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This paper studies the problem of constructing a robust nonlinear classifier when the data set involves
uncertainty and only the first- and second-order moments are known a priori. A distributionally robust chance-
constrained kernel-free quadratic surface support vector machine (SVM) model is proposed using the moment
information of the uncertain data. The proposed model is reformulated as a semidefinite programming problem
and a second-order cone programming problem for efficient computations. A geometric interpretation of the
proposed model is also provided. For commonly used data without prescribed uncertainty, a cluster-based

data-driven approach is introduced to retrieve the hidden moment information that enables the proposed
model for robust classification. Extensive computational experiments using synthetic and public benchmark
data sets with or without uncertainty involved support the superior performance of the proposed model over
other state-of-the-art SVM models, particularly when the data sets are massive and/or imbalanced.

1. Introduction

Support Vector Machines (SVMs) are often used for classification in
supervised machine learning. Given a set of N data points {(x', y')|x' €
R", yy € {-1,1},i=1,...,N}, a linear soft support vector machine
(LSSVM) can be represented as the following linearly constrained con-
vex quadratic programming problem (Cortes & Vapnik, 1995):

N
min %||w||§+cZ§,.
_ o=t (LSSVM)
st Yy (wlxi+b)>21-¢, i=1,...,N,
weR" beR, EeRY,

where C > 0 is a given parameter. The variables of w and b determine
a separation hyperplane H(w,b) 2 {x € R"|lw"x + b = 0}, and the
slack vector & introduces a “soft margin” to accommodate the data that
are not linearly separable. For nonlinear classification, the data can be
lifted to a higher dimensional space for linear separation using a feature
map ¢ : R” — R/ with / > n. In this case, we consider the following
optimization problem:

N
min o2 +C Y ¢
_ =l (KSSVM)
st ¥ (0T +d)21-¢&, i=1,...,N,

veR, deR, £eRY).

The kernel trick is used to solve the dual problem of (KSSVM) by
introducing the kernel function K(x',x/) £ ¢(x) ¢(x/) (Zhou, 2021).
Commonly used kernel functions K(-,-) include the polynomial kernel
and radial basis function kernel (i.e., Gaussian kernel). Considering
the drawbacks of selecting a proper kernel function (Jiménez-Cordero,
Morales, & Pineda, 2021) and adjusting its embedded parameters,
some kernel-free nonlinear SVMs have recently been proposed (Dagher,
2008; Luo, Fang, Deng, & Guo, 2016; Luo, Yan, & Tian, 2020). One
representative model is the following quadratic surface support vector
machine (QSSVM):

N N
min Y [Mx' +wlZ+C Y ¢
i=1 i=1
I (QSSVM)
s.t. Y (E(x’)TMx’ +wlx! +b) >1-¢,i=1,...,N,
MeS', weR", beR, E€RY,

where S" is the set of n-dimensional symmetric matrices; M, w,
and b determine a separation quadratic surface Q(M,w.b) 2 {x €
]R”|%xTM x + xTw + b = 0}. The (QSSVM) model has been extended
to a kernel-free quartic surface SVM model by utilizing the double well
potential function of degree four (Gao, Fang, Luo, & Medhin, 2021).
While both the kernel-based and kernel-free nonlinear SVMs have
achieved promising performance in some real-world applications, their
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classification performances still need to be investigated when uncer-
tainty is involved in the training data. For instance, the classification
task on benign and malignant tumors (Bertsimas, Dunn, Pawlowski,
& Zhuo, 2019), whose training data includes features derived from
digitized images, such as cell nuclei radius, texture, and symmetry.
Even though these features are precisely measured, the existence of
image noise and measurement inaccuracy may yield data uncertainty
and affect the classification accuracy. In addition to medical applica-
tions, challenges raised by data uncertainties are urgent to be resolved
in other fields, including battery failure detection (Luo, Fang, Deng,
& Tian, 2022) and biological gene expression (Ben-Tal, Bhadra, Bhat-
tacharyya, & Nath, 2011). In datasets requiring imputation for missing
data (Shivaswamy, Bhattacharyya, & Smola, 2006), additional uncer-
tainties are introduced. Given the presence of data uncertainty within
real-world applications, neglecting to recognize the uncertainty might
lead to a substantial decline in classification performance (Goldfarb &
Iyengar, 2003).

Recent studies indicate that classifiers explicitly addressing uncer-
tainty in the training data outperform those ignoring such informa-
tion (Wang, Fan, & Pardalos, 2018). This paper introduces a novel
maximum-margin nonlinear SVM resilient to data uncertainty. It han-
dles the underlying data uncertainty by utilizing moment information
instead of the distributional assumptions on data.

1.1. Relevant works

Optimization under uncertainty has been addressed by several com-
plementary modeling paradigms that differ mainly in the representa-
tion of uncertainty. SVM models applying robust optimization tech-
niques are developed for applications whose data points are fluctuating
within an uncertain set, specified by the /,-norm uncertainty (Trafalis
& Gilbert, 2006), ellipsoidal uncertainty (Bhattacharyya, Grate, Jordan,
Ghaoui, & Mian, 2004), and others (Singla, Ghosh, & Shukla, 2020;
Wang & Pardalos, 2014). Applying robust optimization in a principled
way of uncertain data, Bertsimas et al. (2019) investigate the SVMs,
logistic regression, and decision trees, among which the robust SVM
performed the best. Nonetheless, the robust models generally tend to
be on the conservative side since they ignore the hidden distribution
information embedded in the data sets.

Consider a set of data points with uncertain inputs following some
underlying probability distributions F,, i.e., ¥ ~ F;, for i = 1,...,N.
For a given tolerance level 0 < ¢ < 1, a chance constraint at the point
', ),

Pp {y' (W' +b) <1-&} <e,

can be used to ensure that the probability of misclassifying X' is no
larger than e. The chance-constrained optimization problems are non-
convex and hard to solve in general. In the literature, Peng, Gianpiero,
and Zhihua (2023) adopt the sample average approximation method
to formulate a mixed integer programming problem for a chance-
constrained conic-segmentation SVM with an empirical distribution. In
fact, a true distribution is hard to estimate, and even a good estimation
may still cause the “optimizer’s curse” (Kuhn, Esfahani, Nguyen, &
Shafieezadeh-Abadeh, 2019) with discontent performance.

Instead of relying on a single estimate of F;, a distribution family
D; could hedge against the uncertainty in data distribution. D;, which
is also known as the ambiguity set (Lin, Fang, & Gao, 2022), consists
of probability distributions possessing certain properties of the true
distribution F;. The following distributionally robust chance constraints
are developed to ensure that a linear SVM works best in the worst case

over D;:
,N.

sup P, {y (@' +b)<1-&} <e, i=1,... €h)

EG !

When the ambiguity set D; is constructed based on the first- and
second-order moments, the distributionally robust chance-constrained
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linear soft SVM (DRC-LSSVM) model is developed with the chance
constraints defined by (1). Shivaswamy et al. (2006) adopt the mul-
tivariate Chebyshev inequality to derive a second-order cone program-
ming (SOCP) reformulation for the DRC-LSSVM model. Ben-Tal et al.
(2011) employ the Bernstein bounds to include richer partial infor-
mation for constructing a less conservative SOCP reformulation. Wang
et al. (2018) derive both semidefinite programming (SDP) and SOCP
reformulations for DRC-LSSVM, and they further design a stochastic
gradient-based method for improving the computational efficiency in
large-scale classification cases (Wang, Fan, & Pardalos, 2017). Consid-
ering dependency among the random input points, Khanjani-Shiraz,
Babapour-Azar, Hosseini-Nodeh, and Pardalos (2023) propose a robust
joint chance-constrained linear SVM. The DRC-LSSVM model has also
been applied to different contexts with promising performance, such
as data with missing values (Shivaswamy et al., 2006) and semi-
supervised classifications (Huang, Song, Gupta, & Wu, 2013). A kernel-
free DRC support vector regression (SVR) model is proposed to solve
regression problems, which also shows superior performance over other
well-established SVR models (Luo et al., 2022). Similar links to super-
vised training with uncertain data employing distributionally robust
optimization under the Wasserstein metric have been investigated for
linear SVMs (Ma & Wang, 2021), regression models (Chen & Pascha-
lidis, 2020; Kuhn et al., 2019) and reinforcement learning models (Chen
& Paschalidis, 2020).

In summary, the literature indicates that the application of distri-
butionally robust optimization enhances the capability of conventional
SVMs in addressing uncertain classification tasks. Previous studies on
distributionally robust chance-constrained SVMs demonstrate higher
accuracy compared to nominal methods in some cases, but most of
them focus on linear SVMs, limiting the applicability to nonlinear
classification. Our contribution builds on these efforts by proposing a
distributionally robust chance-constrained kernel-free nonlinear SVM,
utilizing a quadratic surface for increased flexibility in handling nonlin-
ear data. We compare this approach to state-of-the-art SVMs, assessing
the impact of adding robustness to different models and evaluating
their performance through computational experiments with balanced,
imbalanced, and massive datasets.

1.2. Contributions

To deal with the nonlinear binary classification cases with uncertain
data, in this paper, we propose a kernel-free quadratic surface SVM
model that considers the distributionally robust chance constraints (2).

Py, {y’(%(x")TMicwawa)<1—.§,.}<e,i=1,... @

sup
FieD;

,N.

Certain analytic properties of the proposed model are rigorously in-
vestigated. In addition, extensive computational experiments are con-
ducted to validate the effectiveness and efficiency of the proposed
model in solving binary classification problems with and without data
uncertainty. The main contributions of this paper are summarized as
follows.

