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Abstract. Imaging data-based prognostic models focus on using an asset’s degradation 
images to predict its time to failure (TTF). Most image-based prognostic models have two 
common limitations. First, they require degradation images to be complete (i.e., images are 
observed continuously and regularly over time). Second, they usually employ an unsuper-
vised dimension reduction method to extract low-dimensional features and then use the fea-
tures for TTF prediction. Because unsupervised dimension reduction is conducted on the 
degradation images without the involvement of TTFs, there is no guarantee that the extracted 
features are effective for failure time prediction. To address these challenges, this article devel-
ops a supervised tensor dimension reduction-based prognostic model. The model first pro-
poses a supervised dimension reduction method for tensor data. It uses historical TTFs to 
guide the detection of a tensor subspace to extract low-dimensional features from high- 
dimensional incomplete degradation imaging data. Next, the extracted features are used to 
construct a prognostic model based on (log)-location-scale regression. An optimization algo-
rithm for parameter estimation is proposed, and analytical solutions are discussed. Simulated 
data and a real-world data set are used to validate the performance of the proposed model.
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Funding: This work was supported by National Science Foundation [2229245]. 
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czhou9/Code-and-Data-for-IJDS and in the e-Companion to this article (available at https://doi. 
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1. Introduction
Degradation is an irreversible process of damage accu-
mulation that results in the failure of engineering sys-
tems/assets/components (Bogdanoff and Kozin 1985). 
Although it is usually challenging to observe a physical 
degradation process, there often are some manifesta-
tions associated with degradation processes that can be 
monitored by sensing technology, which yields data 
known as degradation data/signals. Degradation data 
contains the health condition of engineering assets; thus, 
if modeled properly, they can be used to predict the 
assets’ time to failure (TTF) via a process known as prog-
nostic. Many prognostic models have been developed in 
the literature, most of which focus on using time series- 
based degradation data (Gebraeel et al. 2005; Hong and 
Meeker 2010, 2013; Liu et al. 2013; Ye et al. 2014; Ye and 
Chen 2014, Shu et al. 2015; Wang et al. 2022). Recently, 
prognostic models with imaging-based degradation 
data have been investigated and have attracted more 
and more attention. This is because, compared with 
time-series data, imaging data usually contain much 
richer information of the object being monitored, and 
imaging-sensing technologies are noncontact, and thus 

they can usually be easily deployed. One example of 
imaging-based degradation data is the infrared image 
stream that measures the change of temperature distri-
bution of a thrust bearing during its degradation pro-
cess over time (Aydemir and Paynabar 2019, Fang et al. 
2019, Dong et al. 2021, Wang et al. 2021, Jiang et al. 
2022a). Another example is the images used to measure 
the performance degradation of infrared systems such 
as rotary-wing drones (Dong et al. 2021).

The existing imaging-based prognostic methods in-
clude deep-learning-based models and statistical learning 
methods. Examples of the deep-learning-based models 
designed for TTF prediction using imaging data include 
the ones developed by Aydemir and Paynabar (2019), 
Dong et al. (2021), Yang et al. (2021), Jiang et al. (2022a), 
Jiang et al. (2022b), and Jiang et al. (2023). Although these 
models have worked relatively well, they usually provide 
point estimations of failure times, and it is challenging for 
them to quantify the uncertainty of predicted TTFs (e.g., 
providing a failure time distribution). This limits their ap-
plicability because the subsequent decision-making analy-
sis such as maintenance/inventory/logistic optimization 
requires prognostic models to provide a distribution of 
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the predicted TTF. Also, deep-learning-based prognostic 
models often require a relatively large number of histori-
cal samples for model training, which cannot be satisfied 
by many real-world applications with limited historical 
data. One example of statistical learning methods for 
image-based prognostic is the penalized (log)-location- 
scale (LLS) tensor regression proposed by Fang et al. 
(2019). The model first employs multilinear principal 
component analysis (MPCA) (Lu et al. 2008) to reduce 
the dimension of high-dimensional imaging-based deg-
radation data, which yields a low-dimensional feature 
tensor for each asset. Next, it constructs a prognostic 
model by regressing an asset’s TTF against its low- 
dimensional feature tensor using LLS regression. In the 
same article, Fang et al. (2019) also proposed several 
benchmarking prognostic models that used imaging- 
based degradation data for TTF prediction. These mod-
els also first employed a dimension reduction method, 
such as functional principal component analysis (FPCA) 
(Ramsay and Silverman 2005), principal component 
analysis (PCA) (Abdi and Williams 2010), or B-Spline 
(Prautzsch et al. 2002), to reduce the dimension of degra-
dation data and then used low-dimensional features to 
build an LLS regression model for prognostic. Although 
the aforementioned statistical learning-based prognostic 
models can provide a distribution for the predicted TTF 
and their effectiveness has been well investigated, they 
share two common limitations.

The first limitation is that they assume that imaging- 
based degradation data (including historical data for 
model training and real-time data for model test) are 
complete, which means that images from all the assets 
should be collected continuously and regularly with the 
same sampling time interval (see Figure 1(a) for an 
example). In reality, however, engineering assets often 
operate in harsh environments that significantly impact 

the quality of collected data because of errors in data 
acquisition, communication, read/write operations, etc. 
As a result, degradation images often contain signifi-
cant levels of missing observations, which is known as 
incomplete/missing imaging data (see Figure 1(b) for an 
example). Such data incompleteness poses a significant 
challenge for the parameter estimation of existing statis-
tical learning-based prognostic models.

The second common limitation for the existing statisti-
cal learning-based prognostic models for applications 
with imaging data is that they employ unsupervised 
dimension reduction methods for feature extraction, so 
there is no guarantee that the extracted features are effec-
tive for the subsequent TTF prediction. Specifically, they 
first use unsupervised dimension reduction methods 
such as FPCA, PCA, and B Spline to extract features, 
which are then used to construct prognostic models. 
Because feature extraction and prognostic model con-
struction are two sequential steps, and no TTF informa-
tion gets involved in the feature extraction process, it is 
possible that the extracted features may not be the most 
suitable for predicting TTFs.

To address the aforementioned challenges, this article 
proposes a supervised dimension reduction-based prog-
nostic model that uses an asset’s incomplete degradation 
images to predict its TTF. Similar to the existing statistical 
learning-based prognostic models, the proposed model 
also consists of two steps: feature extraction and prognos-
tic model construction. However, unlike the existing 
models, feature extraction in this article is achieved by 
developing a new supervised tensor dimension reduction 
method, which uses historical TTFs to supervise the fea-
ture extraction process such that the extracted features are 
more effective for the subsequent TTF prediction. In addi-
tion, unlike the existing unsupervised dimension reduc-
tion methods that only work for complete imaging data, 

Figure 1. (Color online) Degradation Stream Images With and Without Missing Data 

Note. (a) Complete image streams; (b) incomplete image streams.
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the proposed supervised dimension reduction method 
works for both complete and incomplete degradation 
image streams.

The proposed supervised dimension reduction method 
works as follows. First, it detects a low-dimensional ten-
sor subspace in which the high-dimensional degradation 
image streams are embedded. This is achieved by con-
structing an optimization criterion that comprises a fea-
ture extraction term and a regression term. The first 
term extracts low-dimensional features from complete/ 
incomplete degradation image streams of training assets, 
and the second term builds the connection between these 
assets’ TTFs and the extracted features using LLS regres-
sion. LLS regression has been widely used in reliability 
engineering and survival analysis. It includes a variety 
of TTF distributions, such as (log)normal, (log)logistic, 
smallest extreme value, and Weibull, etc., which cover 
most of the TTF distributions in reality (Doray 1994). 
Because historical TTFs are used to supervise the feature 
extraction process, it is expected that the extracted fea-
tures are more effective for the subsequent prognostic. 
Solving the optimization criterion of the proposed super-
vised tensor dimension reduction method yields a set of 
tensor basis matrices that span the low-dimensional ten-
sor subspace for dimension reduction. We then expand 
both the historical degradation images in the training 
data set and real-time degradation images from an asset 
operating in the field (i.e., test data) using the set of tensor 
basis matrices to extract the low-dimensional tensor fea-
tures of the training assets and the test asset. The TTFs of 
the training assets are then regressed against their tensor 
features using LLS regression, and the parameters are 
estimated using maximum likelihood estimation. After 
that, the tensor features of the test asset are fed into 
the LLS regression model, and its TTF distribution is 
predicted.

To solve the optimization criterion of the proposed 
supervised dimension reduction method, we will first 
transfer the criterion into a block multiconvex problem. 
Next, we will propose a block updating algorithm, 
which cyclically optimizes one-block parameters while 
keeping other blocks fixed until convergence. In addi-
tion, we will demonstrate that when TTFs follow normal 
or lognormal distributions, each subproblem of the block 
updating algorithm has a closed-form solution, no mat-
ter whether the degradation image streams are complete 
or incomplete.

The rest of this paper is organized as follows. Section 2
presents the supervised tensor dimension reduction- 
based prognostic method. Section 3 introduces the block 
updating algorithm and closed-form solutions when 
TTFs follow normal/lognormal distributions. Sections 5
and 6 validate the effectiveness of the proposed prognos-
tic model using a simulated data set and data from a 
rotating machinery, respectively. Section 7 concludes the 
paper.

2. The Methodology
In this section, we will introduce the proposed super-
vised tensor dimension reduction-based prognostic 
model for applications with incomplete imaging data. 
In Section 2.1, we will present some basic tensor nota-
tions and definitions. Section 2.2 introduces the super-
vised tensor dimension reduction method. In Section 
2.3, we will discuss the construction of a prognostic 
model and how to predict the TTF of an asset operating 
in the field using its real-time degradation imaging 
data.

2.1. Preliminaries
In this section, we introduce some basic notations and 
definitions of tensor operations that are used throughout 
the article. The order of a tensor is the number of dimen-
sions, also known as ways or modes. Vectors (1-order 
tensors) are denoted by lowercase boldface letters; for 
example, s. Matrices (2-order tensors) are denoted by 
boldface uppercase letters, for example, S. Higher-order 
tensors (order is 3 or larger) are denoted by calligraphic 
letters, for example, S. Indices are denoted by lowercase 
letters whose range is from 1 to the uppercase letter of the 
index, for example, n � 1, 2, : : : , N. An Nth-order tensor 
is denoted as S ∈ RI1×I2×···×IN , where In represents the nth 
mode of S. The (i1, i2, : : : , iN)th entry of S ∈ RI1×I2×···×IN is 
denoted by si1, i2, : : : , in . A fiber of S is a vector defined by 
fixing every index but one. A matrix column is a mode-1 
fiber, and a matrix row is a mode-2 fiber. The vectorization 
of S, denoted by vec(S), stacks all the entries of S into a 
column vector. The mode-n matricization of a tensor S ∈
RI1×I2×···×IN is denoted by S(n), which arranges the mode-n 
fibers to be the columns of the resulting matrix. The nth 
mode product of a tensor S ∈ RI1×I2×···×IN and a matrix 
Un ∈ RJn×In , denoted by S×nUn, is a tensor whose entry 
is (S×nUn)i1, : : : , in�1, jn, in+1, : : : , iN � Σ

IN

In�1si1, : : : , iN uj, in . The Kro-
necker product of two matrices A ∈ Rm×n and B ∈ Rp×q is 
an mp×nq block matrix:

A⊗B �
a11B : : : a1nB

⋮ ⋱ ⋮

am1B : : : amnB

2

6

4

3

7

5
:

If A and B have the same number of columns n�q, then 
the Khatri-Rao product is defined as the mp×n column- 
wise Kronecker product: A ⊙ B � [a1 ⊗ b1 a2 ⊗ b2 ⋯ an 

⊗ bn]. If a and b are vectors, then A⊗B � A ⊙ B. More 
details about tensor notations and operators can be 
found in Kolda and Bader (2009).

