ﬂ Sensors

Article

User Privacy Protection via Windows Registry Hooking and
Runtime Encryption

Edward L. Amoruso 1@, Richard Leinecker 2 and Cliff C. Zou %*

check for
updates

Citation: Amoruso, E.L.; Leinecker, R.;
Zou, C.C. User Privacy Protection via
Windows Registry Hooking and
Runtime Encryption. Sensors 2024, 24,
5106. https://doi.org/10.3390/
524165106

Academic Editor: Valderi R.
Q. Leithardt

Received: 1 July 2024
Revised: 4 August 2024
Accepted: 5 August 2024
Published: 6 August 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA;
edward.amoruso@ucf.edu

Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA;
richard.leinecker@ucf.edu

* Correspondence: changchun.zou@ucf.edu; Tel.: +1-407-823-5015

Abstract: The Windows registry contains a plethora of information in a hierarchical database. It
includes system-wide settings, user preferences, installed programs, and recently accessed files and
maintains timestamps that can be used to construct a detailed timeline of user activities. However,
these data are unencrypted and thus vulnerable to exploitation by malicious actors who gain access
to this repository. To address this security and privacy concern, we propose a novel approach that
efficiently encrypts and decrypts sensitive registry data in real time. Our developed proof-of-concept
program intercepts interactions between the registry’s application programming interfaces (APIs)
and other Windows applications using an advanced hooking technique. This enables the proposed
system to be transparent to users without requiring any changes to the operating system or installed
software. Our approach also implements the data protection API (DPAPI) developed by Microsoft to
securely manage each user’s encryption key. Ultimately, our research provides an enhanced security
and privacy framework for the Windows registry, effectively fortifying the registry against security
and privacy threats while maintaining its accessibility to legitimate users and applications.

Keywords: Windows registry; hooking; privacy protection; runtime encryption

1. Introduction

The Windows registry, hereinafter referred to as the registry, is a fundamental com-
ponent of the Windows operating system (OS) that stores a vast amount of configuration
information and settings for various applications. The registry contains configuration data
that are essential for an enhanced user experience, including profiles for each user, installed
applications, document types, folder and icon settings, hardware configurations, and port
references [1]. As a result, during OS operation, Windows frequently accesses and modifies
these settings to ensure the proper functioning of many applications.

Numerous techniques exist for extracting data from the registry. Two of the most
common tools included with the OS are RegEdit.exe, which offers a graphical user interface
and is often used for browsing and editing registry keys, and Reg.exe, which operates via a
command-line interface and is commonly used for scripting and automating registry tasks.
These tools are frequently employed to diagnose issues and optimize system configuration
settings. In addition to these, there are several internet-based programs freely available
such as RegScanner [2], Registry Explorer [3], and Registry Viewer [4]. Moreover, Windows
PowerShell (a powerful scripting language) can also access and parse registry data. Lastly,
Microsoft offers developers a comprehensive and thoroughly documented application
programming interface (API) for interacting with registry records [5]. Table 1 shows the list
of abbreviations used in this paper.

While the registry offers invaluable functionality, it simultaneously introduces sub-
stantial risks, particularly pertaining to privacy and system security. The data encased
in the registry have the potential to unveil sensitive insights into a user’s activities and

Sensors 2024, 24, 5106. https://doi.org/10.3390/s24165106

https:/ /www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24165106
https://doi.org/10.3390/s24165106
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0004-7403-370X
https://orcid.org/0000-0003-4229-6957
https://doi.org/10.3390/s24165106
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24165106?type=check_update&version=2

Sensors 2024, 24, 5106

2 of 14

professional responsibilities, rendering them susceptible to privacy breaches. Furthermore,
the registry unveils the user’s system security configuration, potentially serving as an
exploitable entry point for more advanced assailants.

Table 1. List of abbreviations.

Abbreviation Full Form

API Application programming interface

DPAPI Data protection application programming interface
oS Operating system

ACL Access-control list

FDE Full-disk encryption

VM Virtual machine

AES Advanced encryption standard

Research has shown that an application developed using native Windows APIs can
construct a user’s digital footprint by collecting registry information [6]. This footprint
includes sensitive data from frequently used documents, files, and applications, such as
Word, Excel, and PowerPoint in Microsoft Office 365. For instance, it may reveal specific
details about confidential files, such as payroll records, prototype design documents, or
sales commissions reports, which are identified by their corresponding names and locations.

The ease with which sensitive data can be accessed from the registry (e.g., using
RegEdit.exe or PowerShell) poses a significant security threat. To address this vulnerability,
we propose a novel approach that involves the real-time encryption and decryption of
registry data. This proactive defense strategy ensures that critical information remains
protected even in the event of unauthorized access to registry data.

A key benefit of our proposed solution is its ability to mitigate privacy risks in real
time. For example, when a user works on a confidential document, the system timestamps
the activity and stores the document’s name in the registry—a potential vulnerability for
the user’s privacy if such data are exposed to other users or attackers. However, with
our runtime encryption-based approach, even if an attacker gains access to the registry,
they will be unable to crack the encrypted data and exploit this information. Our solution
prevents unauthorized parties from gathering insights into a user’s activities, such as the
types of documents, spreadsheets, and presentations they work with.

The key contributions of this paper are as follows:

1. Introducing a new paradigm of OS-based runtime function hooking and encryption
of the registry of user-specific data. As far as we know, this is the first research on
runtime registry encryption.

