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Abstract. Imaging data-based prognostic models focus on using an asset’s degradation
images to predict its time to failure (TTF). Most image-based prognostic models have two
common limitations. First, they require degradation images to be complete (i.e., images are
observed continuously and regularly over time). Second, they usually employ an unsuper-
vised dimension reduction method to extract low-dimensional features and then use the fea-

tures for TTF prediction. Because unsupervised dimension reduction is conducted on the

https://doi.org/10.1287/ijds.2022.x022
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degradation images without the involvement of TTFs, there is no guarantee that the extracted
features are effective for failure time prediction. To address these challenges, this article devel-
ops a supervised tensor dimension reduction-based prognostic model. The model first pro-

poses a supervised dimension reduction method for tensor data. It uses historical TTFs to
guide the detection of a tensor subspace to extract low-dimensional features from high-
dimensional incomplete degradation imaging data. Next, the extracted features are used to
construct a prognostic model based on (log)-location-scale regression. An optimization algo-
rithm for parameter estimation is proposed, and analytical solutions are discussed. Simulated
data and a real-world data set are used to validate the performance of the proposed model.
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1. Introduction

Degradation is an irreversible process of damage accu-
mulation that results in the failure of engineering sys-
tems/assets/components (Bogdanoff and Kozin 1985).
Although it is usually challenging to observe a physical
degradation process, there often are some manifesta-
tions associated with degradation processes that can be
monitored by sensing technology, which yields data
known as degradation data/signals. Degradation data
contains the health condition of engineering assets; thus,
if modeled properly, they can be used to predict the
assets’ time to failure (TTF) via a process known as prog-
nostic. Many prognostic models have been developed in
the literature, most of which focus on using time series-
based degradation data (Gebraeel et al. 2005; Hong and
Meeker 2010, 2013; Liu et al. 2013; Ye et al. 2014; Ye and
Chen 2014, Shu et al. 2015; Wang et al. 2022). Recently,
prognostic models with imaging-based degradation
data have been investigated and have attracted more
and more attention. This is because, compared with
time-series data, imaging data usually contain much
richer information of the object being monitored, and
imaging-sensing technologies are noncontact, and thus
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they can usually be easily deployed. One example of
imaging-based degradation data is the infrared image
stream that measures the change of temperature distri-
bution of a thrust bearing during its degradation pro-
cess over time (Aydemir and Paynabar 2019, Fang et al.
2019, Dong et al. 2021, Wang et al. 2021, Jiang et al.
2022a). Another example is the images used to measure
the performance degradation of infrared systems such
as rotary-wing drones (Dong et al. 2021).

The existing imaging-based prognostic methods in-
clude deep-learning-based models and statistical learning
methods. Examples of the deep-learning-based models
designed for TTF prediction using imaging data include
the ones developed by Aydemir and Paynabar (2019),
Dong et al. (2021), Yang et al. (2021), Jiang et al. (2022a),
Jiang et al. (2022b), and Jiang et al. (2023). Although these
models have worked relatively well, they usually provide
point estimations of failure times, and it is challenging for
them to quantify the uncertainty of predicted TTFs (e.g.,
providing a failure time distribution). This limits their ap-
plicability because the subsequent decision-making analy-
sis such as maintenance/inventory/logistic optimization
requires prognostic models to provide a distribution of
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the predicted TTF. Also, deep-learning-based prognostic
models often require a relatively large number of histori-
cal samples for model training, which cannot be satisfied
by many real-world applications with limited historical
data. One example of statistical learning methods for
image-based prognostic is the penalized (log)-location-
scale (LLS) tensor regression proposed by Fang et al.
(2019). The model first employs multilinear principal
component analysis (MPCA) (Lu et al. 2008) to reduce
the dimension of high-dimensional imaging-based deg-
radation data, which yields a low-dimensional feature
tensor for each asset. Next, it constructs a prognostic
model by regressing an asset’'s TTF against its low-
dimensional feature tensor using LLS regression. In the
same article, Fang et al. (2019) also proposed several
benchmarking prognostic models that used imaging-
based degradation data for TTF prediction. These mod-
els also first employed a dimension reduction method,
such as functional principal component analysis (FPCA)
(Ramsay and Silverman 2005), principal component
analysis (PCA) (Abdi and Williams 2010), or B-Spline
(Prautzsch et al. 2002), to reduce the dimension of degra-
dation data and then used low-dimensional features to
build an LLS regression model for prognostic. Although
the aforementioned statistical learning-based prognostic
models can provide a distribution for the predicted TTF
and their effectiveness has been well investigated, they
share two common limitations.

The first limitation is that they assume that imaging-
based degradation data (including historical data for
model training and real-time data for model test) are
complete, which means that images from all the assets
should be collected continuously and regularly with the
same sampling time interval (see Figure 1(a) for an
example). In reality, however, engineering assets often
operate in harsh environments that significantly impact

the quality of collected data because of errors in data
acquisition, communication, read/write operations, etc.
As a result, degradation images often contain signifi-
cant levels of missing observations, which is known as
incomplete /missing imaging data (see Figure 1(b) for an
example). Such data incompleteness poses a significant
challenge for the parameter estimation of existing statis-
tical learning-based prognostic models.

The second common limitation for the existing statisti-
cal learning-based prognostic models for applications
with imaging data is that they employ unsupervised
dimension reduction methods for feature extraction, so
there is no guarantee that the extracted features are effec-
tive for the subsequent TTF prediction. Specifically, they
first use unsupervised dimension reduction methods
such as FPCA, PCA, and B Spline to extract features,
which are then used to construct prognostic models.
Because feature extraction and prognostic model con-
struction are two sequential steps, and no TTF informa-
tion gets involved in the feature extraction process, it is
possible that the extracted features may not be the most
suitable for predicting TTFs.

To address the aforementioned challenges, this article
proposes a supervised dimension reduction-based prog-
nostic model that uses an asset’s incomplete degradation
images to predict its TTF. Similar to the existing statistical
learning-based prognostic models, the proposed model
also consists of two steps: feature extraction and prognos-
tic model construction. However, unlike the existing
models, feature extraction in this article is achieved by
developing a new supervised tensor dimension reduction
method, which uses historical TTFs to supervise the fea-
ture extraction process such that the extracted features are
more effective for the subsequent TTF prediction. In addi-
tion, unlike the existing unsupervised dimension reduc-
tion methods that only work for complete imaging data,

Figure 1. (Color online) Degradation Stream Images With and Without Missing Data
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the proposed supervised dimension reduction method
works for both complete and incomplete degradation
image streams.

The proposed supervised dimension reduction method
works as follows. First, it detects a low-dimensional ten-
sor subspace in which the high-dimensional degradation
image streams are embedded. This is achieved by con-
structing an optimization criterion that comprises a fea-
ture extraction term and a regression term. The first
term extracts low-dimensional features from complete/
incomplete degradation image streams of training assets,
and the second term builds the connection between these
assets” TTFs and the extracted features using LLS regres-
sion. LLS regression has been widely used in reliability
engineering and survival analysis. It includes a variety
of TTF distributions, such as (log)normal, (log)logistic,
smallest extreme value, and Weibull, etc., which cover
most of the TTF distributions in reality (Doray 1994).
Because historical TTFs are used to supervise the feature
extraction process, it is expected that the extracted fea-
tures are more effective for the subsequent prognostic.
Solving the optimization criterion of the proposed super-
vised tensor dimension reduction method yields a set of
tensor basis matrices that span the low-dimensional ten-
sor subspace for dimension reduction. We then expand
both the historical degradation images in the training
data set and real-time degradation images from an asset
operating in the field (i.e., test data) using the set of tensor
basis matrices to extract the low-dimensional tensor fea-
tures of the training assets and the test asset. The TTFs of
the training assets are then regressed against their tensor
features using LLS regression, and the parameters are
estimated using maximum likelihood estimation. After
that, the tensor features of the test asset are fed into
the LLS regression model, and its TTF distribution is
predicted.

To solve the optimization criterion of the proposed
supervised dimension reduction method, we will first
transfer the criterion into a block multiconvex problem.
Next, we will propose a block updating algorithm,
which cyclically optimizes one-block parameters while
keeping other blocks fixed until convergence. In addi-
tion, we will demonstrate that when TTFs follow normal
or lognormal distributions, each subproblem of the block
updating algorithm has a closed-form solution, no mat-
ter whether the degradation image streams are complete
or incomplete.

The rest of this paper is organized as follows. Section 2
presents the supervised tensor dimension reduction-
based prognostic method. Section 3 introduces the block
updating algorithm and closed-form solutions when
TTFs follow normal/lognormal distributions. Sections 5
and 6 validate the effectiveness of the proposed prognos-
tic model using a simulated data set and data from a
rotating machinery, respectively. Section 7 concludes the

paper.

2. The Methodology

In this section, we will introduce the proposed super-
vised tensor dimension reduction-based prognostic
model for applications with incomplete imaging data.
In Section 2.1, we will present some basic tensor nota-
tions and definitions. Section 2.2 introduces the super-
vised tensor dimension reduction method. In Section
2.3, we will discuss the construction of a prognostic
model and how to predict the TTF of an asset operating
in the field using its real-time degradation imaging
data.

