
Differential-Privacy Capacity

Wael Alghamdi⋆1, Shahab Asoodeh2, Flavio P. Calmon1, Oliver Kosut3 and Lalitha Sankar3
1 School of Engineering and Applied Sciences, Harvard University (emails: alghamdi@g.harvard.edu, flavio@seas.harvard.edu)

2 Department of Computing and Software, McMaster University (email: asoodehs@mcmaster.ca)
3 School of Electrical, Computer, and Energy Engineering, Arizona State University (emails: {okosut, lsankar}@asu.edu)

Abstract—We formulate a fundamental limit in differential
privacy under growing composition. We introduce the universal
composition curve: the best privacy guarantee under repeated
composition of a given privacy mechanism given only the sensitivity
of the query. We define privacy capacity as the slowest growth rate
of this universal composition curve among all privacy mechanisms.
We show that, in the limit of large compositions, privacy capacity
“single-letterizes” as a minimax KL-divergence term. Our privacy
capacity formula extends previous literature results that connect
differential privacy and KL-divergence via concentration theorems.

I. INTRODUCTION AND PROBLEM FORMULATION

Differential Privacy (DP) [1], [2] is the standard mathemati-
cal method for quantifying privacy in statistical and machine
learning (ML) applications that rely on querying individual-
level and privacy-sensitive datasets (e.g., [3]–[5]). DP mecha-
nisms aim to balance privacy and utility by randomizing queries
to a dataset instead of disclosing exact query values. Naturally,
DP-ensuring methods have an inherent utility-privacy trade-off:
the more randomness introduced to a query value, the more
privacy is gained, but less utility is preserved. This trade-off
becomes more difficult to navigate in the practical setting of
composition, i.e., when multiple queries are computed over
the same dataset (such as DP-SGD [6] in ML, and statistical
disclosure control as deployed by the US Census [7]).

The competing challenges of ensuring privacy and main-
taining utility under multiple queries to sensitive data have
motivated a stream of recent work that aims to solve one of two
problems: quantifying privacy under composition (commonly
referred to as DP accountants), and designing DP mechanisms
that optimize the utility-privacy trade-off [6], [8]–[17]. We
aim to shed light on these two problems by uncovering a
fundamental limit of DP under growing composition, namely,
we prove that the optimal privacy-per-composition rate among
all possible DP mechanisms is given by the following mini-
max KL-divergence term:

minimize
PY |X

sup
∥x−x′∥≤s

D(PY |X=x ∥ PY |X=x′)

subject to sup
x∈Rm

E [∥Y − x∥α | X = x] ≤ C.
(1)
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Due to the resemblance of this fundamental limit to other
information-theoretic capacity results (i.e., an operational
definition that single-letterizes into an information-measure
minimax optimization), we term this DP fundamental limit the
privacy capacity.1

A. Primitives of Differential Privacy

The basic DP primitives include: a dataset d ∈ D, a query
function q : D → X, and a randomized version Y of the
query value X = q(d). In the sequel, we will consider real
vector-valued queries, i.e., X = Rm, and we will also take Y
to be an Rm-valued random vector. For example, d could
be a table comprised of demographic information for the
individuals living in a given county; X = q(d) the median
income of the individuals included in d; and Y the privacy
mechanism of adding independent Gaussian noise. Thus, given
any dataset d ∈ D, there is an associated output distribution,
and we may denote its underlying probability measure by PY |d
(which would be N(q(d), σ2) for the Gaussian mechanism). In
short, the randomized algorithm governed by {PY |d}d∈D is
decomposable into two parts: computing the query X = q(d),
then randomizing it as (Y | X = x) ∼ PY |X=x, where we are
now thinking of PY |X as a Markov kernel on X = Y = Rm.
We will call the randomization PY |X the privacy mechanism.