2. Ensuring through our advanced hooking technique that the proposed registry encryp-
tion approach is transparent to both users and applications with minimal impact on
system performance.

3. Preventing malware and unauthorized actors from reading user’s confidential infor-
mation in the registry.

4. Providing a customized ready-to-use application capable of hooking and encrypting
user-specific registry data.

2. Related Work

Throughout our research, we found no existing studies on the real-time encryption
of user private information stored in the registry. However, several articles discussed
techniques for securing registry information. These included the following:

e Disk encryption technologies: the encryption of entire disk volumes or partitions can
help protect the registry from unauthorized access [7].

e Access-control lists (ACLs): the implementation of ACLs can restrict access to specific
registry keys and values, ensuring that only authorized users or applications can
modify or read-protected data [8].

Sensors 2024, 24, 5106

3o0f14

e Anomaly detection tools: the utilization of detection tools can help identify suspicious
registry modifications, enabling swift response and mitigation efforts [9].

Our research takes a more fine-grained approach to protecting private user data
located in the registry, building on the promise of existing techniques. We explore runtime
software-based encryption and decryption methods that target specific data within the
registry, providing an additional layer of security for sensitive information. In the following,
we will delve deeper into the first two techniques and discuss their limitations. The third
technique, anomaly detection, adopts a reactive stance by continuously monitoring and
blocking suspicious access attempts. While effective in responding to threats, this approach
presents a significant challenge: ensuring comprehensive protection without encrypting
the registry data.

2.1. Disk Encryption

The encryption of data offers strong protection for sensitive and privileged information.
In full-disk encryption (FDE), a private key is used to encrypt the entire volume of a system.
Several solutions offer this capability, including Microsoft’s BitLocker, VeraCrypt, and
Symantec Encryption. All the mentioned solutions provide encryption for the entire disk,
which helps protect registry information from data theft or exposure when a device is lost,
stolen, or inappropriately decommissioned [10]. However, these solutions only protect the
data when the user has turned off the machine. In other words, when the user logs into the
machine, the data are unencrypted and accessible to any user’s running processes.

The registry stores its information in several system-level files on the disk. Imple-
menting disk-level encryption on these files would require a substantial overhaul of the
Microsoft OS, which is not a feasible solution for most customers. Additionally, in a multi-
user environment, where multiple users have their own accounts on the same system,
implementing file-level encryption on the registry files would lead to conflicts and disrupt
normal system operation. For example, consider two users, Alice and Bob, who both want
to encrypt the registry files with their own keys. If Alice encrypts the registry files with her
key, Bob’s access to the registry would be restricted, as he would not have the decryption
key and vice versa. To overcome these issues, both users would need to share the same
encryption key, which would defeat the purpose of encryption to protect users’ privacy.

2.2. Access-Control Lists

Another method of securing registry data is the use of access-control lists (ACLs).
Each registry key has a security descriptor that can be leveraged to configure access control
for subkeys and their values. Common tools like Windows regedit and Group Policy Editor
can be used to add permissions or access to certain registry values.

ACLs are a simpler and more efficient method of managing access control than relying
solely on encryption algorithms [11]. This is because ACLs provide a straightforward way
to control access, whereas encryption algorithms necessitate key management, introducing
complexity and overhead. However, when it comes to the registry, it is essential to consider
the dynamic nature of registry key creation and the associated data generated by specific
applications. In such cases, ACLs can become overly complex and difficult to manage.
Additionally, some applications may not be compatible with the registry access-control
model, which can limit their ability to interact with the registry. Other issues, such as
the risk of misconfiguration, registry bloat (which can degrade system performance), and
integrity, could affect the effectiveness of using ACLs.

In our approach, we provide an alternative by using a technique to selectively encrypt
specific registry keys, eliminating the continuous management and other possible issues
associated with ACLs. With the use of transparent and adaptive encryption, this method
becomes well suited for managing the constantly changing environment of registry keys
and their associated data.

Sensors 2024, 24, 5106

4of 14

3. Threat Model

Our threat model examines the various ways in which an attacker might exploit
access to the registry. While there are many potential threats in this area, our scenario
involves a malicious user gaining unauthorized access to registry information, either by
exploiting elevated privileges as an insider or by obtaining login credentials for another
user account with registry access. With this level of access, the attacker could potentially
extract substantial amounts of sensitive data, compromising the privacy and security of
other users [12,13].

To prevent such unauthorized access, our system employs on-the-fly encryption
and decryption of the registry data using advanced system-level hooking techniques in
conjunction with an OS-managed encoding key. Specifically, each user is assigned a unique
encryption key, allowing only authorized individuals to access their own sensitive registry
information. This effectively blocks a malicious actor who obtains a particular user’s login
credential from accessing other users’ sensitive data.

Furthermore, the encryption key of each user is securely stored and managed by the
operating system’s security subsystem, making it inaccessible to other users or attackers’
applications even with elevated privileges. In essence, the OS seamlessly handles the en-
cryption and decryption process, preventing any user from accessing another user’s registry
data regardless of their access level (e.g., administrator, standard user, or power user).

4. Proposed Approach

To safeguard user privacy, we propose an approach that prevents unauthorized access
to specific registry data. Our method involves hooking into the application responsible
for accessing and storing data in the registry. We then encrypt the registry key data as
they are written to the registry and decrypt them as they are read out. Figure 1 illustrates
our proposed system architecture, highlighting the components involved in protecting
user privacy.