2.1. Preliminaries

In this section, we introduce some basic notations and
definitions of tensor operations that are used throughout
the article. The order of a tensor is the number of dimen-
sions, also known as ways or modes. Vectors (1-order
tensors) are denoted by lowercase boldface letters; for
example, s. Matrices (2-order tensors) are denoted by
boldface uppercase letters, for example, S. Higher-order
tensors (order is 3 or larger) are denoted by calligraphic
letters, for example, S. Indices are denoted by lowercase
letters whose range is from 1 to the uppercase letter of the
index, for example, n=1,2,...,N. An Nth-order tensor
is denoted as S € R'"2**IN where I, represents the nth
mode of S. The (i1,1, ..., in)th entry of S € RIxEX-XIN g
denoted by s;, j,,.._,i,. A fiber of S is a vector defined by
fixing every index but one. A matrix column is a mode-1
fiber, and a matrix row is a mode-2 fiber. The vectorization
of S, denoted by vec(S), stacks all the entries of S into a
column vector. The mode-n matricization of a tensor S €
RIExI is denoted by S, which arranges the mode-n
fibers to be the columns of the resulting matrix. The nth
mode product of a tensor S € RV and a matrix
U, € R denoted by Sx,U,, is a tensor whose entry
is (S Xy U")fll---,l'nfl/]’n,inﬂ,- i = foj:lsil,, vy The Kro-
necker product of two matrices A € R and B € RP is
an mp X ng block matrix:

LlnB LllnB
A®B= :
anB ... a,,B

If A and B have the same number of columns # =g, then
the Khatri-Rao product is defined as the mp xn column-
wise Kronecker product: AOB=[a1®b; a,®b; - a,
® b,]. If a and b are vectors, then A® B=A © B. More
details about tensor notations and operators can be
found in Kolda and Bader (2009).

2.2. The Supervised Tensor Dimension

Reduction Method
We assume that there exists a historical data set for model
training. The data set consists of the degradation image
streams of M failed assets along with their TTFs, which
are denoted as X, € R"2*5 and y,, € R, respectively,
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where m=1,2,...,M. For the convenience of introduc-
ing the dimension reduction method, we convert the 3D
degradation image streams from all the M assets to a 4D
tensor X € RIXXXM yhere the sample size M is the
fourth mode. Similarly, we let y = (y1,...,ypm)" € RM*!
be the vector containing all of the TTFs of the M assets.

Out of the I} X I, X I3 X M entries of X, we use a sub-
set Q C{(i1,ip,i3,m),1<i1 <,1<i <D, 1<i3<I3,1<
m < M} to denote the indices of the missing ones. To
model the missing data, we define a projection operator
Pal-) as

X inyinymy, i (i1,12,13,m) € Q,
PQ(X)(ﬁ,iz,ig,m) — { (i1,1p,13,m)

0, if (il,iz,i3,m)€Q,

@™
where X, i, i, m) 18 the (i1, 13, i3,m)-th entry of the 4D ten-
sor X € RIXxM g recover the missing entries in tensor
X, we may employ the following Tucker decomposition-
based tensor completion method (Liu et al. 2012, Xu et al.
2013, Filipovi¢ and Juki¢ 2015):

i Pa(X = Sx UD U U @)
where || ||% is the Frobenius norm, U; € R"™I, U, e
RP*L Uy e RP*B are  three factor matrices, Se€
RPXPXPXM g the Jow-dimensional core tensor, and X,
is the n-mode product of a tensor with a matrix. The ten-
sor completion criterion (2) can be seen as an unsupervised
dimension reduction method for tensor data with missing
entries. This is because the degradation image tensor A €
RIXEXEXM i 4 4-order tensor, which resides in the tensor
(multilinear) space R' @ R2 @ RE @ RM, where R, R?,
R, RM are the 4 vector (linear) spaces; S € RF1*F2xFaxM
can be seen as a feature tensor that resides in the tensor
space R @R @R @ RM. Usually, we have Py < I,
P, < I, and P3 < I3 for degradation imaging data be-
cause of the high spatio-temporal correlation among pix-
els. This implies that the dimension of the image stream
from the mth asset is reduced from RI2X5 o RP1XP2xPs.
wherem =1,...,M.

Although criterion (2) can be seen as a dimension reduc-
tion method, there is no guarantee that the extracted
low-dimensional feature tensor S is effective for the sub-
sequent TTF prediction. To address this challenge, we
propose the following supervised dimension reduction
method by combining a tensor completion term and an
LLSregression term,

min A||Pa(X — S xqUT x, UT x5 UT)|>
ul/UZIUSIU/BUﬁo/S ” Q( ! ! z 2 3 3)||F

(ISR

o

RMXl

where y € is the vector containing all the TTFs of

the M assets in the training data set. The matrix Sy €

RMX(P1xP2xPs) ig the mode-4 matricization of the low-

dimensional feature tensor S, the mth row of which repre-
sents the vectorization of the mth asset’s feature tensor,
m=1,...,M. By is the intercept, and B; € RPxPxPs)x1 4o
the regression coefficient vector. 1,, € RM*! is an M x 1
vector whose entries are all ones. £(-) is the negative
log-likelihood function of a location-scale distribution.
For example, if TTFs follow normal distributions, then

((1oSeBs) = M log o7 + Mlog +3ThL, wZ, where

m’

W :w, s(y 18 the mth row of Sy, and y,, is

the TTF of asset m; if TTFs follow logistic distributions,
then K(WA) =Mlogo — L) wn + 25 log(1+

m=1

exp(wy)), and if TTFs follow small extreme value (SEV)
distributions, then ¢ (%A) =nlogo — M w,, +

M exp(wy,). For assets whose TTFs follow log-location-
scale distributions, we may transfer them to the corre-
sponding location-scale distributions by taking their
logarithm such that criterion (3) can still be used. For
example, log-normal, log-logistics, and Weibull distribu-
tions can be transferred to normal, logistics, and SEV dis-
tributions, respectively. a € [0, 1] is a weight, and || - ||% is
the Frobenius norm.

In criterion (3), the first term ||[Pq(X — S x U] xa U,
x3 UJ)|[2 is tensor completion from (2), which reduces
the dimension of high-dimensional incomplete degrada-
tion image streams and extracts low-dimensional tensor

y—1mpy—SwB
f( M(ér (4) 1)

features. The second term is LLS regres-

sion, which regresses each asset’s TTF against its tensor
features extracted by the first term. By jointly optimizing
the two terms, it is expected that the extracted features
are effective for TTF prediction. However, it is challeng-
ing to solve criterion (3) because it is neither convex nor
block multiconvex. An optimization problem is block
multiconvex when its feasible set and objective function
are generally nonconvex but convex in each block of
variables (Xu and Yin 2013). Thus, to simplify the devel-
opment of optimization algorithms for model parameter
estimation, we first transform criterion (3) to a block mul-
ticonvex one. Specifically, we apply the following repar-
ameterization: § = 1/0,, = B,/0, B, = B, /0. Asaresult,
criterion (3) can be re-expressed as

min _ alPa(X - S x U] % U3 x; U3)|I?
ullUZ/u3/ﬁ/Bllﬁl)/S(4)

+(1-a)t(6y — lMﬁNO - 5(4)l§1 ),
@)
UGy —1mPy — S By) =Y log2m — Mlogd +1
M @2 for TTFs following normal distributions, and

where

Om=0Ym — Bo — sz’j})ﬁl, where s’(’fl) is the mth row of S
and v,, is the TTF of asset m; {(Gy — 1mB, — SwBy) =
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—Mlogad — Z]r\,f:lcbm + 22%:1 log(1 + exp(@m)) for TTFs
following logistics distributions, and £(5y — 1mp, — S
B))=-—nlogs — XM &, + XM exp(@,) for TTFs fol-
lowing SEV distributions.

The optimization algorithm to solve criterion (4), the
value of the weight a, and the dimension of the low-
dimensional tensor subspace {P1, P, P3} will be discussed
in Sections 3 and 4. Solving the optimization criterion (4)
using historical training data yields a set of basis matrices
U, e RPN, T, € R, (13 e RP*5, which contains P,
basis vectors of the 1-mode linear space R, P, basis vec-
tors of the 2-mode linear space R, and P; basis vectors
of the 3-mode linear space R, respectively. The three lin-
ear subspaces form the low-dimensional tensor subspace
R ®@ R"™ ® R™ detected by the proposed supervised di-
mension reduction method.

One of the assumptions of the proposed supervised
tensor dimension reduction method in criterion (4) is that
the TTF of the asset follows a distribution from the LLS
family. This is reasonable because the LLS family includes
a variety of TTF distributions, such as (log)normal, (log)-
logistic, smallest extreme value, and Weibull, etc., which
cover most of the TTF distributions in engineering appli-
cations (Doray 1994). Another assumption is that there is
a linear relationship between the location parameter and
predictors (i.e., degradation signals or their features in
this article). Specifically, the location parameters in crite-
rion (3) are expressed as 1y, + S(4) 81, which are linear
weighted combinations of the rows of S4). This assump-
tion is widely used in LLS regression (Doray 1994, Fang
et al. 2019). However, if a simple linear weighted combi-
nation is not adequate to characterize the association
between the location parameter and degradation signal
features, a high-order polynomial relationship can be con-
structed (Hastie et al. 2009). By doing so, we can model
amore complex association between the location parame-
ter and features. More importantly, the incorporation of
high-order polynomial terms into the proposed super-
vised tensor dimension reduction method does not affect
the effectiveness of the optimization algorithms for para-
meter estimation to be discussed in Sections 3 and 4.