The most widely used variant of DP, known as approximate
DP, quantifies the privacy afforded by the ensuing randomized
algorithm as follows. We say that {PY |d}d∈D satisfies (ε, δ)-
DP, for some ε ≥ 0 and δ ∈ [0, 1], if and only if the inequality

PY |d(A) ≤ eεPY |d′(A) + δ (2)

holds for all possible events A and for all pairs of neighboring
datasets d, d′ ∈ D (i.e., d and d′ differ by one record, wich
is commonly denoted by d ≃ d′). When ε and δ are both
small, inequality (2) requires that the output distribution of the
privacy mechanism does not change by much when exactly
one individual is added to, removed from, or swapped in the
dataset. In particular, this condition ensures the privacy of
each individual, as an observer of the privatized version Y
cannot do much better than randomly guessing whether a
certain individual falls within the dataset. The definition in (2)
is referred to as the single-shot setting, which we lift to the
composition setting next.

1We note that our setup is mathematically more similar to the rate-distortion
setting rather than, say, channel capacity. Nevertheless, we use the word
“capacity” as it relates to the “highest privacy” for a given distortion constraint.
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B. Universal Composition Curve

The relevant setting in practice is often composition of DP
mechanisms, i.e., when we have multiple query functions2

{qj : D → X}j∈[k]. Applying these query functions on the
same dataset d ∈ D, one obtains k query values Xk =
(X1, · · · , Xk) = (q1(d), · · · , qk(d)). Then, a privatized version
Y k = (Y1, · · · , Yk) of Xk is computed by letting the Yj be
randomizations of the Xj independently of each other, i.e., the
Yj are mutually independent given d. The composed mechanism
can also be seen as a randomized algorithm {PY k|d}d∈D. When
the privacy mechanisms PYj |Xj

= PY |X are all the same
(hence, PY k|Xk=xk =

∏
j∈[k] PY |X=xj

), we will call the full
randomized algorithm {PY k|d}d∈D the k-fold composition of
PY |X . Note that the composition satisfies (ε, δ)-DP when the
analogous inequality to (2) holds, i.e., when

sup
d,d′∈D : d≃d′

sup
A measurable

PY k|d(A)− eεPY k|d′(A) ≤ δ. (3)

One additional primitive in DP of relevance to this work is
the query sensitivity, which measures the maximal deviation
of the query value for neighboring datasets. More precisely,
we define the sensitivity in the single-shot setting by

∆(D,≃, q) := sup
d,d′∈D : d≃d′

∥q(d)− q(d′)∥, (4)

where ∥ · ∥ denotes the Euclidean norm in Rm. The sensitivity
allows us to abstract away the triplet (D,≃, q) and quantify
privacy in a universal, data-agnostic way. In other words, via
considering the sensitivity, we may derive DP guarantees that
hold universally over the class of triplets

T(s) := {(D,≃, q) : D a set, ≃ a binary relation on D,

q : D → X, ∆(D,≃, q) ≤ s}.

In addition, sensitivity can be defined in the composition setting
naturally by ∆(D,≃, {qj}j∈[k]) := maxj∈[k] ∆(D,≃, qj).
Then, the class T(s) is naturally generalized for the composition
setting into the class T⊗k(s) comprised of all possible triplets
(D,≃, {qj}j∈[k]) such that (D,≃, qj) ∈ T(s) for each j ∈ [k].

Putting all the above DP primitives together, we arrive at the
definition of the universal composition curve, which measures
the best DP guarantees of the k-fold composition of a given
privacy mechanism if one has access to only the sensitivity.

Definition 1 (Universal composition curve). Consider any
Markov kernel PY |X on Rm, and let s > 0 and k ∈ N be fixed.
We define the k-fold universal composition curve of PY |X to
be the function δ⊗k

PY |X
: R → [0, 1] defined at each ε ∈ R as the

minimal number δ ∈ [0, 1] so that the k-fold composition of
PY |X satisfies (ε, δ)-DP for every possible triplet of bounded
sensitivity (D,≃, {qj}j∈[k]) ∈ T⊗k(s). In addition, we define
the dual curve ε⊗k

PY |X
(δ) := inf{ε ≥ 0 : δ⊗k

PY |X
(ε) ≤ δ}.