» We propose a distributionally robust chance-constrained quadratic
SVM (DRC-QSSVM) model utilizing the first- and second-order
moments embedded in the data set, which characterizes the
uncertainty of the classification problem. To the best of our
knowledge, it is the first study of utilizing kernel-free nonlinear
SVM models to deal with classification problems under data un-
certainty. As the quadratic structure of the distributionally robust
chance constraints in the proposed model complicates the analy-
sis, we explicitly derive the SDP and the SOCP reformulations of
the proposed model for computational efficiency. In addition, a
geometric interpretation of the distributionally robust quadratic
chance constraints is provided for a better understanding of the
proposed model.
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» We extend the proposed model to handle commonly used data
without uncertainty. To retrieve the moment information needed
by the proposed model, a cluster-based data-driven approach
is designed. Surprisingly, the proposed model provides higher
classification accuracy than the other tested state-of-the-art SVM
models in the computational experiments. It strengthens the ap-
plicability of the proposed model to real-life applications.

The computational results verify the classification effectiveness
of the proposed DRC-QSSVM model. As a maximum-margin SVM
model that can explicitly use moment information to handle
input data with uncertainty, the proposed model outperforms
the most related DRC-LSSVM model on some synthetic and pub-
lic benchmark data sets. Also, the results from some extensive
computational experiments on massive and imbalanced data sets
verify the dominant classification accuracy of the proposed model
over other state-of-the-art SVM models. It reveals the signifi-
cance of the proposed model that reframing a specific problem
as one characterized by uncertainty and subsequently addressing
the resultant uncertain formulation have the potential to yield
remarkably improved outcomes.

The rest of the paper is organized as follows. In Section 2, we
propose a distributionally robust chance-constrained quadratic surface
support vector machine model for nonlinear classification with uncer-
tain data knowing the first- and second-order moments. The SDP and
SOCP reformulations are derived for computational efficiency. A geo-
metric interpretation is also provided to show how the proposed model
works on uncertain data. Section 3 presents a data-driven approach
for applying the proposed model to classify commonly used data sets
without moment information. Synthetic data sets and public benchmark
data sets are included in Section 4 for validating the effectiveness and
efficiency of the proposed model and comparing the performance of
the proposed model with other well-known SVM models. Section 5
concludes the paper.

Notations: In this paper, we use lower-case boldface letters to
denote vectors and upper-case boldface letters to denote matrices.
Random variables are represented by symbols with tildes, while their
realizations are denoted by the same symbols without tildes. S" denotes
the set of symmetric matrices of dimension »n. For any two matrices
A,B €S", Ae B =Trace(AB) denotes the trace of the product of A and
B.

2. Distributionally robust chance-constrained quadratic SVM

This section considers a binary classification problem for uncertain
data sets with known first- and second-order moments information and
proposes the DRC-QSSVM model. Section 2.1 constructs an ambiguity
set based on the first two moments to formalize the proposed model. An
equivalent SDP model is derived in Section 2.2. Section 2.3 presents an
explicit geometric interpretation of the conceptual chance constraints.
An SOCP model for efficient computation is derived in Section 2.4.

2.1. DRC-QSSVM model

In this paper, each uncertain input %' in a data set of {(xX',)")|x' €
R", ¥y € {~1,1},i=1,..., N} is considered as a random vector, i.e., X' :
£, - Rand %' ~ F,, for an outcome space =; and its c-algebra F, C 2%,
and F; : F; - R is a probability measure on (=, F;), for i = 1,...,N.
Let M(Z;,F;) denote the space of all probability measures defined on
(Z;, F)). In this way, F; € M(Z;, F;) and they are assumed to be mutually
independent for i = 1,..., N. In Section 2, the mean y; £ Ej, [%;] € R"
and covariance matrix X; £ Er[(%; — B [%DE&; — Ef, %7 € S} are
particularly assumed to be known. Without loss of generality, X; is
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considered to be positive definite. A moment-based ambiguity set D
is then defined by D 2 U, D,(&'; u;, Z;) with

P(x' e E)=1,
EF; [55’] = H;, s
Ep (& - )& — up)'l = Z,;

DXy, Z) £4{F € M(Z.F)

3)

and D, abbreviates D;(¥; u;, X,) for i = 1,..., N. In our model, we set
R" as the support set =; fori=1,...,N.

We aim to determine a quadratic surface Q(M,w,b) = {x €
R”|%xTMx +xTw +b =0}, where M € §", w € R" and b € R, which
separates the two classes of points with the maximum margin and
bounded misclassification probability with respect to all distributions
in D. Adopting the concept of “total approximated relative geometric
margins” used in (QSSVM) (Luo et al., 2016), the min-max approach
used in robust optimization helps form the following objective function:

N N
Mr’nuigv5 ng% {;EF’_||M5C"+W|I§} +C§§i. 4
Note that for any F;, € D,,
EpIMX +w|? =Ep [&)"M"Mx| +20"ME; [*] +w'w
=M "My, + (MTII\I) X +20"My; + ww
= Mp +w|2+ |22 M|,
6))

where || - || is the Frobenius norm. When { F;}; are mutually indepen-

dent, the supremum and summation operations are exchangeable, and
N ~i N "
consequently, supr.ep { X, Ef, IM%+w|2} =3 suprep, Er, IMX' +
1

wllg = Zi]il{llMy[ + w||§ + ||Z?M||2F}. The first term of the results in
(5) is the approximated relative geometrical margin at the mean vector
u; (Luo et al., 2016), and the second term is similar to the “G-margin”
defined in Gao et al. (2021). In general, the total relative geometrical
margin dominates the G-margin. And the second term may serve as a
regularization term that shapes the target quadratic surface. Extensive
computational experiments indicate such a regularization term can be
neglected without changing much of the final classifier (similar results
showed by Luo et al. (20116)). Moreover, to avoid the computational

difficulty induced by ||EFM ||2F, we omit this term in the objective
function. A robust classifier Q(M,w,b) could bound the misclassifi-
cation probability by ¢ (0 < ¢ < 1) employing the distributionally
robust chance constraints (2). Consequently, we propose the following

distributionally robust chance-constrained quadratic SVM model:

N N
min 3 \Mp; +wl}+C Y ¢
i i=1

i=1

s, sup Pp , N,

FeD,
MeS", weR", beR, £cRY.

{y" (%(icf)TMic’+wTii+b) <1 —5[} <e i=1,...

(DRC-QSSVM)

It is often the case that the ambiguous chance constraints are hard
to solve directly, not to mention the nonlinear functions used in
(DRC-QSSVM). Fori=1,..., N, let

sup ]PE {yi (%(ii)TMici +w'® + b)

v, & {(M,w,b)eS"x]R"xR
FeD,

<1-¢g}<e} (6)

denote the feasible sets of (DRC-QSSVM). We shall demonstrate that
for any i, V; has tractable SDP and SOCP representations for efficient
computations in later subsections.
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2.2. SDP reformulation of (DRC-QSSVM)

We first show an equivalent SDP reformulation of (DRC-QSSVM) in
the next theorem.

Theorem 2.1. For the ambiguity set D defined by (3), (DRC-QSSVM) can
be equivalently reformulated as the following SDP problem:

N
min 3 IIMu; +wl3 +C Y g

N
i1

i=1 i

st =il +R >0, i=1,....N,
%y‘M %y"w
R+ 1. v >0, i=1,...,N,
ywh  yb+g—1-p
R, >0, i=1,..,N,
MeS", weR", beR, £€RY, eRY, R, es™, i=1,..,N,
@
So+uut o .
where I'; = [ ! 4‘ ik ’;’ denotes the second-order moment matrix.
Hi
Proof. Fori=1,...,N, we denote the indicator functions by

= 1, if% €A,
]lA_(x)z .
' 0, if% A,

where A, & (¥ € 5|y (%(i‘)TMsc"+wT5cf+b) < 1-¢). Then ¢, 2

suppep, Pr (Y GE)TME + w'% +5) < 1-&) = suppep, Egl14 ()],
which can be obtained by solving the following problem:

sup /_ 1, (X)dFi(x) (8a)
s.t. /_ dF,(x) =1, (8b)
/:l X dF(x") = u;, (80)
/: & - ) - T aF G = 2, 8d)

F, € M(Z,, F).

Notice that constraint (8d) is equivalent to [, ¥ (¥)TdF,(¥) = X, +
u;p), and the difficulty of this problem can be circumvented by using
the duality theory involving moment information. Let r; € R, p; € R”
and Q; € S” be the dual variables corresponding to (8b), (8c) and (8d),
respectively. Then the dual problem of (8) becomes

inf  (Z;+upl)eQ+plp+r
st (ETQx + (%)Tp; +r; > L(x), VX € 5, 9
Q,€S", p,eR", r,eR.
0 %Pi s .
Let N; = || ¢ , then the objective function of (9) becomes

1p
28 i
N, « I';. Restoring the indicator function, the constraint of (9) becomes

GOTQE + G Tp +r, > 1, i) (FE)TME +w'x +5) <1-¢,

(10a)

@ETQ,x + &) p,+r, 20, VI € 5, (10b)
~i

Constraint (10b) implies that [(x))T 1]N; ); >0, VX € 5 o

N, > 0. Constraint (10a) can be further transformed as below using
the S-Lemma:

iy o 1 iy iy
GHTQ,x + &) p +r - 1+a (y' (E(x’)TMx' +uwl® 4+ b) 1+ .f,.>

20, 0120,
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which means

. ~i . . . .
[(@)T 1IN, [’i ]—1+a,. (y' ( ETME +wx + b) —1 +§,.) >0, ¢ > 0.