2.3. Prognostic Model Construction and
Real-Time TTF Prediction

In this subsection, we discuss how to build a prognostic

model based on the supervised dimension reduction

method proposed in Section 2.2 and how to predict the

TTF distribution of an asset operating in the field using

its real-time degradation image data.

Similar to Section 2.2, we denote the training data
set as {X,, € RI2xPu ¢ }fn/j:l, where M is the number of
failed assets in the training data set. Notice that D,, might
not be the same as D, for two assets m and m’, m =
1,....M,m' =1,...,M,m # m’. This is because different
asset’s failure times (i.e., TTFs) are different, and usually,

no image data can be collected beyond an asset’s failure
time because the asset is stopped for maintenance or
replaced once it is failed. In addition to the training data,
we denote the degradation image stream of a test asset
by time t as X; € R">2¥" The objectives of this subsec-
tion include 1) constructing a prognostic model and esti-
mating its parameters using {X,,, v}, in the training
data set and 2) using the estimated prognostic model to
predict the TTF (denoted as #/,) of the test asset based on
its degradation image stream ;.

We first use the proposed supervised dimension re-
duction method to extract low-dimensional features of
both the training and test assets. Specifically, as dis-
cussed in Section 2.2, we first construct a 4D tensor X €
RIEXIM yiging the degradation image streams of the
training assets, where I3 = max({Dm}f,f:l). Note that X is
an incomplete tensor no matter whether the image
streams from the training assets are complete or incom-
plete. This is because the TTFs of training assets are differ-
ent, and thus not all the training assets have I; images. To
detect the low-dimensional tensor subspace in which
the high-dimensional degradation images are embedded,
we solve optimization criterion (4) by using training
data {X,y}, where y=(y1,...,ym)". This yields basis
matrices U, € RPN U, € RP*E (15 € RP*5, whichform
the low-dimensional tensor subspace R”' ® R @ R™. To
extract the low-dimensional features of the training and
test assets, we expand the image streams in the low-
dimensional tensor subspace R” ® R"™2 ® R™> using the
basis matrices U4, U, U . This is achieved by solving the
following optimization criteria,

Sy = arg min [[Po(X,, — S X1 U] xo Ug X3 U2 (5)
SWI

St = arg min||[Po(X; — S; < U % U3 xs U3 (6)
S

where {8}, are the low-dimensional feature tensors
of the M assets in the training data set, and S, is the low-
dimensional feature tensor of the test asset.

Next, we construct a prognostic model using the low-
dimensional feature tensors of the M assets in the training
datasset (i.e., {5} ,) along with their TTFs {y,,}"_, . Spe-
cifically, we build the following LLS regression model,

Ym =Yo+ vec(:Sm)T Y1 + o€, (7)

where vec(S,,) is the vectorization of S,,. Yo €Rand y; €
RPOP2XP)XL are the regression coefficients, o is the scale
parameter, and €, is the random noise term with a stan-
dard location-scale probability density function f(¢). For
example, f(e) =1/ V2 exp(—€?/2) for anormal distribu-
tion and f(€) = exp(e — exp(€)) for an SEV distribution.
The parameters in criterion (7) can be estimated by
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solving the following optimization problem,

min ¢ (y - 1M7/0 - §(4)71> , (8)

YrVorY1,0 o

where £() is the negative log-likelihood function of a
location-scale distribution, y = (1,42, - ., Y) ' and S =
(vec(S1) ", vec(S,)" ..., vec(Sp)")", and £(-) is the nega-
tive log-likelihood function. We conduct the following
reparameterization to transform the optimization to be a
convexone:G =1/0,7,=y,/0,%1 = v1/0:
{6, v1,0} =arg ymglna Gy —1mpy — S(4)5’1)- )
orY1r
Solving (9) provides the estimated parameters {yo, Y1,
&}, which can be transformed back to the estimation of
the parameters in the LLS regression model: 7, =7,/
=9,/6 and 6 =1/5. As a result, the fitted LLS
regress1on modelis{,, ~ LLS(y, + vec(S,)" ¥1,6), where
Vot vec(S m) 41 and G are, respectively, the estimated
location and scale parameters.
Finally, we feed the extracted low-dimensional feature
tensor of the test asset into the estimated LLS regression
model to predict the asset’s TTF distribution: i, ~ LLS(y,

+vec($‘t)Ti(1,6).

3. The Optimization Algorithm

In this section, we discuss how to solve the supervised
tensor dimension reduction method proposed in Section
2.2. In Section 3.1, we develop a block updating algo-
rithm to solve criterion (4). The algorithm splits the
unknown parameters in criterion (4) into several blocks,
and it cyclically optimizes one block parameter while
keeping other blocks fixed until convergence. The sub-
optimization problem for each block is convex, so the
convergence of the block updating algorithm is guaran-
teed. In Section 3.2, we discuss the initialization of the
proposed algorithm and hyperparameter tuning.

3.1. The Block Updating Algorithm
The block updating algorithm first splits the unknown
parameters in criterion (4) into five blocks, that is, Uj,
u,, Uz, S and {EO, ﬁl, G}. It then cyclically optimizes
one block of parameters each time while keeping other
blocks fixed.

Specifically, at the kth iteration, U; is updated by solv-
ing the following optimization problem while keeping

otherblocks (i.e., U5 !, U5, 5]‘_1,3571, [3’1(_1, S fixed:

Ut =arg min of[Po(X — S sqUT s U xa U5 1|2

u,
~ ~k—1 ~k 1
+(1—a)lE*! [30 1‘4)1
. _ 1T 1T
=arg min ||PQ(X—Sk 1><1LI1T><2U’§ U ul )|
u,

(10)

Similarly, the remaining blocks are updated as follows:

Ut =arg mliln A[Po(X — 851 s Uk o U x5 US|
2

(- By LBy S
=arg mLiIn [Pa(x — 81 x4 UIIT Xo U3 X3 U}§71T)||12:
2 (11)
U’g =arg mllln af|[Pa(x — 81 ><1UkT X Uka3U )||F
g
+(1—a)e@ BBy sk!
=arg lel? [Pa(X — 81 x; UIIT X2 U’ET x3 U3 )|
(12)
P

=arg min  afPa(X — STl U X US|
/ﬁo/ 1

+(1—a)(5, 50/31/5(4)
=arg min {5, ﬁO,Bl, 4)) (13)

51011

S =argmin of[Po(X —Sx Uk x US" x; U512
S

+(1— )t By, BL,Sw) (14)

We summarize the block updating algorithm in Algo-
rithm 1 below. The convergence criterion can be set as

\I,(Uk ul;/ u1§,~k E’é/ﬁ’;[sk)_\y(ukﬂ uk+1 Uk+1 5kl

ﬁgﬂ B!, $1) < ¢, where W is the value of the objec-

tive functlon in criterion (4), and € is a small number. It is
easy to show that subproblems (10), (11), and (12) are
convex. For normal, logistic, and SEV distributions, their
negative log-likelihood functions £(-) are also convex, so
objective functions (13) and (14) are convex as well. As a
result, the block updating algorithm converges to a sta-
tionary point of criterion (4).

Algorithm 1 (Block Updating Algorithm for Solving Criterion
()

1. Input: Tensor X" constructed from the (incomplete)
degradation image streams of M assets and the TTF
vector y; the dimension of the low-dimensional ten-
sor subspace {P1, P,, P3}

2. Initialization: Initialize (U, U9, U9,5

randomly or heuristically
. While convergence criterion not met, do
. Uk «—(10)
Ul « (11)
Uk — (12)

. (6" By BY) — (13)

~0 ~0
Orﬁor Bl/SO)

NOo U W
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8. SF— (14)
9. k=k+1 End While
10. Output: Basis matrices of the low-dimensional
tensor subspace {ut, us, u’g}

3.2. Initialization and Hyperparameter Tuning
To run Algorithm 1, we need to initialize the parameters

U?, LI(Z), Ug, 60,[58, B?,SO. The initialization can be accom-
plished randomly or heuristically. In this article, we pro-
pose a heuristic initialization method. Specifically, if
tensor X’ has no missing entries, MPCA (Lu et al. 2008) is
applied to tensor X', which yields {UY, U3, U3}. Next, we
compute S° by solving 8 = arg ming||Pa(X — 8 x; U
X2 UgT X3 UgT)lll%. Finally, Eg, ﬁ?,&o are computed by
solving minﬁg/ﬁ?/ﬁo 06"y — lMﬁg - 5(84)[32), where 5?4) is
the mode-4 matricization of S°. If tensor X has missing
values, a tensor completion method (Liu et al. 2012, Xu
et al. 2013, Filipovi¢ and Juki¢ 2015) can be conducted
before applying MPCA.