2Strictly speaking, what we describe here is non-adaptive composition.
In the adaptive counterpart, the j-th query function can take as input the
previous j − 1 mechanism outputs. Due to space limitation, and for clarity of
presentation, we focus here on non-adaptive composition. Nevertheless, our
privacy capacity results are exactly the same for adaptive composition too,
which will be the subject of the fuller version of the present paper.

C. Privacy-Utility Trade-off

The discussion thus far has been on quantifying the privacy of
a given mechanism, which we complement next by introducing
a measure of its utility. We will measure the utility loss
introduced by the privacy mechanism PY |X via an input-worst-
case and conditional-output-average of ∥Y −X∥α:

LPY |X (α) := sup
x∈Rm

E [∥Y − x∥α | X = x] , (5)

where α > 0 is any prescribed constant. Thus, having
LPY |X (α) = 0 corresponds to having Y = X surely (so
maximal utility is attained), and the larger LPY |X (α) is, the
less utility Y provides as a replacement for X .

In this paper, we formalize the following statement:

The best possible DP per composition (i.e., the lowest ratio
1
kε

⊗k
PY |X

(δ)) is the minimax KL-divergence in (1).

We call this fundamental limit on DP guarantees under compo-
sition the privacy capacity, formally defined in Definition 3. As
we discuss in the next motivation section, the right normalizing
factor for the composition curve is 1

k .

D. Motivation: The Dichotomy of Linearly Growing DP
Guarantees and Complete Randomness

To motivate the study of privacy capacity, we point to the
lower bound on the composition curve shown in Theorem 3.
In particular, this lower bound yields a dichotomy: for any
mechanism PY |X , one of the following two scenarios holds,

1) ε⊗k
PY |X

(δk) = 0 for every k ∈ N and every δk ∈ [0, 1]; or

2) ε⊗k
PY |X

(δk) = Ω(k) as k → ∞ for lim supk→∞ δk < 1.
Furthermore, the first scenario is a degenerate case: it holds if
and only if Y is independent of X , i.e., the DP mechanism
PY |X has no meaningful utility. Therefore, we naturally arrive
at the following problem on the fundamental limits of DP.

Problem 1. Among all mechanisms PY |X enjoying the same
non-trivial utility, what is the minimal achievable value of the
privacy-per-composition rate 1

kε
⊗k
PY |X

(δ) as k → ∞?

In the spirit of information-theoretic analysis of DP, we term
a rate such as above an achievable privacy rate, and we call
the best achievable rate the privacy capacity (see Definition 3).
The above dichotomy readily implies a lower bound on the
privacy capacity (i.e., it shows a converse result); a matching
achievability result is also proved in this paper.

E. Related Literature

The connection between DP under composition and the KL-
divergence has been noted before [13], [17]–[21]. The common
thread in those works is that a concentration theorem (namely,
one of: the law of large numbers, central-limit theorem, or
Berry-Esseen theorem) is applied to conclude that privacy of
certain well-behaved mechanisms is governed in various forms
by a KL-divergence term. Our present paper is differentiated
from those works in the following respects.

First, for the concentration theorems to be applicable, the
underlying mechanism was restricted to satisfy the relevant
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concentration theorem’s premises in [13], [17]–[21]. More
precisely, with the exception of [13, Theorem 7], those results
require finiteness of the first few moments of the so-called
privacy-loss random variable (PLRV). One key differentiating
factor in the present paper, thus, is that we go beyond the
concentration theorems and derive the privacy capacity result
in Theorem 1 universally for all possible mechanisms. In
particular, our results remove the restriction to boundedness
of the variance of the PLRV in our prior works [19]–[21],
which aim to derive optimal DP mechanisms via solving the
minimax KL-divergence problem (1).