MALWARE
AV 4

O a2l

‘E‘

@D &), 2
E=

[|V

Applications

Figure 1. Overall diagram highlighting our approach. The dotted box denotes our proposed system
responsible for intercepting and encrypting/decrypting communication between a user’s applications
and registry. Malware and other users cannot obtain the user’s registry data since they are encrypted.

This paper focuses on securing personal information stored by Microsoft Office ap-
plications (e.g., Word, Excel, and PowerPoint) in the registry. Our approach can be easily
extended to protect other sensitive information in the registry created by other Windows
software. The pseudo code for our proposed system is presented in Algorithm 1, which is
illustrated in Figure 1.

To achieve registry protection for an application, we deploy Microsoft native APIs to
capture and encrypt/decrypt the relevant registry information while maintaining appli-
cation stability. Our goal is to target key registry values that contain each user’s private
data, encrypting only the selected private registry information. In our prototype, we
incorporated the following design features:

e Developed in C++ using native Windows APIs to enhance performance and support
low-level operations, such as memory pointers. Microsoft recommends languages like
C or C++ for these tasks due to their closer interaction with system-level APIs. Unlike
higher-level languages (e.g., Python, Java, and Perl) which require an interpreter, C++
is compiled directly into machine code, providing additional efficiency.

Sensors 2024, 24, 5106

50f 14

e Highly customizable, allowing for the easy addition of new registry keys that require
encryption and decryption. We create a comparison keyword table that is easily
updated in our code, enabling the addition of more registry keys used by other
programs for security protection.

e Support for both 32-bit and 64-bit applications, providing a comprehensive solution
for various use cases. For example, if using the 32-bit version of Word, a 32-bit version
of our software will be required due to the architecture of memory addressing.

e Transparent monitoring of the target application’s interaction with the registry, per-
forming encryption and decryption when it detects a registry key name requiring
protection. Our executable requires no installation; it only needs to be started with the
target application that requires security protection.

e Use of an industry-proven cryptographic algorithm called the Advanced Encryption
Standard (AES) for encryption and decryption. Considered widely adopted and
approved by the U.S. National Security Agency (NSA) for its reliability and security.

e Key management performed by the Windows OS through its provided data protection
API (DPAPI), delivering an additional layer of protection by hiding the keys from both
applications and users. The DPAPI is transparent to the user, eliminating the danger
of exposing the encryption key to any user or application [14].

Algorithm 1: Pseudo code for the proposed scheme

1. Initialize pointers for registry functions

2. Initialize list of protected registry keys

3. Create pointers of registry functions to our functions
4. Set the parameters

5. while (monitoring not equal to end) do

6. if (read registry key and key in protect list) then
7. decrypt (registry key data)

8. if (hash equals success) then

9. return (unencrypted data)

10. else

11. return (no-data)

12. end

13. end

14. if (write registry key and key in protect list) then
15. encrypt (registry key data)

16. if (hash equals success) then

17. return (encrypted data)

18. else

19. return (no-data)

20. end

21. end

22. end

4.1. Registry Modification

The interaction between applications and the registry is facilitated by APIs provided by
the operating system [15]. However, Microsoft strongly cautions against direct modification
of the registry file by applications, as this approach can compromise system stability. To
ensure safe and reliable access to registry values, applications should instead utilize the
Windows-provided API functions, which offer a controlled and stable interface for reading
and writing registry data.

Our approach uses Microsoft’s Windows APIs (works on both Windows 10 or Win-
dows 11) and the “Detours” software package (version 4.0.1) to intercept and manipulate
registry data [16]. As shown in Figure 2, this technique enables us to modify specific registry
values without affecting the target application’s functionality. This strategy is similar to

Sensors 2024, 24, 5106

6 of 14

a man-in-the-middle attack, in which our program intercepts and alters communication
between the user’s application and the registry. By using this technique, we can ensure
that changes are made to the registry data while maintaining transparency for the original
Windows applications.

AN

Application
Original Encrypted
Data Data

Real-time encryption on selected
Registry key entries

—

Figure 2. Detours function to hook and capture an application’s registry API calls and modify selected

ED

registry key data.

4.2. Securing with Encryption

The robustness of encryption algorithms and key management techniques are essential
factors in protecting sensitive information in our proposed system. Considering the sig-
nificance of these factors, we opted for Microsoft’s data protection API (DPAPI), a built-in
feature in Windows 2000 and later versions [14]. The DPAPI leverages the Advanced
Encryption Standard (AES), specifically the AES-256 key size, and supports the transparent
(no user interface) encryption and decryption of data securely without the need to develop
our own. Unlike other encryption APIs (CryptoAPI or Cryptography API), the DPAPI is
designed to simplify the process of employing cryptographic techniques by removing the
need for users to manage and store encryption keys, as they are stored and managed by the
operating system [17].

The DPAPI offers two types of encryption keys: user specific and system credentials.
Both key types are managed securely by the OS, either tied to a user account or to the system
itself. In our approach, we employ the user-specific method, which ties encryption to a
specific user’s login credentials. This requires the same user to be logged in to successfully
decrypt their own data. If the system credentials were used instead, any process or other
users running on the system could potentially decrypt any user’s data, which could lead to
security issues. Therefore, using the user-specific approach ensures that each user’s data
are protected and can only be accessed by the same user.