1
2
an
i
If o; = 0, constraint (11) implies that [(x)T 1]N; Ji > 1. This contra-
i
dicts the fact of N;+T'; < €,0 < ¢ < 1, because I'; = Ef, HJ;] [(xHT 1]].

Thus, we have o; > 0. Let R; = aiN[ and g, = L, we see that

]
&

(De (&) 1% [’;] n (—aL +y (%(xf)TMscf FwTE 4+ b) —1 +§,) >0

1 1 .
) -yM —-yw i
(@R A+ 2 IINEL
Eyw yb+§i—l—;
1 1
VM yw
SR+ _ >0.
ywh yb+g—1-p,

Therefore, the dual problem (9) becomes

inf %’Fi-R‘-
1 1
y Jyw
st R+ ]2 T ’ >0,
zy’w y’b+§,~—1—ﬁ,~
R, =0,

R, eS", ; eR,.

Since the strong duality holds for the pair of (8) and (9) (Similar
to Delage and Ye (2010)), requiring ¢; < ¢ yields %Fi *R, <e&

B — %Fl- * R; > 0. This completes the proof. []

Notice that one can reformulate (7) as a standard SDP by rewriting
the summation term in the objective function in the matrix form,
I, Muy; +w

c
(M p; +w)T _ﬁgi +n;
I, denotes the n-dimensional identical matrix. This leads to

Le, IMp +wl}+ & <n e > 0, where

N
min Z n;
i=1

I My, +w
st oo T > i=1,..,N,
(Mp; +w) -t
T,+R, <ep, i=1,...,N,
LM Liw
R, + i - 2” >0, i=1..,N,
EY'W Vo+&—1-5
R, >0, i=1,...,N,
MeS', weR", beR, E€RY, 5, peRN, R, eS"™!, i=1,...,N.
12)

In this way, (12) provides an SDP reformulation of (DRC-QSSVM) for
using off-the-shelf solvers.

Remark 2.1. Let V,.S DP denote the feasible region described by the
constraints associated with the ith random input in the SDP model, i.e.,

3p. R, =0, ﬁ[_érl'Rizo*
1¥M yw

Vb+&—1-p

VPP &L (M,w,b) €S" xR" xR
>0

i L T
Lyw
5Y

13

Then Theorem 2.1 implies that V; = ViSDP, fori=1,...,N.
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2.3. Geometric interpretation

To study the geometric interpretation of the distributionally robust
chance constraints in (DRC-QSSVM), we first provide the following
lemma:

Lemma 2.2. For any i, Vf bp defined in (13) is equivalent to

’
v;?DP —

Y (1dIMd, +w'd, +b) > 1-¢ - 1y MDY,

(M,w,b) € S"xR" xR ):i_gpo u—d,
[ﬂ?_df = >0, DYesS!, deR”
Proof. Please see Appendix A.1. [
Now, let E(up, 2, =) 2 (x € R" | (x — u)"Z'(x — pp) <

€
—} represent an ellipsoid centered at u;, whose shape and size are

determined by X, and e, respectlvely Considering the case of correctly
classifying x’ for all x' € E(y;, X;, T)’ we define

vE 2 {(M,w,b)es"xR"xR'y"< x)"Mx' +w x' +b)

s, l—e)}'
€

In the following lemma, a geometrical interpretation of
sented by discussing its relation with ViE .

>1-§.Vx ee(ﬂ,.,
V;.SDP is pre-

V,.SDP fori=1,...,N. If
Vf PP Moreover, for the linear case with M = 0,

Lemma 2.3. For any given (u;, Z;,¢), VX C
y'M > 0, then VI.E =
VE = pSPF,

Proof. From Lemma 2.2, the constraints in ViS DP can be rewritten as

(St st ) 16w,

(14

v d eé'(y” i—eD?, 1_€>,

€
with X;—eD? > 0 and D? > 0 being assumed without loss of generality.
For each feasible D?, this means that the quadratic surface defined by
(M, w, b) separates all points in & ( Hi, X eDO — ) softly. Obviously

Vf is a special case of V,.SDP’ when D? =0. Therefore, V,.E c VfDP. If
y¥'M >0, we have y'M » D? > 0 since D? > 0. The upper bound of the
right-hand side in inequality (14) is obtained when D? = 0. In this case,
we have VE = VSDP For the linear case with M = 0, D0 =0 can be
derived from (A. 3) in the proof of Lemma 2.2. Thus, VE VS bP O

Remark 2.2. Lemma 2.3 implies that the proposed (DRC-QSSVM)
model views each uncertain input as a set € ( y;, Z; — eD?, =€) and
seeks a maximum-margin classification using these ellipsoids (See
Fig. 1). When M = 0, this result is reduced to the linear case,
which leads to a maximum-margin classification using & ( y;, X;, %

as discussed by Shivaswamy et al. (2006) and Wang et al. (2018).

Remark 2.3. Note that for each i, the size of the set &(u;, =, —¢D?, 16;‘)
depends on ¢. As ¢ decreases, the size increases (See the trends shown

by Fig. 1). Consider the following two extreme cases:
* ¢ = 0. In this case, P, {yi (%(i")TMici +w'x! +b) <1 —§i} <
e = 0, VF;, € D;, hence, each chance constraint becomes a

deterministic constraint, )’ (%(ic")TM F4+wx +b) > 1 - g,
VF; € D;. The quadratic surface Q(M, w, b) is required to separate
data points generated from any potential distribution with fixed
mean and covariance. However, there may be numerous possible
distributions with the same given mean and covariance, for data
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points to spread everywhere such that it becomes impossible to
find such a separating surface. Also, note that when ¢ — 0,
e oo, which means the radius of the ellipsoid implied by
VSDP approaches to infinity. It is impossible to find a classifier
to separate infinitely large ellipsoids.

= 1. In this case, Py, {yi (%(xf)TMsd +wx +b)<1-&) <
e = 1, VF, € D;, becomes a trivial requirement. This means that
for any data point, it is totally random to be correctly classified
or not. Then, statistically speaking, the separation surface may be
obtained by separating the mean vectors of random data points
(See Fig. 1’s last column). Note that, 1;6 =0 as € = 1. This result
is consistent with Lemma 2.3 when the ellipsoid reduces to the

center point u; with a zero radius.

2.4. SOCP reformulation of (DRC-QSSVM)

SDP often requires heavy computational efforts even if it is a
tractable convex program, while an equivalent SOCP model may have
fewer variables for more efficient computations. This subsection
presents SOCP constraints derived from the SDP reformulation of
(DRC-QSSVM).

vSDP

Theorem 2.4. Fori=1,.. is equivalent to

SOC A
vyt 2
yi (%”?My,-+yiTw+b) >1-¢
(M,w,b) € S" xR" xR ] 1 ) ‘
+4/ %e||2,~2(Mﬂi +w)ll, - 2;:2_:,' V'M

(15)

Proof. Please see Appendix A.2. []

Similar to Lemma 2.2, a geometric interpretation of Vf 0C is given
in the next lemma.

Lemma 2.5. For any given (u;, X;,¢), VE c VSOC fori =1,...,N
Moreover, for the linear case when M = 0, VE VSOC

Proof. Please see Appendix A.3. []

For more efficient computations, we adopt the vectorization tech-
nique for V,.SOC. Define the vectorizations of M € S" as vec(M) 2

(M, .... My, My, ..., My, M,,,.... M, T € R, and hvec(M) 2 [M,,,
+1)
A/I(IKI)MZZ"" MZVHMn 1,n— l’Mn ln’Mrm] 2. Let Dn €
2 nn:
R" X737 be the matrix that satisfies D,hvec(M) = vec(M). For any
i, define

n(n+1)

+n)

H 2[I,®u)'D, I,]eR™ 2 (16)

where ® denotes the Kronecker product

Let z = [hvec(M)T w™|T € ]R e be the reorganized vari-
able of M and w. The objective function of (7) can be rewritten as
SN NMp, + w2 = TN (H2)"(H'z) = Z7(E)Y,(H)TH')z. Letting
W = YV (H)TH', we further have YN My, + w|2 = zTWz. Let
V sy 2 21 yusry — Diag(hvec(I,)). Then we define

2 2

n(n+1)

+n

1 1-
S [E(V,,(,,;])hvec( X +p )T u1" eR a7

We have %M-( lj Z,+p;u!)+plw = z'r'. Hence, (DRC-QSSVM) with a
feasible set in the form of V,.SOC has the following SOCP reformulation:
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Fig. 1. Geometric interpretation of (DRC-QSSVM) on 2D synthetic data. The green and blue solid points represent {u;}"
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X, in two classes, respectively. Shaded areas depict the

corresponding ellipsoids E(y;, X;, %). The learned quadratic classifier, %xTM x +xTw + b =0, is represented by the red solid line, and the pink dashed lines represent quadratic

curves defined by 1xTMx +xTw +b=+1.

N
min  ZTWz+C )¢
i=1
o — 1 18)
st Yy (2Tr+b) 21§+ $||2i2H'z||2,i=1,...,N,

n(n+1)

zeR™ 2

. beR, E€RN.

Since matrix W is real, symmetric, and positive semi-definite, its
n(n+1)

Cholesky factorization leads to W = 0To with 0 € S N = ™ Conse-
quently, we have the following standard SOCP formulation:
N
min 6+C Z &
i=1
s.t. ||QZ]||2 <0, 19)
1Z2Hzll, < = (ETP D) - 1+¢g), =1, N,
n(n+1)
zeR 2 ™ beR, 0ER, £eRY.

Some observations on the SDP model (12) and SOCP model (19) can
be made here.

+ Excluding the common variables (b, &) € R x Rf , the SDP model
has N matrix variables in S"*!, one matrix variable in S”, two
vector variables in RV and one vector variable i’II}”lRF)", while the
SOCP model only has one vector variable in R~ 2
scalar variable.