2.2. The Supervised Tensor Dimension 

Reduction Method
We assume that there exists a historical data set for model 
training. The data set consists of the degradation image 
streams of M failed assets along with their TTFs, which 
are denoted as Xm ∈ RI1×I2×I3 and ym ∈ R, respectively, 
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where m � 1, 2, : : : , M. For the convenience of introduc-
ing the dimension reduction method, we convert the 3D 
degradation image streams from all the M assets to a 4D 
tensor X ∈ RI1×I2×I3×M, where the sample size M is the 
fourth mode. Similarly, we let y � (y1 , : : : , yM)⊤ ∈ RM×1 

be the vector containing all of the TTFs of the M assets.
Out of the I1 × I2 × I3 ×M entries of X , we use a sub-

set Ω ⊆ {(i1, i2, i3, m), 1 ≤ i1 ≤ I1, 1 ≤ i2 ≤ I2, 1 ≤ i3 ≤ I3, 1 ≤
m ≤M} to denote the indices of the missing ones. To 
model the missing data, we define a projection operator 
PΩ(·) as

PΩ(X )(i1, i2, i3, m) �
X (i1, i2, i3, m), if (i1, i2, i3, m) ∉Ω,

0, if (i1, i2, i3, m) ∈Ω,

�

(1) 

where X (i1, i2, i3, m) is the (i1, i2, i3, m)-th entry of the 4D ten-

sor X ∈ RI1×I2×I3×M. To recover the missing entries in tensor 
X , we may employ the following Tucker decomposition- 
based tensor completion method (Liu et al. 2012, Xu et al. 
2013, Filipović and Jukić 2015):

min
S,U1,U2,U3

‖PΩ(X �S ×1 U⊤1 ×2 U⊤2 ×3 U⊤3 )‖2F: (2) 

where ‖ · ‖2F is the Frobenius norm, U1 ∈ RP1×I1 , U2 ∈
RP2×I2 , U3 ∈ RP3×I3 are three factor matrices, S ∈
RP1×P2×P3×M is the low-dimensional core tensor, and ×n 

is the n-mode product of a tensor with a matrix. The ten-
sor completion criterion (2) can be seen as an unsupervised 
dimension reduction method for tensor data with missing 

entries. This is because the degradation image tensor X ∈
RI1×I2×I3×M is a 4-order tensor, which resides in the tensor 

(multilinear) space RI1 ⊗RI2 ⊗RI3 ⊗RM, where RI1 ,RI2 , 

RI3 ,RM are the 4 vector (linear) spaces; S ∈ RP1×P2×P3×M 

can be seen as a feature tensor that resides in the tensor 

space RP1 ⊗RP2 ⊗RP3 ⊗RM. Usually, we have P1≪ I1, 
P2≪ I2, and P3≪ I3 for degradation imaging data be-
cause of the high spatio-temporal correlation among pix-
els. This implies that the dimension of the image stream 

from the mth asset is reduced from RI1×I2×I3 to RP1×P2×P3 , 
where m � 1, : : : , M.

Although criterion (2) can be seen as a dimension reduc-
tion method, there is no guarantee that the extracted 
low-dimensional feature tensor S is effective for the sub-
sequent TTF prediction. To address this challenge, we 
propose the following supervised dimension reduction 
method by combining a tensor completion term and an 
LLS regression term,

min
U1,U2,U3,σ,b1,β0,S

α‖PΩ(X �S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 )‖2F

+ (1� α)ℓ y� 1Mβ0 � S(4)b1

σ

� �

, (3) 

where y ∈ RM×1 is the vector containing all the TTFs of 

the M assets in the training data set. The matrix S(4) ∈

RM×(P1×P2×P3) is the mode-4 matricization of the low- 
dimensional feature tensor S, the mth row of which repre-
sents the vectorization of the mth asset’s feature tensor, 

m � 1, : : : , M. β0 is the intercept, and b
1
∈ R(P1×P2×P3)×1 is 

the regression coefficient vector. 1m ∈ RM×1 is an M × 1 
vector whose entries are all ones. ℓ(·) is the negative 
log-likelihood function of a location-scale distribution. 
For example, if TTFs follow normal distributions, then 

ℓ
y�1Mβ0�S(4)b1

σ

� �

� M
2 log 2π+M logσ+ 1

2Σ
M
m�1ω

2
m, where 

ωm �
ym�β0�sm

(4)b1

σ , sm
(4) is the mth row of S(4), and ym is 

the TTF of asset m; if TTFs follow logistic distributions, 

then ℓ
y�1Mβ0�S(4)b1

σ

� �

�M logσ�ΣM
m�1ωm + 2ΣM

m�1log(1+
exp(ωm)), and if TTFs follow small extreme value (SEV) 

distributions, then ℓ
y�1Mβ0�S(4)b1

σ

� �

� n logσ�ΣM
m�1ωm+

Σ
M
m�1exp(ωm). For assets whose TTFs follow log-location- 

scale distributions, we may transfer them to the corre-
sponding location-scale distributions by taking their 
logarithm such that criterion (3) can still be used. For 
example, log-normal, log-logistics, and Weibull distribu-
tions can be transferred to normal, logistics, and SEV dis-

tributions, respectively. α ∈ [0, 1] is a weight, and ‖ · ‖2F is 
the Frobenius norm.

In criterion (3), the first term ‖PΩ(X �S ×1U⊤1 ×2 U⊤2 

×3 U⊤3 )‖2F is tensor completion from (2), which reduces 
the dimension of high-dimensional incomplete degrada-
tion image streams and extracts low-dimensional tensor 

features. The second term ℓ
y�1Mβ0�S(4)b1

σ

� �

is LLS regres-

sion, which regresses each asset’s TTF against its tensor 
features extracted by the first term. By jointly optimizing 
the two terms, it is expected that the extracted features 
are effective for TTF prediction. However, it is challeng-
ing to solve criterion (3) because it is neither convex nor 
block multiconvex. An optimization problem is block 
multiconvex when its feasible set and objective function 
are generally nonconvex but convex in each block of 
variables (Xu and Yin 2013). Thus, to simplify the devel-
opment of optimization algorithms for model parameter 
estimation, we first transform criterion (3) to a block mul-
ticonvex one. Specifically, we apply the following repar-

ameterization: σ̃ � 1=σ, β̃0 � β0=σ, b̃1 � b1=σ. As a result, 

criterion (3) can be re-expressed as

min
U1,U2,U3, σ̃, b̃1 , β̃0 ,S(4)

α‖PΩ(X �S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 )‖2F

+ (1�α)ℓ(σ̃y� 1Mβ̃0 � S(4)b̃1),
(4) 

where ℓ(σ̃y� 1Mβ̃0 � S(4)b̃1) � M
2 log 2π�M log σ̃ + 1

2 

Σ
M
m�1ω̃

2
m for TTFs following normal distributions, and 

ω̃m � σ̃ym � β̃0 � sm
(4)b̃1, where sm

(4) is the mth row of S(4)

and ym is the TTF of asset m; ℓ(σ̃y� 1Mβ̃0 � S(4)b̃1) �
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�M log σ̃�ΣM
m�1ω̃m + 2ΣM

m�1 log(1+ exp(ω̃m)) for TTFs 

following logistics distributions, and ℓ(σ̃y� 1Mβ̃0 � S(4)
b̃1) ��n log σ̃ �ΣM

m�1ω̃m +ΣM
m�1exp(ω̃m) for TTFs fol-

lowing SEV distributions.
The optimization algorithm to solve criterion (4), the 

value of the weight α, and the dimension of the low- 
dimensional tensor subspace {P1, P2, P3}will be discussed 
in Sections 3 and 4. Solving the optimization criterion (4) 
using historical training data yields a set of basis matrices 

Û1 ∈ RP1×I1 , Û2 ∈ RP2×I2 , Û3 ∈ RP3×I3 , which contains P1 

basis vectors of the 1-mode linear space RI1 , P2 basis vec-
tors of the 2-mode linear space RI2 , and P3 basis vectors 
of the 3-mode linear space RI3 , respectively. The three lin-
ear subspaces form the low-dimensional tensor subspace 
RP1 ⊗RP2 ⊗RP3 detected by the proposed supervised di-
mension reduction method.

One of the assumptions of the proposed supervised 
tensor dimension reduction method in criterion (4) is that 
the TTF of the asset follows a distribution from the LLS 
family. This is reasonable because the LLS family includes 
a variety of TTF distributions, such as (log)normal, (log)-
logistic, smallest extreme value, and Weibull, etc., which 
cover most of the TTF distributions in engineering appli-
cations (Doray 1994). Another assumption is that there is 
a linear relationship between the location parameter and 
predictors (i.e., degradation signals or their features in 
this article). Specifically, the location parameters in crite-
rion (3) are expressed as 1Mβ0 + S(4)b1, which are linear 
weighted combinations of the rows of S(4). This assump-
tion is widely used in LLS regression (Doray 1994, Fang 
et al. 2019). However, if a simple linear weighted combi-
nation is not adequate to characterize the association 
between the location parameter and degradation signal 
features, a high-order polynomial relationship can be con-
structed (Hastie et al. 2009). By doing so, we can model 
a more complex association between the location parame-
ter and features. More importantly, the incorporation of 
high-order polynomial terms into the proposed super-
vised tensor dimension reduction method does not affect 
the effectiveness of the optimization algorithms for para-
meter estimation to be discussed in Sections 3 and 4.

2.3. Prognostic Model Construction and 

Real-Time TTF Prediction
In this subsection, we discuss how to build a prognostic 
model based on the supervised dimension reduction 
method proposed in Section 2.2 and how to predict the 
TTF distribution of an asset operating in the field using 
its real-time degradation image data.

Similar to Section 2.2, we denote the training data 
set as {Xm ∈ RI1×I2×Dm , ym}Mm�1, where M is the number of 
failed assets in the training data set. Notice that Dm might 
not be the same as Dm′ for two assets m and m′, m �
1, : : : , M, m′ � 1, : : : , M, m ≠ m′. This is because different 
asset’s failure times (i.e., TTFs) are different, and usually, 

no image data can be collected beyond an asset’s failure 
time because the asset is stopped for maintenance or 
replaced once it is failed. In addition to the training data, 
we denote the degradation image stream of a test asset 
by time t as X t ∈ RI1×I2×It . The objectives of this subsec-
tion include 1) constructing a prognostic model and esti-
mating its parameters using {Xm , ym}Mm�1 in the training 
data set and 2) using the estimated prognostic model to 
predict the TTF (denoted as ŷt) of the test asset based on 
its degradation image stream X t.

