and operation, as well as,
ultimately, how quickly experiments can be performed and
hypotheses explored.

In this paper, we discuss various unique and important
challenges posed by deploying edge ML algorithms in re-
alistic scientific environments with unfiltered and dynamic
data streams and present proof-of-principle case studies and
methodologies that address those challenges. We examine
techniques:
• to validate algorithm performance in large experimental

software frameworks on simulated and real data with func-
tionally verified VLSI implementations;

• to characterize the stability of both local and global loss
landscape structures in the training of highly customized and
optimized algorithms; and

• to improve the tolerance of edge ML algorithms to bit flip
and sensor noise faults caused by experimental conditions
with ultra-fine-grained bit level inspection and targeted reg-
ularization techniques.

II. EXEMPLAR APPLICATION AND PREVIOUS WORK

For our example domain science task, we consider the
CERN Large Hadron Collider (LHC) Compact Muon Solenoid
(CMS) experiment [3]. This is an experiment that runs particle
collision experiments that generate data rates of ∼40 TB/s.
To reduce data rates, physicists deploy tens of thousands of
ASICs and hundreds of FPGAs to make decisions on whether a
specific collision is of particular interest (known as triggering)
at the microsecond scale [4], [5]. One such ASIC is the
endcap concentrator (ECON-T) ASICs [6], which is planned
for deployment in the upcoming LHC upgrade. Each ECON-T
ASIC is running a NN encoder to compress experimental data
from the high-granularity endcap calorimeter (HGCAL) [7]
into a smaller format for easy filtering in the trigger system.
The ECON-T encoder hardware must accept new input data
at 40 MHz and complete inference in 25 ns within an area
budget of 4 mm2 [6]. To meet these constraints, the ECON-
T encoder model is a small two-layer NN with ∼2000 pa-
rameters quantized to have 6-bit fixed-point weights which
operates completely on-chip. To complicate matters further,
the ECON-Ts operate in a high-radiation environment (due
to their close proximity to particle collisions in the LHC).
High radiation causes transient hardware errors, which can
lead to incorrect application output (silent data corruptions)

if the hardware is not designed robustly. The ECON-Ts filter
terabytes per second of data for high-energy physics studies,
and faulty execution is unacceptable. Only the NN weight
parameters are vulnerable to faults because the activations
are not stored in on-chip memory for longer than a cycle,
as inference completes in a single cycle.

The open-source quantization-aware platform QKeras [8] is
used for model training required for the algorithm development
and also for generating stimuli for verification. The output
of this stage is processed by the hls4ml compiler [9], [10],
which translates the QKeras model description into a resultant
C++ description. This is then converted to an hardware RTL
description in Verilog utilizing Mentor Catapult HLS. Several
verification steps are undertaken at this stage to identify bugs
and improve performance: design rule checks, C simulation
and code coverage, and other traditional on-chip digital veri-
fication.

The HLS model description requires approximately 1,000
lines of code. This stage is fast, O(seconds), but it requires
several hundred iterations to optimize the algorithm perfor-
mance based on physics metrics. The HLS stage determines
the level of parallelism in the design, choice of pipelining,
resource reuse factor, and clock frequency. This directly im-
pacts the total area, power consumption, and the latency of
the design. The digital simulation and implementation stages,
alternatively, is much more time intensive and can take several
orders of magnitude longer [6].

III. METHODOLOGY AND METRICS

For ML models developed for scientific edge application,
taking the ECON-T as an example, we now discuss methods
developed for large scale, bit accurate simulation; metrics
for robust quantized training; and approaches for mitigating
effects of sensing and electronics faults.

A. Accurate and fast functional simulation

Powerful ML algorithms are valuable for real-time data
processing, but they can lead to complex designs in hardware
platforms such as FPGAs and ASICs. At the same time,
for high data rate experiments, these algorithms need to be
validated against large amounts of data offline to understand
their performance in identifying rare and interesting signals
amongst large background processes. This can necessitate a
CPU-based inference of the model over millions or billions of
events within the simulation framework of large experimental
collaborations.