The SDP model has 3N semidefinite constraints involving (n+ 1)-
dimensional positive semi-definite cones, while the SOCP model
only has one constraint involving (n(n + 1)/2 + n + 1)-dimensional
second-order cones and N constraints involving (n+1)-dimensional
second-order cones.

and one

For general practice, the number of features » is much smaller than that
of input points N. Therefore, the SOCP model is more computationally
friendly than the SDP model.
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3. Data-driven approach for data sets without moment informa-
tion

The results presented in the previous section count on the first- and
second-order moments of the data set with probability uncertainty. This
section utilizes the proposed (DRC-QSSVM) for classifying data sets
without moment information. Fig. 2 illustrates the basic workflow of
our data-driven approach. For a finite set of binary samples {(x',)") €
R" x {-1,1}, i = 1,..., N} without any moment information (Fig. 2a),
we intend to use the proposed (DRC-QSSVM) model for building a
robust classifier. The key idea is to group similar data points together
and represent them by the mean and covariance of the group. Cluster-
ing is widely used to identify the inherent structure of data, while it
can also serve as a pre-processing technique for classification (Zhou,
2021). Clustering aims to partition a data set into disjoint subsets,
called clusters, where data points within the same cluster have high
similarities. As shown in Fig. 2(b), we first use clustering algorithms to
partition the given data set into Ny clusters, C, k = 1,..., Ng, with
Nk < N. The K-means clustering algorithm could partition data into a
finite number of homogeneous and separate clusters without using any
prior knowledge. Hence we adopt the K-means++ algorithm proposed
by Vassilvitskii and Arthur (2006) that enhances the performance
of ordinary K-means algorithms. The well-known ELBOW validation
method could help determine an optimal value of Ng. Once the clusters
were obtained, the sample mean and covariance matrix can be easily
calculated to estimate (g, X)), k =1, ..., Ng (Fig. 2(c)). Moreover, the
sample mean is denoted as x* 2 fi ) x"]lck (x"), and the sample

]
covariance as S £ |ck1\—1 Zi]il(xillck(xi) - xF)(x'1c, (x) — ¥)T, where
|C,| is the cardinality of the kth cluster C,. Then we could construct
the ambiguity set (3) to employ the proposed (DRC-QSSVM) model for

a robust classifier described in Fig. 2(d).

The proposed process illustrated by Fig. 2 leads to Algorithm 1,
where Step 1 partitions the given binary data shown in 2(a) into two
classes first. The clustering shown in Fig. 2(b) is accomplished by Steps
2-8. Step 9 computes the mean and covariance shown in Fig. 2(c).
Steps 10-12 employ the proposed model to obtain a robust quadratic
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Fig. 2. Data-driven approach for data sets without moment information.

classifier (Fig. 2(d)) determined by (M*,w*, b*) by solving the SOCP
reformulation (18).

Algorithm 1 Data-driven distributionally robust classification algo-
rithm.

Input: Data set C = {(x/,y)) eR" x {=1,1},i=1,..., N}, € € (0, 1).
Output: A quadratic surface defined by (M*, w*, b*).

1: Extract two classes from the original data set C:

C,={xeR|y=1 i=1.. ,N.C_ ={xeR |y =
—-l,i=1,...,N}.
2: Compute the cardinality: N, = |C,|, N_=|C_|.
3: Let NV be the upper bound of possible cluster numbers for C,, and

NY for C_.

Set NU = min{25,10%N, }, and NV = min{25, 10%N_}.

*The values 25 and 10% are user-defined based on the size of the
data set.

4: for I e{‘+,‘~} do

5 for K=12,..,N/ do

6: Apply the K-means++ algorithm to divide the set C; into K
clusters.

7: end for

8: Use the Elbow method to find the optimal value of K denoted
as Kj.

9: end for

10: Set Ng = Ki + K*.

11: Calculate (g, %) for C’jr and number them by k = L...,K}.
Calculate (u;, %) for C* and number them by k = K;+1,...,Ng.
Set y = [eg+: —eg:] € RNk as the new label vector, where e K* and
eg» are K;-dimensional and K*-dimensional vectors of all ones,
respectively.

12: Use (uy, Z,) to compute H* by (16), r* by (17), k =1,..., Ng. Set
W =YK (HTH".

13: With W, H*, r*, k = 1,..., Ny, and y, solve the SOCP problem (18)
of (DRC-QSSVM) to find an optimal solution (z*, b*).

14: Compute (M*,w*) from z* using the vectorization technique
discussed in Section 2.4.

15: Return (M*, w*, b*).

Algorithm 1 implies that the robust quadratic classifier is learned
by separating N ellipsoids instead of separating N data points with
Nk < N in general. This observation indicates the potential benefit
of our proposed in dealing with massive data that shall be explored by
computational experiments in Section 4.2.2. In addition, we notice that
the classification objects become ellipsoids that cover data points with
similarity, which might help avoid outliers and balance the magnitude
of the two classes. It implies the potential of Algorithm 1 for treating
imbalanced data. This works especially well for applications on rare
case detection. SVMs with non-robust counterparts may perform poorly
on the minority class since they may focus on the majority class while
maximizing the overall accuracy (Thabtah, Hammoud, Kamalov, &
Gonsalves, 2020). To illustrate this idea, for a highly imbalanced data
set with a ratio of 5/21, Fig. 3(a) shows that the quadratic classifier
obtained by (QSSVM) sacrifices 4 minority points in brown by treating
them as outliers. However, instead of classifying the 26 imbalanced
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points, the proposed approach finds a quadratic classifier by separating
4 ellipsoids with a more balanced ratio of 2/2 (See Fig. 3(b)). Fur-
ther experiments on classifying imbalanced data will be conducted in
Section 4.2.3.

Remark 3.1. In practice, decision-makers can rarely be completely
confident in the sample mean and covariance matrix for estimated
moments. The challenge here is that the sample means and covariance
matrices themselves are uncertain. Hence their uncertainty is factored
into chance constraints by considering a confidence region for the
sample mean and covariance matrix. Appendix B.1 further extends the
work.

Remark 3.2. As shown in Fig. 2 and Algorithm 1, the data-driven
approach first takes the clustering process and then extracts the mo-
ment information. For real-world applications, historical data might not
be sufficient to reflect the whole data structure, and we may need to
collect new data over time to form a dynamic approach. When new
instances are added to the data set, we need to update the clustering
and classification processes as well.

4. Computational experiments

This section studies the proposed (DRC-QSSVM) model by compu-
tational experiments. For uncertain data with given first- and second-
order moments, in Section 4.1, we validate the effectiveness of the
proposed model and analyze its performance in terms of the parameter
e. Then we compare the proposed model with the DRC linear soft
SVM (DRC-LSSVM) model which is the only maximum-margin SVM
model using the first- and second-order moments information in the
literature. For data without moment information, in Section 4.2, we
compare the data-driven approach proposed in Section 3 with some
state-of-the-art SVM models. In particular, we explore the potential
benefits of using the proposed model for problems with massive and/or
imbalanced data. In this section, all computational experiments were
conducted using MATLAB (R2021a) software on a desktop equipped
with Intel(R) Core(TM) i3-9100 CPU @ 3.60 GHz CPUs and 32 GB
RAM. The commercial solver SDPT3 (Toh, Todd, & Tiitiincii, 1999) is
employed to solve SDP and SOCP problems.

4.1. Data sets with first- and second-order moments

As discussed in Section 2, for uncertain data with first- and second-
order moments, the proposed (DRC-QSSVM) model has computable
SOCP and SDP reformulations. In Section 4.1.1, we test these two
formulations on synthetic data sets regarding classification accuracy
and computational efficiency. For the proposed model, the parameter C
controls the trade-off between maximizing the margin and minimizing
the misclassification loss, as commonly adopted in most SVM models.
While the parameter ¢ determines the upper bound of misclassification
probability that affects the quality of robust classification. Here we skip
the detailed analysis on the parameter C, but focus on the parameter
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Fig. 3. Comparison on an imbalanced data set.

€=0.50, Acc = 94.24%, PrAcc=92.33%

€=1.00, Acc = 92.48%, PrAcc=90.26%

Fig. 4. Results of (DRC-QSSVM) on Syn-Hype-2d-9 data. Shaded areas depict the given ellipsoids E(y;, X, 'Ei). The learned quadratic classifier, %xTM x+xTw+b =0, is represented

by the red solid line, and the pink dashed lines represent %xTMx +xTw + b= +1. Solid points represent random testing points.

e. For all computational experiments, we take the grid method to set
C e {271,21,...,2"} and ¢ € {0.10,0.25,0.50, 1.00}.