We first use the proposed supervised dimension re-
duction method to extract low-dimensional features of 
both the training and test assets. Specifically, as dis-
cussed in Section 2.2, we first construct a 4D tensor X ∈
RI1×I2×I3×M using the degradation image streams of the 
training assets, where I3 �max({Dm}Mm�1). Note that X is 
an incomplete tensor no matter whether the image 
streams from the training assets are complete or incom-
plete. This is because the TTFs of training assets are differ-
ent, and thus not all the training assets have I3 images. To 
detect the low-dimensional tensor subspace in which 
the high-dimensional degradation images are embedded, 
we solve optimization criterion (4) by using training 
data {X , y}, where y � (y1, : : : , yM)⊤. This yields basis 

matrices Û1∈ RP1×I1 , Û2 ∈ RP2×I2 , Û3 ∈ RP3×I3 , which form 

the low-dimensional tensor subspace RP1 ⊗RP2 ⊗RP3 . To 
extract the low-dimensional features of the training and 
test assets, we expand the image streams in the low- 

dimensional tensor subspace RP1 ⊗RP2 ⊗RP3 using the 

basis matrices Û1, Û2, Û3. This is achieved by solving the 
following optimization criteria,

Ŝm � arg min
Sm

‖PΩ(Xm �Sm ×1U⊤1 ×2 U⊤2 ×3 U⊤3 )‖2F: (5) 

Ŝ t � arg min
St

‖PΩ(X t �St ×1U⊤1 ×2 U⊤2 ×3 U⊤3 )‖2F, (6) 

where {Ŝm}Mm�1 are the low-dimensional feature tensors 

of the M assets in the training data set, and Ŝ t is the low- 
dimensional feature tensor of the test asset.

Next, we construct a prognostic model using the low- 
dimensional feature tensors of the M assets in the training 
data set (i.e., {Ŝm}Mm�1) along with their TTFs {ym}Mm�1. Spe-
cifically, we build the following LLS regression model,

ym � γ0 + vec(Ŝm)⊤ g1 + σɛm, (7) 

where vec(Ŝm) is the vectorization of Ŝm. γ0 ∈ R and g1 ∈
R(P1×P2×P3)×1 are the regression coefficients, σ is the scale 
parameter, and ɛm is the random noise term with a stan-
dard location-scale probability density function f (ɛ). For 

example, f (ɛ) � 1=
ffiffiffiffiffiffi

2π
√

exp(�ɛ2=2) for a normal distribu-
tion and f (ɛ) � exp(ɛ� exp(ɛ)) for an SEV distribution. 
The parameters in criterion (7) can be estimated by 
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solving the following optimization problem,

min
y,γ0,g1,σ

ℓ
y� 1Mγ0 � Ŝ(4)g1

σ

 !

, (8) 

where ℓ(·) is the negative log-likelihood function of a 

location-scale distribution, y � (y1, y2 , : : : , ym)⊤ and Ŝ(4) �
(vec(Ŝ1)⊤, vec(Ŝ2)⊤ , : : : , vec(ŜM)⊤)⊤, and ℓ(·) is the nega-
tive log-likelihood function. We conduct the following 
reparameterization to transform the optimization to be a 
convex one: σ̃ � 1=σ, γ̃0 � γ0=σ, g̃1 � g1=σ:

{ ˆ̃γ0 , ˆ̃g1, ˆ̃σ} � arg min
γ̃0, g̃1, σ̃

ℓ(σ̃y� 1Mγ̃0 � Ŝ(4)g̃1): (9) 

Solving (9) provides the estimated parameters { ˆ̃γ0 , ˆ̃g1, 
ˆ̃σ}, which can be transformed back to the estimation of 
the parameters in the LLS regression model: γ̂0 � ˆ̃γ0=
ˆ̃σ, ĝ1 � ˆ̃g1= ˆ̃σ and σ̂ � 1= ˆ̃σ. As a result, the fitted LLS 
regression model is ŷm ~ LLS(γ̂0 + vec(Ŝm)⊤ĝ1, σ̂), where 
γ̂0 + vec(Ŝm)⊤ĝ1 and σ̂ are, respectively, the estimated 
location and scale parameters.

Finally, we feed the extracted low-dimensional feature 
tensor of the test asset into the estimated LLS regression 
model to predict the asset’s TTF distribution: ŷt ~ LLS(γ̂0 

+vec(Ŝ t)⊤ĝ1, σ̂).

3. The Optimization Algorithm
In this section, we discuss how to solve the supervised 
tensor dimension reduction method proposed in Section 
2.2. In Section 3.1, we develop a block updating algo-
rithm to solve criterion (4). The algorithm splits the 
unknown parameters in criterion (4) into several blocks, 
and it cyclically optimizes one block parameter while 
keeping other blocks fixed until convergence. The sub-
optimization problem for each block is convex, so the 
convergence of the block updating algorithm is guaran-
teed. In Section 3.2, we discuss the initialization of the 
proposed algorithm and hyperparameter tuning.

3.1. The Block Updating Algorithm
The block updating algorithm first splits the unknown 
parameters in criterion (4) into five blocks, that is, U1, 
U2, U3,S and {β̃0 , b̃1 , σ̃}. It then cyclically optimizes 
one block of parameters each time while keeping other 
blocks fixed.

Specifically, at the kth iteration, U1 is updated by solv-
ing the following optimization problem while keeping 

other blocks (i.e., Uk�1
2 , Uk�1

3 , σ̃k�1, β̃
k�1

0 , b̃
k�1

1 ,Sk�1) fixed:

Uk
1 � arg min

U1

α‖PΩ(X �S
k�1 ×1U⊤1 ×2 Uk�1

2

⊤×3 Uk�1
3

⊤)‖2F

+(1�α)ℓ(σ̃k�1, β̃
k�1

0 , b̃
k�1

1 ,Sk�1
(4) )

� arg min
U1

‖PΩ(X �S
k�1 ×1U⊤1 ×2 Uk�1

2

⊤×3 Uk�1
3

⊤)‖2F

(10) 

Similarly, the remaining blocks are updated as follows:

Uk
2 � arg min

U2

α‖PΩ(X �S
k�1 ×1Uk

1

⊤×2 U⊤2 ×3 Uk�1
3

⊤)‖2F

+ (1�α)ℓ(σ̃k�1, β̃
k�1

0 , b̃
k�1

1 ,Sk�1
(4) )

� arg min
U2

‖PΩ(X �S
k�1 ×1Uk

1

⊤×2 U⊤2 ×3 Uk�1
3

⊤)‖2F

(11) 

Uk
3 � arg min

U3

α‖PΩ(X �S
k�1 ×1Uk

1

⊤×2 Uk
2

⊤×3 U⊤3 )‖2F

+ (1�α)ℓ(σ̃k�1, β̃
k�1

0 , b̃
k�1

1 ,Sk�1
(4) )

� arg min
U3

‖PΩ(X �S
k�1 ×1Uk

1

⊤×2 Uk
2

⊤×3 U⊤3 )‖2F

(12) 

{σ̃k, β̃
k

0, b̃
k

1}

� arg min
σ̃k, β̃0, b̃1

α‖PΩ(X �S
k�1 ×1Uk

1

⊤×2 Uk
2

⊤×3 Uk
3

⊤)‖2F

+ (1�α)ℓ(σ̃, β̃0, b̃1,Sk�1
(4) )

� arg min
σ̃k, β̃0, b̃1

ℓ(σ̃, β̃0, b̃1,Sk�1
(4) ) (13) 

S
k � arg min

S

α‖PΩ(X �S ×1Uk
1

⊤×2 Uk
2

⊤×3 Uk
3

⊤)‖2F

+ (1�α)ℓ(σ̃k, β̃
k

0, b̃
k

1,S(4)) (14) 

We summarize the block updating algorithm in Algo-
rithm 1 below. The convergence criterion can be set as 

Ψ(Uk
1, Uk

2, Uk
3, σ̃k, β̃

k

0, b̃
k

1,Sk)�Ψ(Uk+1
1 , Uk+1

2 , Uk+1
3 , σ̃k+1, 

β̃
k+1

0 , b̃
k+1

1 , S
k+1) < ɛ, where Ψ is the value of the objec-

tive function in criterion (4), and ɛ is a small number. It is 
easy to show that subproblems (10), (11), and (12) are 
convex. For normal, logistic, and SEV distributions, their 
negative log-likelihood functions ℓ(·) are also convex, so 
objective functions (13) and (14) are convex as well. As a 
result, the block updating algorithm converges to a sta-
tionary point of criterion (4).

Algorithm 1 (Block Updating Algorithm for Solving Criterion 

(4)) 

1. Input: Tensor X constructed from the (incomplete) 
degradation image streams of M assets and the TTF 
vector y; the dimension of the low-dimensional ten-
sor subspace {P1, P2, P3}

2. Initialization: Initialize (U0
1, U0

2, U0
3, σ̃0, β̃

0

0, b̃
0

1,S0)
randomly or heuristically

3. While convergence criterion not met, do

4. Uk
1← (10)

5. Uk
2← (11)

6. Uk
3← (12)

7. (σ̃k, β̃
k

0, b̃
k

1) ← (13)
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8. S
k← (14)

9. k � k+ 1 End While
10. Output: Basis matrices of the low-dimensional 

tensor subspace {Uk
1, Uk

2, Uk
3}

3.2. Initialization and Hyperparameter Tuning
To run Algorithm 1, we need to initialize the parameters 

U0
1, U0

2, U0
3, σ̃0, β̃

0

0, b̃
0

1,S0. The initialization can be accom-

plished randomly or heuristically. In this article, we pro-
pose a heuristic initialization method. Specifically, if 
tensor X has no missing entries, MPCA (Lu et al. 2008) is 

applied to tensor X , which yields {U0
1, U0

2, U0
3}. Next, we 

compute S0 by solving S0 � arg min
S
‖PΩ(X �S ×1U0

1

⊤

×2 U0
2

⊤×3 U0
3

⊤)‖2F. Finally, β̃
0

0, b̃
0

1, σ̃0 are computed by 

solving min
β̃

0

0, b̃
0

1, σ̃0 ℓ(σ̃0y� 1Mβ̃
0

0 � S0
(4)b̃

0

1), where S0
(4) is 

the mode-4 matricization of S0. If tensor X has missing 
values, a tensor completion method (Liu et al. 2012, Xu 
et al. 2013, Filipović and Jukić 2015) can be conducted 
before applying MPCA.