4.3. Data Integrity

The DPAPI handles data integrity through a hashing mechanism, ensuring that the
data remain intact and unaltered during storage and retrieval. Throughout the encryption
and decryption process, the DPAPI performs integrity checks using cryptographic hashes.
If the hash values do not match, the DPAPI can determine that the data have been altered
or corrupted and will not return the decrypted data. In our developed program, we utilize
the error codes produced by DPAPI functions to identify unauthorized access and potential
tampering. In such cases, our application will not return any data.

5. Security Analysis

The data protection API (DPAPI) provides robust security against attacks that aim
to reverse engineer or intercept encrypted data. Its high level of security is demonstrated

Sensors 2024, 24, 5106

7 of 14

by its use in Microsoft Edge, in which it securely encrypts sensitive information such as
passwords and credit card numbers when they are saved [18]. Even if an attacker gains
local administrator rights and accesses the encrypted data on the local machine while the
user is not logged in, the DPAPI is designed to prevent decryption.

One of the key advantages that led us to adopt the DPAPI is its effective management
of encryption keys. However, it also has a significant limitation: any application running
on the same device and under the same user account as the protected data can potentially
access that data if the application is aware of the existence of the protection system. To
address this vulnerability, the DPAPI offers an entropy feature that adds an extra layer of
complexity by incorporating a randomly generated key phrase into the application’s code.
This makes it significantly more difficult for an attacker to access the encrypted data, as
they would need to conduct a thorough analysis of the application’s code to extract the
key phrase.

6. Implementation

As proof of concept that supports the intent of this paper, we created a program named
“RunRegProtect.exe”. This application uses a special technique known as hooking in which
the registry API calls are intercepted. Then, each read from and write to the registry is
monitored, and the data are potentially altered.

This section contains an explanation of the program and its inner workings. It was
written in C++ since this language has been integral in Windows development for many
years. C++ is also on a lower level than other languages such as C# and a bit easier for
programs of this type.

The entire project can be opened, edited, and recompiled using Visual Studio. While
Version 2022 was utilized, later versions of Visual Studio should also be compatible.
The project is open-source and can be found on GitHub at the link https:/ /github.com/
eamoruso/UserPrivacyProtect (accessed on 4 August 2024).

6.1. Making Registry Calls

The Windows API functions for registry access are rich in functionality. The functions
in Table 2 are a small subset, but they represent the functions that, when hooked, meet
our needs. To create a registry entry and write data to the registry in the newly created
entry, a sequence of calls to RegCreateKeyExW, RegSetValueExW, and RegCloseKey can be
employed as shown in Figure 3.

Table 2. Registry API functions hooked by our developed program RunRegProtect.exe.

Registry Function Description

RegOpenKeyExW Opens the specified registry key.

RegCreateKeyExW Creates the specified registry key.

RegSetValueExW Sets the data and type of a specified value under a registry key.

RegQueryValueExW Retrieves the type and data for the specified value name associated with an open registry key.
Enumerates the values for the specified open registry key. The function copies one indexed value

RegEnumValueExW name and data block for the key each time it is called.

RegEnumKeyExW Enumerates the st%bkeys. of the specified open registry key. The function retrieves information about
one subkey each time it is called.

RegCloseKey Closes a handle to the specified registry key.

https://github.com/eamoruso/UserPrivacyProtect
https://github.com/eamoruso/UserPrivacyProtect

Sensors 2024, 24, 5106

8 of 14

Registry Entry ‘

Creation Process

Create Registry
K RegCreateKeyExW
ey
Write data to the
newly created RegSetValueExW
registry key
Close the { RegCIoseKey
registry key

Figure 3. Creating and saving data to a new registry key.

If a registry key already exists, then a call to the API function RegOpenKeyExW
followed by calls to RegSetValueExW and RegCloseKey can be made. This process is
shown in Figure 4b.

Registry Entry
Edit Process

Open Registry
Key
Write data to the
newly created
' registry key
Close the Close the
registry key RegCloseKey RegCIoseKey registry key

(a) (b)

Figure 4. (a) Reading data from a registry key entry. (b) Creating and saving data to an existing

Registry Entry
Read Process

Open Registry { RegOpenKeyExW RegOpenKeyExW
Key

Read data from
existing registry RegGetValueW RegSetValueExW

key

registry key.

When examining our code for all calls to RegCreateKeyExW and RegOpenKeyExW, it
becomes apparent that the read and write permissions are specified as parameters. These
parameters are represented as KEY_READ | KEY_WRITE. Once the registry key is created or
opened, it allows both writing data to the key and reading data from it. The RegGetValueW
function is used to retrieve the data stored in the key. This process is demonstrated in
Figure 4a.

6.2. Hooking the Registry

Windows offers many features to application developers. Including the underlying
systems that support file input/output, graphics, and networking. These are all provided
to application developers through API calls.

The Windows architects realized early on that, in special cases, user applications
needed to intercept API calls, perform tasks, or manipulate data and then let the Windows
API calls perform their tasks normally. When a user application performs this for an API
call, it is called hooking. Most developers never use this technique, and most developers
are not aware of its existence.