We first introduce some error measures to be used. For a quadratic
surface obtained by solving (DRC-QSSVM) with an output (M*, w*, b*) €
S" x R” x R, the predicted label j = sign(%(x)TM*x + w*)Tx + b*) can
be determined for a test data point (x, y). A commonly used measure is
the accuracy score (Acc) computed by Zf\:[ L 1" = ¥)/N x100% where
N is the total number of tested points. However, for the uncertain
classification with data points from a distribution, we further consider
a probabilistic accuracy score (PrAcc). Note that Ben-Tal et al. (2011)
and Wang et al. (2018) adopted an “optimal error” to quantify the prob-
abilistic error. For DRC-LSSVM, we have PrAcc = 1— “optimal error”.
Here we further extend the measure for quadratic classifiers. At each
uncertain data point %' associated with the ambiguity set D; in (3), the
robust chance constraint, supy p, Pr. { ¥ (%(ii)TM X+ wTx + b) <0
< ¢, ensures an upper bound e of the misclassification probability for
the quadratic classifier. Using Theorem 2.4 and the SOCP reformulation
(19), the truei probability of misclassification at X' should be no more

than e, if ||2,.E T'z|l, < v/e/(1 =€)y’ (2T + b). And this could imply that

T i T i
i THTS,T
the least value of ¢ for %' is f = () 2Tz

= ———-—=_ Consequently, we
ETritb2+zT(THT X, Tz q ¥

define

N
PrAcc = (1— ) err;/N)x 100%,

i=1
(20)

L ify#y
where err; = e e
er, ifp=y

1

i=1,...,N.
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4.1.1. Validation and analysis of the proposed model

Given that we have uncertain data set with known {(y;, ;) € R" x
S".i = 1,..., N}, to validate the proposed model and its effectiveness,
we first generate some synthetic data in different quadratic patterns
including hyperbolic, elliptic, and parabolic structures (See Fig. 1 for
illustration). The corresponding synthetic data sets are named in the
format of “Syn-Pattern-nd-N”, for example, the data set “Syn-Hype-4d-
50” denotes a set of {(y;, Z;) € R* x $*,i = 1,...,50} where u; are
generated along with a hyperbolic surface, and %; are random positive
definite matrices with eigenvalues in [0, 1]. For each i, we generate
50 random points following the normal distribution with mean g; and
covariance X; as the testing data points. Note that the proposed model
can handle distribution-free data and we choose the normal distribution
for simplicity in this section. We generate 8 data sets by selecting n €
{2,4,8,16} and N € {50,100}. We also record the testing accuracy by
the average Acc and PrAcc. The average training CPU time is recorded
for both results solved by the SDP model (12) and SOCP model (19).

For a simple illustration, first, we show a 2-dimensional example
tested on the “Syn-Hype-2d-9” data set. Fig. 4 shows that the classifiers
learned based on the first- and second-order moments depend on the
value of e. For example, the proposed model provides hyperbolic curves
when € = 0.10,0.25, a parabolic curve when ¢ = 0.50, and an ellipsoidal
curve when ¢ = 1.00. Figs. 4 and 5(a) show that e indeed affects the
classification accuracy. The Acc and PrAcc shown in Fig. 5(a) depict
how ¢ affects the performance.

Synthetic data sets with bigger sample sizes in higher dimensions
have been tested to investigate the proposed model further. Table 1
shows one group of results on “hyperbolic” synthetic data sets. More
results on the “elliptic” and “parabolic” data sets are shown in Ap-
pendix B.2. For all testing problems, we ensure that the SOCP model
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Fig. 5. Performance of (DRC-QSSVM) on “hyperbolic” synthetic data sets in terms of e.

Table 1
Testing results on “hyperbolic” synthetic data sets by DRC-QSSVM.

Data Syn-Hype-4d-50 Syn-Hype-8d-50 Syn-Hype-16d-50
€ 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00
Acc(%) 99.96 100.00 99.96 99.24 97.92 98.64 99.28 99.04 98.88 99.84 99.92 99.68
PrAcc(%) 98.54 99.18 99.39  98.69 92,57 9549 96.46  93.61 88.67 9476 96.94 94.11
. SOCP 3.01 2.99 2.99 2.22 3.14 3.13 3.08 2.38 5.72 5.71 5.98 3.85
CPU time (s) _
SDP 4.55 4.50 4.45 3.35 6.98 6.99 6.89 510 3496 30.90 29.54 21.77
Data Syn-Hype-4d-100 Syn-Hype-8d-100 Syn-Hype-16d-100
€ 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00
Acc(%) 100.00 99.96 99.88 99.88 99.89 100.00 100.00 100.00 100.00 100.00  100.00 99.89
PrAcc(%) 99.35 99.36  99.27 99.26  99.59 99.70 99.80 99.83 99.51 99.39 99.35 99.34
. SOCP 5.14 5.25 5.22 2.97 5.50 5.56 5.62 3.89 12.43 12.41 12.36 7.70
CPU time (s) _—
SDP 8.05 8.03 7.95 474 19.40 18.20 17.81 11.74 187.10 176.16 142.67 136.87

achieves the same results as the SDP model, but in a much more
efficient way. From Table 1, we see that (i) the proposed (DRC-QSSVM)
model performs well in terms of Acc and PrAcc measures; (ii) it is
not surprising that PrAcc is always smaller than the corresponding Acc
since the former considers the potential misclassification probability
when the predicted label is correct; (iii) For fixed N and n, both Acc
and PrAcc change depending on ¢, but in the same trend, as illustrated
in Fig. 5(b).

4.1.2. Comparison with the DRC-LSSVM model

In the literature, DRC-LSSVM (Wang et al., 2018) is the only
maximum-margin SVM model using the means and covariance ma-
trices for distributionally robust classification. Hence we compare the
proposed (DRC-QSSVM) with DRC-LSSVM using the well-known data
sets Wisconsin breast cancer (WIBC) and the Ionosphere from the UCI
dataset. For fair comparisons, we adopt the same settings for data pre-
processing as in Wang et al. (2018). WIBC data contains 683 samples
with 9 features, i.e. N 683, n = 9, and extracted Ionosphere
data has N = 351, n = 15 (extracted from n 34 as Wang et al.
(2018)). Moreover, for computational efficiency, SOCP reformulations
are used for both (DRC-QSSVM) and DRC-LSSVM. Similarly to Wang
et al. (2018), u; is set to be the value of each training point, and X
is calculated based on the covariance matrix of all training points in
the same class. Table 2 shows the results where (i) 20% of the data
are used for training and the remaining 80% for testing; (ii) 80% for
training and 20% for testing.

The proposed DRC-QSSVM model generates a quadratic surface,
which increases the flexibility when handling nonlinear data. How-
ever, it increases the model complexity as well compared with the
linear DRC-LSSVM model. Table 2 clearly shows that the performance
of (DRC-QSSVM) dominates that of DRC-LSSVM in all cases, taking
a reasonably longer running time. The superiority of the proposed
(DRC-QSSVM) model becomes particularly evident when applied to the
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Extracted Ionosphere data, which is more nonlinearly complex than the
WIBC data.

4.2. Data sets without moment information

Section 3 provides a data-driven approach to apply (DRC-QSSVM)
for robustly classifying exact data points {(x',y') € R" x {—1,+1},i
1,..., N}. We conduct computational experiments to compare the data-
driven approach with well-known state-of-the-art SVMs using some
commonly used public benchmark data sets. Table 3 lists the tested
models, including their abbreviations, solvers, and parameters. Kernel-
ized SVMs are solved by utilizing LIBSVM (Chang & Lin, 2011), and
other SVMs are solved by SDPT3. Note that (DRC-QSSVM) is realized by
the data-driven Algorithm 1 in which the SOCP problem (18) is solved
by SDPT3.

For all tests, the 10-fold cross-validation and grid methods are
adopted to select the best parameters of C, ¢, and o from the ranges
of C e {271,2!,...,2"%}, ¢ € {0.1,02,...,1}, and ¢ € {27°,27%,...,2°)},
respectively. All test results are based on the best-selected parameters.
Some public benchmark data sets from UCI databases (See Table 4)
are chosen. Section 4.2.1 presents the results of “balanced” data sets,
including the commonly used Scale, Pima Indians Diabetes (Pima),
WIBC, and Ionosphere. Section 4.2.2 reports the performance of “mas-
sive” data sets including Skin and Cod-RNA with large sample sizes.
Section 4.2.3 explores the results of “imbalanced” data sets, including
Car Evaluation (Careval) and Heart Disease (Heart) with skewed class
proportions. All the classical SVMs are tested on the original data, and
the two robust models including DRC-LSSVM and the proposed DRC-
QSSVM utilize the moment information of the data retrieved by the
data-driven approach described in Algorithm 1.

4.2.1. Benchmark tests on balanced data
Four popular balanced benchmark data sets: Scale, Pima, WIBC, and
Ionosphere are tested. Since they are exact data sets, we report the Acc
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Table 2
Testing results on WIBC and extracted Ionosphere data sets.
Data (20% training) WIBC Extracted Ionosphere
€ 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00
Acc(%) 96.60 96.38 96.30 96.12 84.26 84.54 84.40 84.26
DRC-LSSVM PrAce(%) 93.98 93.70 93.61 93.00 82.61 82.91 82.09 81.92
CPU time (s) 5.77 5.48 5.05 5.01 3.36 3.37 3.39 3.40
Acc(%) 96.63 96.63 96.52 96.56 92.81 91.95 92.09 92.09
DRC-QSSVM PrAcc(%) 94.05 94.39 94.69 94.82 91.64 91.21 91.38 91.30
CPU time (s) 6.66 6.13 5.71 5.77 5.56 5.53 5.56 5.61
Data (80% training) WIBC Extracted Ionosphere
¢ 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00
Acc(%) 96.63 96.63 96.49 96.49 87.46 88.31 88.02 87.74
DRC-LSSVM PrAcc(%) 95.45 95.57 95.35 95.15 83.36 83.70 84.19 83.67
CPU time (s) 16.97 17.56 16.37 18.14 10.51 10.54 12.15 11.37
Acc(%) 97.22 97.37 97.22 96.93 96.58 96.02 95.73 95.16
DRC-QSSYM PrAcc(%) 95.86 95.91 95.76 95.61 92.87 93.48 92.94 92.18
CPU time (s) 32.25 30.82 34.77 30.51 33.05 32.77 30.47 31.01
Table 3 » (DRC-QSSVM) can achieve high accuracy using only 20% data
Models and solvers of the tested models. points for training. This supports the stability of the proposed
Model Abbreviation Solver/Package Parameter model and the promising potential of practical use for massive
Linear soft SVM LSSVM LibSVM e} data classification.
Quadratic soft surface SVM QSSVM SDPT3 C
SVM with quadratic kernel KQSSVM LibSVM (C,0)
SD\Q(V:I 11“2 S;rG;\l;;Zlan kernel ;G{Z?XSI\;IVM ]s“g)s;gv{ Eg :)) 4.2.3. Benchmark tests on imbalanced data
The proposed model DRC-QSSVM SDPT3 (C,e) Imbalanced data sets, where one class greatly outnumbers the other,

measure only. The mean and standard deviation of Acc are shown in
Table 5. Same as in Section 4.1.2, we select 20% and 80% of data sets
for training, respectively. The average training CPU time of each model
is also reported.