In addition to the initialization, the hyperparameter
parameters, including the weight a and the dimension
of tensor subspace (P1,P,,P3), also need to be prede-
termined. It is known that @ controls the weights of the
feature extraction term and the regression term, and
a € [0,1]. To select an appropriate weight parameter, we
will first split the range [0, 1] into L + 1 intervals equally,
which yields a9 =0/L, a1 =1/L,ap =2/L,...,ar =L/L.
Next, we employ cross-validation to select the weight
that achieves the highest prediction accuracy. If the
weight at the boundary is selected (ie., ap=0/L or
ap =L/L), we further split the interval closest to the
boundary and conduct cross-validation again. For exam-
ple, if ap = 0/L is chosen as the best weight, we will split
[0/L,1/L] into (L + 1) intervals equally and reconduct
the cross-validation. This process is repeated until a non-
boundary weight is selected. Of course, a maximum
number of repetitions needs to be set to control the com-
putational time.

The values of {P;,P;,P3} can be determined using
cross-validation as well. To be specific, we may try a cer-
tain number of candidate values for {P1, P», P3} and run
Algorithm 1 to extract low-dimensional features, which
are then used to build the prognostic model discussed in
Section 2.3 for TTF prediction. The values that achieve
the smallest prediction error will be chosen. It is known
that there usually exist high spatio-temporal correlations
among degradation image streams (Fang et al. 2019), so
the dimension of the tensor subspace is usually low,
which helps reduce the computation intensity of model
selection. The values of {P1,P,,P3} can also be deter-
mined heuristically. For example, if MPCA is employed
for parameter initialization, then the fraction of variance
explained (Lu et al. 2008) can be used to determine the
dimension of tensor subspace.

4. Analytical Solutions

In this section, we discuss the closed-form solutions of
optimization problems (10), (11), (12), (13), and (14) in
Algorithm 1. Specifically, we will discuss the solutions
when degradation image streams are complete and
incomplete in Sections 4.1 and 4.2, respectively. For sim-
plicity, we will remove the superscripts kand k—1.

4.1. Analytical Solutions for Complete Data

4.1.1. Solution Procedure for U;. When degradation
image streams are complete (i.e., the 4D image tensor X’
in criterion (4) has no missing entries), we have the fol-
lowing proposition, which provides the analytical solu-
tion to problem (10).

Proposition 1. If the 4D tensor X' has no missing values,
optimization problem (10) has the following analytical solu-
tion,

U =(Xa)-Sha) - Sy Sha) )’

where Xy is the mode-1 matricization of X, Sy, = Sx, U;
X3 U], Sy, is the mode-1 matricization of Sy,, and the
operator “-” represents multiplication.

4.1.2. Solution Procedure for U,. When degradation
image streams are complete, the proposition below gives
the analytical solution to problem (11).

Proposition 2. If the 4D tensor X has no missing values,
optimization problem (11) has the following analytical solu-
tion,

u, = (X(2) : Szzz(z) : (5U2(2) ’ 5[&(2))71)1

where X ) is the mode-2 matricization of X, Sy, = S X U{
X3 U3, and Sy, ) is the mode-2 matricization of Sy, .

4.1.3. Solution Procedure for Us;. When degradation
image streams are complete, the proposition below pro-
vides the analytical solution to problem (12).

Proposition 3. If the 4D tensor X has no missing values,
optimization problem (12) has the following analytical solu-
tion,

Us = (X Sirys) (St Slis) )

where X 3) is the mode-3 matricization of X, Sy, = S X U]
Xo Uy, and Sy, ) is the mode-3 matricization of Sy, .

4.1.4. Solution Procedure for Bg,f,&. For general
LLS distributions, there is no closed-form solution for
By B1,G5. As a result, we may use existing algorithms
(Doray 1994) or convex optimization packages to solve
problem (13). However, if the TTF follows a normal (or
lognormal) distribution, we may replace the negative
log-likelihood term in criterion (3) with a mean squared
error-based loss function, which results in the following
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Figure 2. (Color online) Simulated Degradation Images Based on Heat Transfer Process
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Note. (a) Without noise; (b) with noise.

then optimization problem (10) has the following analytical
solution,

-1
Ui = (X3 St (St St ) )

where X7y is a matrix conszstmg of the m columns of
X1y, Su, =8%2 u; x;Uu;, Su, 1y is the mode-1 matriciza-
tion of Su,, and S{j, ;) denotes a matrix constituting the 1t col-
umns of Sy, (1).-

4.2.2. Solution Procedure for U,. Similar to U, there is
no closed-form solution for U, in optimization criterion
(11) when tensor A" has a general entry-wise missing
structure. However, Lemma 1 implies that we may also
decompose optimization problem (11) into multiple sub-
criteria, each of which has a closed-form solution. Speci-
fically, denote the i;th column of matrix U, € RP2¥E g
uéz eRP 214, =1,...,I,,and we can replace optimization
problem (11) with I, subproblems by separately optimiz-
ing ub,u3,...,uZ. Proposition 7 shows that there is an
analytical solution for u5.

Proposition 7. When optimizing the i»th column of U, in
problem (11), we have the following analytical solution,

)’

denotes the i>th row of X ), 1;, is a set consisting of

ui = (6" Sy (S St

in
where x5

. , . i i, Ty . .y
the indices of available entries of x'(zz), Xy ° isavector consisting
of the available entries in the ith column of X, Su, =
S XU X3 U3, Sy, o) is the mode-2 matricization of Sy,, and
SZ’:Q) denotes a matrix comprising the 1t;, columns of Sy, (2).

Similar to U,, when tensor X has the image-wise miss-
ing structure, we do not have to optimize each of the col-
umns of U, separately. Proposition 8 below gives an
analytical solution to U, when tensor X' has missing
images.

Proposition 8. If the indices of tensor X’s missing entries
can be denoted as QC{(:,:,i3,m),1<i3<I3,1<m<
M}, where “:” denotes all the indices in a dimension, then
X’s mode-2 matricization X5y has missing columns. Let 1t
be the set consisting of the indices of available columns in
X(2), and then optimization problem (11) has the following
analytical solution,

Uz = (X% St

where X5, is a matrix consisting of the m columns of
X@), Suy(2) is the mode-2 matricization of Su,, and Sfj, )
denotes a matrix constituting the 1 columns of Syp, ().

-1
(St St ) )

4.2.3. Solution Procedure for Us. There is no closed-
form solution for U3 in optimization criterion (12) when
tensor X has missing entries. Based on Lemma 1, we
decompose optimization problem (12) into multiple sub-
criteria, each of which has a closed-form solution. Denote
the isth column of matrix Uz € R™*" as u? e R 4y =
1,...,13, and we replace optimization problem (12) with
I3 subproblems by separately optimizing u}, 13, ..., u%
respectively. Proposition 9 suggests that there is an ana-
lytical solution when optimizing 7 .

Proposition 9. When optimizing the isth column of U3 in
problem (12), we have the following analytical solution,

i l3 T, e T Ty 771
= (0" Sy Sty Sty )
where xg) denotes the isth row of X 3), n,3 is a set consisting of

the indices of available entries of x(3), x(3) " s a vector consist-

ing of the available entries in the isth row of X3), Su, =
S X1 LI1 Xo Uy, Syys) is the mode-3 matricization of Sy,
and S denotes a matrix comprising the 1;, columns of

Sus3)-

Us(3)

4.2.4. Solution Procedure for 8,84, 3. Whether ten-
sor A contains missing entries does not affect the methods
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for ‘B 07 ffl, and & estimation. Therefore, the estimation
methods discussed in Section 4.1.4 can still be used.

4.2.5. Solution Procedure for S. For general LLS
distributions, there is no closed-form solution for S.
Therefore, we may use existing convex optimization
packages to solve problem (14). However, if the TTF
follows a normal (or lognormal) distribution, problem
(14) is equivalent to (16) (see Section 4.1.5 for details).
Based on Lemma 1, we may optimize each row of S
separately. We denote the mth row of matrix Sy €
RMX(P1xPaxPs) g s} € RXP1xP2xPs) oy — 1 M and re-
place optimization problem (16) with M subproblems,
that is, separately optimizing sy, s3,), .- -, (). Proposi-
tion 10 suggests that there is an analytical solution
when optimizing sfy).

Proposition 10. When optimizing the mth row of matrix
S in problem (16), we have the following analytical solu-
tion,

Sﬁ) =la- x%"” -(Us U, ® Ul)an

+(1=a): (yw —Bo) B ]
[0( . (U3 QU ® Ul)”"‘ . (U3 QU, ® Ul)”"’T

- aTo g
+(1—a)-B,- B, ],

where xy, represents the mth row of X(4), 7,, denotes the set

consisting of the indices of available entries in x(3, x(;"™" is a

vector consisting of the available entries in the mth row of X 4),

and (U3 ® U, ® U1)™ denotes a matrix comprising the T,

columns of matrix Uz @ U, ® U;.

The proof of all Propositions 5, 6,7, 8,9, and 10 can be
found in the Appendix.

5. Numerical Studies

In this section, we validate the effectiveness of our pro-
posed supervised tensor dimension reduction-based
prognostic model using simulated data.