Windows hooking is an advanced technique. For this reason, the demonstration
program uses a library named Detours, which is provided by Microsoft and can be used

Sensors 2024, 24, 5106

9 of 14

free of charge for non-commercial use [19]. It allows a programmer to monitor and intercept
Windows API calls, providing a safe way to implement hooks. This software package can
be found at https://github.com/microsoft/Detours (accessed on 4 August 2024) or NuGet
within Visual Studio can be used to import it.

The process of hooking the registry essentially inserts code between the caller (which,
in this paper, is Microsoft Word, Excel, and PowerPoint) and the base API code. The steps
to complete this for each hooked API function are as follows:

1. Create a function with an identical structure and parameters as the base API function.
For example, “my_function(par_1, par_2)” is identical to original function called
“real_function(par_1, par_2)” we are going to hook.

2. Get the address of the base API in a variable so that our code can call the base APL

3. Inthe new function call, use the base API after the additional processing is completed
with the saved base API address.

4. Call DetourAttach function to insert the new function in the chain. The operating
system will now call our function instead of the base API function. When our function
has completed its processing, it will in turn call the base API function.

By using the hooked code, our developed software decides whether to encrypt or
decrypt data based on a registry key’s name (e.g., Item 1, Item 2, Item 3, .. .) that is passed
by the application (e.g., Word, Excel, PowerPoint) to the registry. To demonstrate the
functionalities in our developed program, a total of seven registry functions are hooked to
cover the above three Microsoft Office applications, and these essential functions are listed
in Table 2.

6.3. Registry Encryption

To effectively secure sensitive information, it is important to have a robust encryption
method that can be reliably reversed and decrypted. For demonstrating a protocol, a widely
used encryption standard known as the data protection API (DPAPI) was employed in
this program. The DPAPI offers convenient services for encrypting and decrypting data
without the need to manage cryptographic keys manually. For example, either plaintext
data are passed to the DPAPI and an obscure protected data BLOB is received back, or the
protected data BLOB is passed to the DPAPI and the plaintext data are received back. The
encryption and decryption process can be seen in Figure 5.

Encryption Decryption

Application

Plain Encrypted Encrypted | | Plain
Text Text Text Text
- |

Application

BLOB

DPAPI

CryptoAPI
Crypt32.dll

DPAPI

CryptoAPI|
Crypt32.dll

Local RPC Calls Local RPC Calls

DPAPI DPAPI

Operating System Protects Key

Local Security
Authority (LSA)

Local Security
Authority (LSA)

Figure 5. DPAPI encryption and decryption process where user’s encryption key is managed by the
Operating System’s Local Security Authority (LSA) through local remote procedure calls (RPCs).

https://github.com/microsoft/Detours

Sensors 2024, 24, 5106

10 of 14

In our developed program, we created a pair of functions named “CryptProtectData”
and “CryptUnprotectData”. Together, these functions perform the encryption and decryp-
tion tasks. A reader can easily modify this section of source code to use other cryptographic
algorithms such as Data Encryption Standard (DES). The Windows operating system
includes most standard encryption methods.

Our program includes a built-in comparison function named “wcsncpm” that holds
the registry key names containing the data we will encrypt and decrypt. In our custom
application, we compare the key name with “Item”, which is used by Word to store
document names created by the user. Any key names other than these will be ignored,
leaving the data unencrypted. Readers can easily add new key names to this function to
extend the encryption protection to other targeted Windows applications.

7. Evaluation

In our evaluation, we illustrate the success and performance efficiency of our custom-
developed application, RunRegProtect.exe, in encrypting sensitive user data stored within
the registry. It would be best if we could compare the performance with that of existing
systems; however, there are no published works or products on real-time encryption of
the registry. Therefore, in this section for the performance evaluation, we only show the
performance overhead of our proposed approach compared with the performance of the
original OS without installing our real-time registry encryption system.

For the proof of concept, we demonstrate the encryption of data generated by Mi-
crosoft Office applications, particularly Word, into the user’s designated registry keys.
Our developed program supports Office 2019 through the latest Office 365 version 2401.
These keys comprise filenames assigned by the user when saving their documents in
Word, spreadsheets in Excel, and presentations in PowerPoint. Using Word as an example,
Figure 6 depicts all files created by the current user in the registry (using the automated
script shown in Algorithm 2), displayed as plain text.