The following observations can be made:

» The proposed (DRC-QSSVM) model produces much more accu-
rate classifications than other tested SVM models on all tested
balanced data sets. It shows the special value of the data-driven
based robust (DRC-QSSVM) for commonly used data sets without
prescribed uncertainty.

For most data sets, the classification accuracy obtained by (DRC-
QSSVM) changes very little in terms of different training rates of
20% vs 80%. It indicates the potential advantage of the proposed
model when we have limited data points for training.

The CPU time consumed by the proposed (DRC-QSSVM) is ac-
ceptable overall considering its classification accuracy. Also note
that (DRC-QSSVM), (QSSVM), and DRC-LSSVM are solved using
the solver SDPT 3.0, while others are solved using an integrated
software LIBSVM.

4.2.2. Benchmark tests on massive data

Two massive benchmark data sets, Skin and Cod-RNA, are used
for testing. We also use 20% and 80% of data points for training,
respectively. The mean, standard deviation of accuracy scores, and the
average training CPU time are reported in Table 6.

The following observations can be made:

+ The proposed (DRC-QSSVM) model significantly outperforms oth-
ers in accuracy for the Skin data. For the Cod-RNA data, (DRC-
QSSVM) also outperforms other models considering both the
accuracy and CPU time.
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are a common issue in many real-life applications. Classifying im-
balanced data presents a challenge for standard classification algo-
rithms. In this subsection, two imbalanced data sets, Careval and Heart,
are tested. For the classification of imbalanced data, a good SVM
model should (i) enhance recognition success specifically for the mi-
nority class, and/or (ii) balance recognition capabilities between both
classes (Sun, Wong, & Kamel, 2009). Additional error measurements are
often used to evaluate such performance. The Area Under Curve (AUC)
score could help evaluate the first performance, while the G-mean score
could help the second one (Details refer to Sun et al. (2009)). In this
subsection, we elect 80% as the training rate due to the potential
inadequacy of the minority class sample size to facilitate training at
the 20% rate. Table 7 displays the average CPU time, and the mean
and standard deviation of the Acc, AUC, and G-mean scores.
The following observations can be made:

» The proposed (DRC-QSSVM) model outperforms other models in
all three measures. The dominance is particularly significant in
AUC and G-mean scores.

» Note that the imbalance ratio of the Heart data is higher than
that of the Careval data. Most models have AUC and G-mean
around 50%, which means these classifiers cannot distinguish two
classes clearly. However, the proposed model still shows good
performance. This means that the proposed model may have a
better capability of handling highly imbalanced data.

In summary, applying the DRO approach, the proposed model ex-
tends the QSSVM framework, enabling a kernel-free nonlinear SVM
with a quadratic classifier to handle uncertainties in data. It outper-
forms the QSSVM as well as other state-of-the-art SVMs in general
classification tasks without uncertainty. While the QSSVM is tested on
original data, solving a certain problem, the proposed model leverages
hidden moment information to address uncertain problems. This high-
lights the significant finding that transforming a certain problem into
an uncertain one and then solving it may lead to surprisingly better
outcomes.
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Table 4
Summary of the benchmark data sets.
Data set Balanced Massive Imbalanced
Scale Pima WIBC Ionosphere Skin Cod-RNA Careval Heart
Dimension n 4 8 9 34 3 8 6 9
Sample size® N N, 288 268 239 225 50,859 19,845 1,210 3,101
P N_ 288 500 444 126 194,198 39,690 384 557
2 N, = sample size of points in the class labeled ‘+1’ and N = N, + N_.
Table 5
Testing results on the balanced benchmark data sets.
Data set Scale Pima WIBC Ionosphere
Acc(% A A ) A )
Training rate <D cpue) < cpug) <D cpuee) <D crue)
mean std mean std mean std mean std
LSSVM 20% 70.24  6.99 0.27 74.97  3.69 0.01 92.65 3.16 0.01 8248 1.44 0.01
80% 73.02 5.63 1.50 76.14 2.51 0.08 96.03 1.26 3.90 88.76 3.19 0.28
QSSVM 20% 97.35  0.89 0.71 74.31 3.87 0.78 94.12  2.38 2.44 87.81 2.64 3.18
80% 97.53  0.91 8.50 76.67  2.43 9.87 95.66  0.95 11.58 93.52 297 10.29
KQSSVM 20% 97.65 0.78 0.16 76.99 2.68 0.23 95.44 1.66 0.15 87.43 3.12 0.05
80% 97.65  0.88 1.11 78.24  1.97 1.01 96.10  0.98 0.54 91.62  4.06 0.13
KGSSVM 20% 97.82  1.00 0.01 76.34  2.09 0.01 92.18 1.42 0.01 88.57 1.56 0.01
80% 98.24  0.83 0.02 77.58  2.09 0.11 95.96  0.93 0.02 93.74 117 0.02
DRC-LSSVM 20% 68.65  5.03 0.40 76.99  2.80 0.72 94.49  2.00 2.10 88.19 3.73 0.50
80% 74.18  4.59 0.48 76.93  3.28 0.77 94.71 1.54 2.03 89.05 5.33 0.74
DRC-QSSVM 20% 98.18 1.01 0.44 80.77 4.15 0.77 96.55 2.03 2.20 93.52 1.17 3.04
80%  98.30 0.79 0.51 81.36  3.42 0.82 96.66 1.29 2.14  94.00 297 3.57
Table 6
Testing results on the massive benchmark data sets.
Training rate Skin Cod-RNA
20% 80% 20% 80%
Acc (%) CPU(s) Acc (%) CPU(s) Acc (%) CPU(s) Acc (%) CPU(s)
mean std mean std mean std mean std
LSSVM 75.01 8.31 1.52 80.01 5.29 6.08 78.51 10.32 10.88 84.67 5.21 44.90
QSSVM 85.23 1.21 25.01 91.24 3.20 1656.43 91.17 0.78 138.83 92.04 0.46 2942.85
KQSSVM 80.53 21.95 0.97 92.29 5.42 4.12 91.61 0.98 4.13 92.55 0.59 30.52
KGSSVM 79.56 0.11 0.01 81.07 0.11 0.08 88.59 0.49 0.07 90.86 0.24 1.66
DRC-LSSVM 87.73 7.84 0.62 88.82 5.49 0.81 80.45 9.79 0.94 89.47 1.64 0.98
DRC-QSSVM 96.51 0.51 0.66 97.85 0.75 1.36 92.54 0.64 0.98 92.21 0.60 1.26
Table 7
Testing results on the imbalanced benchmark data sets.
Model Careval Heart
Acc(%) AUC(%) G-mean(%) CPU(s) Acc(%) AUC(%) G-mean(%) CPU(s)
mean std  mean std  mean std mean std  mean std  mean std
LSSVM 79.88 10.68 84.64 10.63 74.51 8.06 0.70  53.17 1.11  51.30 0.40  50.68 0.28 0.02
QSSVM 96.22 0.96  98.59 0.44 9237 193 298 76.88 3.06 56.07 2.75 48.33 2.32 35.88
KQSSVM 94.72 0.55 99.11 0.28 9345 091 0.70  67.09 0.60 50.11 1.01  55.10 1.53 3.10
KGSSVM 96.00 0.46  98.74 0.20 9434 1.27 0.01 8479 20.00 57.85 ?0.00 *0.00 “0.00 0.04
DRC-LSSVM 95.66 0.79 96.51 0.59 83.02 1.18 0.49 78.61 6.33 54.65 1.34 53.68 0.85 0.58
DRC-QSSVM  99.65 0.70  99.82 0.78 95.97 1.32 0.50 85.77 0.02 71.32 0.90 66.24 1.47 1.21

2 A G-mean score of value 0 and std of O indicate the classifier simply assigns all instances to the majority class.

5. Conclusion

In this paper, we have established a novel distributionally robust
chance-constrained kernel-free quadratic surface support vector ma-
chine model that can robustly conduct nonlinear classification for data
sets involving stochastic uncertainties, in which only the first- and
second-order moments are known a priori. SDP and SOCP reformu-
lations of the proposed model have been derived for computational
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efficiency. Additionally, an explicit geometric interpretation of the con-
ceptual distributionally robust chance constraints has been presented
to show how the proposed model handle uncertain data. Our computa-
tional experiments show that the proposed model clearly outperforms
the DRC-LSSVM model, the only maximum-margin SVM model ex-
plicitly using moment information for classifying uncertain data, on
synthetic and public benchmark data sets.

For commonly used data sets without uncertainty involved, we
design a cluster-based data-driven approach that retrieves the hidden
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moment information first and enables the proposed model to leverage
the moments for robust classification. This approach aids in further
exploring the applicability of the proposed model. Extensive compu-
tational experiments using public benchmark data sets exhibit the
surprisingly dominant performance of the proposed model over other
state-of-the-art SVM models, especially for massive and/or imbalanced
data sets.