5.1. Data Generation

We generate degradation image streams for 500 assets.
The image stream from asset 1, which is denoted by
X(x,y,t), m=1,2,...,500, is generated from the fol-
lowing heat transfer equation,

X u(x,y,t) azxm+a2;rm
ot M\ e )

(17)

where (x,1),0 < x,y < 0.2 represents the location of each
image pixel. a,, is the thermal diffusivity coefficient,
which is randomly generated from a uniform distribu-
tion (0.5 x 107,1 x 10™*). tis the time index. The initial
and boundary conditions are set such that X[, =0
and X |x=0 = X |x=02 = X |y=0 = X |y=02 = 30. Ateach

time f, the image is recorded at locations x =L,y =
& jk=1,...,n, resulting in an nXn matrix. Here, we
set n=21 and t=1,2,...,150, which yields 150 images
of size 21 x 21 for each asset. This implies that the degra-
dation image stream of each asset can be represented
by a 21x21x150 tensor. In addition, an independent
and identically distributed random noise € ~ N(0,0.1) is
added to each pixel. Figure 2 demonstrates an example
of some images with and without noise from one of the
assets simulated in this study.

To determine the TTF of an asset, we first transform
the asset’s 21 x 21 x 150 tensor to a 1 x 150 time series by
taking the average pixel intensity of each image. The
time series signal indicates how the average heat of the
asset involves over time. Next, we let the TTF of the asset
be the time point where the amplitude of the time series
signal crosses a predefined soft failure threshold, which
is set as 23 in this study. Because the images of different
assets are generated with different thermal diffusivity
coefficients, the time points where their time series sig-
nals go beyond the threshold may be different. Thus, the
TTF of different assets may also be different. To mimic
reality, we truncate the image stream of each asset by
keeping only the images observed before its TTF. In
other words, any images observed after an asset’s TTF
are removed from the image tensor of the asset. Such a
truncation is normal in reality because an asset usually
gets maintained or replaced once its degradation signal
crosses the soft failure threshold. Consequently, the third
dimension of the tensor of different assets might be dif-
ferent. In addition, to reduce the computation load, we
keep one of every 10 images in the truncated image
stream of each asset.

5.2. The Benchmark and
Performance Comparison

We randomly split the generated data into a training
data set consisting of 400 assets and a test data set con-
sisting of the remaining 100 assets. To test the robust-
ness of the proposed method, we consider four levels of
data incompleteness: (1) 0% missing, (2) 10% missing,
(3) 50% missing, and (4) 90% missing. For the first sce-
nario, (1) 0% missing, we use all of the generated data
for model training and testing. Please notice that even
though all of the available images are used, the image
tensor X is still incomplete because of failure time trun-
cation; that is, different assets may have different TTFs
and thus different numbers of images (see the discus-
sion in the second paragraph of Section 2.3). For the re-
maining scenarios, we randomly remove some images
from each asset’s image stream. For example, with
10% missing, we randomly remove 10% of the images
(rounding to the nearest integer) from the image stream
of each asset.

We compare the performance of our proposed method
with an unsupervised tensor dimension reduction-based
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Figure 3. (Color online) Prediction Errors When Data are
Complete in Numerical Study

0.3
0.25
4
0.2
4
0.15 . :
!
. +
0.1+t I —1— 4
| I
| |
0.05 | L : ]
1 1 — -

MPCA (97%) MPCA_CV Proposed_CV

benchmark. Considering that image streams are incom-
plete, the baseline model first applies a tensor completion
method known as TMac, developed by Xu et al. (2013)
to impute the missing values of the image tensor. Next,
an unsupervised tensor dimension reduction method,
MPCA (Lu et al. 2008), is employed to reduce the dimen-
sion of the imputed image tensor to reduce dimen-
sion and extract low-dimension features, which are then
used to build an LLS-based prognostic model, as we dis-
cussed in Section 2.3. MPCA is a widely used dimension
reduction method for tensor data. It projects a high-
dimensional tensor into a subspace but maximizes the
total tensor scatter, which is assumed to measure the var-
iations in the original tensor objects. Lu et al. (2008) pro-
posed a fraction-of-variation-explained (FVE) method to
determine the dimension of the low-dimension tensor
subspace/features, which represents the percentage of
variation of the original high-dimensional tensor pre-
served by the low-dimensional tensor features. Because
the optimal FVE suggested by Lu et al. (2008) was 97%,
we will first set FVE as 97% in this study, and the cor-
responding baseline model is designated as “MPCA
(97%).” In addition to the FVE method, we also use
cross-validation (CV) to select an appropriate dimension
for the tensor subspace. Specifically, we use the training
data to conduct a 10-fold CV for various combinations of
(Pl,Pz,Pg), where P1 = 1, .. .,4, Pz = 1, .. .,4, and P3 = ].,
..., 4. The baseline model is referred to as “MPCA_CV”.
We also use 10-fold CV to determine the value of the
weight parameter o and the appropriate dimension of
the tensor subspace of our proposed method.

We use the heuristic method discussed in Section 3.1 to
initialize the block updating algorithm. In this study, we
use lognormal regression to build the prognostic model.
The proposed method is denoted as “Proposed_CV”.
The prediction errors of our proposed method and two

Figure 4. (Color online) Prediction Errors When 10% Data
are Missing in Numerical Study
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benchmarks are calculated by using the equation below
and reported in Figures 3-6.

| Estimated TTF — True TTF]|
True TTF

Prediction Error =
(18)

5.3. Results and Analysis

Figure 3 reports the prediction errors of the two bench-
marks and our proposed method when data are com-
plete, which means no image is removed on purpose.
Figure 4 shows the prediction errors when 10% entries in
the third mode (time) of degradation image streams are
missing, whereas Figures 5 and 6 demonstrate the errors
when 50% and 90% images are missing, respectively.

Figure 5. (Color online) Prediction Errors When 50% Data
are Missing in Numerical Study
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Figure 6. (Color online) Prediction Errors When 90% Data
are Missing in Numerical Study
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Figures 36 illustrate that our proposed method out-
performs the benchmarks under all data missing rates.
For example, when the degradation image signals are
complete, the median absolute prediction errors (and the
interquartile ranges, i.e., IQRs) of the proposed method
and the two benchmarks are 0.003 (0.003), 0.027 (0.035),
and 0.025 (0.033), respectively; when 10% images are
missing, the median absolute prediction errors (and IQRs)
of the three methods are, respectively, 0.019 (0.017), 0.058
(0.067), and 0.053 (0.063); when 50% of images are miss-
ing, they are 0.052 (0.084), 0.302 (0.405), and 0.104 (0.168).
We believe this is because our proposed method applies
historical TTFs to supervise the low-dimensional tensor
dimension reduction, and thus the extracted features are
more effective for failure time prediction. Unlike our
method, the two baseline models use MPCA, an unsuper-
vised tensor dimension reduction method, for feature
extraction. Because the extracted features are determined
only by the image streams, and no TTF gets involved,
they are not as effective as the features extracted by our
proposed method, and thus their failure time prediction
accuracy and precision are compromised.

Figures 3-6 also suggest that the performances of all
the three models deteriorate, and the superiority of our
proposed method over the two benchmarks decreases,
with the increase of data missing rate. For example,
when data are complete, the median absolute prediction
errors (and IQRs) of “Proposed_CV” and “MPCA_CV”
are 0.003 (0.003) and 0.025 (0.033), respectively; when the
missing rate increases to 90%, they are, respectively, 0.13
(0.21) and 0.16 (0.19), which are almost comparable. This
is reasonable because the performances of all the models
are compromised more when more data are missing.
In addition, no model will perform well if a high percent-
age (say more than 90%) of data are missing because it

implies that very limited useful degradation information
is available for modeling.

Figures 3-6 also demonstrate that “MPCA_CV” always
outperforms “MPCA (97%)”, and the superiority of
“MPCA_CV” is augmented with the increase of data
missing rate. For instance, when 10% images are miss-
ing, the median absolute prediction errors (and IQR)
of “MPCA (97%)” and “MPCA_CV” are 0.058 (0.067)
and 0.053 (0.063), respectively; when the missing rate is
50%, they are 0.302 (0.405) and 0.104 (0.168). One of the
possible reasons is that “MPCA (97%)” determines
the dimension of the tensor subspace by setting the
“FVE” as 97%, which usually results in relatively high-
dimensional features, although the dimension is smaller
than that of the original image tensor. Relatively high-
dimensional features imply an insufficient dimension
reduction. In addition, it means the number of para-
meters in the subsequent LLS-based prognostic model
is relatively large, which poses estimation challenges
given that the number of samples (assets) for model
training is limited.

6. Case Study

In this section, we use degradation image streams ob-
tained from a rotating machinery test bed to validate the
effectiveness of our proposed method. The test bed is
designed to perform accelerated degradation tests on
rolling entry thrust bearings. Specifically, bearings were
run from brand new to failure. An FLIR T300 infrared
camera was used to monitor the degradation process
and collect degradation images over time. In the mean-
time, an accelerometer was mounted on the test bed to
monitor the vibration of the bearing, and the failure time
was defined as the time point where the amplitude of
defective vibration frequencies crossed a threshold based
on ISO standards for machine vibration. The data set con-
sists of 284 degradation image streams and their corre-
sponding TTFs, and each image has 40 x 20 pixels. As an
illustration, a sequence of images obtained at different
(ordered) time periods of one of the bearings is shown in
Figure 7. More details about the experimental setup and
the data set can be found in Gebraeel et al. (2009) and
Fangetal. (2019).

