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A B S T R A C T

This paper studies the problem of constructing a robust nonlinear classifier when the data set involves
uncertainty and only the first- and second-order moments are known a priori. A distributionally robust chance-
constrained kernel-free quadratic surface support vector machine (SVM) model is proposed using the moment
information of the uncertain data. The proposed model is reformulated as a semidefinite programming problem
and a second-order cone programming problem for efficient computations. A geometric interpretation of the
proposed model is also provided. For commonly used data without prescribed uncertainty, a cluster-based
data-driven approach is introduced to retrieve the hidden moment information that enables the proposed
model for robust classification. Extensive computational experiments using synthetic and public benchmark
data sets with or without uncertainty involved support the superior performance of the proposed model over

other state-of-the-art SVM models, particularly when the data sets are massive and/or imbalanced.
1. Introduction

Support Vector Machines (SVMs) are often used for classification in
supervised machine learning. Given a set of 𝑁 data points {(𝒙𝑖, 𝑦𝑖)|𝒙𝑖 ∈
R𝑛, 𝑦𝑖 ∈ {−1, 1}, 𝑖 = 1,… , 𝑁}, a linear soft support vector machine
(LSSVM) can be represented as the following linearly constrained con-
vex quadratic programming problem (Cortes & Vapnik, 1995):

min 1
2‖𝒘‖

2
2 + 𝐶

𝑁
∑

𝑖=1
𝜉𝑖

𝑠.𝑡. 𝑦𝑖
(

𝒘T𝒙𝑖 + 𝑏
)

⩾ 1 − 𝜉𝑖, 𝑖 = 1,… , 𝑁,

𝒘 ∈ R𝑛, 𝑏 ∈ R, 𝝃 ∈ R𝑁
+ ,

(LSSVM)

where 𝐶 > 0 is a given parameter. The variables of 𝒘 and 𝑏 determine
a separation hyperplane 𝐻(𝒘, 𝑏) ≜ {𝒙 ∈ R𝑛

|𝒘T𝒙 + 𝑏 = 0}, and the
slack vector 𝝃 introduces a ‘‘soft margin’’ to accommodate the data that
are not linearly separable. For nonlinear classification, the data can be
lifted to a higher dimensional space for linear separation using a feature
map 𝜙 ∶ R𝑛 → R𝑙 with 𝑙 > 𝑛. In this case, we consider the following
optimization problem:

min 1
2‖𝒗‖

2
2 + 𝐶

𝑁
∑

𝑖=1
𝜉𝑖

𝑠.𝑡. 𝑦𝑖
(

𝒗T𝜙(𝒙𝑖) + 𝑑
)

⩾ 1 − 𝜉𝑖, 𝑖 = 1,… , 𝑁,

𝒗 ∈ R𝑙 , 𝑑 ∈ R, 𝝃 ∈ R𝑁
+ .

(KSSVM)
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The kernel trick is used to solve the dual problem of (KSSVM) by
introducing the kernel function 𝐾(𝒙𝑖,𝒙𝑗 ) ≜ 𝜙(𝒙𝑖)T𝜙(𝒙𝑗 ) (Zhou, 2021).
Commonly used kernel functions 𝐾(⋅, ⋅) include the polynomial kernel
and radial basis function kernel (i.e., Gaussian kernel). Considering
the drawbacks of selecting a proper kernel function (Jiménez-Cordero,
Morales, & Pineda, 2021) and adjusting its embedded parameters,
some kernel-free nonlinear SVMs have recently been proposed (Dagher,
2008; Luo, Fang, Deng, & Guo, 2016; Luo, Yan, & Tian, 2020). One
representative model is the following quadratic surface support vector
machine (QSSVM):

min
𝑁
∑

𝑖=1
‖𝑴𝒙𝑖 +𝒘‖

2
2 + 𝐶

𝑁
∑

𝑖=1
𝜉𝑖

𝑠.𝑡. 𝑦𝑖
(

1
2 (𝒙

𝑖)T𝑴𝒙𝑖 +𝒘T𝒙𝑖 + 𝑏
)

⩾ 1 − 𝜉𝑖, 𝑖 = 1,… , 𝑁,

𝑴 ∈ S𝑛, 𝒘 ∈ R𝑛, 𝑏 ∈ R, 𝝃 ∈ R𝑁
+ ,

(QSSVM)

where S𝑛 is the set of 𝑛-dimensional symmetric matrices; 𝑴 , 𝒘,
and 𝑏 determine a separation quadratic surface 𝑄(𝑴 ,𝒘, 𝑏) ≜ {𝒙 ∈
R𝑛

|

1
2𝒙

T𝑴𝒙 + 𝒙T𝒘 + 𝑏 = 0}. The (QSSVM) model has been extended
to a kernel-free quartic surface SVM model by utilizing the double well
potential function of degree four (Gao, Fang, Luo, & Medhin, 2021).

While both the kernel-based and kernel-free nonlinear SVMs have
achieved promising performance in some real-world applications, their
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classification performances still need to be investigated when uncer-
tainty is involved in the training data. For instance, the classification
task on benign and malignant tumors (Bertsimas, Dunn, Pawlowski,
& Zhuo, 2019), whose training data includes features derived from
digitized images, such as cell nuclei radius, texture, and symmetry.
Even though these features are precisely measured, the existence of
image noise and measurement inaccuracy may yield data uncertainty
and affect the classification accuracy. In addition to medical applica-
tions, challenges raised by data uncertainties are urgent to be resolved
in other fields, including battery failure detection (Luo, Fang, Deng,
& Tian, 2022) and biological gene expression (Ben-Tal, Bhadra, Bhat-
tacharyya, & Nath, 2011). In datasets requiring imputation for missing
data (Shivaswamy, Bhattacharyya, & Smola, 2006), additional uncer-
tainties are introduced. Given the presence of data uncertainty within
real-world applications, neglecting to recognize the uncertainty might
lead to a substantial decline in classification performance (Goldfarb &
Iyengar, 2003).

Recent studies indicate that classifiers explicitly addressing uncer-
tainty in the training data outperform those ignoring such informa-
tion (Wang, Fan, & Pardalos, 2018). This paper introduces a novel
maximum-margin nonlinear SVM resilient to data uncertainty. It han-
dles the underlying data uncertainty by utilizing moment information
instead of the distributional assumptions on data.

1.1. Relevant works

Optimization under uncertainty has been addressed by several com-
plementary modeling paradigms that differ mainly in the representa-
tion of uncertainty. SVM models applying robust optimization tech-
niques are developed for applications whose data points are fluctuating
within an uncertain set, specified by the 𝑙𝑝-norm uncertainty (Trafalis
& Gilbert, 2006), ellipsoidal uncertainty (Bhattacharyya, Grate, Jordan,
Ghaoui, & Mian, 2004), and others (Singla, Ghosh, & Shukla, 2020;
Wang & Pardalos, 2014). Applying robust optimization in a principled
way of uncertain data, Bertsimas et al. (2019) investigate the SVMs,
logistic regression, and decision trees, among which the robust SVM
performed the best. Nonetheless, the robust models generally tend to
be on the conservative side since they ignore the hidden distribution
information embedded in the data sets.

Consider a set of data points with uncertain inputs following some
underlying probability distributions 𝐹𝑖, i.e., 𝒙̃𝑖 ∼ 𝐹𝑖, for 𝑖 = 1,… , 𝑁 .
For a given tolerance level 0 < 𝜖 < 1, a chance constraint at the point
(𝒙̃𝑖, 𝑦𝑖),

P𝐹𝑖

{

𝑦𝑖
(

𝒘T𝒙̃𝑖 + 𝑏
)

⩽ 1 − 𝜉𝑖
}

⩽ 𝜖,

can be used to ensure that the probability of misclassifying 𝒙̃𝑖 is no
larger than 𝜖. The chance-constrained optimization problems are non-
convex and hard to solve in general. In the literature, Peng, Gianpiero,
and Zhihua (2023) adopt the sample average approximation method
to formulate a mixed integer programming problem for a chance-
constrained conic-segmentation SVM with an empirical distribution. In
fact, a true distribution is hard to estimate, and even a good estimation
may still cause the ‘‘optimizer’s curse’’ (Kuhn, Esfahani, Nguyen, &
Shafieezadeh-Abadeh, 2019) with discontent performance.

Instead of relying on a single estimate of 𝐹𝑖, a distribution family
𝑖 could hedge against the uncertainty in data distribution. 𝑖, which
is also known as the ambiguity set (Lin, Fang, & Gao, 2022), consists
of probability distributions possessing certain properties of the true
distribution 𝐹𝑖. The following distributionally robust chance constraints
are developed to ensure that a linear SVM works best in the worst case
over 𝑖:

sup
𝐹𝑖∈𝑖

P𝐹𝑖

{

𝑦𝑖
(

𝒘T𝒙̃𝑖 + 𝑏
)

⩽ 1 − 𝜉𝑖
}

⩽ 𝜖, 𝑖 = 1,… , 𝑁. (1)

When the ambiguity set 𝑖 is constructed based on the first- and
second-order moments, the distributionally robust chance-constrained
47
linear soft SVM (DRC-LSSVM) model is developed with the chance
constraints defined by (1). Shivaswamy et al. (2006) adopt the mul-
tivariate Chebyshev inequality to derive a second-order cone program-
ming (SOCP) reformulation for the DRC-LSSVM model. Ben-Tal et al.
(2011) employ the Bernstein bounds to include richer partial infor-
mation for constructing a less conservative SOCP reformulation. Wang
et al. (2018) derive both semidefinite programming (SDP) and SOCP
reformulations for DRC-LSSVM, and they further design a stochastic
gradient-based method for improving the computational efficiency in
large-scale classification cases (Wang, Fan, & Pardalos, 2017). Consid-
ering dependency among the random input points, Khanjani-Shiraz,
Babapour-Azar, Hosseini-Nodeh, and Pardalos (2023) propose a robust
joint chance-constrained linear SVM. The DRC-LSSVM model has also
been applied to different contexts with promising performance, such
as data with missing values (Shivaswamy et al., 2006) and semi-
supervised classifications (Huang, Song, Gupta, & Wu, 2013). A kernel-
free DRC support vector regression (SVR) model is proposed to solve
regression problems, which also shows superior performance over other
well-established SVR models (Luo et al., 2022). Similar links to super-
vised training with uncertain data employing distributionally robust
optimization under the Wasserstein metric have been investigated for
linear SVMs (Ma & Wang, 2021), regression models (Chen & Pascha-
lidis, 2020; Kuhn et al., 2019) and reinforcement learning models (Chen
& Paschalidis, 2020).

In summary, the literature indicates that the application of distri-
butionally robust optimization enhances the capability of conventional
SVMs in addressing uncertain classification tasks. Previous studies on
distributionally robust chance-constrained SVMs demonstrate higher
accuracy compared to nominal methods in some cases, but most of
them focus on linear SVMs, limiting the applicability to nonlinear
classification. Our contribution builds on these efforts by proposing a
distributionally robust chance-constrained kernel-free nonlinear SVM,
utilizing a quadratic surface for increased flexibility in handling nonlin-
ear data. We compare this approach to state-of-the-art SVMs, assessing
the impact of adding robustness to different models and evaluating
their performance through computational experiments with balanced,
imbalanced, and massive datasets.

1.2. Contributions

To deal with the nonlinear binary classification cases with uncertain
data, in this paper, we propose a kernel-free quadratic surface SVM
model that considers the distributionally robust chance constraints (2).

sup
𝐹𝑖∈𝑖

P𝐹𝑖

{

𝑦𝑖
( 1
2
(𝒙̃𝑖)T𝑴𝒙̃𝑖 +𝒘T𝒙̃𝑖 + 𝑏

)

⩽ 1 − 𝜉𝑖
}

⩽ 𝜖, 𝑖 = 1,… , 𝑁. (2)

Certain analytic properties of the proposed model are rigorously in-
vestigated. In addition, extensive computational experiments are con-
ducted to validate the effectiveness and efficiency of the proposed
model in solving binary classification problems with and without data
uncertainty. The main contributions of this paper are summarized as
follows.

• We propose a distributionally robust chance-constrained quadratic
SVM (DRC-QSSVM) model utilizing the first- and second-order
moments embedded in the data set, which characterizes the
uncertainty of the classification problem. To the best of our
knowledge, it is the first study of utilizing kernel-free nonlinear
SVM models to deal with classification problems under data un-
certainty. As the quadratic structure of the distributionally robust
chance constraints in the proposed model complicates the analy-
sis, we explicitly derive the SDP and the SOCP reformulations of
the proposed model for computational efficiency. In addition, a
geometric interpretation of the distributionally robust quadratic
chance constraints is provided for a better understanding of the
proposed model.
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• We extend the proposed model to handle commonly used data
without uncertainty. To retrieve the moment information needed
by the proposed model, a cluster-based data-driven approach
is designed. Surprisingly, the proposed model provides higher
classification accuracy than the other tested state-of-the-art SVM
models in the computational experiments. It strengthens the ap-
plicability of the proposed model to real-life applications.

• The computational results verify the classification effectiveness
of the proposed DRC-QSSVM model. As a maximum-margin SVM
model that can explicitly use moment information to handle
input data with uncertainty, the proposed model outperforms
the most related DRC-LSSVM model on some synthetic and pub-
lic benchmark data sets. Also, the results from some extensive
computational experiments on massive and imbalanced data sets
verify the dominant classification accuracy of the proposed model
over other state-of-the-art SVM models. It reveals the signifi-
cance of the proposed model that reframing a specific problem
as one characterized by uncertainty and subsequently addressing
the resultant uncertain formulation have the potential to yield
remarkably improved outcomes.

The rest of the paper is organized as follows. In Section 2, we
ropose a distributionally robust chance-constrained quadratic surface
upport vector machine model for nonlinear classification with uncer-
ain data knowing the first- and second-order moments. The SDP and
OCP reformulations are derived for computational efficiency. A geo-
etric interpretation is also provided to show how the proposed model
orks on uncertain data. Section 3 presents a data-driven approach
or applying the proposed model to classify commonly used data sets
ithout moment information. Synthetic data sets and public benchmark
ata sets are included in Section 4 for validating the effectiveness and
fficiency of the proposed model and comparing the performance of
he proposed model with other well-known SVM models. Section 5
oncludes the paper.
Notations: In this paper, we use lower-case boldface letters to

denote vectors and upper-case boldface letters to denote matrices.
Random variables are represented by symbols with tildes, while their
realizations are denoted by the same symbols without tildes. S𝑛 denotes
he set of symmetric matrices of dimension 𝑛. For any two matrices
,𝑩 ∈ S𝑛, 𝑨 ∙𝑩 = 𝑇 𝑟𝑎𝑐𝑒(𝑨𝑩) denotes the trace of the product of 𝑨 and
.

. Distributionally robust chance-constrained quadratic SVM

This section considers a binary classification problem for uncertain
ata sets with known first- and second-order moments information and
roposes the DRC-QSSVM model. Section 2.1 constructs an ambiguity
et based on the first two moments to formalize the proposed model. An
quivalent SDP model is derived in Section 2.2. Section 2.3 presents an
xplicit geometric interpretation of the conceptual chance constraints.
n SOCP model for efficient computation is derived in Section 2.4.