Our investigation of the proposed model leads to some potential
research works. First, in real-world applications, historical data may
not be sufficient to capture the whole structure of the data set (Hsu,
Xu, Lin, & Bell, 2022; Mi, Quan, Shi, & Wang, 2022). Collecting
new data over time is necessary to adapt to changes in the data and
the evolving moment information. We are interested in developing a
dynamic approach to update the clustering and classification processes
to extend the proposed model further. Besides, we are interested in
how the proposed model performs in healthcare applications (Jiang,
Han, Yu, & Ding, 2023; Naumzik, Feuerriegel, & Nielsen, 2023) with
large-scale uncertain data.
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Appendix A. Proofs

A.1. Proof of Lemma 2.2

Proof. For any i, the constraints in V,.S DP require finding g; and R; > 0

to satisfy %Fi *R; - f; < 0 and the matrix inequality. Notice that finding

Loim LY
p; and R; > 0 with R; + Eyl T 2y > 0 is not difficult.
ywh ybh+gG—1-p

However, it is hard to guarantee such g; and R, satisfies %F,--R,-— B; <0.
Requiring vf DP 2 & is equivalent to requiring that the optimal value

of the following optimization problem is less than or equal to 0:

inf 17, R, - 5, (Ala)
€
1 1
VM Syw
st R+ |77 o2 >0, (A.1b)
sVwt yb+g-1-p
R; >0 (A.lc)

Since one can easily find a proper g, € R and a matrix R; > 0 with
Loim Lo
eigenvalues large enough to satisfy R;+ 2yi T a2 yw
yw' ybh+&-1-4
the Slater’s condition of problem (A.1) is satisfied and the strong duality
di n+1

diT dy, € §i" and
C; € Si“ be the dual variables corresponding to (A.1b) and (A.1lc),
respectively. Then the Lagrangian becomes

>0,

holds for (A.1) and its dual problem. Let D; = [Di

sup inf £(R;, f,, D,,C))
D,;20,c;=0RiPi
1 ([ b
= sup inf ¢ -T; R, —f—D;«| R+ ]| i
B,20.C,20RiPi € Eyle Ybo+é&-1-p

~C,+ R,

= sup inf {Ri-(ifi—ci—l_)i)+(d0,—1)ﬂ,—d0i(yib+§,-—l)

D,>0,c;>0Ri-bi
o v
~lyM.p, - y'wTd,}

up

. {—%y"M-Di—yind,—(y’b+§,—1), dy—1=0, 1, - D, >0,
D;>0

—00, otherwise.
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Consequently, we have dual problem of (A.1):

sup —1yMeD, —ywld, - (¥b+& - 1)

T
st [Z:‘ +:i”i _TeDi Hi— de] > 0.
M, —ed; l-¢ (A.2)
D, d,
>0,
-
D;eS" d; eR"
A pd;
The Schur Complement Lemma implies that d% 1’ >0s D, -
i

d;d] > 0. Let D = D, — d,d]. Substituting it into the first constraint,
we have
[Zi +uu} —eD;

>0
uy —ed;

M —ed;
1-¢

© i+ pup —eD; -

- Z, —eD?
uy —dj

1
Te(”i —ed;)(pu; — edi)T =0

_d.
s ] o,

o

Therefore, we can rewrite (A.2) as

i (14T T i 0
sup —y’(zd,.Md,-+w di+b)—§i+1—§y’M-Di
Z,—eD? p —d; o
ul —dTf -
1 1
DY >0,
DYes’, d;, eR".

s.L. 1-e

(A.3)

€

Remember that the strong duality holds for (A.1) and (A.3). By satis-
fying the requirement that the optimal value is no larger than 0, the
constraints in Vf DP" 4re obtained and thus the claim follows. O

A.2. Proof of Theorem 2.4

Proof. When deriving Lemma 2.2, we notice that the SDP constraints
in (7) could be obtained by requiring the optimal value of the following
convex SDP less than or equal to 0:

sup  —1yMeD,—ywld, - (¥b+&—1)
i+ upl —eD; - ﬁ(ﬂi —ed)(p; —ed)" > 0,
eD; —edd! >0,
D, eS", d; eR".

S.t.

(A4

Let D} = X, +p; y,.T > 0 and d; = y;, the constraints are satisfied strictly
with positive definite matrices. Slater’s condition is satisfied, and the
strong duality holds. It is hard to give an explicit optimal solution
and optimal objective value directly by solving (A.4). We consider its
dual problem. Let H;,G; € S| be the dual variables of (A.4). The
corresponding Lagrangian dual is

8 z0p ) £ P i Hi G

= inf sup
H20.G;20p, g,

+H, (2,4 ! = D, = L, — ed ), — ed)" ) + G, + (¢D, ~ ed,dl) |
{—(y"b+§,. ~D+H,E - S uTHyp,

{—ény-D, —yw'd, - (Yb+& - 1)

= inf sup
H20.G,;20p, g,

+D,+ (=3yM —eH, +¢G,) ~ dI = H, + €G)d,+ (~yw+ 2= H,u)'d, |

iM—e
The dual function is finite if and only if —% ¥ M —eH; —eG; =0, which
gives eG; = % ¥'M + eH; > 0. Substitute this into the above, we get

inf sup L(D,;,d;,H,;G))
d;

H;>0.Gi>0p,,
: ) el
= inf sup -0b+&-D+H; « X — ﬁ”:‘TH"”i +q(dy, if 3V M +eH, >0,
Hiz0q; | 4co, otherwise,
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where ¢(d)) = —d| (;= H, + %ny)d,. +(—yw+ %H,-y,-)Td,-. Since the
dual variable H; > 0, we have ;= H, + %yiM > eH,-+%yiM >0by0<
€ < 1. Thus, q(d;) is a concave function of d; since LH + ;y"M > 0.
To make it strictly concave, we can add 51, to 5 H + >V M such that
Ap) £ S H,+ 3y M +qI, > 0 and lim, _, A,(n) :H, + 1y M.

Then solving Vga(d) = —24;(nd; - Gw - IZTESH,»y,-) = 0, we have

d = —%Ai(q)fl(y"w - ]zTeeH,.y,.). Then we get the dual function as
follows:
gH) =-('b+&-D+H;+ X~ pulHp
+1 0w = ZH ) A w - 2 Hopy)
=-(b+& - D+ Hyo 5= (S u Hipy + qw A~ w
YWt AT G Hip) + G Hip) " A~ (G5 o).
For the last two terms, We have y'wTA,(n)! (—H w) = ywy, —

waA (n) 'Y Mu; +np)), and (75 H )T A0~ (G Hyp) = 1]

Hipi~ iTMl‘z nu; Mz+(ZY'M#,+VIIl,)TAI(VI) (zy Mﬂ,+i1;4,). Hence,
we can derive
g(H) = 1wl A 'w+ Gy Mu;+np)T A~ Gy Mp; +np)

+ywT A~ Gy Mu; +npy)

+H; o X 3y u Mp = ywuy =l = P+ & = 1)
= GY(Mu;+w) +np)" A, GY (M + w) + npy)

+H,+ 2= 3V I Mp; = Y wT = npl g — /b + & = 1.
The dual problem of (A.4) is followed by

inf  g(H)) = Gy (Mp; +w) +nu)T A,y G (Mp; + w) + )
+H, o 2, = 2y uT Mp, — yw'p, —nulp; — (Fb+ & — 1)
st eH;+ %yiM >0,
H,>0.
(A.5)

A bounded unconstrained convex program (A.5) is obtained. And
Vg(H,;) = 0 implies that

l—ez

AT Y (Mp,+ w) + )5 (M + w) + )T A = 2258,
(A.6)

Multiply (%yi(Mui + w) + nu;)T on the left hand side and (%yi(Mﬂi +
w) + ny;) on the right hand side of (A.6), we have

(G (M + w)+ 0T A Gy (M, + )+ py) )
= GV (M w)+nu)" ZGY (M + w) + )
> GV (Mu;+w) +np)" AT G (Mp; +w) + npy)

[
VS IEE GY (M + w) + -
Multiply A;(n) on the left hand side of (A.6) and take the trace, we have

(A7)

1, 1 _
GY (Mp;+w) + )5y (Mpy +w)+nu)" e A7

€ 1 1-¢
—H, +-yM+nl,)e. PR
T Hit Y ) e ——2;

1 ; 1,1
=5y (Mp; +w) + nu,-)TAf(m ‘(—y’(Mﬂ,- +w)+nu;)
1-

=(
(A.8)

Trace(E ).

By (A.7) and (A.8), we have inf g(H;) = __y W Mp — ywTp +
Lo .