B Registry Editor =] X
File Edit View Favorites Help
Computer\HKEY_CURRENT_USER\Software\Microsoft\Office\16.0\Word\User MRU\ADAL_2A4EAEF1BC1DE3435A5418B8FE42664688C6B6927EBBB61E65393209E1F3CC3S
> 0 WEF ke
b Word 3lue not set)
;:::ToRunLlcensmg \Users\ema-admin\Desktop\
\Users\ema-admin\Documents\
> DocumentTemplateCache .
File MRU 30000000][TO1DAE7F7CADF9620]{000000000]*C:\Users\ ema-admin\ Documents\file_08 0.docx
Options 0000000][TO1DAE7F76CB28380){ 000000000]* C:\Users\ema-admin\Documents\file_08-06-2024_07-54-42.docx
Place MRU 0000000][TO1DAE7F760EF8820][O00000000]*C:\Users\ema-admin\Documents\file_08-06-2024_07-54-22.docx
> Reading Locations 0000000)[TO1DAE7F74E4A4700][O00000000)*C:\Users\ema-admin\Documents\file_08-06-2024_07-53-51.docx
> Recent Templates 20000000][TO1DAE7F718436170][C00000000]* C:\Users\ema-admin\Documents\file_08-06-2024_07-52-25.docx
Resiliency 0000000][TO1DAE7F70AC2AEQ0)[O00000000]*C:\Users\ema-admin\Documents\file_08-06-2024_07-51-58.docx
> Security 20000000][TO1DAE7F6FBF63A40][O00000000]*C:\Users\ema-admin\Documents\file_08-06-2024_07-51-33.docx
v User MRU 0000000][TO1DAE7F6D 1E4E120][C00000000]*C:\Users\ema-admin\Documents\file_08-06-2024_07-50-22.docx
v ADAL_2A4EAEF1BCIDE34:)0000000)[TO1DAE7FEC4A2A79A0)(O00000000)*C:\Users\ema-admin\Documents\file_08-06-2024_07-49-59.docx
0000000][TO1DAE7F6B63CC1E0]{O00000000]* C:\Users\ema-admin\Documents\file_08-06-2024_07-49-36.docx
Place MRU 0000000][TO1DAE7FEASDIADE0][O00000000)*C:\Users\ema-admin\Documents\file_08-06-2024_07-49-13.docx
> ADAL_DD92AF0683897A75 0000000][TO1DAE7F7CAS10150){000000000]*C:\Users\ema-admin\Documents\Template.docm
Wizards 0000000][TO1DAE7F69834C9B0])[000000000]*C:\Users\ema-admin\Documents\file_08-06-2024_07-48-51.docx
» . ClickToRun 0000000]{ TO1DAE7F681C0D3CO)(000000000)*C:\Users\ema-admin\Documents\file_08-06-2024_07-48-08.docx
> &8 Common)0000000][TO1DAE7F66B5F9C 10)[000000000]"C:\Users\ema-admin\Documents\file_08-06-2024_07-47-30.docx
> 23 DmsClient 0000000)(TO1DAE7F6243DIE40][000000000]*C:\Users\ema-admin\Documents\file_08-06-2024_07-45-31.docx
i f)x:ttllok 20000000][TO1DAE7F7BF212610][O00000000]*C:\Users\ema-admin\Documents\file_08-06-2024_07-57-00.docx
K . 0000000][TO1DAE7F7B362B5A0][000000000]*C:\Users\ema-admin\Documents\file_08-06-2024_07-56-41.docx
) & PowerPoint NN TN NAETETATRTATSONONNNNNNNT*C A\ Ieare\ ema-admin\ Nacnimenta\file N2-0A-2024 017-56-21 dnrv

Figure 6. Registry entry listing all Word files the user created on the system. The highlighted entry
specifies the location and name of the user’s file.

Sensors 2024, 24, 5106 110f 14

Table 3. Hardware specifications for evaluation system.

Type Description
System Hardware Dell PowerEdge R440
Intel Xeon Silver 2.1 GHz Processor
Operating System Windows 11 Enterprise
Version 23H2 (OS build 22631.3296)
Microsoft Office Suite Office 365 MSO 64-bit for Enterprise

Version: 2401 Build 16.0.1731.20290

To produce our results, we utilized a virtual machine (VM) hosted on a Microsoft
Hyper-V server running Windows 11 and Microsoft Office 365. Our remote access to
the environment was achieved using remote desktop. Additionally, it is important to
note that the development and testing of our application were carried out on a Parallels
VM operating Windows 11 and Office 2019 Professional Plus. Although we used a later
version of Office for development, both versions shared the same registry storage structure,
resulting in our custom-developed application performing identically across environments.
The specifications of the evaluation system’s hardware and software are outlined in Table 3.

7.1. Experiments

To assess the effectiveness and reliability of our application in the context of Word, we
conducted a series of experiments utilizing Macro Record [20], a tool capable of recording
user mouse and keyboard interactions and providing playback functionality to replicate
these actions up to a specified extent. Furthermore, we crafted a Word macro file, illustrated
in Algorithm 2, to help automate our simulation. The macro was developed in Visual
Basic for Applications (VBA), which facilitates the automation of repetitive tasks and data
processing functions. Specifically, we leveraged these capabilities to generate a file stamped
with the current date and time, subsequently saving it in the user’s temp directory. This
macro file (e.g., template.docm) is executed several times by Macro Record to continuously
create new files, testing our application’s performance and accuracy during both encrypted
and non-encrypted processes.

Algorithm 2: MS Word Macro template used to automate experiment

1 Sub AutoOpen()

2 Dim strFileName As String

3 Dim rngHeader As Range

4 # Create a header that says “RegRunProtect”

5 Set rngHeader = ActiveDocument.Sections(1).

6 Headers(wdHeaderFooterPrimary).RangerngHeader.Text = “RegRuProtect”
7 # Specify the file name with today’s date and current time

8 strFileName = “C:\temp \file_” & Format(Now, “mm-dd-yyyy_HH-MM-SS") & “.docx”
9 # Save and close the document with the specified file name

10 ActiveDocument.SaveAs?2 FileName:=strFileName

11 ActiveDocument.Close

12 End Sub

Lastly, we recorded the encryption and decryption processing times for each simulated
iteration and saved the results to a comma-separated value (CSV) file. The results of this
file were then used to demonstrate the efficiency of our application in the next section.