Second, the universal composition curve (Definition 1) is
different from the privacy curves considered in [13], [17],
[18]. The curves considered in those works are roughly the
curves obtained by the products of pairs of the so-called
tightly-dominating pairs of measures. Such curves satisfy
certain tightness in their guarantees: they give the optimal DP
guarantees under composition for some mechanisms (namely,
those who have realizable worst-case pairs of inputs). In
contrast, the curve we introduce in Definition 1 provides a
tight guarantee under composition for every mechanism; indeed,
that is exactly how it is defined to begin with. We note that
the universal composition curve has appeared in our prior
work [19]–[21], but it was defined therein via its explicit
formula directly (in terms of the hockey-stick divergence)
rather than via its universal property as we do herein.

Additionally, we relate the ε parameter with the KL-
divergence via an explicit formula (equations (9), (13), (14)).
Such an explicit formula does not appear in [13], [18].

Finally, the growing-composition regime in [13] can be seen
to be complementary to ours. As listed in the premises of [13,
Theorem 7], the (ε, δ) parameters to be composed are assumed
therein to satisfy max1≤i≤k ε

(k)
i → 0 and max1≤i≤k δ

(k)
i →

0 as k → ∞, which is a regime in which the composed
mechanisms get closer and closer to being perfectly random.
In contrast, we take the complementary approach: we require
the amount of randomness of the privacy mechanism to be
bounded, then study how fast the privacy guarantees grow.
Notation and Assumptions. The queries and privacy mecha-
nisms are all assumed to be Rm-valued, where m is arbitrary
but fixed. We denote by ∥ · ∥ the ℓ2 norm on Rm, and sensitivity
with respect to it is fixed to be some arbitrary constant s > 0
that will be dropped from notation. Expectation will be denoted
by EP [f ] =

∫
Rm f(x)dP (x) and Ep[f ] = EP [f ] if P has prob-

ability density function (PDF) p. The set of all Markov kernels
on Rm is denoted by R, and the KL-divergence by D( · ∥ · ).
If D(P∥Q) <∞, the variance of information density is defined
by V(P∥Q) := EP [(log dP/dQ−D(P∥Q))2].

Although our privacy capacity result holds for every possible
privacy mechanism, some of our intermediary results are
derived under the following assumption of boundedness of
the variance of information densities.

Assumption 1. The Markov kernel PY |X on Rm is such that
sup∥x−x′∥≤s V(PY |X=x ∥ PY |X=x′) <∞.

All omitted proofs can be found in the extended version [22].

II. MAIN RESULT: PRIVACY CAPACITY IS THE MINIMAX
KL-DIVERGENCE

We give the formal definition of privacy capacity first, then
state the main result in Theorem 1.

A. Utility-Aware DP

Naturally, one should impose a cost constraint on PY |X for
the DP optimization problem to be nontrivial. Indeed, if we
can choose any mechanism PY |X without a utility constraint
restricting how far Y can be from X , then nothing prevents us
from choosing a Y that is independent of X . In this case, we
obtain the best possible privacy guarantee ε⊗k

PY |X
(δ) = 0 for

any δ ∈ [0, 1] and any composition number k. This degenerate
situation implies that we must restrict PY |X to fall within a
strict subset of the collection R of all Markov kernels on Rm,
namely, a subset of mechanisms with a known utility bound.

We parametrize the utility of a DP mechanism PY |X
using a cost function and a cost bound. Specifically, we
measure the deviation of Y from X using an input-worst-
case (i.e., supremum over x ∈ Rm) and an output-average
(i.e., expectation over PY |X=x) cost on the difference Y −X
between the input and output of the DP mechanism. Formally,
we consider the following subsets of Markov kernels with
controllable distortion. (See (5) for the definition of LPY |X (α).)