To that end, a firmware generation workflow like hls4ml
has an extremely useful benefit that was not intended in
its initial design. The hls4ml workflow emits a fuctionally
bit accurate C representation of the NN in hardware with
the aid of algorithmic C1 and arbitrary precision2 libraries.
The generated C code contains no external dependencies and
compiles with any modern C/C++ compiler, making it easy to

1https://hlslibs.org/
2https://docs.amd.com/r/en-US/ug1399-vitis-hls/

Arbitrary-Precision-AP-Data-Types
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integrate into existing simulation frameworks. This can be used
to test the functional performance of the hardware algorithm
in high level programming languages like Python and C much
more easily and rapidly rather than in lower level hardware
description languages.

For CMS trigger applications, it is necessary to emulate the
ASIC and FPGA algorithms in software in order to evaluate
their performance in simulation and compare data with simula-
tion. The firmware simulation generated with hls4ml has been
added to the CMS software framework (CMSSW) [11], [12]
used to collect, produce, and analyze physics data. Being fully
self-contained, the generated C representation is compiled
as a shared library and dynamically loaded, enabling multi-
ple model versions to simultaneously co-exist. This enables
physicists to trust the performance of algorithms developed
for hardware despite being tested on very different hardware
platforms.

B. Quantized NN loss landscapes

Bit accurate representations of these edge ML algorithms is
important because of the custom quantization often deployed
to make highly optimized implementations for efficient hard-
ware. Often training is performed for such algorithms with a
Pareto optimization over the performance and the system con-
straints (resources, latency, area, power, etc.) [13]. However,
the stability of the training is not typically considered, and
the robustness of the model may depend on effects which
characterize the local and global loss landscape structure.
This can lead to unstable and unreliable model training and
a high sensitivity to small perturbations to the input data
distribution. As an illustration of this, in Figure 2, we show
the loss landscapes of 4 ECON-T models trained with different
uniform quantizations [14], [15].

These visualizations help us to understand the local stability
of each trained model under various quantizations. To charac-
terize these features, we explore a few metrics.
• CKA similarity: This metric, based on the centered kernel

alignment (CKA), has shown effectiveness in capturing the
correspondence between representations in various trained
neural networks [16], owing to its invariance properties.
Models converging to the same local minima tend to
demonstrate similar characteristics, offering insights into
the smoothness of the loss landscape and the potential
correlation with model performance and robustness. A low
value of CKA suggests a high difference between models
initialized with different random parameters, implying a
challenging loss landscape.

• Hessian: In machine learning (ML), the Hessian matrix
is a square matrix that characterizes the curvature of the
loss function at a specific point. The eigenvalues of the
Hessian matrix provide scalar values that offer insights into
the curvature type at that point. Positive eigenvalues suggest
local convexity of the function, indicating a single minimum
or maximum.

• Neural Efficiency: This metric, even if not directly related
to the shape of the loss landscape, can give interesting

Fig. 2. ECON-T model loss landscapes illustrating varying behaviors
with different uniform quantizations between 2-bit and 8-bits. A range of
performance can be seen from very jagged landscapes at 2-bit weights to
relatively smooth landscapes at 4- and 6-bit weights to a sharp narrow minima
for 8-bit weights.

insights about the capacity of the model. Indeed, network
efficiency lets us know what is the percentage of node
that are effectively used during the inference of the neural
network, by estimating the minimum number of neurons
required to encode the information exported by the neural
layer, assuming perfect encoding [17].
Figure 3 shows the outcomes of the ECON-T analysis.

Performance heat maps show the performance of the autoen-
coder by the Earth Mover’s Distance metric when 5% noise is
introduced to the model inputs, Figure 3(left), revealing that
the reduced precision of parameters in quantized NNs serves
as regularization, guiding the model towards flat and smooth
minima during training (as observed also in Figure 2). This
is also reflected in the Hessian trace metric, Figure 3(right)
which indicates lower bit widths have a flatter global minima.

C. Fault tolerance to bit flips and sensor noise

The final unique scientific challenge we consider is the
sensitivity of the NN model to common faults: bit flip faults
and sensor noise.