In addition to the initialization, the hyperparameter 
parameters, including the weight α and the dimension 
of tensor subspace (P1, P2, P3), also need to be prede-
termined. It is known that α controls the weights of the 
feature extraction term and the regression term, and 
α ∈ [0, 1]. To select an appropriate weight parameter, we 
will first split the range [0, 1] into L+1 intervals equally, 
which yields α0 � 0=L,α1 � 1=L,α2 � 2=L, : : : ,αL � L=L. 
Next, we employ cross-validation to select the weight 
that achieves the highest prediction accuracy. If the 
weight at the boundary is selected (i.e., α0 � 0=L or 
αL � L=L), we further split the interval closest to the 
boundary and conduct cross-validation again. For exam-
ple, if α0 � 0=L is chosen as the best weight, we will split 
[0=L, 1=L] into (L+ 1) intervals equally and reconduct 
the cross-validation. This process is repeated until a non- 
boundary weight is selected. Of course, a maximum 
number of repetitions needs to be set to control the com-
putational time.

The values of {P1, P2, P3} can be determined using 
cross-validation as well. To be specific, we may try a cer-
tain number of candidate values for {P1, P2, P3} and run 
Algorithm 1 to extract low-dimensional features, which 
are then used to build the prognostic model discussed in 
Section 2.3 for TTF prediction. The values that achieve 
the smallest prediction error will be chosen. It is known 
that there usually exist high spatio-temporal correlations 
among degradation image streams (Fang et al. 2019), so 
the dimension of the tensor subspace is usually low, 
which helps reduce the computation intensity of model 
selection. The values of {P1, P2, P3} can also be deter-
mined heuristically. For example, if MPCA is employed 
for parameter initialization, then the fraction of variance 
explained (Lu et al. 2008) can be used to determine the 
dimension of tensor subspace.

4. Analytical Solutions
In this section, we discuss the closed-form solutions of 
optimization problems (10), (11), (12), (13), and (14) in 
Algorithm 1. Specifically, we will discuss the solutions 
when degradation image streams are complete and 
incomplete in Sections 4.1 and 4.2, respectively. For sim-
plicity, we will remove the superscripts k and k – 1.

4.1. Analytical Solutions for Complete Data
4.1.1. Solution Procedure for U1. When degradation 
image streams are complete (i.e., the 4D image tensor X 

in criterion (4) has no missing entries), we have the fol-
lowing proposition, which provides the analytical solu-
tion to problem (10).

Proposition 1. If the 4D tensor X has no missing values, 
optimization problem (10) has the following analytical solu-
tion,

U1 � (X(1) · S⊤U1(1) · (SU1(1) · S⊤U1(1))
�1)⊤, 

where X(1) is the mode-1 matricization of X , SU1
� S×2 U⊤2 

×3 U⊤3 , SU1(1) is the mode-1 matricization of SU1
, and the 

operator “·” represents multiplication.

4.1.2. Solution Procedure for U2. When degradation 
image streams are complete, the proposition below gives 
the analytical solution to problem (11).

Proposition 2. If the 4D tensor X has no missing values, 
optimization problem (11) has the following analytical solu-
tion,

U2 � (X(2) · S⊤U2(2) · (SU2(2) · S⊤U2(2))
�1)⊤, 

where X(2) is the mode-2 matricization of X , SU2
� S ×1U⊤1 

×3 U⊤3 , and SU2(2) is the mode-2 matricization of SU2
.

4.1.3. Solution Procedure for U3. When degradation 
image streams are complete, the proposition below pro-
vides the analytical solution to problem (12).

Proposition 3. If the 4D tensor X has no missing values, 
optimization problem (12) has the following analytical solu-
tion,

U3 � (X(3) · S⊤U3(3) · (SU3(3) · S⊤U3(3))
�1)⊤, 

where X(3) is the mode-3 matricization of X , SU3
� S ×1U⊤1 

×2 U⊤2 , and SU3(3) is the mode-3 matricization of SU3
.

4.1.4. Solution Procedure for b̃ 0, b̃ 1, s̃ . For general 
LLS distributions, there is no closed-form solution for 
β̃0, b̃1, σ̃. As a result, we may use existing algorithms 
(Doray 1994) or convex optimization packages to solve 
problem (13). However, if the TTF follows a normal (or 
lognormal) distribution, we may replace the negative 
log-likelihood term in criterion (3) with a mean squared 
error-based loss function, which results in the following 
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then optimization problem (10) has the following analytical 
solution,

U1 � (Xπ(1) · SπU1(1)
⊤ · (SπU1(1) · S

π
U1(1)

⊤)�1)⊤, 

where Xπ(1) is a matrix consisting of the π columns of 
X(1), SU1

� S×2 U⊤2 ×3 U⊤3 , SU1(1) is the mode-1 matriciza-
tion of SU1

, and SπU1(1) denotes a matrix constituting the π col-
umns of SU1(1).

4.2.2. Solution Procedure for U2. Similar to U1, there is 
no closed-form solution for U2 in optimization criterion 
(11) when tensor X has a general entry-wise missing 
structure. However, Lemma 1 implies that we may also 
decompose optimization problem (11) into multiple sub- 
criteria, each of which has a closed-form solution. Speci-
fically, denote the i2th column of matrix U2 ∈ RP2×I2 as 
ui2

2 ∈ RP2×1, i2 � 1, : : : , I2, and we can replace optimization 
problem (11) with I2 subproblems by separately optimiz-
ing u1

2, u2
2, : : : , uI2

2 . Proposition 7 shows that there is an 
analytical solution for ui2

2 .

Proposition 7. When optimizing the i2th column of U2 in 
problem (11), we have the following analytical solution,

ui2
2 � (x

i2,πi2

(2) · S
πi2

U2(2)
⊤ · (Sπi2

U2(2) · S
πi2

U2(2)
⊤)�1)⊤

where xi2
(2) denotes the i2th row of X(2), πi2 is a set consisting of 

the indices of available entries of xi2
(2), x

i2,πi2

(2) is a vector consisting 

of the available entries in the i2th column of X(2), SU2
�

S ×1U⊤1 ×3 U⊤3 , SU2(2) is the mode-2 matricization of SU2
, and 

S
πi2

U2(2) denotes a matrix comprising the πi2 
columns of SU2(2).

Similar to U1, when tensor X has the image-wise miss-
ing structure, we do not have to optimize each of the col-
umns of U2 separately. Proposition 8 below gives an 
analytical solution to U2 when tensor X has missing 
images.

Proposition 8. If the indices of tensor X ’s missing entries 
can be denoted as Ω ⊆ {(: , : , i3, m), 1 ≤ i3 ≤ I3, 1 ≤m ≤
M}, where “:” denotes all the indices in a dimension, then 
X ’s mode-2 matricization X(2) has missing columns. Let π
be the set consisting of the indices of available columns in 
X(2), and then optimization problem (11) has the following 
analytical solution,

U2 � (Xπ(2) · SπU2(2)
⊤ · (SπU2(2) · S

π
U2(2)

⊤)�1)⊤, 

where Xπ(2) is a matrix consisting of the π columns of 
X(2), SU2(2) is the mode-2 matricization of SU2

, and SπU2(2)
denotes a matrix constituting the π columns of SU2(2).

4.2.3. Solution Procedure for U3. There is no closed- 
form solution for U3 in optimization criterion (12) when 
tensor X has missing entries. Based on Lemma 1, we 
decompose optimization problem (12) into multiple sub- 
criteria, each of which has a closed-form solution. Denote 
the i3th column of matrix U3 ∈ RP3×I3 as ui3

3 ∈ RP3×1, i3 �
1, : : : , I3, and we replace optimization problem (12) with 
I3 subproblems by separately optimizing u1

3, u2
3, : : : , uI3

3 

respectively. Proposition 9 suggests that there is an ana-
lytical solution when optimizing ui3

3 .

Proposition 9. When optimizing the i3th column of U3 in 
problem (12), we have the following analytical solution,

ui3
3 � (x

i3,πi3

(3) · S
πi3

U3(3)
⊤ · (Sπi3

U3(3) · S
πi3

U3(3)
⊤)�1)⊤, 

where xi3
(3) denotes the i3th row of X(3), πi3 

is a set consisting of 

the indices of available entries of xi3
(3), x

i3,πi3

(3) is a vector consist-

ing of the available entries in the i3th row of X(3), SU3
�

S ×1U⊤1 ×2 U⊤2 , SU3(3) is the mode-3 matricization of SU3
, 

and S
πi3

U3(3) denotes a matrix comprising the πi3 
columns of 

SU3(3).

4.2.4. Solution Procedure for b̃ 0, b̃ 1, s̃ . Whether ten-
sor X contains missing entries does not affect the methods 

Figure 2. (Color online) Simulated Degradation Images Based on Heat Transfer Process 

Note. (a) Without noise; (b) with noise.
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for β̃0, b̃1, and σ̃ estimation. Therefore, the estimation 
methods discussed in Section 4.1.4 can still be used.

4.2.5. Solution Procedure for S. For general LLS 
distributions, there is no closed-form solution for S. 
Therefore, we may use existing convex optimization 
packages to solve problem (14). However, if the TTF 
follows a normal (or lognormal) distribution, problem 
(14) is equivalent to (16) (see Section 4.1.5 for details). 
Based on Lemma 1, we may optimize each row of S(4)
separately. We denote the mth row of matrix S(4) ∈
RM×(P1×P2×P3) as sm

(4) ∈ R1×(P1×P2×P3), m � 1, : : : , M, and re-
place optimization problem (16) with M subproblems, 
that is, separately optimizing s1

(4), s2
(4), : : : , sM

(4). Proposi-
tion 10 suggests that there is an analytical solution 
when optimizing sm

(4).

Proposition 10. When optimizing the mth row of matrix 
S(4) in problem (16), we have the following analytical solu-
tion,

sm
(4) � [α · xm,πm

(4) · (U3 ⊗U2 ⊗U1)πm⊤

+ (1� α) · (ym � β̃0) · b̃
⊤
1 ] ·

[α · (U3 ⊗U2 ⊗U1)πm · (U3 ⊗U2 ⊗U1)πm⊤

+ (1� α) · b̃1 · b̃
⊤
1 ]�1, 

where xm
(4) represents the mth row of X(4), πm denotes the set 

consisting of the indices of available entries in xm
(4), xm,πm

(4) is a 
vector consisting of the available entries in the mth row of X(4), 
and (U3 ⊗U2 ⊗U1)πm denotes a matrix comprising the πm 

columns of matrix U3 ⊗U2 ⊗U1.

The proof of all Propositions 5, 6, 7, 8, 9, and 10 can be 
found in the Appendix.

5. Numerical Studies
In this section, we validate the effectiveness of our pro-
posed supervised tensor dimension reduction-based 
prognostic model using simulated data.

5.1. Data Generation
We generate degradation image streams for 500 assets. 
The image stream from asset m, which is denoted by 
Xm(x, y, t), m � 1, 2, : : : , 500, is generated from the fol-
lowing heat transfer equation,

∂Xm(x, y, t)
∂t

� αm
∂

2
Xm

∂x2
+ ∂

2
Xm

∂y2

 !