.1. DRC-QSSVM model

In this paper, each uncertain input 𝒙̃𝑖 in a data set of {(𝒙̃𝑖, 𝑦𝑖)|𝒙̃𝑖 ∈
𝑛, 𝑦𝑖 ∈ {−1, 1}, 𝑖 = 1,… , 𝑁} is considered as a random vector, i.e., 𝒙̃𝑖 ∶
𝑖 → R and 𝒙̃𝑖 ∼ 𝐹𝑖, for an outcome space 𝛯𝑖 and its 𝜎-algebra 𝑖 ⊆ 2𝛯𝑖 ,
nd 𝐹𝑖 ∶ 𝑖 → R is a probability measure on (𝛯𝑖,𝑖), for 𝑖 = 1,… , 𝑁 .
Let (𝛯𝑖,𝑖) denote the space of all probability measures defined on
(𝛯𝑖,𝑖). In this way, 𝐹𝑖 ∈ (𝛯𝑖,𝑖) and they are assumed to be mutually
independent for 𝑖 = 1,… , 𝑁 . In Section 2, the mean 𝝁𝑖 ≜ E𝐹𝑖

[

𝒙̃𝑖
]

∈ R𝑛

nd covariance matrix 𝜮𝑖 ≜ E𝐹𝑖 [(𝒙̃𝑖 − E𝐹𝑖 [𝒙̃𝑖])(𝒙̃𝑖 − E𝐹𝑖 [𝒙̃𝑖])
T] ∈ S𝑛+ are
48

articularly assumed to be known. Without loss of generality, 𝜮𝑖 is c
onsidered to be positive definite. A moment-based ambiguity set 
s then defined by  ≜

⋃𝑁
𝑖=1 𝑖(𝒙̃𝑖;𝝁𝑖,𝜮𝑖) with

𝑖(𝒙̃𝑖;𝝁𝑖,𝜮𝑖) ≜
⎧

⎪

⎨

⎪

⎩

𝐹𝑖 ∈ (𝛯𝑖,𝑖)
|

|

|

|

|

|

|

P(𝒙̃𝑖 ∈ 𝛯𝑖) = 1,
E𝐹𝑖 [𝒙̃

𝑖] = 𝝁𝑖,
E𝐹𝑖 [(𝒙̃

𝑖 − 𝝁𝑖)(𝒙̃𝑖 − 𝝁𝑖)T] = 𝜮𝑖

⎫

⎪

⎬

⎪

⎭

,

(3)

and 𝑖 abbreviates 𝑖(𝒙̃𝑖;𝝁𝑖,𝜮𝑖) for 𝑖 = 1,… , 𝑁 . In our model, we set
R𝑛 as the support set 𝛯𝑖 for 𝑖 = 1,… , 𝑁 .

We aim to determine a quadratic surface 𝑄(𝑴 ,𝒘, 𝑏) = {𝒙 ∈
R𝑛

|

1
2𝒙

T𝑴𝒙 + 𝒙T𝒘 + 𝑏 = 0}, where 𝑴 ∈ S𝑛, 𝒘 ∈ R𝑛 and 𝑏 ∈ R, which
eparates the two classes of points with the maximum margin and
ounded misclassification probability with respect to all distributions
n . Adopting the concept of ‘‘total approximated relative geometric
argins’’ used in (QSSVM) (Luo et al., 2016), the min–max approach
sed in robust optimization helps form the following objective function:

min
,𝒘,𝑏,𝝃

sup
𝐹𝑖∈𝑖

{ 𝑁
∑

𝑖=1
E𝐹𝑖‖𝑴𝒙̃𝑖 +𝒘‖

2
2

}

+ 𝐶
𝑁
∑

𝑖=1
𝜉𝑖. (4)

ote that for any 𝐹𝑖 ∈ 𝑖,

E𝐹𝑖‖𝑴𝒙̃𝑖 +𝒘‖

2
2 = E𝐹𝑖

[

(𝒙̃𝑖)T𝑴T𝑴𝒙̃𝑖
]

+ 2𝒘T𝑴E𝐹𝑖

[

𝒙̃𝑖
]

+𝒘T𝒘
= 𝝁T

𝑖 𝑴
T𝑴𝝁𝑖 + (𝑴T𝑴) ∙𝜮𝑖 + 2𝒘T𝑴𝝁𝑖 +𝒘T𝒘

= ‖𝑴𝝁𝑖 +𝒘‖

2
2 + ‖𝜮

1
2
𝑖 𝑴‖

2
𝐹 ,

(5)

where ‖ ⋅ ‖𝐹 is the Frobenius norm. When {𝐹𝑖}𝑖 are mutually indepen-
dent, the supremum and summation operations are exchangeable, and
consequently, sup𝐹𝑖∈𝑖

{
∑𝑁

𝑖=1 E𝐹𝑖‖𝑴𝒙̃𝑖+𝒘‖

2
2} =

∑𝑁
𝑖=1 sup𝐹𝑖∈𝑖

E𝐹𝑖‖𝑴𝒙̃𝑖+

𝒘‖

2
2 =

∑𝑁
𝑖=1{‖𝑴𝝁𝑖 + 𝒘‖

2
2 + ‖𝜮

1
2
𝑖 𝑴‖

2
𝐹 }. The first term of the results in

(5) is the approximated relative geometrical margin at the mean vector
𝝁𝑖 (Luo et al., 2016), and the second term is similar to the ‘‘G-margin’’
defined in Gao et al. (2021). In general, the total relative geometrical
margin dominates the G-margin. And the second term may serve as a
regularization term that shapes the target quadratic surface. Extensive
computational experiments indicate such a regularization term can be
neglected without changing much of the final classifier (similar results
showed by Luo et al. (2016)). Moreover, to avoid the computational
difficulty induced by ‖𝜮

1
2
𝑖 𝑴‖

2
𝐹 , we omit this term in the objective

unction. A robust classifier 𝑄(𝑴 ,𝒘, 𝑏) could bound the misclassifi-
cation probability by 𝜖 (0 < 𝜖 < 1) employing the distributionally
robust chance constraints (2). Consequently, we propose the following
distributionally robust chance-constrained quadratic SVM model:

min
𝑁
∑

𝑖=1
‖𝑴𝝁𝑖 +𝒘‖

2
2 + 𝐶

𝑁
∑

𝑖=1
𝜉𝑖

𝑠.𝑡. sup
𝐹𝑖∈𝑖

P𝐹𝑖

{

𝑦𝑖
(

1
2 (𝒙̃

𝑖)T𝑴𝒙̃𝑖+𝒘T𝒙̃𝑖+𝑏
)

⩽ 1 − 𝜉𝑖
}

⩽ 𝜖, 𝑖 = 1,… , 𝑁,

𝑴 ∈ S𝑛, 𝒘 ∈ R𝑛, 𝑏 ∈ R, 𝝃 ∈ R𝑁
+ .

(DRC-QSSVM)

t is often the case that the ambiguous chance constraints are hard
o solve directly, not to mention the nonlinear functions used in
DRC-QSSVM). For 𝑖 = 1,… , 𝑁 , let

 𝑖 ≜

{

(𝑴 ,𝒘, 𝑏) ∈ S𝑛 × R𝑛 × R
|

|

|

|

|

sup
𝐹𝑖∈𝑖

P𝐹𝑖

{

𝑦𝑖
( 1
2
(𝒙̃𝑖)T𝑴𝒙̃𝑖 +𝒘T𝒙̃𝑖 + 𝑏

)

⩽ 1 − 𝜉𝑖
}

⩽ 𝜖
}

(6)

enote the feasible sets of (DRC-QSSVM). We shall demonstrate that
or any 𝑖,  𝑖 has tractable SDP and SOCP representations for efficient

omputations in later subsections.
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2.2. SDP reformulation of (DRC-QSSVM)

We first show an equivalent SDP reformulation of (DRC-QSSVM) in
he next theorem.

heorem 2.1. For the ambiguity set  defined by (3), (DRC-QSSVM) can
e equivalently reformulated as the following SDP problem:

min
𝑁
∑

𝑖=1
‖𝑴𝝁𝑖 +𝒘‖

2
2 + 𝐶

𝑁
∑

𝑖=1
𝜉𝑖

𝑠.𝑡. 𝛽𝑖 −
1
𝜖
𝜞 𝑖 ∙𝑹𝑖 ⩾ 0, 𝑖 = 1,… , 𝑁,

𝑹𝑖 +

[ 1
2
𝑦𝑖𝑴 1

2
𝑦𝑖𝒘

1
2
𝑦𝑖𝒘T 𝑦𝑖𝑏 + 𝜉𝑖 − 1 − 𝛽𝑖

]

⪰ 0, 𝑖 = 1,… , 𝑁,

𝑹𝑖 ⪰ 0, 𝑖 = 1,… , 𝑁,

𝑴 ∈ S𝑛, 𝒘 ∈ R𝑛, 𝑏 ∈ R, 𝝃 ∈ R𝑁
+ , 𝜷 ∈ R𝑁 , 𝑹𝑖 ∈ S𝑛+1, 𝑖 = 1,… , 𝑁,

(7)

where 𝜞 𝑖 =
[

𝜮𝑖 + 𝝁𝑖𝝁T
𝑖 𝝁𝑖

𝝁T
𝑖 1

]

denotes the second-order moment matrix.

Proof. For 𝑖 = 1,… , 𝑁 , we denote the indicator functions by

1𝐴𝑖
(𝒙̃𝑖) =

{

1, if 𝒙̃𝑖 ∈ 𝐴𝑖,
0, if 𝒙̃𝑖 ∉ 𝐴𝑖,

where 𝐴𝑖 ≜ {𝒙̃𝑖 ∈ 𝛯𝑖|𝑦𝑖
(

1
2 (𝒙̃

𝑖)T𝑴𝒙̃𝑖 +𝒘T𝒙̃𝑖 + 𝑏
)

⩽ 1 − 𝜉𝑖}. Then 𝜑𝑖 ≜
sup𝐹𝑖∈𝑖

P𝐹𝑖{𝑦
𝑖( 12 (𝒙̃

𝑖)T𝑴𝒙̃𝑖 +𝒘T𝒙̃𝑖 + 𝑏) ⩽ 1 − 𝜉𝑖} = sup𝐹𝑖∈𝑖
E𝐹𝑖 [1𝐴𝑖

(𝒙̃𝑖)],
hich can be obtained by solving the following problem:

sup ∫𝛯𝑖

1𝐴𝑖
(𝒙̃𝑖)𝑑𝐹𝑖(𝒙̃𝑖) (8a)

𝑠.𝑡. ∫𝛯𝑖

𝑑𝐹𝑖(𝒙̃𝑖) = 1, (8b)

∫𝛯𝑖

𝒙̃𝑖𝑑𝐹𝑖(𝒙̃𝑖) = 𝝁𝑖, (8c)

∫𝛯𝑖

(𝒙̃𝑖 − 𝝁𝑖)(𝒙̃𝑖 − 𝝁𝑖)T𝑑𝐹𝑖(𝒙̃𝑖) = 𝜮𝑖, (8d)

𝐹𝑖 ∈ (𝛯𝑖,𝑖).

Notice that constraint (8d) is equivalent to ∫𝛯𝑖
𝒙̃𝑖(𝒙̃𝑖)T𝑑𝐹𝑖(𝒙̃𝑖) = 𝜮𝑖 +

𝑖𝝁T
𝑖 , and the difficulty of this problem can be circumvented by using

he duality theory involving moment information. Let 𝑟𝑖 ∈ R, 𝒑𝑖 ∈ R𝑛

nd 𝑸𝑖 ∈ S𝑛 be the dual variables corresponding to (8b), (8c) and (8d),
espectively. Then the dual problem of (8) becomes

inf (𝜮𝑖 + 𝝁𝑖𝝁T
𝑖 ) ∙𝑸𝑖 + 𝝁T

𝑖 𝒑𝑖 + 𝑟𝑖
𝑠.𝑡. (𝒙̃𝑖)T𝑸𝑖𝒙̃𝑖 + (𝒙̃𝑖)T𝒑𝑖 + 𝑟𝑖 ⩾ 1(𝒙̃𝑖), ∀ 𝒙̃𝑖 ∈ 𝛯𝑖,

𝑸𝑖 ∈ S𝑛, 𝒑𝑖 ∈ R𝑛, 𝑟𝑖 ∈ R.
(9)

et 𝑵 𝑖 =

[

𝑸𝑖
1
2𝒑𝑖

1
2𝒑

T
𝑖 𝑟𝑖

]

, then the objective function of (9) becomes

𝑖 ∙𝜞 𝑖. Restoring the indicator function, the constraint of (9) becomes

𝒙̃𝑖)T𝑸𝑖𝒙̃𝑖 + (𝒙̃𝑖)T𝒑𝑖 + 𝑟𝑖 ⩾ 1, if 𝑦𝑖
( 1
2
(𝒙̃𝑖)T𝑴𝒙̃𝑖 +𝒘T𝒙̃𝑖 + 𝑏

)

⩽ 1 − 𝜉𝑖,

(10a)

𝒙̃𝑖)T𝑸𝑖𝒙̃𝑖 + (𝒙̃𝑖)T𝒑𝑖 + 𝑟𝑖 ⩾ 0, ∀ 𝒙̃𝑖 ∈ 𝛯𝑖. (10b)

onstraint (10b) implies that [(𝒙̃𝑖)T 1]𝑵 𝑖

[

𝒙̃𝑖
1

]

⩾ 0, ∀ 𝒙̃𝑖 ∈ 𝛯𝑖 ⇔

𝑖 ⪰ 0. Constraint (10a) can be further transformed as below using
he S-Lemma:

𝒙̃𝑖)T𝑸𝑖𝒙̃𝑖 + (𝒙̃𝑖)T𝒑𝑖 + 𝑟𝑖 − 1 + 𝛼𝑖
(

𝑦𝑖
( 1
2
(𝒙̃𝑖)T𝑴𝒙̃𝑖 +𝒘T𝒙̃𝑖 + 𝑏

)

− 1 + 𝜉𝑖
)

⩾ 0, 𝛼𝑖 ⩾ 0,
49

T

which means

[(𝒙̃𝑖)T 1]𝑵 𝑖

[

𝒙̃𝑖
1

]

−1+𝛼𝑖
(

𝑦𝑖
(1
2
(𝒙̃𝑖)T𝑴𝒙̃𝑖 +𝒘T𝒙̃𝑖 + 𝑏

)

− 1 + 𝜉𝑖
)

⩾ 0, 𝛼𝑖 ⩾ 0.

(11)

If 𝛼𝑖 = 0, constraint (11) implies that [(𝒙̃𝑖)T 1]𝑵 𝑖

[

𝒙̃𝑖
1

]

⩾ 1. This contra-

icts the fact of 𝑵 𝑖 ∙𝜞 𝑖 ⩽ 𝜖, 0 < 𝜖 < 1, because 𝜞 𝑖 = E𝐹𝑖

[[

𝒙̃𝑖
1

]

[(𝒙̃𝑖)T 1]
]

.

Thus, we have 𝛼𝑖 > 0. Let 𝑹𝑖 =
1
𝛼𝑖
𝑵 𝑖 and 𝛽𝑖 =

1
𝛼𝑖
, we see that

(11)⇔ [(𝒙̃𝑖)T 1]𝑵 𝑖
𝛼𝑖

[

𝒙̃𝑖

1

]

+
(

− 1
𝛼𝑖
+ 𝑦𝑖

(

1
2
(𝒙̃𝑖)T𝑴𝒙̃𝑖 +𝒘T𝒙̃𝑖 + 𝑏

)

− 1 + 𝜉𝑖
)

⩾ 0

⇔ [(𝒙̃𝑖)T 1]
⎛

⎜

⎜

⎝

𝑹𝑖 +
⎡

⎢

⎢

⎣

1
2
𝑦𝑖𝑴 1

2
𝑦𝑖𝒘

1
2
𝑦𝑖𝒘T 𝑦𝑖𝑏 + 𝜉𝑖 − 1 − 1

𝛼𝑖

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

[

𝒙̃𝑖

1

]

⩾ 0

⇔ 𝑹𝑖 +

[ 1
2
𝑦𝑖𝑴 1

2
𝑦𝑖𝒘

1
2
𝑦𝑖𝒘T 𝑦𝑖𝑏 + 𝜉𝑖 − 1 − 𝛽𝑖

]

⪰ 0.

herefore, the dual problem (9) becomes

inf 1
𝛽𝑖
𝜞 𝑖 ∙𝑹𝑖

𝑠.𝑡. 𝑹𝑖 +

[ 1
2 𝑦

𝑖𝑴 1
2 𝑦

𝑖𝒘
1
2 𝑦

𝑖𝒘T 𝑦𝑖𝑏 + 𝜉𝑖 − 1 − 𝛽𝑖

]

⪰ 0,

𝑹𝑖 ⪰ 0,

𝑹𝑖 ∈ S𝑛, 𝛽𝑖 ∈ R+.