In Section II, we discussed that the ECON-T ASIC will
operate in an extreme radiation environment, 1000× that
experienced in outer space. This leads to a large amount of
single event upsets which cause bits to flip and which affect
the performance of the ASIC. Typical radiation mitigation
in hardware deploys triple modular redundancy (TMR) to
triplicate the weight registers, but this incurs a 200% resource
overhead. In response, we develop FKeras [18] a tool that
performs ultra-fine-grained inspection of the model to study
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Fig. 3. Results achieved by different versions, in terms of hyperparameters, of
the ECON-T model. The left heat map shows the EMD achieved by the model
on noisy data. The right heat map hows the top eigenvalue, in logarithmic
scale.

the bit-level sensitivity of each weight in the NN. This allows
us to prioritize which bits need protection and which may be
safely disregarded, reducing resource overhead.

We use FKeras [18] to perform a design space exploration
on the ECON-T model with respect to model size, perfor-
mance, and fault tolerance. We perform a neural architecture
search of the ECON-T model, using a Bayesian optimization
to find small, medium, and large quantized ECON-T models
that range from less accurate to more accurate. In our FKeras
analysis, we find that all of the weight bits in the small, less
accurate model are sensitive to faults, i.e., flipping any bit in
the weights will cause the model to perform worse. For the
large, more accurate model however, we find that only 6% of
the weight bits are sensitive to faults. This implies that we
need only protect a small fraction of the weights [18]. The
tradeoff here is that we need more resources to implement a
larger model. As a result, we are met with a design tradeoff
that merits careful consideration: would it be more worthwhile
to implement a smaller, less accurate model that requires full
protection or a larger, more accurate model that requires a
small fraction of protection?

Another common fault model for sensing applications is
noise which may come from the sensor itself or conditions
in which it is taking data. Therefore, deploying models
on the edge demands more than just achieving the desired
performance metrics; it necessitates ensuring robustness to
perturbations. Robust models can withstand and adapt to
noisy environments, offering more reliable performance under
varying input data. To meet this challenge, we employ specific
mitigation techniques that leverage insights from the loss
landscape analysis. The investigation into the ECON-T model
highlighted the advantageous effect of converging towards
wide and flat minima. To address this need, we introduced
Jacobian Regularization into the training process, aiming to
push decision boundaries further from individual data points
by minimizing the Frobenius norm of the Jacobian matrix [19].
As showed in Figure 4, this regularization technique offers a
targeted approach to enhancing model robustness, informed by
the shape and characteristics of the loss landscape.

Fig. 4. The plot illustrates the performance of ECON-T models under 5%
noisy data trained with different values of λJR, the hyperparameter used to
tune the weight of the Jacobian regularization component

IV. OUTLOOK

In this paper, we highlight a number of unique challenges
presented by high-throughput, low-latency scientific edge ML
applications to enable reliable and efficient hardware VLSI
implementations. From accurate, large-scale simulation to
characterizing quantization robustness to fault mitigation under
bit flips and noise, we present methods that can be employed
to ensure trustworthy and resilient operation of cutting-edge
science experiments. The methods we discuss in this study cut
across a wide range of applications beyond particle physics.
Future studies will continue to study these methods on other
scientific domains such as those presented in Fig. 1.

The state-of-the-art of edge ML applications in science
have made significant advances in performance and hardware
optimization [1]. We discuss a number of important reliability
challenges, though many remain, and we call attention to
the importance of designing tools, metrics, and techniques
to optimize for robustness as well which will enable (semi-
)autonomous, adaptive, and intelligent experimentation. Fur-
thermore, visualization tools to aid domain scientists will
enhance and transform the way experiments will operate in
the future.

From the studies presented here, several interesting research
lines can be extended. We would like to explore how the
fault tolerance of a neural network interacts with common
neural network compression techniques like pruning and quan-
tization. Perhaps certain pruning techniques lead to more
resilient neural network weights, similar to a finding in which
the chosen pruning technique made a neural network more
resilient to noise in its inputs [20]. It also would be worth-
while to see how loss landscapes reveal information on how
resilient a neural network is to faults. While some correlation
between robustness and loss landscape metrics were found,
the extent of that correlation and possible causality still need
to be understood. Ultimately, the design space optimization
of performance, robustness, and efficiency is still in early
exploration for scientific ML applications.
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