, (17) 

where (x, y), 0 ≤ x, y ≤ 0:2 represents the location of each 
image pixel. αm is the thermal diffusivity coefficient, 
which is randomly generated from a uniform distribu-
tion U(0:5 × 10�4, 1 × 10�4). t is the time index. The initial 
and boundary conditions are set such that X | t�1 � 0 
and Xm |x�0 � Xm |x�0:2 � Xm |y�0 � Xm |y�0:2 � 30. At each 

time t, the image is recorded at locations x � j
n+1 , y �

k
n+1 , j, k � 1, : : : , n, resulting in an n×n matrix. Here, we 
set n�21 and t � 1, 2, : : : , 150, which yields 150 images 
of size 21×21 for each asset. This implies that the degra-
dation image stream of each asset can be represented 
by a 21×21×150 tensor. In addition, an independent 
and identically distributed random noise ɛ ~ N(0, 0:1) is 
added to each pixel. Figure 2 demonstrates an example 
of some images with and without noise from one of the 
assets simulated in this study.

To determine the TTF of an asset, we first transform 
the asset’s 21 × 21 × 150 tensor to a 1×150 time series by 
taking the average pixel intensity of each image. The 
time series signal indicates how the average heat of the 
asset involves over time. Next, we let the TTF of the asset 
be the time point where the amplitude of the time series 
signal crosses a predefined soft failure threshold, which 
is set as 23 in this study. Because the images of different 
assets are generated with different thermal diffusivity 
coefficients, the time points where their time series sig-
nals go beyond the threshold may be different. Thus, the 
TTF of different assets may also be different. To mimic 
reality, we truncate the image stream of each asset by 
keeping only the images observed before its TTF. In 
other words, any images observed after an asset’s TTF 
are removed from the image tensor of the asset. Such a 
truncation is normal in reality because an asset usually 
gets maintained or replaced once its degradation signal 
crosses the soft failure threshold. Consequently, the third 
dimension of the tensor of different assets might be dif-
ferent. In addition, to reduce the computation load, we 
keep one of every 10 images in the truncated image 
stream of each asset.

5.2. The Benchmark and 
Performance Comparison

We randomly split the generated data into a training 
data set consisting of 400 assets and a test data set con-
sisting of the remaining 100 assets. To test the robust-
ness of the proposed method, we consider four levels of 
data incompleteness: (1) 0% missing, (2) 10% missing, 
(3) 50% missing, and (4) 90% missing. For the first sce-
nario, (1) 0% missing, we use all of the generated data 
for model training and testing. Please notice that even 
though all of the available images are used, the image 
tensor X is still incomplete because of failure time trun-
cation; that is, different assets may have different TTFs 
and thus different numbers of images (see the discus-
sion in the second paragraph of Section 2.3). For the re-
maining scenarios, we randomly remove some images 
from each asset’s image stream. For example, with 
10% missing, we randomly remove 10% of the images 
(rounding to the nearest integer) from the image stream 
of each asset.

We compare the performance of our proposed method 
with an unsupervised tensor dimension reduction-based 
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benchmark. Considering that image streams are incom-
plete, the baseline model first applies a tensor completion 
method known as TMac, developed by Xu et al. (2013) 
to impute the missing values of the image tensor. Next, 
an unsupervised tensor dimension reduction method, 
MPCA (Lu et al. 2008), is employed to reduce the dimen-
sion of the imputed image tensor to reduce dimen-
sion and extract low-dimension features, which are then 
used to build an LLS-based prognostic model, as we dis-
cussed in Section 2.3. MPCA is a widely used dimension 
reduction method for tensor data. It projects a high- 
dimensional tensor into a subspace but maximizes the 
total tensor scatter, which is assumed to measure the var-
iations in the original tensor objects. Lu et al. (2008) pro-
posed a fraction-of-variation-explained (FVE) method to 
determine the dimension of the low-dimension tensor 
subspace/features, which represents the percentage of 
variation of the original high-dimensional tensor pre-
served by the low-dimensional tensor features. Because 
the optimal FVE suggested by Lu et al. (2008) was 97%, 
we will first set FVE as 97% in this study, and the cor-
responding baseline model is designated as “MPCA 
(97%).” In addition to the FVE method, we also use 
cross-validation (CV) to select an appropriate dimension 
for the tensor subspace. Specifically, we use the training 
data to conduct a 10-fold CV for various combinations of 
(P1, P2, P3), where P1 � 1, : : : , 4, P2 � 1, : : : , 4, and P3 � 1, 
: : : , 4. The baseline model is referred to as “MPCA_CV”. 
We also use 10-fold CV to determine the value of the 
weight parameter α and the appropriate dimension of 
the tensor subspace of our proposed method.

We use the heuristic method discussed in Section 3.1 to 
initialize the block updating algorithm. In this study, we 
use lognormal regression to build the prognostic model. 
The proposed method is denoted as “Proposed_CV”. 
The prediction errors of our proposed method and two 

benchmarks are calculated by using the equation below 
and reported in Figures 3–6.

Prediction Error � |Estimated TTF � True TTF |
True TTF

:

(18) 

5.3. Results and Analysis
Figure 3 reports the prediction errors of the two bench-
marks and our proposed method when data are com-
plete, which means no image is removed on purpose. 
Figure 4 shows the prediction errors when 10% entries in 
the third mode (time) of degradation image streams are 
missing, whereas Figures 5 and 6 demonstrate the errors 
when 50% and 90% images are missing, respectively.

Figure 3. (Color online) Prediction Errors When Data are 
Complete in Numerical Study 

Figure 4. (Color online) Prediction Errors When 10% Data 
are Missing in Numerical Study 

Figure 5. (Color online) Prediction Errors When 50% Data 
are Missing in Numerical Study 
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Figures 3–6 illustrate that our proposed method out-
performs the benchmarks under all data missing rates. 
For example, when the degradation image signals are 
complete, the median absolute prediction errors (and the 
interquartile ranges, i.e., IQRs) of the proposed method 
and the two benchmarks are 0.003 (0.003), 0.027 (0.035), 
and 0.025 (0.033), respectively; when 10% images are 
missing, the median absolute prediction errors (and IQRs) 
of the three methods are, respectively, 0.019 (0.017), 0.058 
(0.067), and 0.053 (0.063); when 50% of images are miss-
ing, they are 0.052 (0.084), 0.302 (0.405), and 0.104 (0.168). 
We believe this is because our proposed method applies 
historical TTFs to supervise the low-dimensional tensor 
dimension reduction, and thus the extracted features are 
more effective for failure time prediction. Unlike our 
method, the two baseline models use MPCA, an unsuper-
vised tensor dimension reduction method, for feature 
extraction. Because the extracted features are determined 
only by the image streams, and no TTF gets involved, 
they are not as effective as the features extracted by our 
proposed method, and thus their failure time prediction 
accuracy and precision are compromised.

Figures 3–6 also suggest that the performances of all 
the three models deteriorate, and the superiority of our 
proposed method over the two benchmarks decreases, 
with the increase of data missing rate. For example, 
when data are complete, the median absolute prediction 
errors (and IQRs) of “Proposed_CV” and “MPCA_CV” 
are 0.003 (0.003) and 0.025 (0.033), respectively; when the 
missing rate increases to 90%, they are, respectively, 0.13 
(0.21) and 0.16 (0.19), which are almost comparable. This 
is reasonable because the performances of all the models 
are compromised more when more data are missing. 
In addition, no model will perform well if a high percent-
age (say more than 90%) of data are missing because it 

implies that very limited useful degradation information 
is available for modeling.

Figures 3–6 also demonstrate that “MPCA_CV” always 
outperforms “MPCA (97%)”, and the superiority of 
“MPCA_CV” is augmented with the increase of data 
missing rate. For instance, when 10% images are miss-
ing, the median absolute prediction errors (and IQR) 
of “MPCA (97%)” and “MPCA_CV” are 0.058 (0.067) 
and 0.053 (0.063), respectively; when the missing rate is 
50%, they are 0.302 (0.405) and 0.104 (0.168). One of the 
possible reasons is that “MPCA (97%)” determines 
the dimension of the tensor subspace by setting the 
“FVE” as 97%, which usually results in relatively high- 
dimensional features, although the dimension is smaller 
than that of the original image tensor. Relatively high- 
dimensional features imply an insufficient dimension 
reduction. In addition, it means the number of para-
meters in the subsequent LLS-based prognostic model 
is relatively large, which poses estimation challenges 
given that the number of samples (assets) for model 
training is limited.

6. Case Study
In this section, we use degradation image streams ob-
tained from a rotating machinery test bed to validate the 
effectiveness of our proposed method. The test bed is 
designed to perform accelerated degradation tests on 
rolling entry thrust bearings. Specifically, bearings were 
run from brand new to failure. An FLIR T300 infrared 
camera was used to monitor the degradation process 
and collect degradation images over time. In the mean-
time, an accelerometer was mounted on the test bed to 
monitor the vibration of the bearing, and the failure time 
was defined as the time point where the amplitude of 
defective vibration frequencies crossed a threshold based 
on ISO standards for machine vibration. The data set con-
sists of 284 degradation image streams and their corre-
sponding TTFs, and each image has 40× 20 pixels. As an 
illustration, a sequence of images obtained at different 
(ordered) time periods of one of the bearings is shown in 
Figure 7. More details about the experimental setup and 
the data set can be found in Gebraeel et al. (2009) and 
Fang et al. (2019).

We use fivefold cross-validation to evaluate the per-
formance of our proposed model and the two bench-
marks discussed in Section 5. Similar to the simulation 
study, we conduct 10-fold cross-validation to deter-
mine the optimal weight parameter in criterion (4) and 
the most appropriate dimension of the tensor subspace. 
In addition, we also consider four levels of data incom-
pleteness: (1) 0% missing (i.e., complete), (2) 10% miss-
ing, (3) 50% missing, and (4) 90% missing. Figure 8
illustrates the absolute prediction errors when degrada-
tion image streams are complete. Figure 9 shows pre-
diction errors when 10% of the images of each bearing 

Figure 6. (Color online) Prediction Errors When 90% Data 
are Missing in Numerical Study 
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are missing. Figures 10 and 11 demonstrate the absolute 
prediction errors when the missing rates are 50% and 
90%, respectively.

Similar to the discovery in the numerical study in Sec-
tion 5, Figures 8–11 indicate that our proposed method 
constantly works better than the two benchmarks under 
all the 4 data missing rates. For example, the median 
absolute prediction errors (and IQRs) of our proposed 
method and the two benchmarks are 0.03 (0.04), 0.3 
(0.24), and 0.1 (0.16), respectively, when the degradation 
image streams are complete. When 50% of the images 
are missing, the median absolute prediction errors (and 

IQR) are, respectively, 0.09 (0.17), 0.62 (0.65), and 0.15 
(0.19). We believe this is because our proposed model 
is a supervised dimension reduction-based method, 
which uses TTF information to supervise the defection 
of the low-dimensional tensor subspace, whereas the 
benchmarks are unsupervised dimension reduction- 
based methods without TTF information involved. 
Because our method considers TTF information when 
detecting the tensor subspace, the extracted features 
are more effective for failure time prediction.