Since the strong duality holds for the pair of (8) and (9) (Similar
to Delage and Ye (2010)), requiring 𝜑𝑖 ⩽ 𝜖 yields 1

𝛽𝑖
𝜞 𝑖 ∙ 𝑹𝑖 ⩽ 𝜖 ⇔

𝛽𝑖 −
1
𝜖 𝜞 𝑖 ∙𝑹𝑖 ⩾ 0. This completes the proof. □

Notice that one can reformulate (7) as a standard SDP by rewriting
the summation term in the objective function in the matrix form,

i.e., ‖𝑴𝝁𝑖 + 𝒘‖

2
2 +

𝐶
𝑁 𝜉𝑖 ⩽ 𝜂𝑖 ⇔

[

𝑰𝑛 𝑴𝝁𝑖 +𝒘
(𝑴𝝁𝑖 +𝒘)T − 𝐶

𝑁 𝜉𝑖 + 𝜂𝑖

]

⪰ 0, where

𝑛 denotes the 𝑛-dimensional identical matrix. This leads to

min
𝑁
∑

𝑖=1
𝜂𝑖

𝑠.𝑡.

[

𝑰𝑛 𝑴𝝁𝑖 +𝒘
(𝑴𝝁𝑖 +𝒘)T − 𝐶

𝑁
𝜉𝑖 + 𝜂𝑖

]

⪰ 0, 𝑖 = 1,… , 𝑁,

𝜞 𝑖 ∙𝑹𝑖 ⩽ 𝜖𝛽𝑖, 𝑖 = 1,… , 𝑁,

𝑹𝑖 +

[

1
2
𝑦𝑖𝑴 1

2
𝑦𝑖𝒘

1
2
𝑦𝑖𝒘T 𝑦𝑖𝑏 + 𝜉𝑖 − 1 − 𝛽𝑖

]

⪰ 0, 𝑖 = 1,… , 𝑁,

𝑹𝑖 ⪰ 0, 𝑖 = 1,… , 𝑁,

𝑴 ∈ S𝑛, 𝒘 ∈ R𝑛, 𝑏 ∈ R, 𝝃 ∈ R𝑁
+ , 𝜼, 𝜷 ∈ R𝑁 , 𝑹𝑖 ∈ S𝑛+1, 𝑖 = 1,… , 𝑁.

(12)

In this way, (12) provides an SDP reformulation of (DRC-QSSVM) for
using off-the-shelf solvers.

Remark 2.1. Let 𝑆𝐷𝑃
𝑖 denote the feasible region described by the

constraints associated with the 𝑖th random input in the SDP model, i.e.,

𝑆𝐷𝑃
𝑖 ≜

⎧

⎪

⎨

⎪

⎩

(𝑴 ,𝒘, 𝑏) ∈ S𝑛 × R𝑛 × R

|

|

|

|

|

|

|

|

∃𝛽𝑖, 𝑹𝑖 ⪰ 0, 𝛽𝑖 −
1
𝜖
𝜞 𝑖 ∙𝑹𝑖 ⩾ 0,

𝑹𝑖 +

[ 1
2
𝑦𝑖𝑴 1

2
𝑦𝑖𝒘

1
2
𝑦𝑖𝒘T 𝑦𝑖𝑏 + 𝜉𝑖 − 1 − 𝛽𝑖

]

⪰ 0

⎫

⎪

⎬

⎪

⎭

.

(13)

𝑆𝐷𝑃
hen Theorem 2.1 implies that  𝑖 =  𝑖 , for 𝑖 = 1,… , 𝑁 .
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2.3. Geometric interpretation

To study the geometric interpretation of the distributionally robust
chance constraints in (DRC-QSSVM), we first provide the following
lemma:

Lemma 2.2. For any 𝑖, 𝑆𝐷𝑃
𝑖 defined in (13) is equivalent to

𝑆𝐷𝑃 ′
𝑖 =

⎧

⎪

⎨

⎪

⎩

(𝑴 ,𝒘, 𝑏) ∈ S𝑛 × R𝑛 × R

|

|

|

|

|

|

|

|

|

𝑦𝑖
(

1
2
𝒅T
𝑖 𝑴𝒅𝑖 +𝒘T𝒅𝑖 + 𝑏

)

⩾ 1 − 𝜉𝑖 −
1
2
𝑦𝑖𝑴 ∙𝑫0

𝑖 ,
[

𝜮 𝑖 − 𝜖𝑫0
𝑖 𝝁𝑖 − 𝒅𝑖

𝝁T
𝑖 − 𝒅T

𝑖
1−𝜖
𝜖

]

⪰ 0, 𝑫0
𝑖 ∈ S𝑛+, 𝒅 ∈ R𝑛

⎫

⎪

⎬

⎪

⎭

.

roof. Please see Appendix A.1. □

Now, let (𝝁𝑖,𝜮𝑖,
1−𝜖
𝜖 ) ≜ {𝒙 ∈ R𝑛 ∣ (𝒙 − 𝝁𝑖)T𝜮−1

𝑖 (𝒙 − 𝝁𝑖) ⩽
1−𝜖
𝜖 } represent an ellipsoid centered at 𝝁𝑖, whose shape and size are
etermined by 𝜮𝑖 and 𝜖, respectively. Considering the case of correctly
classifying 𝒙𝑖 for all 𝒙𝑖 ∈ (𝝁𝑖,𝜮𝑖,

1−𝜖
𝜖 ), we define

𝐸
𝑖 ≜

{

(𝑴 ,𝒘, 𝑏) ∈ S𝑛 × R𝑛 × R
|

|

|

|

𝑦𝑖
( 1
2
(𝒙𝑖)T𝑴𝒙𝑖 +𝒘T𝒙𝑖 + 𝑏

)

⩾ 1 − 𝜉𝑖,∀ 𝒙𝑖 ∈ 
(

𝝁𝑖,𝜮𝑖,
1 − 𝜖
𝜖

)}

.

In the following lemma, a geometrical interpretation of 𝑆𝐷𝑃
𝑖 is pre-

sented by discussing its relation with 𝐸
𝑖 .

Lemma 2.3. For any given (𝝁𝑖,𝜮𝑖, 𝜖), 𝐸
𝑖 ⊆ 𝑆𝐷𝑃

𝑖 for 𝑖 = 1,… , 𝑁 . If
𝑦𝑖𝑴 ⪰ 0, then 𝐸

𝑖 = 𝑆𝐷𝑃
𝑖 . Moreover, for the linear case with 𝑴 = 𝟎,

𝐸
𝑖 = 𝑆𝐷𝑃

𝑖 .

Proof. From Lemma 2.2, the constraints in 𝑆𝐷𝑃
𝑖 can be rewritten as

𝑦𝑖
( 1
2
𝒅T
𝑖 𝑴𝒅𝑖 +𝒘T𝒅𝑖 + 𝑏

)

⩾ 1 − 𝜉𝑖 −
1
2
𝑦𝑖𝑴 ∙𝑫0

𝑖 ,

∀ 𝒅𝑖 ∈ 
(

𝝁𝑖,𝜮𝑖 − 𝜖𝑫0
𝑖 ,

1 − 𝜖
𝜖

)

,
(14)

with 𝜮𝑖−𝜖𝑫0
𝑖 ≻ 0 and 𝑫0

𝑖 ⪰ 0 being assumed without loss of generality.
or each feasible 𝑫0

𝑖 , this means that the quadratic surface defined by
𝑴 ,𝒘, 𝑏) separates all points in 

(

𝝁𝑖,𝜮𝑖 − 𝜖𝑫0
𝑖 ,

1−𝜖
𝜖

)

softly. Obviously
𝐸

𝑖 is a special case of 𝑆𝐷𝑃 ′

𝑖 when 𝑫0
𝑖 = 𝟎. Therefore, 𝐸

𝑖 ⊆ 𝑆𝐷𝑃
𝑖 . If

𝑦𝑖𝑴 ⪰ 0, we have 𝑦𝑖𝑴 ∙𝑫0
𝑖 ⩾ 0 since 𝑫0

𝑖 ⪰ 0. The upper bound of the
right-hand side in inequality (14) is obtained when 𝑫0

𝑖 = 0. In this case,
we have 𝐸

𝑖 = 𝑆𝐷𝑃
𝑖 . For the linear case with 𝑴 = 𝟎, 𝑫0

𝑖 = 𝟎 can be
derived from (A.3) in the proof of Lemma 2.2. Thus, 𝐸

𝑖 = 𝑆𝐷𝑃
𝑖 . □

Remark 2.2. Lemma 2.3 implies that the proposed (DRC-QSSVM)
model views each uncertain input as a set 

(

𝝁𝑖,𝜮𝑖 − 𝜖𝑫0
𝑖 ,

1−𝜖
𝜖

)

and
eeks a maximum-margin classification using these ellipsoids (See
ig. 1). When 𝑴 = 0, this result is reduced to the linear case,
hich leads to a maximum-margin classification using 

(

𝝁𝑖,𝜮𝑖,
1−𝜖
𝜖

)

s discussed by Shivaswamy et al. (2006) and Wang et al. (2018).

emark 2.3. Note that for each 𝑖, the size of the set 
(

𝝁𝑖,𝜮𝑖−𝜖𝑫0
𝑖 ,

1−𝜖
𝜖

)

epends on 𝜖. As 𝜖 decreases, the size increases (See the trends shown
y Fig. 1). Consider the following two extreme cases:

• 𝜖 = 0. In this case, P𝐹𝑖

{

𝑦𝑖
(

1
2 (𝒙̃

𝑖)T𝑴𝒙̃𝑖 +𝒘T𝒙̃𝑖 + 𝑏
)

⩽ 1 − 𝜉𝑖
}

⩽
𝜖 = 0, ∀𝐹𝑖 ∈ 𝑖, hence, each chance constraint becomes a
deterministic constraint, 𝑦𝑖

(

1
2 (𝒙̃

𝑖)T𝑴𝒙̃𝑖 +𝒘T𝒙̃𝑖 + 𝑏
)

> 1 − 𝜉𝑖,
∀𝐹𝑖 ∈ 𝑖. The quadratic surface 𝑄(𝑴 ,𝒘, 𝑏) is required to separate
data points generated from any potential distribution with fixed
mean and covariance. However, there may be numerous possible
50

distributions with the same given mean and covariance, for data
points to spread everywhere such that it becomes impossible to
find such a separating surface. Also, note that when 𝜖 → 0,
1−𝜖
𝜖 → ∞, which means the radius of the ellipsoid implied by

𝑆𝐷𝑃
𝑖 approaches to infinity. It is impossible to find a classifier

to separate infinitely large ellipsoids.
• 𝜖 = 1. In this case, P𝐹𝑖

{

𝑦𝑖
(

1
2 (𝒙̃

𝑖)T𝑴𝒙̃𝑖 +𝒘T𝒙̃𝑖 + 𝑏
)

⩽ 1 − 𝜉𝑖
}

⩽
𝜖 = 1, ∀𝐹𝑖 ∈ 𝑖, becomes a trivial requirement. This means that
for any data point, it is totally random to be correctly classified
or not. Then, statistically speaking, the separation surface may be
obtained by separating the mean vectors of random data points
(See Fig. 1’s last column). Note that, 1−𝜖

𝜖 = 0 as 𝜖 = 1. This result
is consistent with Lemma 2.3 when the ellipsoid reduces to the
center point 𝝁𝑖 with a zero radius.

2.4. SOCP reformulation of (DRC-QSSVM)

SDP often requires heavy computational efforts even if it is a
tractable convex program, while an equivalent SOCP model may have
fewer variables for more efficient computations. This subsection
presents SOCP constraints derived from the SDP reformulation of
(DRC-QSSVM).

Theorem 2.4. For 𝑖 = 1,… , 𝑁 , 𝑆𝐷𝑃
𝑖 is equivalent to

𝑆𝑂𝐶
𝑖 ≜

⎧

⎪

⎨

⎪

⎩

(𝑴 ,𝒘, 𝑏) ∈ S𝑛 × R𝑛 × R
|

|

|

|

|

|

|

𝑦𝑖
(

1
2𝝁

T
𝑖 𝑴𝝁𝑖 + 𝝁T

𝑖 𝒘 + 𝑏
)

⩾ 1 − 𝜉𝑖

+
√

1−𝜖
𝜖 ‖𝜮

1
2
𝑖 (𝑴𝝁𝑖 +𝒘)‖2 −

1−𝜖
2𝜖 𝜮𝑖 ∙ 𝑦𝑖𝑴

⎫

⎪

⎬

⎪

⎭

.

(15)

Proof . Please see Appendix A.2. □

Similar to Lemma 2.2, a geometric interpretation of 𝑆𝑂𝐶
𝑖 is given

in the next lemma.

Lemma 2.5. For any given (𝝁𝑖,𝜮𝑖, 𝜖), 𝐸
𝑖 ⊆ 𝑆𝑂𝐶

𝑖 for 𝑖 = 1,… , 𝑁 .
Moreover, for the linear case when 𝑴 = 𝟎, 𝐸

𝑖 = 𝑆𝑂𝐶
𝑖 .

roof . Please see Appendix A.3. □

For more efficient computations, we adopt the vectorization tech-
ique for 𝑆𝑂𝐶

𝑖 . Define the vectorizations of 𝑴 ∈ S𝑛 as vec(𝑴) ≜
𝑀11,… ,𝑀1𝑛,𝑀21,… ,𝑀2𝑛,𝑀𝑛1,… ,𝑀𝑛𝑛]T ∈ R𝑛2 , and hvec(𝑴) ≜ [𝑀11,
… ,𝑀1𝑛,𝑀22,… ,𝑀2𝑛,𝑀𝑛−1,𝑛−1,𝑀𝑛−1,𝑛,𝑀𝑛𝑛]T ∈ R

𝑛(𝑛+1)
2 . Let 𝑫𝑛 ∈

𝑛2× 𝑛(𝑛+1)
2 be the matrix that satisfies 𝑫𝑛hvec(𝑴) = vec(𝑴). For any

, define

𝑖 ≜ [𝑰𝑛 ⊗ (𝝁𝑖)T𝑫𝑛 𝑰𝑛] ∈ R𝑛×( 𝑛(𝑛+1)2 +𝑛), (16)

where ⊗ denotes the Kronecker product.

Let 𝒛 = [hvec(𝑴)T 𝒘T]T ∈ R
𝑛(𝑛+1)

2 +𝑛 be the reorganized vari-
able of 𝑴 and 𝒘. The objective function of (7) can be rewritten as
∑𝑁

𝑖=1 ‖𝑴𝝁𝑖 + 𝒘‖

2
2 =

∑𝑁
𝑖=1(𝑯

𝑖𝒛)T(𝑯 𝑖𝒛) = 𝒛T(
∑𝑁

𝑖=1(𝑯
𝑖)T𝑯 𝑖)𝒛. Letting

𝑾 =
∑𝑁

𝑖=1(𝑯
𝑖)T𝑯 𝑖, we further have ∑𝑁

𝑖=1 ‖𝑴𝝁𝑖 + 𝒘‖

2
2 = 𝒛T𝑾 𝒛. Let

𝑽 𝑛(𝑛+1)
2

≜ 2𝑰 𝑛(𝑛+1)
2

− Diag(hvec(𝑰𝑛)). Then we define

𝒓𝑖 ≜ [ 1
2
(𝑽 𝑛(𝑛+1)

2
hvec( 1 − 𝜖

𝜖
𝜮𝑖 + 𝝁𝑖𝝁T

𝑖 ))
T 𝝁T

𝑖 ]
T ∈ R

𝑛(𝑛+1)
2 +𝑛. (17)

We have 1
2𝑴 ∙( 1−𝜖𝜖 𝜮𝑖+𝝁𝑖𝝁T

𝑖 )+𝝁
T
𝑖 𝒘 = 𝒛T𝒓𝑖. Hence, (DRC-QSSVM) with a

feasible set in the form of 𝑆𝑂𝐶 has the following SOCP reformulation:
𝑖
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Fig. 1. Geometric interpretation of (DRC-QSSVM) on 2D synthetic data. The green and blue solid points represent {𝝁𝑖}𝑁𝑖=1 in two classes, respectively. Shaded areas depict the
orresponding ellipsoids 𝐸(𝝁𝑖 ,𝜮 𝑖 ,

1−𝜖
𝜖
). The learned quadratic classifier, 1

2
𝒙T𝑴𝒙 + 𝒙T𝒘 + 𝑏 = 0, is represented by the red solid line, and the pink dashed lines represent quadratic

curves defined by 1
2
𝒙T𝑴𝒙 + 𝒙T𝒘 + 𝑏 = ±1.
|

t
a

w
c
2

min 𝒛T𝑾 𝒛 + 𝐶
𝑁
∑

𝑖=1
𝜉𝑖

𝑠.𝑡. 𝑦𝑖
(

𝒛T𝒓𝑖 + 𝑏
)

⩾ 1 − 𝜉𝑖 +
√

1−𝜖
𝜖 ‖𝜮

1
2
𝑖 𝑯

𝑖𝒛‖2, 𝑖 = 1,… , 𝑁,

𝒛 ∈ R
𝑛(𝑛+1)

2 +𝑛, 𝑏 ∈ R, 𝝃 ∈ R𝑁
+ .