7.2. Results

Our experimental results demonstrate the successful encryption of registry entries
containing users’ private information, specifically the location and name of the document.
In Figure 6, we present an example of normal registry entries created by Word to store

Sensors 2024, 24, 5106

12 of 14

filenames that the user has generated. After running Word with RunRegProtect.exe, our
application encrypted those filenames, as depicted in Figure 7.

B Registry Editor — (] X
File Edit View Favorites Help
Computer\HKEY_CURRENT_USER\Software\Microsoft\Office\16.0\Word\User MRU\ADAL_2A4EAEF1BC1DE3435A5418B3FE42664688C686927EBBBE1ES!
> WEF Name Type Data
v Word ab) (Default) REG_SZ (value not set)

ClickToRunLicensing ab|FOLDERID... REG_SZ C:\Users\ema-admin\Desktop\

Dat.
ot ab/FOLDERID... REG_SZ C:\Users\ema-admin\Documents\
> DocumentTemplateCache

ablltem 1 REGSZ O

g;:‘::? abljtem 10 REGSZ O

Place MRU atitem 11 REGSZ O

> 7 Reading Locations 2b)ltem 12 REGSZ D
Recent Templates ablitem 13 REG_SZ

Resiliency abljtem 14 REGSZ O

> Security ablitem 15 REGSZ O

v User MRU ablltem 16 REGSZ O

v ADAL_2A4EAEFIBCIDE3435/ ablltem 17 REGSZ O
ablitem 18 REG.SZ 0.

Place MRU ab)jtem 19 REGSZ D
> ADAL_DD92AF0683897A751F ab]ltem 2 REGSZ O..

Wizards abl|tem 20 REGSZ O

ClickToRun ab|tem 21 REGSZ O

Common ab|tem 22 REGSZ O

5 DmsClient ab)jtem 23 REGSZ D

> ZX:: . ab]jtem 3 REGSZ O

> ool ab|tem 4 REGSZ O
> PowerPoint

ablltam S RFG Q7

Figure 7. Registry entries of Word documents successfully encrypted by RunRegProtect.exe. The
highlighted items are encrypted. In this example, User-A is trying to access User-B’s (encrypted)
registry information using regedit.exe. By design, regedit will display the encrypted data as a box
with trailing periods.

7.3. Performance

During our performance assessment, we found that our application did not signifi-
cantly degrade or slow down the user experience. To collect our results, we recorded the
human operations involved in our simulation by capturing mouse and keyboard events
utilizing Macro Record [20]. This operation entailed creating, modifying, saving a Word
document with a designated filename and subsequently closing the file. Our experimental
script replayed the recorded operation 45 times to obtain the average time required for
this operation under both scenarios: word document operations without protection and
with protection enabled. This enabled us to compare the application’s timing performance
under both conditions.

To facilitate data analysis, we transferred the collected information to a spreadsheet
and constructed the graph depicted in Figure 8. Our analysis revealed that the average
time required for the process without protection was 15.218 s. Enabling the RunReg-
Protect.exe feature added a mere 0.051 s to the overall processing time, resulting in an
average of 15.269 s. In other words, our proposed security mechanism only adds about
0.34% overhead in terms of runtime. The standard deviation for the process without pro-
tection was 0.2699 s compared to 0.3405 s with protection enabled. Overall, our results
suggest that the application’s performance is not significantly impacted by enabling the
RunRegProtect.exe feature.

Sensors 2024, 24, 5106

13 of 14

References

1.

@

Performance Comparison using our Protection

No Protection | Standard Deviation = 0.2699 15.218
With Protection Standard Deviation = 0.3405 15.269
15.0 15.3 15.5
With Protection No Protection
M Seconds 15.269 15.218

Figure 8. Performance comparison between using our protection and no protection.

8. Conclusions

This research presents a new paradigm of security approach to safeguarding sensitive
information within the registry. By combining software-based encryption with advanced
hooking techniques, our proof-of-concept application successfully protects user privacy
and security without requiring modifications to the operating system or installed software.
The integration of the Microsoft data protection API (DPAPI) further enhances the security
of our solution, making it exceedingly difficult for malicious actors or applications to
obtain a user’s encryption key and then access the protected registry information. Through
several simulations, we demonstrated the flawless and accurate encryption and decryption
capabilities for a specific user’s private registry information. Notably, our application’s
performance overhead was minimal, with a mere 0.34% impact on system performance
when hooking and encrypting registry data. This research contributes significantly to the
development of more secure and private computing environments, ultimately empowering
individuals and organizations to protect their sensitive data with confidence.

Author Contributions: Methodology, E.L.A. and C.C.Z; Software, R.L.; Validation, E.L.A.; Writing—
original draft, E.L.A.; Supervision, C.C.Z.; Project administration, C.C.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was sponsored by the U.S. National Science Foundation (NSF) under Grant
DGE-2325452.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Windows Registry Information for Advanced Users. Available online: https://learn.microsoft.com/en-us/troubleshoot/
windows-server/performance/windows-registry-advanced-users (accessed on 11 February 2024).

RegScanner. Available online: https:/ /www.nirsoft.net/utils /regscanner.html (accessed on 18 February 2024).

Registry Explorer. Available online: https:/ /ericzimmerman.github.io/#!index.md (accessed on 18 February 2024).

Registry Viewer. Available online: https://www.exterro.com/ftk-product-downloads/registry-viewer-2-0-0 (accessed on 18

February 2024).