Definition 2. We collect all mechanisms satisfying a cost bound
C ≥ 0 as measured by the loss-function exponent α > 0 into
a set denoted by R(α,C) ⊂ R, i.e.,

R(α,C) :=
{
PY |X ∈ R : LPY |X (α) ≤ C

}
. (6)

Example 1. Consider the squared ℓ2-norm utility, i.e., α = 2.
One element of the set R(2, σ2) (for fixed σ > 0) is the m-
dimensional Gaussian mechanism with coordinate-wise noise
variance σ2/m (i.e., N(0, (σ2/m)Im)). In fact, any additive
mechanism Y = X + Z for noise Z that is independent of X
and satisfying E[∥Z∥2] ≤ σ2 will fall within R(2, σ2). Further,
those additive mechanisms comprise only a strict subset of
R(2, σ2), e.g., the mechanism Y = X +min(1, ∥X∥)Z will
also belong to R(2, σ2).

B. Definition of Privacy Capacity

We define the privacy capacity as the best possible per-
composition ε value—as the number of compositions grows
without bound—among all mechanisms with δ → 0 and
common utility.

Definition 3 (Privacy Capacity). For a loss-function exponent
α > 0 and utility bound C ≥ 0, we say that ε ≥ 0 is an
achievable privacy rate for (α,C) if there is a mechanism
PY |X ∈ R(α,C) whose privacy budget under composition is
upper bounded by

1

k
ε⊗k
PY |X

(δk) ≤ ε (7)

for all k ∈ N and some δk → 0 (as k → ∞). The privacy
capacity is defined as the infimal achievable privacy rate

ε⋆(α,C) := inf {ε : ε achievable privacy rate for (α,C)} .
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Remark 1. We make an analogy with the rate-distortion
function as follows:

• The cost function ∥ · ∥α and cost bound C play the role of
distortion function and distortion bound, respectively;

• DP parameter δ plays the role of decoding error probability;
• number of compositions k plays the role of the blocklength;
• the DP parameter ε after composition plays the role of the

(logarithm of) the size of the reconstruction codebook;
• the privacy rate and privacy capacity play the roles of coding

rate and rate-distortion function, respectively; and
• as we prove in this paper, the minimax KL-divergence

from (1) plays the role of the minimal mutual information.

The largest difference between the rate-distortion function and
our privacy capacity is that rate-distortion assumes a known
source distribution, whereas we make no assumption on the
distribution of the mechanism input X beyond the sensitivity.

C. Statement of the Main Theorem

Viewing the definition of privacy capacity in Definition 3 as
an operational one, we show that the corresponding information
definition is given by the minimax KL divergence in (1). We
denote this KL-divergence term using the following notation.

Definition 4 (Minimax KL-divergence). For any loss-function
exponent α > 0 and utility bound C ≥ 0, we denote the
optimal value in (1) by

KL⋆(α,C) := inf
PY |X∈R(α,C)

sup
∥x−x′∥≤s

D
(
PY |X=x∥PY |X=x′

)
.

(8)

Our privacy capacity result shows that the two definitions
ε⋆(α,C) and KL⋆(α,C) coincide.

Theorem 1. The privacy capacity is equal to the minimax KL-
divergence in (1), i.e., for every α,C > 0 we have

ε⋆(α,C) = KL⋆(α,C). (9)

Furthermore, additive, continuous, spherically-symmetric mech-
anisms can achieve the privacy capacity: for any rate ε >
ε⋆(α,C), there is spherically-symmetric PDF p over Rm such
that the privacy rate ε is achievable by the additive DP
mechanism Y = X + Z with continuous noise Z ∼ p that is
independent of X and satisfying the utility PY |X ∈ R(α,C).

One powerful aspect of this privacy capacity result is its
“single-letterization”: whereas the initial definition of privacy
capacity ε⋆(α,C) inherently depends on composition (hence on
product measures), Theorem 1 shows that privacy capacity is in
fact equally written as the minimax KL-divergence KL⋆(α,C),
a term that pertains to a single use of the DP mechanism and
does not depend on composition.