(18)

Since matrix 𝑾 is real, symmetric, and positive semi-definite, its
Cholesky factorization leads to 𝑾 = 𝑸T𝑸 with 𝑸 ∈ S

𝑛(𝑛+1)
2 +𝑛

+ . Conse-
uently, we have the following standard SOCP formulation:

min 𝜃 + 𝐶
𝑁
∑

𝑖=1
𝜉𝑖

𝑠.𝑡. ‖𝑸𝒛‖2 ⩽ 𝜃,

‖𝜮
1
2
𝑖 𝑯

𝑖𝒛‖2 ⩽
√

𝜖
1−𝜖

(

𝑦𝑖
(

𝒛T𝒓𝑖 + 𝑏
)

− 1 + 𝜉𝑖
)

, 𝑖 = 1,… , 𝑁,

𝒛 ∈ R
𝑛(𝑛+1)

2 +𝑛, 𝑏 ∈ R, 𝜃 ∈ R, 𝝃 ∈ R𝑁
+ .

(19)

ome observations on the SDP model (12) and SOCP model (19) can
e made here.

• Excluding the common variables (𝑏, 𝝃) ∈ R × R𝑁
+ , the SDP model

has 𝑁 matrix variables in S𝑛+1, one matrix variable in S𝑛, two
vector variables in R𝑁 and one vector variable in R𝑛, while the
SOCP model only has one vector variable in R

𝑛(𝑛+1)
2 +𝑛 and one

scalar variable.
• The SDP model has 3𝑁 semidefinite constraints involving (𝑛+1)-
dimensional positive semi-definite cones, while the SOCP model
only has one constraint involving (𝑛(𝑛+ 1)∕2 + 𝑛+ 1)-dimensional
second-order cones and𝑁 constraints involving (𝑛+1)-dimensional
second-order cones.

or general practice, the number of features 𝑛 is much smaller than that
of input points 𝑁 . Therefore, the SOCP model is more computationally
friendly than the SDP model.
51

S

3. Data-driven approach for data sets without moment informa-
tion

The results presented in the previous section count on the first- and
second-order moments of the data set with probability uncertainty. This
section utilizes the proposed (DRC-QSSVM) for classifying data sets
without moment information. Fig. 2 illustrates the basic workflow of
our data-driven approach. For a finite set of binary samples {(𝒙𝑖, 𝑦𝑖) ∈
R𝑛 × {−1, 1}, 𝑖 = 1,… , 𝑁} without any moment information (Fig. 2a),
we intend to use the proposed (DRC-QSSVM) model for building a
robust classifier. The key idea is to group similar data points together
and represent them by the mean and covariance of the group. Cluster-
ing is widely used to identify the inherent structure of data, while it
can also serve as a pre-processing technique for classification (Zhou,
2021). Clustering aims to partition a data set into disjoint subsets,
called clusters, where data points within the same cluster have high
similarities. As shown in Fig. 2(b), we first use clustering algorithms to
partition the given data set into 𝑁𝐾 clusters, 𝑪𝑘, 𝑘 = 1,… , 𝑁𝐾 , with
𝑁𝐾 < 𝑁 . The K-means clustering algorithm could partition data into a
finite number of homogeneous and separate clusters without using any
prior knowledge. Hence we adopt the K-means++ algorithm proposed
by Vassilvitskii and Arthur (2006) that enhances the performance
of ordinary K-means algorithms. The well-known ELBOW validation
method could help determine an optimal value of 𝑁𝐾 . Once the clusters
were obtained, the sample mean and covariance matrix can be easily
calculated to estimate (𝝁𝑘,𝜮𝑘), 𝑘 = 1,… , 𝑁𝐾 (Fig. 2(c)). Moreover, the
sample mean is denoted as 𝒙̄𝑘 ≜ 1

|𝑪𝑘|

∑𝑁
𝑖=1 𝒙

𝑖1𝑪𝑘
(𝒙𝑖), and the sample

covariance as 𝑺𝑘 ≜ 1
|𝑪𝑘|−1

∑𝑁
𝑖=1(𝒙

𝑖1𝑪𝑘
(𝒙𝑖) − 𝒙̄𝑘)(𝒙𝑖1𝑪𝑘

(𝒙𝑖) − 𝒙̄𝑘)T, where
𝑪𝑘| is the cardinality of the 𝑘th cluster 𝑪𝑘. Then we could construct
he ambiguity set (3) to employ the proposed (DRC-QSSVM) model for
robust classifier described in Fig. 2(d).

The proposed process illustrated by Fig. 2 leads to Algorithm 1,
here Step 1 partitions the given binary data shown in 2(a) into two
lasses first. The clustering shown in Fig. 2(b) is accomplished by Steps
–8. Step 9 computes the mean and covariance shown in Fig. 2(c).
teps 10–12 employ the proposed model to obtain a robust quadratic
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Fig. 2. Data-driven approach for data sets without moment information.
p

classifier (Fig. 2(d)) determined by (𝑴∗,𝒘∗, 𝑏∗) by solving the SOCP
reformulation (18).
Algorithm 1 Data-driven distributionally robust classification algo-
rithm.
Input: Data set 𝑪 = {(𝐱𝑖, 𝑦𝑖) ∈ R𝑛 × {−1, 1}, 𝑖 = 1,… , 𝑁}, 𝜖 ∈ (0, 1).
Output: A quadratic surface defined by (𝑴∗,𝒘∗, 𝑏∗).
1: Extract two classes from the original data set 𝑪 :

𝑪+ = {𝒙𝑖 ∈ R𝑛
| 𝑦𝑖 = 1, 𝑖 = 1,… , 𝑁}. 𝑪− = {𝒙𝑖 ∈ R𝑛

| 𝑦𝑖 =
−1, 𝑖 = 1,… , 𝑁}.

2: Compute the cardinality: 𝑁+ = |𝑪+|, 𝑁− = |𝑪−|.
3: Let 𝑁𝑈

+ be the upper bound of possible cluster numbers for 𝑪+, and
𝑁𝑈

− for 𝑪−.
Set 𝑁𝑈

+ = min{25, 10%𝑁+}, and 𝑁𝑈
− = min{25, 10%𝑁−}.

∗The values 25 and 10% are user-defined based on the size of the
data set.

4: for 𝐼 ∈ { ‘+’, ‘−’} do
5: for 𝐾 = 1, 2,… , 𝑁𝑈

𝐼 do
6: Apply the K-means++ algorithm to divide the set 𝑪𝐼 into 𝐾
clusters.

7: end for
8: Use the Elbow method to find the optimal value of 𝐾 denoted
as 𝐾∗

𝐼 .
9: end for
10: Set 𝑁𝐾 = 𝐾∗

+ +𝐾∗
−.

11: Calculate (𝝁𝑘,𝜮𝑘) for 𝑪𝑘
+ and number them by 𝑘 = 1,… , 𝐾∗

+.
Calculate (𝝁𝑘,𝜮𝑘) for 𝑪𝑘

− and number them by 𝑘 = 𝐾∗
+ + 1,… , 𝑁𝐾 .

Set 𝒚̄ = [𝒆𝐾∗
+
; −𝒆𝐾∗

−
] ∈ R𝑁𝐾 as the new label vector, where 𝒆𝐾∗

+
and

𝒆𝐾∗
−
are 𝐾∗

+-dimensional and 𝐾∗
−-dimensional vectors of all ones,

respectively.
12: Use (𝝁𝑘,𝜮𝑘) to compute 𝑯𝑘 by (16), 𝒓𝑘 by (17), 𝑘 = 1,… , 𝑁𝐾 . Set

𝑾 =
∑𝑁𝐾

𝑘=1(𝑯
𝑘)T𝑯𝑘.

13: With𝑾 , 𝑯𝑘, 𝒓𝑘, 𝑘 = 1,… , 𝑁𝐾 , and 𝒚̄, solve the SOCP problem (18)
of (DRC-QSSVM) to find an optimal solution (𝒛∗, 𝑏∗).

14: Compute (𝑴∗,𝒘∗) from 𝒛∗ using the vectorization technique
discussed in Section 2.4.

15: Return (𝑴∗,𝒘∗, 𝑏∗).

Algorithm 1 implies that the robust quadratic classifier is learned
y separating 𝑁𝐾 ellipsoids instead of separating 𝑁 data points with
𝐾 ≪ 𝑁 in general. This observation indicates the potential benefit
f our proposed in dealing with massive data that shall be explored by
omputational experiments in Section 4.2.2. In addition, we notice that
he classification objects become ellipsoids that cover data points with
imilarity, which might help avoid outliers and balance the magnitude
f the two classes. It implies the potential of Algorithm 1 for treating
mbalanced data. This works especially well for applications on rare
ase detection. SVMs with non-robust counterparts may perform poorly
n the minority class since they may focus on the majority class while
aximizing the overall accuracy (Thabtah, Hammoud, Kamalov, &
onsalves, 2020). To illustrate this idea, for a highly imbalanced data
et with a ratio of 5∕21, Fig. 3(a) shows that the quadratic classifier
btained by (QSSVM) sacrifices 4 minority points in brown by treating
hem as outliers. However, instead of classifying the 26 imbalanced
52

t

points, the proposed approach finds a quadratic classifier by separating
4 ellipsoids with a more balanced ratio of 2∕2 (See Fig. 3(b)). Fur-
ther experiments on classifying imbalanced data will be conducted in
Section 4.2.3.

Remark 3.1. In practice, decision-makers can rarely be completely
confident in the sample mean and covariance matrix for estimated
moments. The challenge here is that the sample means and covariance
matrices themselves are uncertain. Hence their uncertainty is factored
into chance constraints by considering a confidence region for the
sample mean and covariance matrix. Appendix B.1 further extends the
work.

Remark 3.2. As shown in Fig. 2 and Algorithm 1, the data-driven
approach first takes the clustering process and then extracts the mo-
ment information. For real-world applications, historical data might not
be sufficient to reflect the whole data structure, and we may need to
collect new data over time to form a dynamic approach. When new
instances are added to the data set, we need to update the clustering
and classification processes as well.

4. Computational experiments

This section studies the proposed (DRC-QSSVM) model by compu-
tational experiments. For uncertain data with given first- and second-
order moments, in Section 4.1, we validate the effectiveness of the
proposed model and analyze its performance in terms of the parameter
𝜖. Then we compare the proposed model with the DRC linear soft
SVM (DRC-LSSVM) model which is the only maximum-margin SVM
model using the first- and second-order moments information in the
literature. For data without moment information, in Section 4.2, we
compare the data-driven approach proposed in Section 3 with some
state-of-the-art SVM models. In particular, we explore the potential
benefits of using the proposed model for problems with massive and/or
imbalanced data. In this section, all computational experiments were
conducted using MATLAB (R2021a) software on a desktop equipped
with Intel(R) Core(TM) i3-9100 CPU @ 3.60 GHz CPUs and 32 GB
RAM. The commercial solver SDPT3 (Toh, Todd, & Tütüncü, 1999) is
employed to solve SDP and SOCP problems.

4.1. Data sets with first- and second-order moments

As discussed in Section 2, for uncertain data with first- and second-
order moments, the proposed (DRC-QSSVM) model has computable
SOCP and SDP reformulations. In Section 4.1.1, we test these two
formulations on synthetic data sets regarding classification accuracy
and computational efficiency. For the proposed model, the parameter 𝐶
controls the trade-off between maximizing the margin and minimizing
the misclassification loss, as commonly adopted in most SVM models.
While the parameter 𝜖 determines the upper bound of misclassification
robability that affects the quality of robust classification. Here we skip

he detailed analysis on the parameter 𝐶, but focus on the parameter
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Fig. 3. Comparison on an imbalanced data set.
Fig. 4. Results of (DRC-QSSVM) on Syn-Hype-2d-9 data. Shaded areas depict the given ellipsoids 𝐸(𝝁𝑖 ,𝜮 𝑖 ,
1−𝜖
𝜖
). The learned quadratic classifier, 1

2
𝒙T𝑴𝒙+𝒙T𝒘+𝑏 = 0, is represented

by the red solid line, and the pink dashed lines represent 1
2
𝒙T𝑴𝒙 + 𝒙T𝒘 + 𝑏 = ±1. Solid points represent random testing points.
𝜖. For all computational experiments, we take the grid method to set
𝐶 ∈ {2−1, 21,… , 214} and 𝜖 ∈ {0.10, 0.25, 0.50, 1.00}.

We first introduce some error measures to be used. For a quadratic
surface obtained by solving (DRC-QSSVM) with an output (𝑴∗,𝒘∗, 𝑏∗) ∈
𝑛 × R𝑛 × R, the predicted label 𝑦̂ = sign( 12 (𝒙)

T𝑴∗𝒙 + (𝒘∗)T𝒙 + 𝑏∗) can
e determined for a test data point (𝒙, 𝑦). A commonly used measure is
he accuracy score (Acc) computed by ∑𝑁

𝑖=1 1(𝑦̂
𝑖 = 𝑦𝑖)∕𝑁 × 100% where

is the total number of tested points. However, for the uncertain
lassification with data points from a distribution, we further consider
probabilistic accuracy score (PrAcc). Note that Ben-Tal et al. (2011)
nd Wang et al. (2018) adopted an ‘‘optimal error’’ to quantify the prob-
bilistic error. For DRC-LSSVM, we have PrAcc = 1− ‘‘optimal error’’.
ere we further extend the measure for quadratic classifiers. At each
ncertain data point 𝒙̃𝑖 associated with the ambiguity set 𝑖 in (3), the
robust chance constraint, sup𝐹𝑖∈𝑖

P𝐹𝑖

{

𝑦𝑖
(

1
2 (𝒙̃

𝑖)T𝑴𝒙̃𝑖 +𝒘T𝒙̃𝑖 + 𝑏
)

⩽ 0
}

𝜖, ensures an upper bound 𝜖 of the misclassification probability for
he quadratic classifier. Using Theorem 2.4 and the SOCP reformulation
19), the true probability of misclassification at 𝒙̃𝑖 should be no more
han 𝜖, if ‖𝜮

1
2
𝑖 𝑻

𝑖𝒛‖2 ⩽
√

𝜖∕(1 − 𝜖)𝑦𝑖(𝒛T𝒓𝑖 + 𝑏). And this could imply that
the least value of 𝜖 for 𝒙̃𝑖 is 𝜖∗𝑖 = 𝒛T(𝑻 𝑖)T𝜮𝑖𝑻 𝑖𝒛

(𝒛T𝒓𝑖+𝑏)2+𝒛T(𝑻 𝑖)T𝜮𝑖𝑻 𝑖𝒛
. Consequently, we

define

PrAcc = (1 −
𝑁
∑

𝑖=1
err𝑖∕𝑁) × 100%,

where err𝑖 =

{

1, if 𝑦̂𝑖 ≠ 𝑦𝑖
∗ 𝑖 𝑖

, 𝑖 = 1,… , 𝑁.