Figures 8–11 also show that the prediction errors of all 
the 3 methods increase with the increase of data missing 

Figure 7. (Color online) An Illustration of One Infrared Degradation Image Stream 

Figure 8. (Color online) Prediction Errors When Data are 
Complete in Case Study 

Figure 9. (Color online) Prediction Errors When 10% Data 
are Missing in Case Study 
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rates. For example, when the missing rates are 0%, 10%, 
50%, and 90%, the median absolute prediction errors 
(and IQRs) of “MPCA (97%)” are 0.3 (0.24), 0.49 (0.42), 
0.62 (0.65), and 0.83 (0.78), respectively, whereas they 
are, respectively, 0.09 (0.11), 0.1 (0.16), 0.15 (0.19), and 
0.31 (0.22) for “MPCA_CV”, and 0.03 (0.04), 0.05 (0.08), 
0.09 (0.17), and 0.29 (0.21) for our proposed method. This 
is reasonable because a higher data missing rate means 
less useful degradation information and thus a worse 
model performance. In addition, we observe that the 
superiority of our proposed method over the two bench-
marks decreases with the increase of data missing rates. 
For example, the prediction accuracy of our method and 
“MPCA (97%)” are comparable when the data missing 
rate is 90%. Again, we believe that this is because not 
much useful information is available when data are 
highly incomplete, and neither of the two models per-
form well with such limited data.

We also observe that “MPCA_CV” always outper-
forms “MPCA (97%),” and the superiority of “MPCA_-
CV” is augmented with the increase of the data missing 
rate. For example, when 10% images are missing, the 
median absolute prediction errors (and IQR) of “MPCA 
(97%)” and MPCA_CV are 0.49 (0.42) and 0.1 (0.16), 
respectively; when the missing rate is 50%, they are 0.62 
(0.65) and 0.15 (0.19). Again, we believe that this is 
because “MPCA (97%)” determines the dimension of 
the tensor subspace by setting the “FVE” as 97%, which 
results in relatively high-dimensional features because 
of the insufficient dimension reduction. Also, it results 
in a parameter estimation challenge because the number 
of parameters to be estimated in the prognostic model is 
relatively large compared to the limited number of his-
torical samples for model training. This suggests that 
cross-validation is a better method to determine the 
dimension of the tensor subspace, especially when we 

do not have enough number of samples for model 
training.

7. Conclusions
This paper proposed a supervised tensor dimension 
reduction-based prognostic model for applications with 
incomplete degradation imaging data. This is achieved 
by first developing a new supervised tensor dimension 
reduction method that reduces the dimension of incom-
plete high-dimensional degradation image streams and 
provides low-dimensional tensor features, which are 
then used to build a prognostic model based on (log)- 
location-scale regression.

The supervised tensor dimension reduction method 
uses historical TTFs to supervise the detection of a low- 
dimensional tensor subspace to reduce the dimension of 
incomplete high-dimensional image streams. Mathemat-
ically, it is formulated as an optimization criterion that 
combines a feature extraction term and a regression 
term. The feature extraction term focuses on identifying 
a tensor space to extract low-dimensional tensor features 
from high-dimensional image streams. The regression 
term regresses failure times against the features extracted 
by the first term using LLS regression. By jointly optimiz-
ing the two terms, it is expected to detect an appropriate 
tensor subspace such that the extracted features are effec-
tive for TTF prediction. To estimate the parameters of the 
supervised dimension reduction method, we developed 
a block updating algorithm for applications where TTFs 
follow distributions in the (log)-location-scale family. 
The algorithm works by splitting the parameters into 
several blocks and cyclically optimizing one block of 
parameters while keeping other blocks fixed until con-
vergence. In addition, we showed that if TTFs follow nor-
mal or lognormal distributions, there is a closed-form 
solution when optimizing each block of the parameters, 

Figure 10. (Color online) Prediction Errors When 50% Data 
are Missing in Case Study 

Figure 11. (Color online) Prediction Errors When 90% Data 
are Missing in Case Study 
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no matter whether the imaging data are complete or 
incomplete.

Simulated data as well as a data set from rotating 
machinery were used to validate the effectiveness of our 
proposed method. The results showed that our proposed 
prognostic method consistently outperforms the unsu-
pervised tensor reduction-based benchmarks under var-
ious data missing rates. This validated the benefits and 
importance of using failure time information to super-
vise the dimension reduction of high-dimensional degra-
dation image streams when building prognostic models.

The proposed prognostic model assumes that the 
TTFs of assets in the training data set are known. In 
many real-world applications, the historical failure 
times might be right censored. This is because a compo-
nent might be replaced before failure, so the exact TTF is 
unknown, and we know only that it is larger than the 
replacement time. How to incorporate censored TTFs 
into the proposed method could be an interesting future 
research topic.

Appendix

Proof of Proposition 1

The original optimization problem is

arg min
U1

α‖PΩ(X � S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 )‖2F

+ (1 � α)‖y � 1M · β̃0 � S(4) · b̃1‖2F, 

which is equivalent to the following problem when data are 
complete:

arg min
U1

α‖X � S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 ‖2F

+ (1 � α)‖y � 1M · β̃0 � S(4) · b̃1‖2F, 

which is convex. Thus, it can be solved by setting the derivatives 

to be zeros, that is dΨ
dU1
� 0, where Ψ � α‖X �S ×1U⊤1 ×2 U⊤2 

×3 U⊤3 ‖2F + (1�α)‖y� 1M · β̃0 � S(4) · b̃1‖2F. This implies d
dU1
(‖X 

�S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 ‖2F) � 0. According to the communication 

law of tensor mode multiplication, we have d
dU1 
(‖X � (S 

×2 U⊤2 ×3 U⊤3 ) ×1 U⊤1 ‖2F) � 0.Thus, d
dU1
(‖X � SU1

×1 U⊤1 ‖2F) � 0, 

where SU1 
� S×2 U⊤2 ×3 U⊤3 . Furthermore, we have d

dU1 
(‖X(1)

�U⊤1 · SU1(1)‖2F)� 0 because of the fact that ‖S‖2F � ‖S(n)‖2F and 

the property of tensor mode multiplication S×nU �U · S(n). 
By taking the derivative of the Frobenius norm, we have 

2(X(1) �U⊤1 · SU1(1)) · (�S⊤U1(1)) � 0. Thus, U⊤1 · SU1(1) · S⊤U1(1) �
X(1) ·S⊤U1(1), which gives that U⊤1 � X(1) · S⊤U1(1) · (SU1(1) · S⊤U1(1))

�1. 

Finally, we have U1 � (X(1) · S⊤U1(1) · (SU1(1) · S⊤U1(1))
�1)⊤.

Proof of Proposition 2

The original optimization problem is

arg min
U2

α‖PΩ(X � S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 )‖2F

+ (1 � α)‖y � 1M · β̃0 � S(4) · b̃1‖2F, 

which is equivalent to the following problem when data are 
complete:

arg min
U2

α‖X � S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 ‖2F

+ (1 � α)‖y � 1M · β̃0 � S(4) · b̃1‖2F 

which is convex. Therefore, it can be solved by setting the deriva-

tives to be zeros, that is dΨ
dU2
� 0, where Ψ � α‖X �S ×1 U⊤1 ×2 

U⊤2 ×3 U⊤3 ‖2F + (1�α)‖y� 1M · β̃0 � S(4) · b̃1‖2F. This implies d
dU2 

(‖X �S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 ‖2F) � 0. According to the communi-

cation law of tensor mode multiplication, we have d
dU2
(‖X � (S 

×1U⊤1 ×3 U⊤3 )×2 U⊤2 ‖2F) � 0. Thus, d
dU2
(‖X �SU2

×2 U⊤2 ‖2F) � 0, 

where SU2
� S ×1U⊤1 ×3 U⊤3 . Furthermore, we have d

dU2 
(‖X(2) �

U⊤2 · SU2(2)‖2F) � 0 because of the fact that ‖S‖2F � ‖S(n)‖2F and the 

property of tensor mode multiplication S×nU �U · S(n). By tak-

ing the derivative of the Frobenius norm, we have 2(X(2) �U⊤2 ·
SU2(2)) · (�S⊤U2(2)) � 0. Thus, U⊤2 · SU2(2) · S⊤U2(2) � X(2) · S⊤U2(2), 

which gives that U⊤2 � X(2) · S⊤U2(2) · (SU2(2) · S⊤U2(2))
�1. Finally, 

we have U2 � (X(2) · S⊤U2(2) · (SU2(2) · S⊤U2(2))
�1)⊤.

Proof of Proposition 3

The original optimization problem is

arg min
U3

α‖PΩ(X � S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 )‖2F

+ (1 � α)‖y � 1M · β̃0 � S(4) · b̃1‖2F, 

which is equivalent to the following problem when data are 
complete:

arg min
U3

α‖X � S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 ‖2F

+ (1 � α)‖y � 1M · β̃0 � S(4) · b̃1‖2F 

which is convex. Therefore, it can be solved by setting the 

derivatives to be zeros, that is dΨ
dU3
� 0, where Ψ � α‖X �S ×1 

U⊤1 ×2 U⊤2 ×3 U⊤3 ‖2F +(1� α)‖y� 1M · β̃0� S(4) · b̃1‖2F. This im-

plies that d
dU3
(‖X �S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 ‖2F) �0. According to 

the communication law of tensor mode multiplication, we 

have d
dU3 
(‖X � (S ×1U⊤1 ×2 U⊤2 )×3 U⊤3 ‖2F) � 0. Thus, d

dU3
(‖X �

SU3
×3 U⊤3 ‖2F) � 0, where SU3

� S ×1U⊤1 ×2 U⊤2 . Furthermore, 

we have d
dU3
(‖X(3) �U⊤3 · SU3(3)‖2F) � 0 because of the fact that 

‖S‖2F � ‖S(n)‖2F and the property of tensor mode multiplication 

S×n U �U · S(n). By taking the derivative of the Frobenius 

norm, we have 2(X(3) �U⊤3 · SU3(3)) · (�S⊤U3(3)) � 0. Thus, U⊤3 ·
SU3(3) ·S⊤U3(3) � X(3) · S⊤U3(3), which gives that U⊤3 � X(3) · S⊤U3(3) ·
(SU3(3) · S⊤U3(3))

�1. Finally, we have U3 � (X(3) · S⊤U3(3) · (SU3(3)

·S⊤U3(3))
�1)⊤.