We use fivefold cross-validation to evaluate the per-
formance of our proposed model and the two bench-
marks discussed in Section 5. Similar to the simulation
study, we conduct 10-fold cross-validation to deter-
mine the optimal weight parameter in criterion (4) and
the most appropriate dimension of the tensor subspace.
In addition, we also consider four levels of data incom-
pleteness: (1) 0% missing (i.e., complete), (2) 10% miss-
ing, (3) 50% missing, and (4) 90% missing. Figure 8
illustrates the absolute prediction errors when degrada-
tion image streams are complete. Figure 9 shows pre-
diction errors when 10% of the images of each bearing
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Figure 7. (Color online) An Illustration of One Infrared Degradation Image Stream

t=6 t=7

are missing. Figures 10 and 11 demonstrate the absolute
prediction errors when the missing rates are 50% and
90%, respectively.

Similar to the discovery in the numerical study in Sec-
tion 5, Figures 8-11 indicate that our proposed method
constantly works better than the two benchmarks under
all the 4 data missing rates. For example, the median
absolute prediction errors (and IQRs) of our proposed
method and the two benchmarks are 0.03 (0.04), 0.3
(0.24), and 0.1 (0.16), respectively, when the degradation
image streams are complete. When 50% of the images
are missing, the median absolute prediction errors (and

Figure 8. (Color online) Prediction Errors When Data are
Complete in Case Study
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IQR) are, respectively, 0.09 (0.17), 0.62 (0.65), and 0.15
(0.19). We believe this is because our proposed model
is a supervised dimension reduction-based method,
which uses TTF information to supervise the defection
of the low-dimensional tensor subspace, whereas the
benchmarks are unsupervised dimension reduction-
based methods without TTF information involved.
Because our method considers TTF information when
detecting the tensor subspace, the extracted features
are more effective for failure time prediction.

Figures 8-11 also show that the prediction errors of all
the 3 methods increase with the increase of data missing

Figure 9. (Color online) Prediction Errors When 10% Data
are Missing in Case Study
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Figure 10. (Color online) Prediction Errors When 50% Data
are Missing in Case Study
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rates. For example, when the missing rates are 0%, 10%,
50%, and 90%, the median absolute prediction errors
(and IQRs) of “MPCA (97%)” are 0.3 (0.24), 0.49 (0.42),
0.62 (0.65), and 0.83 (0.78), respectively, whereas they
are, respectively, 0.09 (0.11), 0.1 (0.16), 0.15 (0.19), and
0.31 (0.22) for “MPCA_CV”, and 0.03 (0.04), 0.05 (0.08),
0.09 (0.17), and 0.29 (0.21) for our proposed method. This
is reasonable because a higher data missing rate means
less useful degradation information and thus a worse
model performance. In addition, we observe that the
superiority of our proposed method over the two bench-
marks decreases with the increase of data missing rates.
For example, the prediction accuracy of our method and
“MPCA (97%)” are comparable when the data missing
rate is 90%. Again, we believe that this is because not
much useful information is available when data are
highly incomplete, and neither of the two models per-
form well with such limited data.

We also observe that “MPCA_CV” always outper-
forms “MPCA (97%),” and the superiority of “MPCA_-
CV” is augmented with the increase of the data missing
rate. For example, when 10% images are missing, the
median absolute prediction errors (and IQR) of “MPCA
(97%)” and MPCA_CV are 049 (0.42) and 0.1 (0.16),
respectively; when the missing rate is 50%, they are 0.62
(0.65) and 0.15 (0.19). Again, we believe that this is
because “MPCA (97%)” determines the dimension of
the tensor subspace by setting the “FVE” as 97%, which
results in relatively high-dimensional features because
of the insufficient dimension reduction. Also, it results
in a parameter estimation challenge because the number
of parameters to be estimated in the prognostic model is
relatively large compared to the limited number of his-
torical samples for model training. This suggests that
cross-validation is a better method to determine the
dimension of the tensor subspace, especially when we

Figure 11. (Color online) Prediction Errors When 90% Data
are Missing in Case Study
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do not have enough number of samples for model
training.

7. Conclusions

This paper proposed a supervised tensor dimension
reduction-based prognostic model for applications with
incomplete degradation imaging data. This is achieved
by first developing a new supervised tensor dimension
reduction method that reduces the dimension of incom-
plete high-dimensional degradation image streams and
provides low-dimensional tensor features, which are
then used to build a prognostic model based on (log)-
location-scale regression.

The supervised tensor dimension reduction method
uses historical TTFs to supervise the detection of a low-
dimensional tensor subspace to reduce the dimension of
incomplete high-dimensional image streams. Mathemat-
ically, it is formulated as an optimization criterion that
combines a feature extraction term and a regression
term. The feature extraction term focuses on identifying
a tensor space to extract low-dimensional tensor features
from high-dimensional image streams. The regression
term regresses failure times against the features extracted
by the first term using LLS regression. By jointly optimiz-
ing the two terms, it is expected to detect an appropriate
tensor subspace such that the extracted features are effec-
tive for TTF prediction. To estimate the parameters of the
supervised dimension reduction method, we developed
a block updating algorithm for applications where TTFs
follow distributions in the (log)-location-scale family.
The algorithm works by splitting the parameters into
several blocks and cyclically optimizing one block of
parameters while keeping other blocks fixed until con-
vergence. In addition, we showed that if TTFs follow nor-
mal or lognormal distributions, there is a closed-form
solution when optimizing each block of the parameters,
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no matter whether the imaging data are complete or
incomplete.

Simulated data as well as a data set from rotating
machinery were used to validate the effectiveness of our
proposed method. The results showed that our proposed
prognostic method consistently outperforms the unsu-
pervised tensor reduction-based benchmarks under var-
ious data missing rates. This validated the benefits and
importance of using failure time information to super-
vise the dimension reduction of high-dimensional degra-
dation image streams when building prognostic models.

The proposed prognostic model assumes that the
TTFs of assets in the training data set are known. In
many real-world applications, the historical failure
times might be right censored. This is because a compo-
nent might be replaced before failure, so the exact TTF is
unknown, and we know only that it is larger than the
replacement time. How to incorporate censored TTFs
into the proposed method could be an interesting future
research topic.

Appendix
Proof of Proposition 1
The original optimization problem is

arg min a||Po(X — S x1U] X U X3 LI3T)||12E
u,

+(1—a)lly — 1By — S - Billf

which is equivalent to the following problem when data are
complete:

arg min afl¥ — S x; U] X U; X3 U3T||12r
u,

+(1—a)lly —1m- By — S - Bili7,

which is convex. Thus, it can be solved by setting the derivatives

to be zeros, that is ;T\P] =0, where W = a|lX — S x U] %, U

3 U3 [[F + (1= a)lly — L~ By — Sty - B 7. This implies 7 (|l

— 8 x U] 2 U3 %3 UJ |[) = 0. According to the communication
d

law of tensor mode multiplication, we have ain (IxX = (S

xp U3 X3 UJ) X1 UT|[F) = 0.Thus, 5 (IX — Su, x1 UT[[F) =0,
where Sy, = Sx, U] X3 U] . Furthermore, we have ﬁ (X )
-uj - SU1(1)||§)= 0 because of the fact that ||S||§ = ||S(n)||§ and
the property of tensor mode multiplication Sx,U = U- S,).
By taking the derivative of the Frobenius norm, we have
2Xq) = U] - Suy) - (=Siy) = 0. Thus, UT-Su,q)-Siya) =
X(l)-S-&](l), which gives that U] = X(y) - Sal(l) (Suy) - Sal(l))fl.
Finally, we have U = (X(y) - 5211(1) “(Suy) - Sal(l))_l)T.

Proof of Proposition 2
The original optimization problem is

arg min a[Po(X — S x U] x, UF x3 U] )|
u,

+(1—a)lly — 1By — S - Bill

which is equivalent to the following problem when data are
complete:

arg min allX — S x U x, Uj x5 U3 |7
u,
+ (1= a)lly = 1n - By — Sw - Bullp

which is convex. Therefore, it can be solved by setting the deriva-
tives to be zeros, that is ;{%’2 =0, where W = a|X — S X1 U] X2
U7 3 U3 [+ (1 — a)lly — 1aa - By — S - By |7 This implies 7
(IX — S x U] x2 U3 x3 U3 [|?) = 0. According to the communi-
cation law of tensor mode multiplication, we have ﬁ (I|X = (S
X UJ x5 U ) %o U3 |[F) = 0. Thus, 7-(|lX — Su, X2 UJ|[F) =0,
where Sy, =S X1 U] X3 Uj . Furthermore, we have ﬁ (X —
u; - SU2(2)||§) = 0 because of the fact that ||S||§ = ||S(n)||§ and the
property of tensor mode multiplication S x,U = U - S,,y. By tak-
ing the derivative of the Frobenius norm, we have 2(X(,) — U; -
Su,) - (=Si) = 0. Thus, U -Su,e) - Sl = X - Sy
which gives that U; = X)- S}, (Sw,) Sz,z(z))fl. Finally,
we have Uy = (X() - S{p,0) " (St - 5{12(2))71)T-