(20)
53

𝜖𝑖 , if 𝑦̂ = 𝑦
4.1.1. Validation and analysis of the proposed model
Given that we have uncertain data set with known {(𝝁𝑖,𝜮𝑖) ∈ R𝑛 ×

S𝑛, 𝑖 = 1,… , 𝑁}, to validate the proposed model and its effectiveness,
we first generate some synthetic data in different quadratic patterns
including hyperbolic, elliptic, and parabolic structures (See Fig. 1 for
illustration). The corresponding synthetic data sets are named in the
format of ‘‘Syn-Pattern-𝑛d-𝑁 ’’, for example, the data set ‘‘Syn-Hype-4d-
50’’ denotes a set of {(𝝁𝑖,𝜮𝑖) ∈ R4 × S4, 𝑖 = 1,… , 50} where 𝝁𝑖 are
generated along with a hyperbolic surface, and 𝜮𝑖 are random positive
definite matrices with eigenvalues in [0, 1]. For each 𝑖, we generate
50 random points following the normal distribution with mean 𝝁𝑖 and
covariance 𝜮𝑖 as the testing data points. Note that the proposed model
can handle distribution-free data and we choose the normal distribution
for simplicity in this section. We generate 8 data sets by selecting 𝑛 ∈
{2, 4, 8, 16} and 𝑁 ∈ {50, 100}. We also record the testing accuracy by
the average Acc and PrAcc. The average training CPU time is recorded
for both results solved by the SDP model (12) and SOCP model (19).

For a simple illustration, first, we show a 2-dimensional example
tested on the ‘‘Syn-Hype-2d-9’’ data set. Fig. 4 shows that the classifiers
learned based on the first- and second-order moments depend on the
value of 𝜖. For example, the proposed model provides hyperbolic curves
when 𝜖 = 0.10, 0.25, a parabolic curve when 𝜖 = 0.50, and an ellipsoidal
curve when 𝜖 = 1.00. Figs. 4 and 5(a) show that 𝜖 indeed affects the
classification accuracy. The Acc and PrAcc shown in Fig. 5(a) depict
how 𝜖 affects the performance.

Synthetic data sets with bigger sample sizes in higher dimensions
have been tested to investigate the proposed model further. Table 1
shows one group of results on ‘‘hyperbolic’’ synthetic data sets. More
results on the ‘‘elliptic’’ and ‘‘parabolic’’ data sets are shown in Ap-

pendix B.2. For all testing problems, we ensure that the SOCP model
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Fig. 5. Performance of (DRC-QSSVM) on ‘‘hyperbolic’’ synthetic data sets in terms of 𝜖.
Table 1
Testing results on ‘‘hyperbolic’’ synthetic data sets by DRC-QSSVM.
Data Syn-Hype-4d-50 Syn-Hype-8d-50 Syn-Hype-16d-50

𝜖 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00

Acc(%) 99.96 100.00 99.96 99.24 97.92 98.64 99.28 99.04 98.88 99.84 99.92 99.68

PrAcc(%) 98.54 99.18 99.39 98.69 92.57 95.49 96.46 93.61 88.67 94.76 96.94 94.11

CPU time (s) SOCP 3.01 2.99 2.99 2.22 3.14 3.13 3.08 2.38 5.72 5.71 5.98 3.85

SDP 4.55 4.50 4.45 3.35 6.98 6.99 6.89 5.10 34.96 30.90 29.54 21.77

Data Syn-Hype-4d-100 Syn-Hype-8d-100 Syn-Hype-16d-100

𝜖 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00

Acc(%) 100.00 99.96 99.88 99.88 99.89 100.00 100.00 100.00 100.00 100.00 100.00 99.89

PrAcc(%) 99.35 99.36 99.27 99.26 99.59 99.70 99.80 99.83 99.51 99.39 99.35 99.34

CPU time (s) SOCP 5.14 5.25 5.22 2.97 5.50 5.56 5.62 3.89 12.43 12.41 12.36 7.70

SDP 8.05 8.03 7.95 4.74 19.40 18.20 17.81 11.74 187.10 176.16 142.67 136.87
E
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achieves the same results as the SDP model, but in a much more
efficient way. From Table 1, we see that (i) the proposed (DRC-QSSVM)
model performs well in terms of Acc and PrAcc measures; (ii) it is
not surprising that PrAcc is always smaller than the corresponding Acc
since the former considers the potential misclassification probability
when the predicted label is correct; (iii) For fixed 𝑁 and 𝑛, both Acc
and PrAcc change depending on 𝜖, but in the same trend, as illustrated
in Fig. 5(b).

4.1.2. Comparison with the DRC-LSSVM model
In the literature, DRC-LSSVM (Wang et al., 2018) is the only

maximum-margin SVM model using the means and covariance ma-
trices for distributionally robust classification. Hence we compare the
proposed (DRC-QSSVM) with DRC-LSSVM using the well-known data
sets Wisconsin breast cancer (WIBC) and the Ionosphere from the UCI
dataset. For fair comparisons, we adopt the same settings for data pre-
processing as in Wang et al. (2018). WIBC data contains 683 samples
with 9 features, i.e. 𝑁 = 683, 𝑛 = 9, and extracted Ionosphere
data has 𝑁 = 351, 𝑛 = 15 (extracted from 𝑛 = 34 as Wang et al.
2018)). Moreover, for computational efficiency, SOCP reformulations
re used for both (DRC-QSSVM) and DRC-LSSVM. Similarly to Wang
t al. (2018), 𝝁𝑖 is set to be the value of each training point, and 𝜮𝑖

s calculated based on the covariance matrix of all training points in
he same class. Table 2 shows the results where (i) 20% of the data
re used for training and the remaining 80% for testing; (ii) 80% for
raining and 20% for testing.
The proposed DRC-QSSVM model generates a quadratic surface,

hich increases the flexibility when handling nonlinear data. How-
ver, it increases the model complexity as well compared with the
inear DRC-LSSVM model. Table 2 clearly shows that the performance
f (DRC-QSSVM) dominates that of DRC-LSSVM in all cases, taking
reasonably longer running time. The superiority of the proposed
DRC-QSSVM) model becomes particularly evident when applied to the
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I

xtracted Ionosphere data, which is more nonlinearly complex than the
IBC data.

.2. Data sets without moment information

Section 3 provides a data-driven approach to apply (DRC-QSSVM)
or robustly classifying exact data points {(𝒙𝑖, 𝑦𝑖) ∈ R𝑛 × {−1,+1}, 𝑖 =
,… , 𝑁}. We conduct computational experiments to compare the data-
riven approach with well-known state-of-the-art SVMs using some
ommonly used public benchmark data sets. Table 3 lists the tested
odels, including their abbreviations, solvers, and parameters. Kernel-
zed SVMs are solved by utilizing LIBSVM (Chang & Lin, 2011), and
ther SVMs are solved by SDPT3. Note that (DRC-QSSVM) is realized by
he data-driven Algorithm 1 in which the SOCP problem (18) is solved
y SDPT3.
For all tests, the 10-fold cross-validation and grid methods are

dopted to select the best parameters of 𝐶, 𝜖, and 𝜎 from the ranges
f 𝐶 ∈ {2−1, 21,… , 214}, 𝜖 ∈ {0.1, 0.2,… , 1}, and 𝜎 ∈ {2−5, 2−4,… , 25},
espectively. All test results are based on the best-selected parameters.
ome public benchmark data sets from UCI databases (See Table 4)
re chosen. Section 4.2.1 presents the results of ‘‘balanced’’ data sets,
ncluding the commonly used Scale, Pima Indians Diabetes (Pima),
IBC, and Ionosphere. Section 4.2.2 reports the performance of ‘‘mas-
ive’’ data sets including Skin and Cod-RNA with large sample sizes.
ection 4.2.3 explores the results of ‘‘imbalanced’’ data sets, including
ar Evaluation (Careval) and Heart Disease (Heart) with skewed class
roportions. All the classical SVMs are tested on the original data, and
he two robust models including DRC-LSSVM and the proposed DRC-
SSVM utilize the moment information of the data retrieved by the
ata-driven approach described in Algorithm 1.

.2.1. Benchmark tests on balanced data
Four popular balanced benchmark data sets: Scale, Pima, WIBC, and
onosphere are tested. Since they are exact data sets, we report the Acc
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Table 2
Testing results on WIBC and extracted Ionosphere data sets.
Data (20% training) WIBC Extracted Ionosphere

𝜖 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00

DRC-LSSVM
Acc(%) 96.60 96.38 96.30 96.12 84.26 84.54 84.40 84.26

PrAcc(%) 93.98 93.70 93.61 93.00 82.61 82.91 82.09 81.92

CPU time (s) 5.77 5.48 5.05 5.01 3.36 3.37 3.39 3.40

DRC-QSSVM
Acc(%) 96.63 96.63 96.52 96.56 92.81 91.95 92.09 92.09

PrAcc(%) 94.05 94.39 94.69 94.82 91.64 91.21 91.38 91.30

CPU time (s) 6.66 6.13 5.71 5.77 5.56 5.53 5.56 5.61

Data (80% training) WIBC Extracted Ionosphere

𝜖 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00

DRC-LSSVM
Acc(%) 96.63 96.63 96.49 96.49 87.46 88.31 88.02 87.74

PrAcc(%) 95.45 95.57 95.35 95.15 83.36 83.70 84.19 83.67

CPU time (s) 16.97 17.56 16.37 18.14 10.51 10.54 12.15 11.37

DRC-QSSVM
Acc(%) 97.22 97.37 97.22 96.93 96.58 96.02 95.73 95.16

PrAcc(%) 95.86 95.91 95.76 95.61 92.87 93.48 92.94 92.18

CPU time (s) 32.25 30.82 34.77 30.51 33.05 32.77 30.47 31.01
Table 3
Models and solvers of the tested models.
Model Abbreviation Solver/Package Parameter

Linear soft SVM LSSVM LibSVM 𝐶
Quadratic soft surface SVM QSSVM SDPT3 𝐶
SVM with quadratic kernel KQSSVM LibSVM (𝐶, 𝜎)
SVM with Gaussian kernel KGSSVM LibSVM (𝐶, 𝜎)
DRC linear SVM DRC-LSSVM SDPT3 (𝐶, 𝜖)
The proposed model DRC-QSSVM SDPT3 (𝐶, 𝜖)

measure only. The mean and standard deviation of Acc are shown in
Table 5. Same as in Section 4.1.2, we select 20% and 80% of data sets
for training, respectively. The average training CPU time of each model
is also reported.

The following observations can be made:

• The proposed (DRC-QSSVM) model produces much more accu-
rate classifications than other tested SVM models on all tested
balanced data sets. It shows the special value of the data-driven
based robust (DRC-QSSVM) for commonly used data sets without
prescribed uncertainty.

• For most data sets, the classification accuracy obtained by (DRC-
QSSVM) changes very little in terms of different training rates of
20% vs 80%. It indicates the potential advantage of the proposed
model when we have limited data points for training.

• The CPU time consumed by the proposed (DRC-QSSVM) is ac-
ceptable overall considering its classification accuracy. Also note
that (DRC-QSSVM), (QSSVM), and DRC-LSSVM are solved using
the solver SDPT 3.0, while others are solved using an integrated
software LIBSVM.

4.2.2. Benchmark tests on massive data
Two massive benchmark data sets, Skin and Cod-RNA, are used

for testing. We also use 20% and 80% of data points for training,
respectively. The mean, standard deviation of accuracy scores, and the
average training CPU time are reported in Table 6.

The following observations can be made:

• The proposed (DRC-QSSVM) model significantly outperforms oth-
ers in accuracy for the Skin data. For the Cod-RNA data, (DRC-
QSSVM) also outperforms other models considering both the
accuracy and CPU time.
55
• (DRC-QSSVM) can achieve high accuracy using only 20% data
points for training. This supports the stability of the proposed
model and the promising potential of practical use for massive
data classification.

4.2.3. Benchmark tests on imbalanced data
Imbalanced data sets, where one class greatly outnumbers the other,

are a common issue in many real-life applications. Classifying im-
balanced data presents a challenge for standard classification algo-
rithms. In this subsection, two imbalanced data sets, Careval and Heart,
are tested. For the classification of imbalanced data, a good SVM
model should (i) enhance recognition success specifically for the mi-
nority class, and/or (ii) balance recognition capabilities between both
classes (Sun, Wong, & Kamel, 2009). Additional error measurements are
often used to evaluate such performance. The Area Under Curve (AUC)
score could help evaluate the first performance, while the G-mean score
could help the second one (Details refer to Sun et al. (2009)). In this
subsection, we elect 80% as the training rate due to the potential
inadequacy of the minority class sample size to facilitate training at
the 20% rate. Table 7 displays the average CPU time, and the mean
and standard deviation of the Acc, AUC, and G-mean scores.

The following observations can be made:

• The proposed (DRC-QSSVM) model outperforms other models in
all three measures. The dominance is particularly significant in
AUC and G-mean scores.

• Note that the imbalance ratio of the Heart data is higher than
that of the Careval data. Most models have AUC and G-mean
around 50%, which means these classifiers cannot distinguish two
classes clearly. However, the proposed model still shows good
performance. This means that the proposed model may have a
better capability of handling highly imbalanced data.

In summary, applying the DRO approach, the proposed model ex-
tends the QSSVM framework, enabling a kernel-free nonlinear SVM
with a quadratic classifier to handle uncertainties in data. It outper-
forms the QSSVM as well as other state-of-the-art SVMs in general
classification tasks without uncertainty. While the QSSVM is tested on
original data, solving a certain problem, the proposed model leverages
hidden moment information to address uncertain problems. This high-
lights the significant finding that transforming a certain problem into
an uncertain one and then solving it may lead to surprisingly better
outcomes.
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Table 4
Summary of the benchmark data sets.
Data set Balanced Massive Imbalanced

Scale Pima WIBC Ionosphere Skin Cod-RNA Careval Heart

Dimension 𝑛 4 8 9 34 3 8 6 9

Sample sizea 𝑁
𝑁+ 288 268 239 225 50,859 19,845 1,210 3,101
𝑁− 288 500 444 126 194,198 39,690 384 557

a 𝑁± = sample size of points in the class labeled ‘±1’ and 𝑁 = 𝑁+ +𝑁−.
Table 5
Testing results on the balanced benchmark data sets.