Registry Functions. Available online: https://learn.microsoft.com/en-us/windows/win32/sysinfo/registry-functions (accessed

on 28 February 2024).

https://learn.microsoft.com/en-us/troubleshoot/windows-server/performance/windows-registry-advanced-users
https://learn.microsoft.com/en-us/troubleshoot/windows-server/performance/windows-registry-advanced-users
https://www.nirsoft.net/utils/regscanner.html
https://ericzimmerman.github.io/#!index.md
https://www.exterro.com/ftk-product-downloads/registry-viewer-2-0-0
https://learn.microsoft.com/en-us/windows/win32/sysinfo/registry-functions

Sensors 2024, 24, 5106 14 of 14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

Amoruso, E.L.; Zou, C.C.; Leinecker, R. User Profiling Attack Using Windows Registry Data. In Proceedings of the 2023 IEEE
14th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 12-14
October 2023; pp. 171-181. [CrossRef]

Halsey, M.; Bettany, A. Securing the Registry. In Windows Registry Troubleshooting; Apress: Berkeley, CA, USA, 2015. [CrossRef]
Paine, L. The Defender’s Guide to the Windows Registry. SpecterOps. 12 December 2023. Available online: https:/ /specterops.
io/blog/2022/10/31/the-defenders-guide-to-the-windows-registry/ (accessed on 4 August 2024).

The Role of Windows Registry in Cybersecurity. Available online: https://medium.com/@sakthisrini23/the-role-of-windows-
registry-in-cybersecurity-21d18eca848c (accessed on 28 February 2024).

Tan, C.; Zhang, L.; Bao, L. A Deep Exploration of BitLocker Encryption and Security Analysis. In Proceedings of the 2020 IEEE
20th International Conference on Communication Technology (ICCT), Nanning, China, 28-31 October 2020; pp. 1070-1074.
[CrossRef]

Syed, N.E,; Shah, S.W.; Shaghaghi, A.; Anwar, A.; Baig, Z.; Doss, R. Zero Trust Architecture (ZTA): A Comprehensive Survey.
IEEE Access 2022, 10, 57143-57179. [CrossRef]

Faheem, M.; Raza, B.; Bhutta, M.S.; Madni, S.H.H. A Blockchain-based Resilient and Secure Framework for Events Monitoring
and Control in Distributed Renewable Energy Systems. In IET Blockchain; IET: Hoboken, NJ, USA, 2024. [CrossRef]

Faheem, M.; Kuusniemi, H.; Eltahawy, B.; Bhutta, M.S; Raza, B. A Lightweight Smart Contracts Framework for Blockchain-based
Secure Communication in Smart Grid Applications. IET Gener. Transm. Distrib. 2024, 18, 625-638. [CrossRef]

Lin, C. Cuteprogramming. October 2022. Available online: https://cuteprogramming.blog/2022/10/ (accessed on 14 March
2024).

Kwon, H.-Y. Constructing a Lightweight Key-Value Store Based on the Windows Native Features. Appl. Sci. 2019, 9, 3801.
[CrossRef]

Brubacher, D. Detours: Binary interception of Win32 functions. In Proceedings of the Windows NT 3rd Symposium, Seattle, WA,
USA, 12-15 July 1999.

Windows Data Protection. Available online: https://learn.microsoft.com/en-us/previous-versions/ms995355(v=msdn.10)?
redirectedfrom=MSDN (accessed on 15 March 2024).

Microsoft Edge Password Manager Security. Available online: https://learn.microsoft.com/en-us/deployedge/microsoft-edge-
security-password-manager-security (accessed on 12 March 2024).

Detours. Available online: https://www.microsoft.com/en-us/research/project/detours/ (accessed on 20 March 2024).
Record Mouse and Keyboard Actions for Infinite Replay. Available online: https:/ /www.macrorecorder.com/ (accessed on 14
March 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/UEMCON59035.2023.10315968
https://doi.org/10.1007/978-1-4842-0992-9_5
https://specterops.io/blog/2022/10/31/the-defenders-guide-to-the-windows-registry/
https://specterops.io/blog/2022/10/31/the-defenders-guide-to-the-windows-registry/
https://medium.com/@sakthisrini23/the-role-of-windows-registry-in-cybersecurity-21d18eca848c
https://medium.com/@sakthisrini23/the-role-of-windows-registry-in-cybersecurity-21d18eca848c
https://doi.org/10.1109/ICCT50939.2020.9295908
https://doi.org/10.1109/ACCESS.2022.3174679
https://doi.org/10.1049/blc2.12081
https://doi.org/10.1049/gtd2.13103
https://cuteprogramming.blog/2022/10/
https://doi.org/10.3390/app9183801
https://learn.microsoft.com/en-us/previous-versions/ms995355(v=msdn.10)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/ms995355(v=msdn.10)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/deployedge/microsoft-edge-security-password-manager-security
https://learn.microsoft.com/en-us/deployedge/microsoft-edge-security-password-manager-security
https://www.microsoft.com/en-us/research/project/detours/
https://www.macrorecorder.com/

	Introduction
	Related Work
	Disk Encryption
	Access-Control Lists

	Threat Model
	Proposed Approach
	Registry Modification
	Securing with Encryption
	Data Integrity

	Security Analysis
	Implementation
	Making Registry Calls
	Hooking the Registry
	Registry Encryption

	Evaluation
	Experiments
	Results
	Performance

	Conclusions
	References