Proof of Proposition 3
The original optimization problem is

arg min a|[Pa(X — S x U] x UF x3 UJ)|I
u;
+(1—a)lly —1m- By — S - Bili7,
which is equivalent to the following problem when data are
complete:

arg min allX — S x U x, U3 x5 U3 |2
us
+(1—a)lly —1m - By — Sa - Bill7
which is convex. Therefore, it can be solved by setting the
derivatives to be zeros, that is ;T\i =0, where ¥ =a||X¥ — S X1
Ul % U3 X3 U3 |7 +(1 — a)lly — 1w - Bo— Swy - Byllf. This im-
plies that Z{- (|l — S X U] x, U; X3 uj|?) =0. According to
the communication law of tensor mode multiplication, we
have - (|lX — (S xq Uy x UJ) %3 UJ|[}) = 0. Thus, 74-(|lX -
Su, X3 LI;H%) =0, where Sy, =8 x1U] X, U; . Furthermore,
we have dim(HX@) -u; - Su3(3)||§) =0 because of the fact that

I|S ||% = ||S(,,)||fF and the property of tensor mode multiplication
Sx, U=U-S,. By taking the derivative of the Frobenius
norm, we have 2(X(3 — U; - Su,3)) - (=S{,3) = 0. Thus, U; -
Sus3) - Sii,3) = X() * Siiy3), which gives that U3 = X3) - S{},3)-
(Suy) - 553(3))_1. Finally, we have U;=(X3)- 553(3) (Suy)

1
Sl )

Proof of Proposition 4
The original optimization problem is

arg min a|[Pa(X — S x U] x; U x3 UJ)|I
S

+(1—a)lly —1m - By — Swy - Bill7,
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which is equivalent to the following problem when data are
complete:

arg min allX — S x U x, U %3 U3 |2
S
+ (1= a)lly — - By — S - BillE,

which is convex. Thus, it can be solved by setting the deriva-
tives to be zeros, that is %’ =0, where ¥ =a||lX - S x; U]
Xo U X3 ll;ll% +1—a)lly—1uv-By— S - B1||%. According to
the connection between Kronecker product and tensor mode
multiplication (Kolda 2006), we have £ (al|Xu) — Su) - (Us®
U ® Ul + (1 - a)lly — Lv - By — S - Bullp) = 0. By taking the
derivative of the Frobenius norm, we have 2a - [X) — Su)-
(U@L oUy)]- [-(U; @U@ U1) ] +2(1 —a) - [y — 1w - By —
Sw Bl (=B])=0. Thus, —2a Xy (Uz@U,@U;)" +2a-
5(4) '(U3®U2®U1)'(U3®U2®U1)T + 2(1 —a)(y — 1M'ﬁ0)'
(=B{)+2(1 — ) (Sw - By - B{) = 0. Finally, we have Sy = [«
Xy Uzl +(1—a)-(y—1u-By) - Bl [a-(Us®
ULol) (oUWl +(1—a) B, BT

Proof of Lemma 1

Let a,, € R™N denote the mth row of matrix A € RV and b,
€ R™P denote the mth row of matrix BE RM® m=1,...,M,
and then we have

A—-BC= [(a1 —b1C)T ..... (ﬂM—bMC)T]T.

Based on the definition of Frobenius norm, the original objec-
tive function in Lemma 1 can be transformed as follows:

IA ~ BOE = [l[(a1 ~ b10)"...... (ans — by O)" 172
M 2
= Z”ﬂm - me”F'
m=1
Therefore, we have

M
arg min ||A — BC||12C = arg min ZHam — me||§.,
B

{bu}yy m=1

where B = [b7,...,b),]". Therefore, to solve the original objec-
tive function, we can simply solve the following M sub
problems:

. 2
arg min|la,, — b, Cllz, m=1,... M.
by

Proof of Proposition 5
The original optimization problem is

arg min CY”PQ(X - S X1 LIlT Xa U; X3 U3T)||§
u;

+(1—a)lly — 1By — S - Billf

which is equivalent to the following problem when data are
missing,
arg min al|lX — (S x U] %, U] x3 U] ) © logic(X)|[:
u;

+(1—a)lly — v By — S - Billf

where © is the inner product, and logic(X') denotes the logical
value of X, that is, if an entry is observed, its logical value is 1;
otherwise, it is 0. Because the problem is convex, it can be solved

by setting the derivatives to be zeros, that is, %’1 =0, where W =
allX — (S x U > Uy X3 U3) © logic(Y)|fp + (1~ a)lly —Lu -
EO — 5(4) : 31”12: This implies that ﬁ(”)ﬁ - (8 X1 Uir X2 UZT X3
uj) o logic(X )||12t) = 0. According to the communication law of
tensor mode multiplication, we have Z- (|| — [(S x U] X2
Uuy) x; U] @ logic(X)[[F) = 0. Thus, z-(|lX — (Su, 1 U]) @
logic(X)[?) =0, where Sy, =SxUJ x3U3. Furthermore,
we haveﬁ(”X(l) — U - Sy,a) © logic(X(l))H%) = O0because
ISIF = [ISelF and Sx, U = U - S,

Figure A.1 shows the pattern of mode-1 matricization of
the 4D tensor X when it has missing entries whose indices
can be denoted by a set QO C{(i1,i,i3,m),1<i; <I;,1<i, <
I),1<i3<1I3,1<m<M}. Based on Lemma 1, we can sequen-
tially optimize each column of Uj.

Figure A.1. (Color online) An Illustration of the Data Missing Pattern in Proposition 5 (Stripes Representing Available Entries)
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Figure A.2. (Color online) An Illustration of the Data Missing Pattern in Proposition 6 (Stripes Representing Available Columns)
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Specifically, we denote the i;th row in U] as u} " (blue solid
row of U] in Figure A 1) The available entries in the #;th row of
X are denoted as x(l) " (blue striped squares of x(l) in Figure

Al). In SZ‘(D, we choose the columns whose indices are the

same as those of the available entries of xa) (blue striped columns
of Sul(1 in Figure A.1). As a result, we have ():11 i

i,

(1)
(u’1T Z’ll(l))H ) = 0. Because we only take the denvatlve of u

— T Z[’:(I))HF) =0.By takmg the deriva-

4 i, Ty
we have -4 a (||x(1)

tive of the Frobenius norm, we have 2(x?1')n’1 - Ell(l))

u T T i, Ty

T,
(—Su a )— 0. Thus, u’f S, 1 Su W —x(l) Su @ ,whlch
T T(,l

i1,
glvesthatu'l—(x 1 U(l) '(SU1(1)~ U1(1) ) hT,

Proof of Proposition 6
The original optimization problem is

arg min a|[Po(X — S x U x, U3 x3 U )|
u

+(1—a)lly — 1By — Sw - Bl

which is equivalent to the following problem when data are
incomplete,

arg min a|X — (S x, U] x, U} %3 U3) © logic(X)|[z
u,
+ (1= a)lly — 1w - By — S - Bl

Where © is the inner product, and logic(X’) denotes the logical
value of X. Because the problem is convex, it can be solved
by setting the derivatives to be zeros, that is, ;T‘yl =0, where W
= allX — (S xq U] o U3 %3 U3) @ logic(V)|ff + (1 - a)lly —1u
'BO — 5(4) . I~31||12: This implies that %(”X —(S ><1U1T X2 u; X3
uj) ologic(Xx )||}2:) = 0. According to the communication law of
tensor mode multiplication, we have ﬁ(HX —[(Sx U3 x5
u3) xqUj] ologic(X)|F) = 0. Thus, 74-(|X — (Su, x1U7) ©

<

logic(X)|[F) = 0, where Sy, = Sx, UJ x5 Uj . Furthermore, we
have ﬁ(llX(l) — U7 - Sy,a) © logic(X(l))H%) =0 because of
the fact that ||$||fE = ||S(,,)||§ and Sx,U = U- S, (a property of
tensor mode multiplication).

As discussed earlier, for applications with missing images,
the indices of tensor A”s missing entries can be denoted as
QcH{(:,:,iz,m),1<i3<I3,1<m< M}, where “:” denotes all
of the indices in a dimension. As a result, it can be easily
shown that &”s mode-1 matricization X(;) has missing col-
umns (see Figure A 2 for an illustration). Let 7 be the set con-
sisting of the indices of available columns in X(;), and then
we need to solve - (|IX7j, — uy - S5, ollf) =0, where S
denotes a matrix constituting the 7 columns of Sy, (). Thus,
we have Z(X”D — Uy - St ) - (=S5, (DT)— 0. Thus, U] - 57&1(1)'

T T
Lo =X0) Sul(l) , which gives that U] = X{,- S ) -
(STha) - Stha) T)~!. This yields the solution U; = (X0 - St T+

(St St )™

Proof of Proposition 7
The original optimization problem is

arg min af[Po(X — S x U] x, U x3 U )|
u,

+(1—a)lly —1m- By — S - Bili7,

which is equivalent to the following problem when data are
missing,
arg min a|lX — (S x U] X U; X3 U3) © logic(/'\,’)HlZ:
u,
+ (1= a)lly —1m - By — Sw - Bill
where © is the inner product, and logic(X) denotes the logical
value of X. Because the problem is conve, it can be solved
by setting the derivatives to be zeros, i.e., % =0, where WV =«
X — (Sx1U] x, Uy %3 U}) © 1ogic(2()||§ +(1—a)lly —1m - B,
—Su) - B1|[7- This implies that - i (1% — (S x U] x Uy X3 U3)
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Figure A.3. (Color online) An Illustration of the Data Missing Pattern in Proposition 7 (Stripes Representing Available Entries)
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©logic(X )||12:) = 0. According to the communication law of ten-
sor mode multiplication, we have ﬁ(HX —[(Sx U] xsUj3)
x, U7 ] © logic(X)|F) = 0. Thus, -(|X—(Su, X2 U7)©
logic (X)|[}) = 0, where Sy, = S x; U] x3 U] . Furthermore, we
have - (X — (U3 - Su,p) © logic(X2)|lF) =0  because

ISIE =118 lF and S, U = U - S,

Figure A.3 shows the pattern of mode-2 matricization of
the 4D tensor & when it has missing entries whose indices
can be denoted by a set Q C {(i1,1»,i3,m),1<iy <I;,1<i <
I),1<1i3 <I3,1<m <M} Based on Lemma 1, we can sequen-
tially optimize each column of U,.