Model/
Training rate

Data set Scale Pima WIBC Ionosphere

Acc(%) CPU(s) Acc(%) CPU(s) Acc(%) CPU(s) Acc(%) CPU(s)
mean std mean std mean std mean std

LSSVM 20% 70.24 6.99 0.27 74.97 3.69 0.01 92.65 3.16 0.01 82.48 1.44 0.01
80% 73.02 5.63 1.50 76.14 2.51 0.08 96.03 1.26 3.90 88.76 3.19 0.28

QSSVM 20% 97.35 0.89 0.71 74.31 3.87 0.78 94.12 2.38 2.44 87.81 2.64 3.18
80% 97.53 0.91 8.50 76.67 2.43 9.87 95.66 0.95 11.58 93.52 2.97 10.29

KQSSVM 20% 97.65 0.78 0.16 76.99 2.68 0.23 95.44 1.66 0.15 87.43 3.12 0.05
80% 97.65 0.88 1.11 78.24 1.97 1.01 96.10 0.98 0.54 91.62 4.06 0.13

KGSSVM 20% 97.82 1.00 0.01 76.34 2.09 0.01 92.18 1.42 0.01 88.57 1.56 0.01
80% 98.24 0.83 0.02 77.58 2.09 0.11 95.96 0.93 0.02 93.74 1.17 0.02

DRC-LSSVM 20% 68.65 5.03 0.40 76.99 2.80 0.72 94.49 2.00 2.10 88.19 3.73 0.50
80% 74.18 4.59 0.48 76.93 3.28 0.77 94.71 1.54 2.03 89.05 5.33 0.74

DRC-QSSVM 20% 98.18 1.01 0.44 80.77 4.15 0.77 96.55 2.03 2.20 93.52 1.17 3.04
80% 98.30 0.79 0.51 81.36 3.42 0.82 96.66 1.29 2.14 94.00 2.97 3.57
Table 6
Testing results on the massive benchmark data sets.
Training rate Skin Cod-RNA

20% 80% 20% 80%

Acc (%) CPU(s) Acc (%) CPU(s) Acc (%) CPU(s) Acc (%) CPU(s)

mean std mean std mean std mean std

LSSVM 75.01 8.31 1.52 80.01 5.29 6.08 78.51 10.32 10.88 84.67 5.21 44.90
QSSVM 85.23 1.21 25.01 91.24 3.20 1656.43 91.17 0.78 138.83 92.04 0.46 2942.85
KQSSVM 80.53 21.95 0.97 92.29 5.42 4.12 91.61 0.98 4.13 92.55 0.59 30.52
KGSSVM 79.56 0.11 0.01 81.07 0.11 0.08 88.59 0.49 0.07 90.86 0.24 1.66
DRC-LSSVM 87.73 7.84 0.62 88.82 5.49 0.81 80.45 9.79 0.94 89.47 1.64 0.98
DRC-QSSVM 96.51 0.51 0.66 97.85 0.75 1.36 92.54 0.64 0.98 92.21 0.60 1.26
Table 7
Testing results on the imbalanced benchmark data sets.
Model Careval Heart

Acc(%) AUC(%) G-mean(%) CPU(s) Acc(%) AUC(%) G-mean(%) CPU(s)

mean std mean std mean std mean std mean std mean std

LSSVM 79.88 10.68 84.64 10.63 74.51 8.06 0.70 53.17 1.11 51.30 0.40 50.68 0.28 0.02
QSSVM 96.22 0.96 98.59 0.44 92.37 1.93 2.98 76.88 3.06 56.07 2.75 48.33 2.32 35.88
KQSSVM 94.72 0.55 99.11 0.28 93.45 0.91 0.70 67.09 0.60 50.11 1.01 55.10 1.53 3.10
KGSSVM 96.00 0.46 98.74 0.20 94.34 1.27 0.01 84.79 a0.00 57.85 a0.00 a0.00 a0.00 0.04
DRC-LSSVM 95.66 0.79 96.51 0.59 83.02 1.18 0.49 78.61 6.33 54.65 1.34 53.68 0.85 0.58
DRC-QSSVM 99.65 0.70 99.82 0.78 95.97 1.32 0.50 85.77 0.02 71.32 0.90 66.24 1.47 1.21

a A G-mean score of value 0 and std of 0 indicate the classifier simply assigns all instances to the majority class.
. Conclusion

In this paper, we have established a novel distributionally robust
hance-constrained kernel-free quadratic surface support vector ma-
hine model that can robustly conduct nonlinear classification for data
ets involving stochastic uncertainties, in which only the first- and
econd-order moments are known a priori. SDP and SOCP reformu-
ations of the proposed model have been derived for computational
56
efficiency. Additionally, an explicit geometric interpretation of the con-
ceptual distributionally robust chance constraints has been presented
to show how the proposed model handle uncertain data. Our computa-
tional experiments show that the proposed model clearly outperforms
the DRC-LSSVM model, the only maximum-margin SVM model ex-
plicitly using moment information for classifying uncertain data, on
synthetic and public benchmark data sets.

For commonly used data sets without uncertainty involved, we
design a cluster-based data-driven approach that retrieves the hidden
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moment information first and enables the proposed model to leverage
the moments for robust classification. This approach aids in further
exploring the applicability of the proposed model. Extensive compu-
tational experiments using public benchmark data sets exhibit the
surprisingly dominant performance of the proposed model over other
state-of-the-art SVM models, especially for massive and/or imbalanced
data sets.

Our investigation of the proposed model leads to some potential
research works. First, in real-world applications, historical data may
not be sufficient to capture the whole structure of the data set (Hsu,
Xu, Lin, & Bell, 2022; Mi, Quan, Shi, & Wang, 2022). Collecting
new data over time is necessary to adapt to changes in the data and
the evolving moment information. We are interested in developing a
dynamic approach to update the clustering and classification processes
to extend the proposed model further. Besides, we are interested in
how the proposed model performs in healthcare applications (Jiang,
Han, Yu, & Ding, 2023; Naumzik, Feuerriegel, & Nielsen, 2023) with
large-scale uncertain data.
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Appendix A. Proofs

A.1. Proof of Lemma 2.2

Proof. For any 𝑖, the constraints in 𝑆𝐷𝑃
𝑖 require finding 𝛽𝑖 and 𝑹𝑖 ⪰ 0

to satisfy 1
𝜖 𝜞 𝑖 ∙𝑹𝑖−𝛽𝑖 ⩽ 0 and the matrix inequality. Notice that finding

𝑖 and 𝑹𝑖 ⪰ 0 with 𝑹𝑖 +

[

1
2 𝑦

𝑖𝑴 1
2 𝑦

𝑖𝒘
1
2 𝑦

𝑖𝒘T 𝑦𝑖𝑏 + 𝜉𝑖 − 1 − 𝛽𝑖

]

⪰ 0 is not difficult.

However, it is hard to guarantee such 𝛽𝑖 and 𝑹𝑖 satisfies
1
𝜖 𝜞 𝑖∙𝑹𝑖−𝛽𝑖 ⩽ 0.

equiring 𝑆𝐷𝑃
𝑖 ≠ ∅ is equivalent to requiring that the optimal value

f the following optimization problem is less than or equal to 0:

inf 1
𝜖
𝜞 𝑖 ∙𝑹𝑖 − 𝛽𝑖 (A.1a)

𝑠.𝑡. 𝑹𝑖 +

[ 1
2 𝑦

𝑖𝑴 1
2 𝑦

𝑖𝒘
1
2 𝑦

𝑖𝒘T 𝑦𝑖𝑏 + 𝜉𝑖 − 1 − 𝛽𝑖

]

⪰ 0, (A.1b)

𝑹𝑖 ⪰ 0. (A.1c)

Since one can easily find a proper 𝛽𝑖 ∈ R and a matrix 𝑹𝑖 ≻ 0 with

igenvalues large enough to satisfy 𝑹𝑖+

[

1
2 𝑦

𝑖𝑴 1
2 𝑦

𝑖𝒘
1
2 𝑦

𝑖𝒘T 𝑦𝑖𝑏 + 𝜉𝑖 − 1 − 𝛽𝑖

]

≻ 0,

he Slater’s condition of problem (A.1) is satisfied and the strong duality

olds for (A.1) and its dual problem. Let 𝑫̄𝑖 =
[

𝑫𝑖 𝒅𝑖
𝒅T
𝑖 𝑑0𝑖

]

∈ S𝑛+1+ and

𝑖 ∈ S𝑛+1+ be the dual variables corresponding to (A.1b) and (A.1c),
espectively. Then the Lagrangian becomes

sup
̄ 𝑖⪰0,𝑪 𝑖⪰0

inf
𝑹𝑖 ,𝛽𝑖

(𝑹𝑖, 𝛽𝑖, 𝑫̄ 𝑖,𝑪 𝑖)

sup
𝑫̄𝑖⪰0,𝑪 𝑖⪰0

inf
𝑹𝑖 ,𝛽𝑖

{

1
𝜖
𝜞 𝑖 ∙𝑹𝑖 − 𝛽𝑖 − 𝑫̄ 𝑖 ∙

(

𝑹𝑖 +

[ 1
2
𝑦𝑖𝑴 1

2
𝑦𝑖𝒘

1
2
𝑦𝑖𝒘T 𝑦𝑖𝑏 + 𝜉𝑖 − 1 − 𝛽𝑖

])

−𝑪 𝑖 ∙𝑹𝑖

}

= sup
𝑫̄𝑖⪰0,𝑪 𝑖⪰0

inf
𝑹𝑖 ,𝛽𝑖

{

𝑹𝑖 ∙
(

1
𝜖
𝜞 𝑖 − 𝑪 𝑖 − 𝑫̄ 𝑖

)

+ (𝑑0𝑖 − 1)𝛽𝑖 − 𝑑0𝑖(𝑦𝑖𝑏 + 𝜉𝑖 − 1)

− 1
2
𝑦𝑖𝑴 ∙𝑫 𝑖 − 𝑦𝑖𝒘T𝒅𝑖

}

= sup

{

− 1
2
𝑦𝑖𝑴 ∙𝑫 𝑖 − 𝑦𝑖𝒘T𝒅𝑖 − (𝑦𝑖𝑏 + 𝜉𝑖 − 1), 𝑑0𝑖 − 1 = 0, 1

𝜖
𝜞 𝑖 − 𝑫̄ 𝑖 ⪰ 0,
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𝑫̄𝑖⪰0 −∞, otherwise.
Consequently, we have dual problem of (A.1):

sup − 1
2 𝑦

𝑖𝑴 ∙𝑫𝑖 − 𝑦𝑖𝒘T𝒅𝑖 − (𝑦𝑖𝑏 + 𝜉𝑖 − 1)

𝑠.𝑡.

[

𝜮𝑖 + 𝝁𝑖𝝁T
𝑖 − 𝜖𝑫𝑖 𝝁𝑖 − 𝜖𝒅𝑖

𝝁T
𝑖 − 𝜖𝒅T

𝑖 1 − 𝜖

]

⪰ 0,

[

𝑫𝑖 𝒅𝑖
𝒅T
𝑖 1

]

⪰ 0,

𝑫𝑖 ∈ S𝑛, 𝒅𝑖 ∈ R𝑛.

(A.2)

The Schur Complement Lemma implies that
[

𝑫𝑖 𝒅𝑖
𝒅T
𝑖 1

]

⪰ 0 ⇔ 𝑫𝑖 −

𝒅𝑖𝒅T
𝑖 ⪰ 0. Let 𝑫0

𝑖 = 𝑫𝑖 − 𝒅𝑖𝒅T
𝑖 . Substituting it into the first constraint,

we have
[

𝜮𝑖 + 𝝁𝑖𝝁T
𝑖 − 𝜖𝑫𝑖 𝝁𝑖 − 𝜖𝒅𝑖

𝝁T
𝑖 − 𝜖𝒅T

𝑖 1 − 𝜖

]

⪰ 0

⇔ 𝜮𝑖 + 𝝁𝑖𝝁T
𝑖 − 𝜖𝑫𝑖 −

1
1 − 𝜖

(𝝁𝑖 − 𝜖𝒅𝑖)(𝝁𝑖 − 𝜖𝒅𝑖)T ⪰ 0

⇔

[

𝜮𝑖 − 𝜖𝑫0
𝑖 𝝁𝑖 − 𝒅𝑖

𝝁T
𝑖 − 𝒅T

𝑖
1−𝜖
𝜖

]

⪰ 0.

Therefore, we can rewrite (A.2) as

sup −𝑦𝑖
(

1
2𝒅

T
𝑖 𝑴𝒅𝑖 +𝒘T𝒅𝑖 + 𝑏

)

− 𝜉𝑖 + 1 − 1
2 𝑦

𝑖𝑴 ∙𝑫0
𝑖

𝑠.𝑡.

[

𝜮𝑖 − 𝜖𝑫0
𝑖 𝝁𝑖 − 𝒅𝑖

𝝁T
𝑖 − 𝒅T

𝑖
1−𝜖
𝜖

]

⪰ 0,

𝑫0
𝑖 ⪰ 0,

𝑫0
𝑖 ∈ S𝑛, 𝒅𝑖 ∈ R𝑛.

(A.3)

emember that the strong duality holds for (A.1) and (A.3). By satis-
ying the requirement that the optimal value is no larger than 0, the
onstraints in 𝑆𝐷𝑃 ′

𝑖 are obtained and thus the claim follows. □

A.2. Proof of Theorem 2.4

Proof. When deriving Lemma 2.2, we notice that the SDP constraints
in (7) could be obtained by requiring the optimal value of the following
convex SDP less than or equal to 0:

sup − 1
2 𝑦

𝑖𝑴 ∙𝑫𝑖 − 𝑦𝑖𝒘T𝒅𝑖 − (𝑦𝑖𝑏 + 𝜉𝑖 − 1)

𝑠.𝑡. 𝜮𝑖 + 𝝁𝑖𝝁T
𝑖 − 𝜖𝑫𝑖 −

1
1−𝜖 (𝝁𝑖 − 𝜖𝒅𝑖)(𝝁𝑖 − 𝜖𝒅𝑖)T ⪰ 0,

𝜖𝑫𝑖 − 𝜖𝒅𝑖𝒅T
𝑖 ⪰ 0,

𝑫𝑖 ∈ S𝑛, 𝒅𝑖 ∈ R𝑛.

(A.4)

Let 𝑫∗
𝑖 = 𝜮𝑖+𝝁𝑖𝝁T

𝑖 ≻ 0 and 𝒅∗
𝑖 = 𝝁𝑖, the constraints are satisfied strictly

with positive definite matrices. Slater’s condition is satisfied, and the
strong duality holds. It is hard to give an explicit optimal solution
and optimal objective value directly by solving (A.4). We consider its
dual problem. Let 𝑯 𝑖,𝑮𝑖 ∈ S𝑛+ be the dual variables of (A.4). The
corresponding Lagrangian dual is

inf
𝑯 𝑖⪰0,𝑮𝑖⪰0

sup
𝑫 𝑖 ,𝒅𝑖

(𝑫 𝑖,𝒅𝑖,𝑯 𝑖,𝑮𝑖)

= inf
𝑯 𝑖⪰0,𝑮𝑖⪰0

sup
𝑫 𝑖 ,𝒅𝑖

{

− 1
2
𝑦𝑖𝑴 ∙𝑫 𝑖 − 𝑦𝑖𝒘T𝒅𝑖 − (𝑦𝑖𝑏 + 𝜉𝑖 − 1)

+𝑯 𝑖 ∙
(

𝜮 𝑖 + 𝝁𝑖𝝁T
𝑖 − 𝜖𝑫 𝑖 −

1
1−𝜖

(𝝁𝑖 − 𝜖𝒅𝑖)(𝝁𝑖 − 𝜖𝒅𝑖)T
)

+𝑮𝑖 ∙
(

𝜖𝑫 𝑖 − 𝜖𝒅𝑖𝒅T
𝑖

)

}

inf
𝑯 𝑖⪰0,𝑮𝑖⪰0

sup
𝑫 𝑖 ,𝒅𝑖

{

−(𝑦𝑖𝑏 + 𝜉𝑖 − 1) +𝑯 𝑖 ∙𝜮 𝑖 −
𝜖

1−𝜖
𝝁T
𝑖 𝑯 𝑖𝝁𝑖

+𝑫 𝑖 ∙
(

− 1
2
𝑦𝑖𝑴 − 𝜖𝑯 𝑖 + 𝜖𝑮𝑖

)

− 𝒅T
𝑖 (

𝜖2

1−𝜖
𝑯 𝑖 + 𝜖𝑮𝑖)𝒅𝑖+ (−𝑦𝑖𝒘+ 2𝜖

1−𝜖
𝑯 𝑖𝝁𝑖)T𝒅𝑖

}

.