VEIZ2GY (Mp; + w) + nuplly = 55¥'M « ;= ni=Trace(Z)) -

i u = (Vb + & —

1 ) .
? z; (Mﬂ,~+w)||2—lz;sey’Mozi—(y'b+§,-—1). Since the strong duality

1), and lim,_, inf g(H;) = =3 ﬂTMﬂ, -ywTy +
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holds, we require that lim, _, inf g(H )<

YOI Mpu, + plw+b) > 1-¢ +1/ = IIE (Mp; +w)ll - =2y M+ 5,
ThlS completes the proof. []

0 Wthh yields SOC constraints

A.3. Proof of Lemma 2.5

Proof. In V7, forany x' € E(u;, Z,, %), we require that y’ (%(xi)TMxi

+wx! + b) > 1 — ¢ which is equivalent to

1 T
<§ﬂ1Mﬂl+[l w+b>>1—§i—\/?yi <E’.2(Myl-+w)> v

l—¢ ;1 1 1

- 2—6_}1'” Zl.z le.z v,
for any v € R” with |lv]|, < 1. To eliminate v, we need to know the
maximum of the RHS of the above inequality. We need to solve the

following subproblem:

(A.9)

1 1
. l—¢ 2 ) T 1 S T 2 5
vlélngn vV W (Mp; +w) v+ — IIMX; (A.10)
st el <1

Problem (A.10) is a typical trust-region subproblem. The dual problem
of (A.10) can be derived as follows:

sup  @(d)
AER++ L (A.11)
st. 1;2,.2 MZZ + I >0,
1 1
where d(A) = = e(2 (Mp; + w)T /=222 MEE + A1)

(E[ (Mpu; + w)) + A. A pair (v*, A*) provides primal and dual optimal
solutions if and only if

1 1 1
(:;fszz,? + u) v =/ (2,.2 (My; + w)>

Al =D =0, llv7]l, < 1 (A.12)
1 1
ZEEIMED + 4> 0,05 > 0.
%
. XA (Muy;
Let o = —y’M We have ||D||, = 1, thus # is a feasible
122 (Mp+w)ly

solution of the primal problem (A.10). The obJect1ve value respect to ¥

is —\/ﬁnz Mu; +w)ll, +y' e ATZZ M22 p. For the second term of
the objective value, we have
(My; + w)'Z,MZ,(My; + w)
My, +w)T Z,(Mpy,; + w)
MZ, e My, + w)(My; + w2,
(My; +w)'Z.(Mpu; +w)

According to Von Neumann’s trace inequality, we have that ,,;,(M X;)
Trace(Mpu; + w)(Mpu; + w)TE )S MZ, e (Mu;, + w)(Mu, + w)’ DS

Omax(M Z)Trace(M p; + w)(M p; + w)TZ ), where 0 denotes the eigen-
value of MZX,. Since Trace(Mpu; + w)(lMy, Il— w'x) = (My; +

w)' Z,(My; + w), then 6,,,(MX,) < ﬁTZ?Mz?i; (MZ). If M

1 1
VXXM =

min < max
is positive semi-definite, we have & Z Mz, 2 < Trace(M X;). In this
case, substituting the corresponding objectlve Value make the inequal-
ity (A.9) become the constraint of V,.SOC in (15) for each i. However,
we can verify that » does not satisfy the optimal conditions (A.12),
which means that ViE is a conservative cut of v{;oc. Hence, we have
vE c vSOC

For the linear case when M = 0, the problem (A.10) becomes

1nf||vuzsl \/ <y (Zzw)Tv The optimal solution is that v* = —y’):2 w/

||22w||2 Consequently, the constraint (A.9) becomes y' (ufw+b) >

1-¢&+ \/ ||22 wll,, which is equivalent to ' (xTw +b) > 1-¢&;, Vx €
V,E by utlhzlng the multivariate Chebyshev inequality (Bertsimas &
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Table B.8

Testing results on “elliptic” synthetic data sets by DRC-QSSVM.

European Journal of Operational Research 316 (2024) 46-60

Data Syn-Ellip-4d-50 Syn-Ellip-8d-50 Syn-Ellip-16d-50
€ 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00
Acc(%) 99.52  99.60  99.20  98.64  94.04 99.88  99.52  99.08  98.88  99.84  99.92  99.68
PrAcc(%) 97.17 97.97 96.46 95.32 87.12 88.74 88.53 88.31 78.67 84.76 86.94 87.11
. SOCP 4.66 4.69 471 3.78 478 476 472 3.85 5.72 5.71 5.98 3.85
CPU time (s) N
SDP 6.87 7.14 7.13 5.71 9.97 9.59 9.65 8.28 34.96 30.90 29.54 21.77
Data Syn-Ellip-4d-100 Syn-Ellip-8d-100 Syn-Ellip-16d-100
€ 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00
Acc(%) 99.40 99.64 99.56 99.60 100.00 100.00 100.00 98.80 98.60 99.64 99.64 99.64
PrAcc(%) 97.99 98.43 98.21 98.27 92.38 92.46 92.47  89.49 8449 89.22 89.83  90.72
. SOCP 7.19 7.37 7.38 5.46 5.98 5.90 6.14 3.67 13.49 13.90 13.92 7.39
CPU time (s) -
SDP 11.78 1299  12.93 8.68 18.04 16.10 16.16 11.46 3496 30.90 29.54 21.77
. T 1
Pc:pescu, 2005): for an arbitrary closed convex set S, P(x € S) < where F? _ |@Z; ";llfllf ”i], Z? = [Z2 1,] € R™"+D, and ﬂ? —
T2 where ¢ = inf,cg (x — wTE(x — p). Notice that the set H; 1

{x|y' (wT'x+b) > 1 -¢&} is a convex set for each i. Hence, we have
Vis oc — ViE. This completes the proof. []

Appendix B. Auxiliary information

B.1. Moments uncertainty

The uncertainty of moments mentioned in Remark 3.1 adopts a
general bounded set (Delage & Ye, 2010):

(Er 1% —u,-)T = (Bl - ) < o, (B.12)

Ep, [ = p)& - p)'] <, 2, (B.1b)

where the parameters ®; > 0 and w, > 1 provide natural means of

quantifying one’s confidence in y; and X;. Constraint (B.1a) provides
an ellipsoidal uncertainty of u;, and constraint (B.1b) assumes that X;
lies in a positive semidefinite cone. In what follows, to overcome the
possible estimation errors of moments, we consider the ambiguity set
for each i,

DPY (%' p, X0, ;)
P € 5)=1,

) T )
(Erlx1-m) =7 (Bglx]-u) <o,
Ep, [ = u)E - p)'] 2 0, Z;

2JF € M(E,,F)

(B.2)

Let DPY £ | JDPY Similarly, we can circumvent the difficulty of solving

distributionélly robust chance-constrained problems by duality theory.
An SDP model can be obtained accordingly.

Lemma B.1. Suppose that v, > 0, w, > 1 and X; > O for any i. Then,
the DRC-QSSVM model under the ambiguity set DPY can be equivalently
reformulated as the following SDP model:

min Z,]:] n;
1 My, +w
s.t. " T C”' >0, i=1,....,N,
(My; +w) _ﬁéi""’li
e 110k > L SR SRY
1 1
R+ |VM e >0, i=1,...,N,
sYwh yb+g—1-p
R, >0, i=1,....N,
MeS', weR", beR, £€RY, f, neRY, R,eS™, i=1,..,N,
(B.3)
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[u; 01T € R™1. The above result holds for the linear case when M = 0.

Proof. Let Y 2 sup P{y" (%(ii)TMii +wTE o+ b) <1 —5,.}
FeDPY

sup EF[]l(ii)], fori = 1,...,N. From Lemma 1 in Delage and Ye
FeDPY

(2010), (ple must be equal to the optimal value of the problem:

inf r; +1 (B.4a)

st 2 1E) - @EH'0x - (3)Tq, VE eg, (B.4b)
1

12 (@ %+ i)+ Qi + 1) 4 + /o127 (g; +2Q 1)l (B.40)

0, >0, (B.4d)

ri, t; €R, 0, €S", q; e R". (B.4e)

1
. Llg So+uu’ o .
Let N; = IQ'T 2| and 10 = |25t KM B Using the
39 T ’ H; 1
same approach in the proof of Theorem 2.1, the constraint (B.4b) is
M Yw

equivalent to N; + q; . )
q i i %yle y’b+§i_1_i

i

> 0, a; > 0. Denote

1
20 =[x21,] € R0+ and p0 = [g; 0]" € R"*!. Reformulate (B.4a)
asr;+t; > F? e N, + /o, ||E?N,~;4?||. Hence, we can rewrite (B.4) as
follows:
inf "« N; + /oo, | Z°N,; 10|
1 1.
e Fyw -0

s.t. N; + q; . )
B B A P B

N, >0,
o € R*Y, N, e "L

Since P < ¢, by strong duality, we have I'?e N+ /@, | ZON 40| < e.
The rest of the proof is similar to the proof of Theorem 2.1 and can be
easily followed to complete the claim. []

Notice that DPY(%/; u;, Z;,0,1) relates closely to D;(X'; y;, X;), and
in this event, we find that the model (B.3) reduces to the model
12).

B.2. Experimental results

See Tables B.8 and B.9.
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Table B.9
Testing results on “parabolic” synthetic data sets by DRC-QSSVM.
Data Syn-Para-4d-50 Syn-Para-8d-50 Syn-Para-16d-50
€ 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00
Acc(%) 97.36  98.88  98.68 9812 9880 9852 9816 9812 9790 9842 96.70  98.18
PrAcc(%) 93.85  98.21 98.01 97.31 97.25  97.24 9697 9696  86.90 90.03  88.03  88.30
. SOCP 4.06 3.79 3.87 3.69 3.83 4.01 3.87 3.93 5.72 5.73 5.75 5.46
CPU time (s) -
SDP 6.28 6.06 5.96 6.57 8.76 8.22 8.32 8.49 33.49 31.97 30.44 30.31
Data Syn-Para-4d-100 Syn-Para-8d-100 Syn-Para-16d-100
€ 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00 0.10 0.25 0.50 1.00
Acc(%) 99.40  99.32  99.20 99.04 98.88 98.76  98.48  98.32 98.44 97.00 96.06 96.66
PrAcc(%) 99.06 9897 98.75 9854 97.85 97.69 97.39 97.22 95.20 91.78 92.59 92.95
. SOCP 6.97 6.89 6.80 6.60 5.62 23.74  22.63 5.58 10.21 10.42 10.27 10.26
CPU time (s) ——
SDP 9.98 9.99 9.68 9.66 1693 15.08 1538 15.88 153.89 140.78 13256  140.67
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