Specifically, we denote the i,th row in U; as u2" (blue solid
row of U in Figure A. 3) The available entries in the izth row
of Xy are denoted as x(z) " (blue striped squares of X3 in
Figure A.3). In s )y We choose the columns whose indices are
the same as those of the available entries in xzzz) (blue striped

I

columns of Su (2) in Figure A.3). As a result, we have —(le2 -1

||x:22')ﬂ’2 (u’2T 1111‘22(2))”1?) = 0. Because on the derivative of uy is

taken, we have - Pz (™ — (u27 - Ej(z))HF) 0. By taking the

2
derlvatlve of the Frobenius norm, we have Z(x2 T fulzzT

T zzn‘ b1é T
2 'Sl

T T
Siia) (=St )= 0. Thus, w3 ™S}y - S = x5 - S,

which gives that u} = (xl2 & Su (Z)T . (SZ’Z(2 Ez(z) ) HT.

Proof of Proposition 8
The original optimization problem is

arg min a||Po(X — S x U] x, U3 x3 UJ)|[2
u,
+ (1= a)lly = 1n - By — S - Bullp,
which is equivalent to the following problem when data are
incomplete,

arg min allX — (S x U] X U X3 U3) © logiC(X)H%
u,

+(1—a)lly — 1By — S - Bl

where © is the inner product, and logic(X') denotes the logical
value of X. Because the optimization criterion is convex, it

can be solved by setting the derivatives to be zeros, that is, gz}’
=0, where W =a||X — (S x U] x, U] x3 U] ) @ logic(X)||7 +
(1= a)lly — 1u - By — S - Byllf. This implies that ;& (|X — (S
x1 U] % U3 %3 UT) @ logic(X)||2) = 0. According to the com-
munication law of tensor mode multiplication, we have ﬁ
(IX = [(S x1 U] x5 UT ) x, U ] @ logic(X)|[) =0. As a result,
A= (11 = (Su, %2 U3 ) ©logic(V)[F) =0, where Sy, =S x; U]
X3 Uj; . Furthermore, we have ﬁ(”X(z) — (U3 - Suy(2) ©logic
(X(z))||12:) = 0 because ||8||12: = ||S(n)||12: and Sx,U=U-S,.

It can be easily shown that A’s mode-2 matricization X, has
missing columns as well (see Figure A4 for an illustration).
Therefore, similar to the proof of Proposition 9, we have ﬁ
(¢ u - Sﬁz(z)”fr) = 0, where 7t denotes the indices of avail-
able columns in X(3), 87}, (») denotes a matrix constituting the 7
columns of Sy, As a result, we have 2(X(y) — U; - Sfj, )"
(=Stho )= 0.Thus, U; - St She) —X ) “Shh) T, which
gives that Uy = X3y, - S0 - (ST Sthi) ') ! This yields the
analytical solution U, = (X, - St St SZZ(Z)T)%)T.

Proof of Proposition 9
The original optimization problem is

arg min a|[Pa(X — S x U] x; UF x3 UJ)|I
u;

+(1—a)lly —1m- By — S - Bili7,
which is equivalent to the following problem when data are
missing,

arg min al|lX — (S x U] %, U] x3 U] ) © logic(X)|[:
us
+(1 = a)lly = 1m - By — S - Bullz,
Where O is the inner product, and logic(X') denotes the logical
value of X. Because the problem is convex, it can be solved by
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Figure A.4. (Color online) An Illustration of the Data Missing Pattern in Proposition 8 (Stripes Representing Available Columns)
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setting the derivatives to be zeros, i.e., du =0, where V¥ = a||X

—(Sxq UT X2 UT X3 UT) o loglc(X)HF + (1 - O()Hy el :BO
— S - B[} This implies that 74— i (1X = (S x Ui x Uy x3U3)
© logic(X )||F) =0. According to the communication law of
tensor mode multiplication, we have ﬁ(”)( —[(S x: U7 %2
U7) s U3 ] o logic(X)|[F) = 0. Thus, 74 (|l — (Su, %3 U3) ©
logic(X)|[?) = 0, where Sy, = S X1 U] x, U} . Furthermore, we
have 72-(IIX(s) — (U3 - Su,(3) © logic(X())|[7) = 0 because |S[;
= ||S(n)||12: and Sx,U=U- S(n).

Figure A.5 shows the pattern of mode-3 matricization of the
4D tensor X’ when it has missing entries whose indices can be
denoted by a set Q C{(i1,1z,i3,m),1<iy <I1,1<iy <I),1 <13
<1I3,1 <m < M}. Based on Lemma 1, we can sequentially opti-
mize each column of Us. The izth row in UT is denoted as

3" (blue solid row of U] in Figure A.5). The avallable entries
m the izth row of X(3) are denoted as x " (blue striped

squares of xi in Figure A.5).In S 1,3 We choose the columns
whose indices are the same as those of the available entries

of x% (blue striped columns of 533(3) in Figure A.5). Thus, we
i3,
have (Z llkeg)
1‘3,71:3
(”x(g) .
Frobenius norm, we have 2(x233’)m3 —u?T'SZ:@)) (- Sﬂ'3 ) b
=0. Thus, u}" - 57;’3(3) ‘S

Ty T i3, Tty iy
i _ o 03T Ty T Ty nx
thatus = (x5 " S (Suls) Sue) O

T!,,;

- (ugT'Su;(g))||%) 0, which yIEIds -4

71,3

— (u’33T ~SU3(3))||%) =0. By taking the derivative of the

:
e =Xs)  Suy - which gives

Proof of Proposition 10
The original optimization problem is

arg min a|[Pa(X — S x U] x; U x3 UJ)|I?
S

+(1—a)lly — - By — Sw - Bill7,

Figure A.5. (Color online) An Illustration of the Data Missing Pattern in Proposition 9 (Stripes Representing Available Entries)
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Figure A.6. (Color online) An Illustration of the Data Missing Pattern in Proposition 10 (Stripes Representing Available Entries)
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which is equivalent to the following problem when data are
missing,

arg min a|X — (S ;U] x, U] x5 U3) © logic(X)|2
s

+(1—a)lly — 1m - By — Sw) - Bull7

where O is the inner product, and logic(X) denotes the logical
value of X. Because the problem is convex, it can be solved by
setting the derivative to be zeros—that is ‘é—‘é’ =0, where WV =«
1% — (8 X1 U] %2 U3 %3 U3) @ logic(X)[ + (1~ lly —1u - By
— S B1||12:- According to the connection between Kronecker
product and tensor mode multiplication, we have £ (|| X4 —
[Sw - Uz @ U ®Uy)] © logic(Xw)llF + (1—a)lly — 1y © B, —
S O Bill7) = 0.

Figure A.6 shows the pattern of mode-4 matricization of
the 4D tensor & when it has missing entries whose indices
can be denoted by a set QQ C {(i1,1z,i3,m),1<i1 <I;,1<i <
I,,1<i3 <I3,1 <m < M}. Based on Lemma 1, we can sequen-
tially optimize each column of Us.

The mth row in S is denoted as sf}, (blue solid row of S,
in Figure A.6). The available entries in the mth row of X4 are

M, T

denoted as x)"" (blue striped squares of x{j in Figure A.6).

In (U3 ® U, ® Uy), we choose the columns whose indices are
the same as those of the available entries of x7;) (blue striped
columns of (U3 ® U, ® U;)™ in Figure A.6). Thus, we have
i L™ ~ [ - (Us © U )™ R +1—a)sM,
I — By — sty - Bll?) =0, which yields g (a{ly™ — [st}
(Us © Uy ® Uy {2+ (1 @iy — By — s - Bill2) = 0. By
taking the derivative of Frobenius norm, we have 2« - [x&")”"’
—sipy W)™ ] [-(U; ® U, ® U)™ "] +2(1 - a)-
[Yim — By — {3y B1l- (—B])=0. Thus, —2«a .xﬁr)ﬂm (U U,®
W)™+ 2a-sf - (U@ U ® Un)™ - (U @ U, ® Uy)™ T + 2(1
—a)(Ym—By) - (=B{) +2(1—a)- (s(;) - By - B{) = 0, which gives

that sﬁ) =[a- x:’fl')”’” (LWL eoU) ™ +(1—a) - Ym —By) -

Bl [a-(Uz:@WLU)™ - (Uz@U,@Uy)™ +(1—a) - B;-
BI1 .
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