The dual function is finite if and only if − 1
2 𝑦

𝑖𝑴 − 𝜖𝑯 𝑖 − 𝜖𝑮𝑖 = 0, which
ives 𝜖𝑮𝑖 =

1
2 𝑦

𝑖𝑴 + 𝜖𝑯 𝑖 ⪰ 0. Substitute this into the above, we get

inf
𝑯 𝑖⪰0,𝑮𝑖⪰0

sup
𝑫𝑖 ,𝒅𝑖

(𝑫 𝑖,𝒅𝑖,𝑯 𝑖,𝑮𝑖)

= inf
𝑯 𝑖⪰0

sup
𝒅𝑖

⎧

⎪

⎨

⎪

−(𝑦𝑖𝑏 + 𝜉𝑖 − 1) +𝑯 𝑖 ∙𝜮 𝑖 −
𝜖

1−𝜖
𝝁T
𝑖 𝑯 𝑖𝝁𝑖 + 𝑞(𝒅𝑖), if 1

2
𝑦𝑖𝑴 + 𝜖𝑯 𝑖 ⪰ 0,

+∞, otherwise,

⎩
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T
𝑨

𝒅

F
𝑦

w

T

√

√

T

A

P

f
m
f

(

L

t

A
𝑇

i
c
i
w
w


i

1

where 𝑞(𝒅𝑖) = −𝒅T
𝑖 (

𝜖
1−𝜖𝑯 𝑖 +

1
2 𝑦

𝑖𝑴)𝒅𝑖 + (−𝑦𝑖𝒘 + 2𝜖
1−𝜖𝑯 𝑖𝝁𝑖)T𝒅𝑖. Since the

dual variable 𝑯 𝑖 ⪰ 0, we have 𝜖
1−𝜖𝑯 𝑖 +

1
2 𝑦

𝑖𝑴 ⪰ 𝜖𝑯 𝑖 +
1
2 𝑦

𝑖𝑴 ⪰ 0 by 0 <
𝜖 < 1. Thus, 𝑞(𝒅𝑖) is a concave function of 𝒅𝑖 since

𝜖
1−𝜖𝑯 𝑖 +

1
2 𝑦

𝑖𝑴 ⪰ 0.
o make it strictly concave, we can add 𝜂𝑰𝑛 to

𝜖
1−𝜖𝑯 𝑖+

1
2 𝑦

𝑖𝑴 such that
𝑖(𝜂) ≜ 𝜖

1−𝜖𝑯 𝑖 +
1
2 𝑦

𝑖𝑴 + 𝜂𝑰𝑛 ≻ 0 and lim𝜂→0 𝑨𝑖(𝜂) = 𝜖
1−𝜖𝑯 𝑖 +

1
2 𝑦

𝑖𝑴 .
Then solving ∇𝒅𝑖𝑞(𝒅) = −2𝑨𝑖(𝜂)𝒅𝑖 − (𝑦𝑖𝒘 − 2𝜖

1−𝜖𝑯 𝑖𝝁𝑖) = 0, we have
= − 1

2𝑨𝑖(𝜂)−1(𝑦𝑖𝒘 − 2𝜖
1−𝜖𝑯 𝑖𝝁𝑖). Then we get the dual function as

follows:
𝑔(𝑯 𝑖) = −(𝑦𝑖𝑏 + 𝜉𝑖 − 1) +𝑯 𝑖 ∙𝜮𝑖 −

𝜖
1−𝜖𝝁

T
𝑖 𝑯 𝑖𝝁𝑖

+ 1
4 (𝑦

𝑖𝒘 − 2𝜖
1−𝜖𝑯 𝑖𝝁𝑖)T𝑨𝑖(𝜂)−1(𝑦𝑖𝒘 − 2𝜖

1−𝜖𝑯 𝑖𝝁𝑖)

= −(𝑦𝑖𝑏 + 𝜉𝑖 − 1) +𝑯 𝑖 ∙𝜮𝑖 −
𝜖

1−𝜖𝝁
T
𝑖 𝑯 𝑖𝝁𝑖 +

1
4𝒘

T𝑨𝑖(𝜂)−1𝒘

−𝑦𝑖𝒘T𝑨𝑖(𝜂)−1(
𝜖

1−𝜖𝑯 𝑖𝝁𝑖) + ( 𝜖
1−𝜖𝑯 𝑖𝝁𝑖)T𝑨𝑖(𝜂)−1(

𝜖
1−𝜖𝑯 𝑖𝝁𝑖).

or the last two terms, We have 𝑦𝑖𝒘T𝑨𝑖(𝜂)−1(
𝜖

1−𝜖𝑯 𝑖𝝁𝑖) = 𝑦𝑖𝒘T𝝁𝑖 −
𝑖𝒘T𝑨𝑖(𝜂)−1(

1
2 𝑦

𝑖𝑴𝝁𝑖 + 𝜂𝝁𝑖), and ( 𝜖
1−𝜖𝑯 𝑖𝝁𝑖)T𝑨𝑖(𝜂)−1(

𝜖
1−𝜖𝑯 𝑖𝝁𝑖) =

𝜖
1−𝜖𝝁

T
𝑖

𝑯 𝑖𝝁𝑖−
1
2 𝑦

𝑖𝝁T
𝑖 𝑴𝝁𝑖−𝜂𝝁T

𝑖 𝝁𝑖+(
1
2 𝑦

𝑖𝑴𝝁𝑖+𝜂𝝁𝑖)T𝑨𝑖(𝜂)−1(
1
2 𝑦

𝑖𝑴𝝁𝑖+𝜂𝝁𝑖). Hence,
e can derive
𝑔(𝑯 𝑖) = 1

4𝒘
T𝑨𝑖(𝜂)−1𝒘 + ( 12 𝑦

𝑖𝑴𝝁𝑖 + 𝜂𝝁𝑖)T𝑨𝑖(𝜂)−1(
1
2 𝑦

𝑖𝑴𝝁𝑖 + 𝜂𝝁𝑖)

+𝑦𝑖𝒘T𝑨𝑖(𝜂)−1(
1
2 𝑦

𝑖𝑴𝝁𝑖 + 𝜂𝝁𝑖)

+𝑯 𝑖 ∙𝜮𝑖 −
1
2 𝑦

𝑖𝝁T
𝑖 𝑴𝝁𝑖 − 𝑦𝑖𝒘T𝝁𝑖 − 𝜂𝝁T

𝑖 𝝁𝑖 − (𝑦𝑖𝑏 + 𝜉𝑖 − 1)

= ( 12 𝑦
𝑖(𝑴𝝁𝑖 +𝒘) + 𝜂𝝁𝑖)T𝑨𝑖(𝜂)−1(

1
2 𝑦

𝑖(𝑴𝝁𝑖 +𝒘) + 𝜂𝝁𝑖)

+𝑯 𝑖 ∙𝜮𝑖 −
1
2 𝑦

𝑖𝝁T
𝑖 𝑴𝝁𝑖 − 𝑦𝑖𝒘T𝝁𝑖 − 𝜂𝝁T

𝑖 𝝁𝑖 − (𝑦𝑖𝑏 + 𝜉𝑖 − 1).

he dual problem of (A.4) is followed by

inf 𝑔(𝑯 𝑖) = ( 12 𝑦
𝑖(𝑴𝝁𝑖 +𝒘) + 𝜂𝝁𝑖)T𝑨𝑖(𝜂)−1(

1
2 𝑦

𝑖(𝑴𝝁𝑖 +𝒘) + 𝜂𝝁𝑖)

+𝑯 𝑖 ∙𝜮𝑖 −
1
2 𝑦

𝑖𝝁T
𝑖 𝑴𝝁𝑖 − 𝑦𝑖𝒘T𝝁𝑖 − 𝜂𝝁T

𝑖 𝝁𝑖 − (𝑦𝑖𝑏 + 𝜉𝑖 − 1)

𝑠.𝑡. 𝜖𝑯 𝑖 +
1
2 𝑦

𝑖𝑴 ⪰ 0,

𝑯 𝑖 ⪰ 0.

(A.5)

A bounded unconstrained convex program (A.5) is obtained. And
∇𝑔(𝑯 𝑖) = 0 implies that

𝑨𝑖(𝜂)−1(
1
2
𝑦𝑖(𝑴𝝁𝑖 +𝒘) + 𝜂𝝁𝑖)(

1
2
𝑦𝑖(𝑴𝝁𝑖 +𝒘) + 𝜂𝝁𝑖)T𝑨𝑖(𝜂)−1 =

1 − 𝜖
𝜖

𝜮𝑖.

(A.6)

Multiply ( 12 𝑦
𝑖(𝑴𝝁𝑖 + 𝒘) + 𝜂𝝁𝑖)T on the left hand side and ( 12 𝑦

𝑖(𝑴𝝁𝑖 +
𝒘) + 𝜂𝝁𝑖) on the right hand side of (A.6), we have

(

( 12 𝑦
𝑖(𝑴𝝁𝑖 +𝒘) + 𝜂𝝁𝑖)T𝑨𝑖(𝜂)−1(

1
2 𝑦

𝑖(𝑴𝝁𝑖 +𝒘) + 𝜂𝝁𝑖)
)2

= 1−𝜖
𝜖 ( 12 𝑦

𝑖(𝑴𝝁𝑖 +𝒘) + 𝜂𝝁𝑖)T𝜮𝑖(
1
2 𝑦

𝑖(𝑴𝝁𝑖 +𝒘) + 𝜂𝝁𝑖)

⇒ ( 12 𝑦
𝑖(𝑴𝝁𝑖 +𝒘) + 𝜂𝝁𝑖)T𝑨𝑖(𝜂)−1(

1
2 𝑦

𝑖(𝑴𝝁𝑖 +𝒘) + 𝜂𝝁𝑖)

=
√

1−𝜖
𝜖 ‖𝜮

1
2
𝑖 (

1
2 𝑦

𝑖(𝑴𝝁𝑖 +𝒘) + 𝜂𝝁𝑖)‖2.

(A.7)

Multiply 𝑨𝑖(𝜂) on the left hand side of (A.6) and take the trace, we have

( 1
2
𝑦𝑖(𝑴𝝁𝑖 +𝒘) + 𝜂𝝁𝑖)(

1
2
𝑦𝑖(𝑴𝝁𝑖 +𝒘) + 𝜂𝝁𝑖)T ∙𝑨𝑖(𝜂)−1

= ( 𝜖
1 − 𝜖

𝑯 𝑖 +
1
2
𝑦𝑖𝑴 + 𝜂𝑰𝑛) ∙

1 − 𝜖
𝜖

𝜮𝑖

⇒( 1
2
𝑦𝑖(𝑴𝝁𝑖 +𝒘) + 𝜂𝝁𝑖)T𝑨𝑖(𝜂)−1(

1
2
𝑦𝑖(𝑴𝝁𝑖 +𝒘) + 𝜂𝝁𝑖)

= 𝑯 𝑖 ∙𝜮𝑖 +
1 − 𝜖
2𝜖

𝑦𝑖𝑴 ∙𝜮𝑖 + 𝜂 1 − 𝜖
𝜖

𝑇 𝑟𝑎𝑐𝑒(𝜮𝑖).

(A.8)

By (A.7) and (A.8), we have inf 𝑔(𝑯 𝑖) = − 1
2 𝑦

𝑖𝝁T
𝑖 𝑴𝝁𝑖 − 𝑦𝑖𝒘T𝝁𝑖 +

1−𝜖
𝜖 ‖𝜮

1
2
𝑖 (

1
2 𝑦

𝑖(𝑴𝝁𝑖 + 𝒘) + 𝜂𝝁𝑖)‖2 − 1−𝜖
2𝜖 𝑦𝑖𝑴 ∙ 𝜮𝑖 − 𝜂 1−𝜖

𝜖 𝑇 𝑟𝑎𝑐𝑒(𝜮𝑖) −
𝜂𝝁T

𝑖 𝝁𝑖 − (𝑦𝑖𝑏 + 𝜉𝑖 − 1), and lim𝜂→0 inf 𝑔(𝑯 𝑖) = − 1
2 𝑦

𝑖𝝁T
𝑖 𝑴𝝁𝑖 − 𝑦𝑖𝒘T𝝁𝑖 +

1−𝜖
‖𝜮

1
2 (𝑴𝝁 +𝒘)‖ − 1−𝜖 𝑦𝑖𝑴∙𝜮 −(𝑦𝑖𝑏+𝜉 −1). Since the strong duality
58

𝜖 𝑖 𝑖 2 2𝜖 𝑖 𝑖 𝑽
holds, we require that lim𝜂→0 inf 𝑔(𝑯 𝑖) ⩽ 0 which yields SOC constraints

𝑦𝑖( 12𝝁
T
𝑖 𝑴𝝁𝑖 + 𝝁T

𝑖 𝒘+ 𝑏) ⩾ 1 − 𝜉𝑖 +
√

1−𝜖
𝜖 ‖𝜮

1
2
𝑖 (𝑴𝝁𝑖 +𝒘)‖2 −

1−𝜖
2𝜖 𝑦𝑖𝑴 ∙𝜮𝑖.

his completes the proof. □

.3. Proof of Lemma 2.5

roof. In 𝐸
𝑖 , for any 𝒙𝑖 ∈ (𝝁𝑖,𝜮𝑖,

1−𝜖
𝜖 ), we require that 𝑦𝑖

(

1
2 (𝒙

𝑖)T𝑴𝒙𝑖

+𝒘T𝒙𝑖 + 𝑏
)

⩾ 1 − 𝜉𝑖 which is equivalent to

𝑦𝑖
( 1
2
𝝁T
𝑖 𝑴𝝁𝑖 + 𝝁T

𝑖 𝒘 + 𝑏
)

⩾ 1 − 𝜉𝑖 −
√

1 − 𝜖
𝜖

𝑦𝑖
(

𝜮
1
2
𝑖 (𝑴𝝁𝑖 +𝒘)

)T

𝒗

− 1 − 𝜖
2𝜖

𝑦𝑖𝒗T𝜮
1
2
𝑖 𝑴𝜮

1
2
𝑖 𝒗, (A.9)

or any 𝒗 ∈ R𝑛 with ‖𝒗‖2 ⩽ 1. To eliminate 𝒗, we need to know the
aximum of the RHS of the above inequality. We need to solve the
ollowing subproblem:

inf
𝒗∈R𝑛

√

1−𝜖
𝜖 𝑦𝑖(𝜮

1
2
𝑖 (𝑴𝝁𝑖 +𝒘))T𝒗 + 1−𝜖

2𝜖 𝑦𝑖𝒗T𝜮
1
2
𝑖 𝑴𝜮

1
2
𝑖 𝒗

𝑠.𝑡. ‖𝒗‖2 ⩽ 1.
(A.10)

Problem (A.10) is a typical trust-region subproblem. The dual problem
of (A.10) can be derived as follows:

sup
𝜆∈R++

𝜙(𝜆)

𝑠.𝑡. 1−𝜖
𝜖 𝜮

1
2
𝑖 𝑴𝜮

1
2
𝑖 + 𝜆𝑰 ≻ 0,

(A.11)

where 𝜙(𝜆) = − 1
2

√

1−𝜖
𝜖 (𝜮

1
2
𝑖 (𝑴𝝁𝑖 + 𝒘))T

√

1−𝜖
𝜖 ( 1−𝜖𝜖 𝜮

1
2
𝑖 𝑴𝜮

1
2
𝑖 + 𝜆𝑰)−1

𝜮
1
2
𝑖 (𝑴𝝁𝑖 + 𝒘)) + 𝜆. A pair (𝒗∗, 𝜆∗) provides primal and dual optimal

solutions if and only if

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

1−𝜖
𝜖 𝜮

1
2
𝑖 𝑴𝜮

1
2
𝑖 + 𝜆𝑰

)

𝒗∗ = −
√

1−𝜖
𝜖

(

𝜮
1
2
𝑖 (𝑴𝝁𝑖 +𝒘)

)

𝜆∗(‖𝒗∗‖2 − 1) = 0, ‖𝒗∗‖2 ⩽ 1
1−𝜖
𝜖 𝜮

1
2
𝑖 𝑴𝜮

1
2
𝑖 + 𝜆∗𝑰 ≻ 0, 𝜆∗ > 0.