Proof of Proposition 4

The original optimization problem is

arg min
S

α‖PΩ(X � S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 )‖2F

+ (1 � α)‖y � 1M · β0 � S(4) · b1‖2F, 
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which is equivalent to the following problem when data are 
complete:

arg min
Ŝ

α‖X � S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 ‖2F

+ (1 � α)‖y � 1M · β0 � S(4) · b1‖2F, 

which is convex. Thus, it can be solved by setting the deriva-

tives to be zeros, that is dΨ
dS � 0, where Ψ � α‖X �S ×1U⊤1 

×2 U⊤2 ×3 U⊤3 ‖2F + (1�α)‖y� 1M · β0 � S(4) ·b1‖2F. According to 

the connection between Kronecker product and tensor mode 

multiplication (Kolda 2006), we have d
dS (α‖X(4) � S(4) · (U3⊗

U2 ⊗U1)‖2F + (1�α)‖y� 1M · β0 � S(4) ·b1‖2F) � 0. By taking the 

derivative of the Frobenius norm, we have 2α · [X(4) � S(4) ·
(U3 ⊗U2 ⊗U1)] · [�(U3 ⊗U2 ⊗U1)⊤] + 2(1�α) · [y� 1M · β0 �

S(4) ·b1] · (�b⊤1 ) � 0. Thus, �2α ·X(4) · (U3 ⊗U2 ⊗U1)⊤ + 2α ·
S(4) · (U3 ⊗U2 ⊗U1) · (U3 ⊗U2 ⊗U1)⊤ + 2(1�α) (y � 1M · β0) ·
(�b⊤1 ) + 2(1�α) · (S(4) ·b1 ·b⊤1 ) � 0. Finally, we have S(4) � [α
·X(4) · (U3 ⊗U2 ⊗U1)⊤ + (1�α) · (y� 1M · β0) ·b⊤1 ] · [α · (U3⊗
U2 ⊗U1) · (U3 ⊗U2 ⊗U1)⊤ + (1�α) ·b1 ·b⊤1 ]�1.

Proof of Lemma 1

Let am ∈ R1×N denote the mth row of matrix A ∈ RM×N and bm 

∈ R1×P denote the mth row of matrix B ∈ RM×P, m � 1, : : : , M, 
and then we have

A�BC � [(a1 � b1C)⊤ , : : : , (aM � bMC)⊤]⊤:
Based on the definition of Frobenius norm, the original objec-
tive function in Lemma 1 can be transformed as follows:

‖A � BC‖2F � ‖[(a1 � b1C)⊤, : : : , (aM � bMC)⊤]⊤‖2F

�
X

M

m�1

‖am � bmC‖2F:

Therefore, we have

arg min
B

‖A � BC‖2F � arg min
{bm}Mm�1

X

M

m�1

‖am � bmC‖2F:, 

where B � [b⊤1 , : : : , b⊤M]⊤. Therefore, to solve the original objec-
tive function, we can simply solve the following M sub 
problems:

arg min
bm

‖am � bmC‖2F, m � 1, : : : , M:

Proof of Proposition 5

The original optimization problem is

arg min
U1

α‖PΩ(X � S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 )‖2F

+ (1 � α)‖y � 1M · β̃0 � S(4) · b̃1‖2F, 

which is equivalent to the following problem when data are 
missing,

arg min
U1

α‖X � (S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 ) ⊙ logic(X )‖2F

+ (1 � α)‖y � 1M · β̃0 � S(4) · b̃1‖2F, 

where ⊙ is the inner product, and logic(X ) denotes the logical 
value of X , that is, if an entry is observed, its logical value is 1; 
otherwise, it is 0. Because the problem is convex, it can be solved 

by setting the derivatives to be zeros, that is, dΨ
dU1
� 0, where Ψ �

α ‖X � (S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 ) ⊙ logic(X )‖2F + (1�α)‖y� 1M ·
β̃0 � S(4) · b̃1‖2F. This implies that d

dU1
(‖X � (S ×1U⊤1 ×2 U⊤2 ×3 

U⊤3 ) ⊙ logic(X)‖2F) � 0. According to the communication law of 

tensor mode multiplication, we have d
dU1
(‖X � [(S ×1U⊤1 ×2 

U⊤2 )×3 U⊤3 ] ⊙ logic(X )‖2F) � 0. Thus, d
dU1
(‖X � (SU1

×1 U⊤1 ) ⊙
logic(X )‖2F) � 0, where SU1

� S×2 U⊤2 ×3 U⊤3 . Furthermore, 

we have d
dU1
(‖X(1) � (U⊤1 · SU1(1)) ⊙ logic(X(1))‖2F) � 0 because 

‖S‖2F � ‖S(n)‖2F and S×nU �U · S(n).
Figure A.1 shows the pattern of mode-1 matricization of 

the 4D tensor X when it has missing entries whose indices 
can be denoted by a set Ω ⊆ {(i1, i2, i3, m), 1 ≤ i1 ≤ I1, 1 ≤ i2 ≤
I2, 1 ≤ i3 ≤ I3, 1 ≤m ≤M}. Based on Lemma 1, we can sequen-
tially optimize each column of U1.

Figure A.1. (Color online) An Illustration of the Data Missing Pattern in Proposition 5 (Stripes Representing Available Entries) 
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Specifically, we denote the i1th row in U⊤1 as ui1⊤
1 (blue solid 

row of U⊤1 in Figure A.1). The available entries in the i1th row of 
X(1) are denoted as x

i1 ,πi1

(1) (blue striped squares of xi1
(1) in Figure 

A.1). In S
πi1

U1(1), we choose the columns whose indices are the 
same as those of the available entries of xi1

(1) (blue striped columns 

of S
πi1

U1(1) in Figure A.1). As a result, we have d

du
i1
1

(ΣI1

i1�1‖x
i1 ,πi1

(1) �

(ui1⊤
1 · S

πi1

U1(1))‖
2
F) � 0. Because we only take the derivative of ui1

1 , 

we have d

du
i1
1

(‖xi1 ,πi1

(1) � (ui1⊤
1 · S

πi1

U1(1))‖
2
F) � 0. By taking the deriva-

tive of the Frobenius norm, we have 2(xi1 ,πi1

(1) � ui1⊤
1 · S

πi1

U1(1)) ·
(�S

πi1

U1(1)
⊤) � 0. Thus, ui1⊤

1 · S
πi1

U1(1) · S
πi1

U1(1)
⊤ � x

i1 ,πi1

(1) · S
πi1

U1(1)
⊤

, which 

gives that ui1
1 � (x

i1 ,πi1

(1) · S
πi1

U1(1)
⊤ · (Sπi1

U1(1) · S
πi1

U1(1)
⊤)�1)⊤.

Proof of Proposition 6

The original optimization problem is

arg min
U1

α‖PΩ(X � S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 )‖2F

+ (1 � α)‖y � 1M · β̃0 � S(4) · b̃1‖2F, 

which is equivalent to the following problem when data are 
incomplete,

arg min
U1

α‖X � (S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 ) ⊙ logic(X)‖2F

+ (1 � α)‖y � 1M · β̃0 � S(4) · b̃1‖2F, 

Where ⊙ is the inner product, and logic(X ) denotes the logical 
value of X . Because the problem is convex, it can be solved 

by setting the derivatives to be zeros, that is, dΨ
dU1
� 0, where Ψ

� α‖X � (S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 ) ⊙ logic(X )‖2F + (1�α)‖y� 1M 

· β̃0 � S(4) · b̃1‖2F. This implies that d
dU1
(‖X � (S ×1U⊤1 ×2 U⊤2 ×3 

U⊤3 ) ⊙ logic(X )‖2F) � 0. According to the communication law of 

tensor mode multiplication, we have d
dU1
(‖X � [(S×2 U⊤2 ×3 

U⊤3 ) ×1U⊤1 ] ⊙ logic(X )‖2F) � 0. Thus, d
dU1
(‖X � (SU1

×1U⊤1 ) ⊙

logic(X )‖2F) � 0, where SU1
� S×2 U⊤2 ×3 U⊤3 . Furthermore, we 

have d
dU1
(‖X(1) � (U⊤1 · SU1(1)) ⊙ logic(X(1))‖2F) � 0 because of 

the fact that ‖S‖2F � ‖S(n)‖2F and S×nU �U · S(n) (a property of 

tensor mode multiplication).
As discussed earlier, for applications with missing images, 

the indices of tensor X ’s missing entries can be denoted as 
Ω ⊆ {(: , : , i3, m), 1 ≤ i3 ≤ I3, 1 ≤m ≤M}, where “:” denotes all 
of the indices in a dimension. As a result, it can be easily 
shown that X ’s mode-1 matricization X(1) has missing col-

umns (see Figure A.2 for an illustration). Let π be the set con-
sisting of the indices of available columns in X(1), and then 

we need to solve d
dU1
(‖Xπ(1) �U⊤1 · SπU1(1)‖

2
F) � 0, where SπU1(1)

denotes a matrix constituting the π columns of SU1(1). Thus, 

we have 2(Xπ(1) �U⊤1 · SπU1(1)) · (�SπU1(1)
⊤)� 0. Thus, U⊤1 · SπU1(1) ·

SπU1(1)
⊤ � Xπ(1) · SπU1(1)

⊤, which gives that U⊤1 � Xπ(1) · SπU1(1)
⊤ ·

(SπU1(1) · S
π
U1(1)

⊤)�1. This yields the solution U1 � (Xπ(1) · SπU1(1)⊤·
(SπU1(1) · S

π
U1(1)

⊤)�1)⊤.

Proof of Proposition 7

The original optimization problem is

arg min
U2

α‖PΩ(X � S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 )‖2F

+ (1 � α)‖y � 1M · β̃0 � S(4) · b̃1‖2F, 

which is equivalent to the following problem when data are 
missing,

arg min
U2

α‖X � (S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 ) ⊙ logic(X )‖2F

+ (1 � α)‖y � 1M · β̃0 � S(4) · b̃1‖2F, 

where ⊙ is the inner product, and logic(X ) denotes the logical 
value of X . Because the problem is convex, it can be solved 

by setting the derivatives to be zeros, i.e., dΨ
dU2
� 0, where Ψ � α

‖X � (S×1U⊤1 ×2 U⊤2 ×3 U⊤3 ) ⊙ logic(X)‖2F + (1�α)‖y� 1M · β̃0 

�S(4) · b̃1‖2F. This implies that d
dU2
(‖X � (S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 )

Figure A.2. (Color online) An Illustration of the Data Missing Pattern in Proposition 6 (Stripes Representing Available Columns) 
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⊙ logic(X )‖2F) � 0. According to the communication law of ten-

sor mode multiplication, we have d
dU2
(‖X � [(S ×1U⊤1 ×3 U⊤3 )

×2 U⊤2 ] ⊙ logic(X )‖2F) � 0. Thus, d
dU2
(‖X � (SU2

×2 U⊤2 ) ⊙
logic (X)‖2F) � 0, where SU2

� S ×1U⊤1 ×3 U⊤3 . Furthermore, we 

have d
dU2 

(‖X(2) � (U⊤2 · SU2(2)) ⊙ logic(X(2))‖2F) � 0 because 

‖S‖2F � ‖S(n)‖2F and S×nU �U · S(n).
Figure A.3 shows the pattern of mode-2 matricization of 

the 4D tensor X when it has missing entries whose indices 
can be denoted by a set Ω ⊆ {(i1, i2, i3, m), 1 ≤ i1 ≤ I1, 1 ≤ i2 ≤
I2, 1 ≤ i3 ≤ I3, 1 ≤m ≤M}. Based on Lemma 1, we can sequen-
tially optimize each column of U2.