(A.12)

et 𝒗̂ = −𝑦𝑖
𝜮

1
2
𝑖 (𝑴𝝁𝑖+𝒘)

‖𝜮
1
2
𝑖 (𝑴𝝁𝑖+𝒘)‖2

. We have ‖𝒗̂‖2 = 1, thus 𝒗̂ is a feasible

solution of the primal problem (A.10). The objective value respect to 𝒗̂

is −
√

1−𝜖
𝜖 ‖𝜮

1
2
𝑖 (𝑴𝝁𝑖 +𝒘)‖2 + 𝑦𝑖 1−𝜖2𝜖 𝒗̂T𝜮

1
2
𝑖 𝑴𝜮

1
2
𝑖 𝒗̂. For the second term of

he objective value, we have

𝒗̂T𝜮
1
2
𝑖 𝑴𝜮

1
2
𝑖 𝒗̂ =

(𝑴𝝁𝑖 +𝒘)T𝜮𝑖𝑴𝜮𝑖(𝑴𝝁𝑖 +𝒘)
(𝑴𝝁𝑖 +𝒘)T𝜮𝑖(𝑴𝝁𝑖 +𝒘)

=
𝑴𝜮𝑖 ∙ (𝑴𝝁𝑖 +𝒘)(𝑴𝝁𝑖 +𝒘)T𝜮𝑖

(𝑴𝝁𝑖 +𝒘)T𝜮𝑖(𝑴𝝁𝑖 +𝒘)
.

ccording to Von Neumann’s trace inequality, we have that 𝜃min(𝑴𝜮𝑖)
𝑟𝑎𝑐𝑒((𝑴𝝁𝑖 + 𝒘)(𝑴𝝁𝑖 + 𝒘)T𝜮𝑖) ⩽ 𝑴𝜮𝑖 ∙ (𝑴𝝁𝑖 + 𝒘)(𝑴𝝁𝑖 + 𝒘)T𝜮𝑖 ⩽

𝜃max(𝑴𝜮𝑖)𝑇 𝑟𝑎𝑐𝑒((𝑴𝝁𝑖 +𝒘)(𝑴𝝁𝑖 +𝒘)T𝜮𝑖), where 𝜃 denotes the eigen-
value of 𝑴𝜮𝑖. Since 𝑇 𝑟𝑎𝑐𝑒((𝑴𝝁𝑖 + 𝒘)(𝑴𝝁𝑖 + 𝒘)T𝜮𝑖) = (𝑴𝝁𝑖 +

𝒘)T𝜮𝑖(𝑴𝝁𝑖 + 𝒘), then 𝜃min(𝑴𝜮𝑖) ⩽ 𝒗̂T𝜮
1
2
𝑖 𝑴𝜮

1
2
𝑖 𝒗̂ ⩽ 𝜃max(𝑴𝜮𝑖). If 𝑴

s positive semi-definite, we have 𝒗̂T𝜮
1
2
𝑖 𝑴𝜮

1
2
𝑖 𝒗̂ ⩽ 𝑇 𝑟𝑎𝑐𝑒(𝑴𝜮𝑖). In this

ase, substituting the corresponding objective value make the inequal-
ty (A.9) become the constraint of 𝑆𝑂𝐶

𝑖 in (15) for each 𝑖. However,
e can verify that 𝒗̂ does not satisfy the optimal conditions (A.12),
hich means that 𝐸

𝑖 is a conservative cut of 𝑆𝑂𝐶
𝑖 . Hence, we have

𝐸
𝑖 ⊂ 𝑆𝑂𝐶

𝑖 .
For the linear case when 𝑴 = 0, the problem (A.10) becomes

nf
‖𝒗‖2⩽1

√

1−𝜖
𝜖 𝑦𝑖(𝜮

1
2
𝑖 𝒘)T𝒗. The optimal solution is that 𝒗∗ = −𝑦𝑖𝜮

1
2
𝑖 𝒘∕

‖𝜮
1
2
𝑖 𝒘‖2. Consequently, the constraint (A.9) becomes 𝑦𝑖

(

𝝁T
𝑖 𝒘 + 𝑏

)

⩾

−𝜉𝑖+
√

1−𝜖
𝜖 ‖𝜮

1
2
𝑖 𝒘‖2, which is equivalent to 𝑦𝑖

(

𝒙T𝒘 + 𝑏
)

⩾ 1−𝜉𝑖, ∀𝒙 ∈
𝐸

𝑖 by utilizing the multivariate Chebyshev inequality (Bertsimas &
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Table B.8
Testing results on ‘‘elliptic’’ synthetic data sets by DRC-QSSVM.
Data Syn-Ellip-4d-50 Syn-Ellip-8d-50 Syn-Ellip-16d-50

𝜖 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00

Acc(%) 99.52 99.60 99.20 98.64 94.04 99.88 99.52 99.08 98.88 99.84 99.92 99.68

PrAcc(%) 97.17 97.97 96.46 95.32 87.12 88.74 88.53 88.31 78.67 84.76 86.94 87.11

CPU time (s) SOCP 4.66 4.69 4.71 3.78 4.78 4.76 4.72 3.85 5.72 5.71 5.98 3.85

SDP 6.87 7.14 7.13 5.71 9.97 9.59 9.65 8.28 34.96 30.90 29.54 21.77

Data Syn-Ellip-4d-100 Syn-Ellip-8d-100 Syn-Ellip-16d-100

𝜖 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00

Acc(%) 99.40 99.64 99.56 99.60 100.00 100.00 100.00 98.80 98.60 99.64 99.64 99.64

PrAcc(%) 97.99 98.43 98.21 98.27 92.38 92.46 92.47 89.49 84.49 89.22 89.83 90.72

CPU time (s) SOCP 7.19 7.37 7.38 5.46 5.98 5.90 6.14 3.67 13.49 13.90 13.92 7.39

SDP 11.78 12.99 12.93 8.68 18.04 16.10 16.16 11.46 34.96 30.90 29.54 21.77
w

[

P

a

T
e

i
(

B

Popescu, 2005): for an arbitrary closed convex set 𝑆, P(𝒙 ∈ 𝑆) ⩽
1

1+𝑐2 , where 𝑐2 = inf𝒙∈𝑆 (𝒙 − 𝝁)T𝜮−1(𝒙 − 𝝁). Notice that the set
𝒙|𝑦𝑖

(

𝒘T𝒙 + 𝑏
)

⩾ 1 − 𝜉𝑖} is a convex set for each 𝑖. Hence, we have
𝑆𝑂𝐶

𝑖 = 𝐸
𝑖 . This completes the proof. □

Appendix B. Auxiliary information

B.1. Moments uncertainty

The uncertainty of moments mentioned in Remark 3.1 adopts a
general bounded set (Delage & Ye, 2010):
(

E𝐹𝑖 [𝒙̃
𝑖] − 𝝁𝑖

)T
𝜮−1

𝑖

(

E𝐹𝑖 [𝒙̃
𝑖] − 𝝁𝑖

)

⩽ 𝜔1, (B.1a)

𝐹𝑖

[

(𝒙̃𝑖 − 𝝁𝑖)(𝒙̃𝑖 − 𝝁𝑖)T
]

⪯ 𝜔2𝜮𝑖, (B.1b)

where the parameters 𝜔1 ⩾ 0 and 𝜔2 ⩾ 1 provide natural means of
quantifying one’s confidence in 𝝁𝑖 and 𝜮𝑖. Constraint (B.1a) provides
n ellipsoidal uncertainty of 𝝁𝑖, and constraint (B.1b) assumes that 𝜮𝑖
ies in a positive semidefinite cone. In what follows, to overcome the
ossible estimation errors of moments, we consider the ambiguity set
or each 𝑖,
𝐷𝑌
𝑖 (𝒙̃𝑖;𝝁𝑖,𝜮𝑖, 𝜔1, 𝜔2)

≜
⎧

⎪

⎨

⎪

⎩

𝐹𝑖 ∈ (𝛯𝑖,𝑖)

|

|

|

|

|

|

|

|

P(𝒙̃𝑖 ∈ 𝛯𝑖) = 1,
(

E𝐹𝑖 [𝒙̃
𝑖] − 𝝁𝑖

)T
𝜮−1

𝑖

(

E𝐹𝑖 [𝒙̃
𝑖] − 𝝁𝑖

)

⩽ 𝜔1,
E𝐹𝑖

[

(𝒙̃𝑖 − 𝝁𝑖)(𝒙̃𝑖 − 𝝁𝑖)T
]

⪯ 𝜔2𝜮𝑖

⎫

⎪

⎬

⎪

⎭

.

(B.2)

et𝐷𝑌 ≜
⋃

𝑖
𝐷𝑌

𝑖 . Similarly, we can circumvent the difficulty of solving
istributionally robust chance-constrained problems by duality theory.
n SDP model can be obtained accordingly.

emma B.1. Suppose that 𝜔1 ⩾ 0, 𝜔2 ⩾ 1 and 𝜮𝑖 ≻ 0 for any 𝑖. Then,
he DRC-QSSVM model under the ambiguity set 𝐷𝑌 can be equivalently
eformulated as the following SDP model:

in
∑𝑁

𝑖=1 𝜂𝑖

𝑠.𝑡.

[

𝑰𝑛 𝑴𝝁𝑖 +𝒘
(𝑴𝝁𝑖 +𝒘)T − 𝐶

𝑁
𝜉𝑖 + 𝜂𝑖

]

⪰ 0, 𝑖 = 1,… , 𝑁,

𝛽𝑖 −
1
𝜖
𝜞 0

𝑖 ∙𝑹𝑖 ⩾
1
𝜖

√

𝜔1‖𝜮0
𝑖𝑹𝑖𝝁0

𝑖 ‖, 𝑖 = 1,… , 𝑁,

𝑹𝑖 +

[

1
2
𝑦𝑖𝑴 1

2
𝑦𝑖𝒘

1
2
𝑦𝑖𝒘T 𝑦𝑖𝑏 + 𝜉𝑖 − 1 − 𝛽𝑖

]

⪰ 0, 𝑖 = 1,… , 𝑁,

𝑹𝑖 ⪰ 0, 𝑖 = 1,… , 𝑁,
𝑴 ∈ S𝑛, 𝒘 ∈ R𝑛, 𝑏 ∈ R, 𝝃 ∈ R𝑁

+ , 𝜷, 𝜼 ∈ R𝑁 , 𝑹𝑖 ∈ S𝑛+1, 𝑖 = 1,… , 𝑁,
59

(B.3)
here 𝜞 0
𝑖 =

[

𝜔2𝜮𝑖 + 𝝁𝑖𝝁T
𝑖 𝝁𝑖

𝝁T
𝑖 1

]

, 𝜮0
𝑖 = [𝜮

1
2
𝑖 𝟏𝑛] ∈ R𝑛×(𝑛+1), and 𝝁0

𝑖 =

𝝁𝑖 0]T ∈ R𝑛+1. The above result holds for the linear case when 𝑴 = 0.

roof. Let 𝜑𝐷𝑌
𝑖 ≜ sup

𝐹∈𝐷𝑌
𝑖

P
{

𝑦𝑖
(

1
2 (𝒙̃

𝑖)T𝑴𝒙̃𝑖 +𝒘T𝒙̃𝑖 + 𝑏
)

⩽ 1 − 𝜉𝑖
}

=

sup
𝐹∈𝐷𝑌

𝑖

E𝐹 [1(𝒙̃𝑖)], for 𝑖 = 1,… , 𝑁 . From Lemma 1 in Delage and Ye

(2010), 𝜑𝐷𝑌
𝑖 must be equal to the optimal value of the problem:

inf 𝑟𝑖 + 𝑡𝑖 (B.4a)

𝑠.𝑡. 𝑟𝑖 ⩾ 1(𝒙̃𝑖) − (𝒙̃𝑖)T𝑸𝑖𝒙̃𝑖 − (𝒙̃𝑖)T𝒒𝑖 ∀ 𝒙̃𝑖 ∈ 𝜉𝑖, (B.4b)

𝑡𝑖 ⩾ (𝜔2𝜮𝑖 + 𝝁𝑖𝝁T
𝑖 ) ∙𝑸𝑖 + 𝝁T

𝑖 𝒒𝑖 +
√

𝜔1‖𝜮
1
2
𝑖 (𝒒𝑖 + 2𝑸𝑖𝝁𝑖)‖, (B.4c)

𝑸𝑖 ⪰ 0, (B.4d)

𝑟𝑖, 𝑡𝑖 ∈ R, 𝑸𝑖 ∈ S𝑛, 𝒒𝑖 ∈ R𝑛. (B.4e)

Let 𝑵 𝑖 =

[

𝑸𝑖
1
2𝒒𝑖

1
2𝒒

T
𝑖 𝑟𝑖

]

and 𝜞 0
𝑖 =

[

𝜔2𝜮𝑖 + 𝝁𝑖𝝁T
𝑖 𝝁𝑖

𝝁T
𝑖 1

]

. Using the

same approach in the proof of Theorem 2.1, the constraint (B.4b) is

equivalent to 𝑵 𝑖 + 𝛼𝑖

[ 1
2 𝑦

𝑖𝑴 1
2 𝑦

𝑖𝒘
1
2 𝑦

𝑖𝒘T 𝑦𝑖𝑏 + 𝜉𝑖 − 1 − 1
𝛼𝑖

]

⪰ 0, 𝛼𝑖 > 0. Denote

𝜮0
𝑖 = [𝜮

1
2
𝑖 𝟏𝑛] ∈ R𝑛×(𝑛+1), and 𝝁0

𝑖 = [𝝁𝑖 0]T ∈ R𝑛+1. Reformulate (B.4a)
s 𝑟𝑖 + 𝑡𝑖 ⩾ 𝜞 0

𝑖 ∙ 𝑵 𝑖 +
√

𝜔1‖𝜮0
𝑖𝑵 𝑖𝝁0

𝑖 ‖. Hence, we can rewrite (B.4) as
follows:

inf 𝜞 0
𝑖 ∙𝑵 𝑖 +

√

𝜔1‖𝜮0
𝑖𝑵 𝑖𝝁0

𝑖 ‖

𝑠.𝑡. 𝑵 𝑖 + 𝛼𝑖
⎡

⎢

⎢

⎣

1
2 𝑦

𝑖𝑴 1
2 𝑦

𝑖𝒘
1
2 𝑦

𝑖𝒘T 𝑦𝑖𝑏 + 𝜉𝑖 − 1 − 1
𝛼𝑖

⎤

⎥

⎥

⎦

⪰ 0,

𝑵 𝑖 ⪰ 0,

𝛼𝑖 ∈ R++, 𝑵 𝑖 ∈ S𝑛+1.

Since 𝜑𝐷𝑌
𝑖 ⩽ 𝜖, by strong duality, we have 𝜞 0

𝑖 ∙𝑵 𝑖+
√

𝜔1‖𝜮0
𝑖𝑵 𝑖𝝁0

𝑖 ‖ ⩽ 𝜖.
he rest of the proof is similar to the proof of Theorem 2.1 and can be
asily followed to complete the claim. □

Notice that 𝐷𝑌
𝑖 (𝒙̃𝑖;𝝁𝑖,𝜮𝑖, 0, 1) relates closely to 𝑖(𝒙̃𝑖;𝝁𝑖,𝜮𝑖), and

n this event, we find that the model (B.3) reduces to the model
12).

.2. Experimental results

See Tables B.8 and B.9.
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Table B.9
Testing results on ‘‘parabolic’’ synthetic data sets by DRC-QSSVM.
Data Syn-Para-4d-50 Syn-Para-8d-50 Syn-Para-16d-50

𝜖 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00

Acc(%) 97.36 98.88 98.68 98.12 98.80 98.52 98.16 98.12 97.90 98.42 96.70 98.18

PrAcc(%) 93.85 98.21 98.01 97.31 97.25 97.24 96.97 96.96 86.90 90.03 88.03 88.30

CPU time (s) SOCP 4.06 3.79 3.87 3.69 3.83 4.01 3.87 3.93 5.72 5.73 5.75 5.46

SDP 6.28 6.06 5.96 6.57 8.76 8.22 8.32 8.49 33.49 31.97 30.44 30.31

Data Syn-Para-4d-100 Syn-Para-8d-100 Syn-Para-16d-100

𝜖 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00

Acc(%) 99.40 99.32 99.20 99.04 98.88 98.76 98.48 98.32 98.44 97.00 96.06 96.66

PrAcc(%) 99.06 98.97 98.75 98.54 97.85 97.69 97.39 97.22 95.20 91.78 92.59 92.95

CPU time (s) SOCP 6.97 6.89 6.80 6.60 5.62 23.74 22.63 5.58 10.21 10.42 10.27 10.26

SDP 9.98 9.99 9.68 9.66 16.93 15.08 15.38 15.88 153.89 140.78 132.56 140.67
M

M

N
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S

S

S

T

T

T
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W

W
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