Specifically, we denote the i2th row in U⊤2 as ui2⊤
2 (blue solid 

row of U⊤2 in Figure A.3). The available entries in the i2th row 
of X(2) are denoted as x

i2 ,πi2

(2) (blue striped squares of xi2
(2) in 

Figure A.3). In S
πi2

U2(2), we choose the columns whose indices are 
the same as those of the available entries in xi2

(2) (blue striped 

columns of S
πi2

U2(2) in Figure A.3). As a result, we have d

du
i2
2

(ΣI2

i2�1 

‖xi2 ,πi2

(2) � (ui2⊤
2 · S

πi2

U2(2))‖
2
F) � 0. Because on the derivative of ui2

2 is 

taken, we have d

du
i2
2

(‖xi2 ,πi2

(2) � (ui2⊤
2 · S

πi2

U2(2))‖
2
F) � 0. By taking the 

derivative of the Frobenius norm, we have 2(xi2 ,πi2

(2) � ui2⊤
2 ·

S
πi2

U2(2))·(�S
πi2

U2(2)
⊤)� 0. Thus, ui2⊤

2 ·S
πi2

U2(2) · S
πi2

U2(2)
⊤ � x

i2 ,πi2

(2) · S
πi2

U2(2)
⊤

, 

which gives that ui2
2 � (x

i2 ,πi2

(2) · S
πi2

U2(2)
⊤ · (Sπi2

U2(2) · S
πi2

U2(2)
⊤)�1)⊤.

Proof of Proposition 8

The original optimization problem is

arg min
U2

α‖PΩ(X � S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 )‖2F

+ (1 � α)‖y � 1M · β̃0 � S(4) · b̃1‖2F, 

which is equivalent to the following problem when data are 
incomplete,

arg min
U2

α‖X � (S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 ) ⊙ logic(X)‖2F

+ (1 � α)‖y � 1M · β̃0 � S(4) · b̃1‖2F, 

where ⊙ is the inner product, and logic(X ) denotes the logical 
value of X . Because the optimization criterion is convex, it 

can be solved by setting the derivatives to be zeros, that is, dΨ
dU2 

� 0, where Ψ � α‖X � (S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 ) ⊙ logic(X )‖2F+
(1�α)‖y� 1M · β̃0 � S(4) · b̃1‖2F. This implies that d

dU2 
(‖X � (S 

×1U⊤1 ×2 U⊤2 ×3 U⊤3 ) ⊙ logic(X)‖2F) � 0. According to the com-

munication law of tensor mode multiplication, we have d
dU2 

(‖X � [(S ×1U⊤1 ×3 U⊤3 )×2 U⊤2 ] ⊙ logic(X)‖2F) � 0. As a result, 
d

dU2
(‖X � (SU2

×2 U⊤2 ) ⊙ logic(X )‖2F) � 0, where SU2
� S ×1U⊤1 

×3 U⊤3 . Furthermore, we have d
dU2
(‖X(2) � (U⊤2 · SU2(2)) ⊙ logic 

(X(2))‖2F) � 0 because ‖S‖2F � ‖S(n)‖2F and S×nU �U · S(n).
It can be easily shown that X ’s mode-2 matricization X(2) has 

missing columns as well (see Figure A.4 for an illustration). 

Therefore, similar to the proof of Proposition 9, we have d
dU2 

(‖Xπ(2) �U⊤2 · SπU2(2)‖
2
F) � 0, where π denotes the indices of avail-

able columns in X(2), SπU2(2) denotes a matrix constituting the π

columns of SU2(2). As a result, we have 2(Xπ(2) �U⊤2 · SπU2(2)) ·
(�SπU2(2)

⊤) � 0. Thus, U⊤2 · SπU2(2) · S
π
U2(2)

⊤ � Xπ(2) · SπU2(2)
⊤, which 

gives that U⊤2 � Xπ(2) · SπU2(2)
⊤ · (SπU2(2) · S

π
U2(2)

⊤)�1. This yields the 

analytical solution U2 � (Xπ(2) · SπU2(2)
⊤ · (SπU2(2) · S

π
U2(2)

⊤)�1)⊤.

Proof of Proposition 9

The original optimization problem is

arg min
U3

α‖PΩ(X � S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 )‖2F

+ (1 � α)‖y � 1M · β̃0 � S(4) · b̃1‖2F, 

which is equivalent to the following problem when data are 
missing,

arg min
U3

α‖X � (S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 ) ⊙ logic(X )‖2F

+ (1 � α)‖y � 1M · β̃0 � S(4) · b̃1‖2F, 

Where ⊙ is the inner product, and logic(X ) denotes the logical 
value of X . Because the problem is convex, it can be solved by 

Figure A.3. (Color online) An Illustration of the Data Missing Pattern in Proposition 7 (Stripes Representing Available Entries) 
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setting the derivatives to be zeros, i.e., dΨ
dU3
� 0, where Ψ � α‖X 

� (S ×1 U⊤1 ×2 U⊤2 ×3 U⊤3 ) ⊙ logic(X)‖2F + (1 � α)‖y � 1M · β̃0 

�S(4) · b̃1‖2F. This implies that d
dU3
(‖X � (S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 )

⊙ logic(X )‖2F) � 0. According to the communication law of 

tensor mode multiplication, we have d
dU3
(‖X � [(S ×1U⊤1 ×2 

U⊤2 )×3 U⊤3 ] ⊙ logic(X )‖2F) � 0. Thus, d
dU3
(‖X � (SU3

×3 U⊤3 ) ⊙
logic(X )‖2F) � 0, where SU3

� S ×1U⊤1 ×2 U⊤2 . Furthermore, we 

have d
dU3
(‖X(3) � (U⊤3 · SU3(3)) ⊙ logic(X(3))‖2F) � 0 because ‖S‖2F 

� ‖S(n)‖2F and S×nU �U · S(n).
Figure A.5 shows the pattern of mode-3 matricization of the 

4D tensor X when it has missing entries whose indices can be 
denoted by a set Ω ⊆ {(i1, i2, i3, m), 1 ≤ i1 ≤ I1, 1 ≤ i2 ≤ I2, 1 ≤ i3 

≤ I3, 1 ≤m ≤M}. Based on Lemma 1, we can sequentially opti-
mize each column of U3. The i3th row in U⊤3 is denoted as 
ui3⊤

3 (blue solid row of U⊤3 in Figure A.5). The available entries 
in the i3th row of X(3) are denoted as x

i3 ,πi3

(3) (blue striped 

squares of xi3
(3) in Figure A.5). In S

πi3

U3(3), we choose the columns 
whose indices are the same as those of the available entries 

of xi3
(3) (blue striped columns of S

πi3

U3(3) in Figure A.5). Thus, we 

have d

du
i3
3

(ΣI3

i3�1‖x
i3 ,πi3

(3) � (ui3⊤
3 · S

πi3

U3(3))‖
2
F) � 0, which yields d

du
i3
3 

(‖xi3 ,πi3

(3) � (ui3⊤
3 · S

πi3

U3(3))‖
2
F) � 0. By taking the derivative of the 

Frobenius norm, we have 2(xi3 ,πi3

(3) � ui3⊤
3 · S

πi3

U3(3)) · (�S
πi3

U3(3)
⊤)

� 0. Thus, ui3⊤
3 · S

πi3

U3(3) · S
πi3

U3(3)
⊤ � x

i3 ,πi3

(3) · S
πi3

U3(3)
⊤

, which gives 

that ui3
3 � (x

i3 ,πi3

(3) · S
πi3

U3(3)
⊤ · (Sπi3

U3(3) · S
πi3

U3(3)
⊤)�1)⊤.

Proof of Proposition 10

The original optimization problem is

arg min
S

α‖PΩ(X � S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 )‖2F

+ (1 � α)‖y � 1M · β0 � S(4) · b1‖2F, 

Figure A.4. (Color online) An Illustration of the Data Missing Pattern in Proposition 8 (Stripes Representing Available Columns) 

Figure A.5. (Color online) An Illustration of the Data Missing Pattern in Proposition 9 (Stripes Representing Available Entries) 
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which is equivalent to the following problem when data are 
missing,

arg min
S

α‖X � (S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 ) ⊙ logic(X)‖2F

+ (1 � α)‖y � 1M · β0 � S(4) · b1‖2F 

where ⊙ is the inner product, and logic(X ) denotes the logical 
value of X . Because the problem is convex, it can be solved by 

setting the derivative to be zeros–that is dΨ
dS � 0, where Ψ � α

‖X � (S ×1U⊤1 ×2 U⊤2 ×3 U⊤3 ) ⊙ logic(X)‖2F + (1�α)‖y� 1M · β0 

�S(4) ·b1‖2F. According to the connection between Kronecker 

product and tensor mode multiplication, we have d
dS (α‖X(4) �

[S(4) · (U3 ⊗U2 ⊗U1)] ⊙ logic(X(4))‖2F + (1�α)‖y � 1M ⊙ β0 �

S(4) ⊙ b1‖2F) � 0.

Figure A.6 shows the pattern of mode-4 matricization of 
the 4D tensor X when it has missing entries whose indices 
can be denoted by a set Ω ⊆ {(i1, i2, i3, m), 1 ≤ i1 ≤ I1, 1 ≤ i2 ≤
I2, 1 ≤ i3 ≤ I3, 1 ≤m ≤M}. Based on Lemma 1, we can sequen-
tially optimize each column of U3.

The mth row in S(4) is denoted as sm
(4) (blue solid row of S(4)

in Figure A.6). The available entries in the mth row of X(4) are 

denoted as xm,πm

(4) (blue striped squares of xm
(4) in Figure A.6). 

In (U3 ⊗U2 ⊗U1), we choose the columns whose indices are 
the same as those of the available entries of xm

(4) (blue striped 

columns of (U3 ⊗U2 ⊗U1)πm in Figure A.6). Thus, we have 
d

dsm
(4)
(α{ΣM

m�1‖xm,πm

(4) � [sm
(4) · (U3 ⊗U2 ⊗U1)πm ]}‖2F + (1�α)ΣM

m�1 

‖ym � β0 � sm
(4) ·b1‖2F) � 0, which yields d

dsm
(4)
(α{‖xm,πm

(4) � [sm
(4) ·

(U3 ⊗ U2 ⊗ U1)πm ]}‖2F + (1�α)‖ym � β0 � sm
(4) ·b1‖2F) � 0. By 

taking the derivative of Frobenius norm, we have 2α · [xm,πm

(4)
� sm
(4) · (U3 ⊗U2 ⊗U1)πm ] · [�(U3 ⊗ U2 ⊗ U1)πm⊤] + 2(1 � α) ·

[ym � β0 � sm
(4) ·b1] · (�b⊤1 ) � 0. Thus, �2α · xm,πm

(4) · (U3 ⊗U2⊗
U1)πm⊤ + 2α · sm

(4) · (U3 ⊗U2 ⊗U1)πm · (U3 ⊗U2 ⊗U1)πm⊤ + 2(1 

�α)(ym�β0) · (�b⊤1 ) + 2(1�α) · (sm
(4) ·b1 ·b⊤1 ) � 0, which gives 

that sm
(4) � [α · x

m,πm

(4) · (U3 ⊗U2 ⊗U1)πm⊤ + (1�α) · (ym � β0) ·

b⊤1 ] · [α · (U3 ⊗U2 ⊗U1)πm · (U3 ⊗U2 ⊗U1)πm⊤ + (1�α) · b1 ·
b⊤1 ]�1.
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