III. PROOF OF THE MAIN THEOREM

We present the proof steps in this section and relegate the
details of the intermediary results to the extended version [22]
due to space limitation.

A. Preliminary Results

We will use the following shorthands:

KLmax
PY |X

:= sup
x,x′∈Rm : ∥x−x′∥≤s

D(PY |X=x ∥ PY |X=x′), (10)

Vmax
PY |X

:= sup
x,x′∈Rm : ∥x−x′∥≤s

V(PY |X=x ∥ PY |X=x′). (11)

We will also use the same notations with the subscript PY |X
replaced by the PDF p if the mechanism is given by Y = X+Z
for Z ∼ p independent of X .

We borrow and refine some of the results in [20], which
will be required for the proof of our main theorem. First, the
following limit is shown in [20, Theorem 1].

Theorem 2 ([20, Theorem 1]). For any Markov kernel PY |X
on Rm that satisfies Assumption 1 and any δ ∈ (0, 1/2),

lim
k→∞

ε⊗k
PY |X

(δ)

k
= KLmax

PY |X
. (12)

We refine the above limit in the following two theorems
(see the extended version [22] for the proofs). First, we show
that the lower-bound part holds unconditionally.

Theorem 3. For any Markov kernel PY |X on Rm, the k-fold
dual composition curve satisfies the asymptotic lower bound

lim inf
k→∞

ε⊗k
PY |X

(δk)

k
≥ KLmax

PY |X
. (13)

whenever lim supk→∞ δk < 1.

Second, we need an effective version of the upper bound
(while keeping Assumption 1 this time).

Theorem 4. Fix a Markov kernel PY |X on Rm satisfying
Assumption 1. Then, we have the finite-composition bound

ε⊗k
PY |X

(δ) ≤ k · KLmax
PY |X

+

√
1

δ
· k · Vmax

PY |X
(14)

for every k ∈ N and δ ∈ (0, 1].

The other result we borrow from [20] is the fact that the
minimax KL-divergence optimization (1) can be restricted to
additive, continuous, spherically-symmetric mechanisms.

Theorem 5 ([20, Theorems 2–3]). For any fixed constants
α,C > 0, there is an additive, continuous, spherically-
symmetric mechanism solving the optimization problem (1).

B. Proof of the Privacy Capacity Formula: Converse

We prove that the privacy capacity satisfies a fundamental
lower bound, which is given by the solution to the KL-
divergence optimization (1). Using information-theoretic ter-
minology, we have the following converse result.

Theorem 6. For any loss-function exponent α > 0 and utility
bound C ≥ 0, the privacy capacity is lower bounded by the
minimax KL-divergence in (1):

ε⋆(α,C) ≥ KL⋆(α,C). (15)
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Proof. This converse result follows readily from the lower
bound on the composition curve we prove in Theorem 3.
Suppose ε ≥ 0 is an achievable privacy rate for (α,C). Let
PY |X ∈ R(α,C) and δk → 0 be such that ε⊗k

PY |X
(δk) ≤ k·ε for

all k. In particular, lim supk→∞ δk < 1. Hence, by Theorem 3,

ε ≥ lim inf
k→∞

ε⊗k
PY |X

(δk)

k
≥ KLmax

PY |X
≥ KL⋆(α,C) (16)

As this is true for all achievable rates ε, we conclude that
ε⋆(α,C) ≥ KL⋆(α,C), and the proof is complete.

The derivation of the achievability result is more technically
involved, because the corresponding upper bound in Theorem 4
does not hold for all possible mechanisms. Hence, new proof
techniques are needed, which we illustrate next.

C. Proof of the Privacy Capacity Formula: Achievability
We complement the converse result of Theorem 6 with the

following achievability result.

Theorem 7. For any fixed constants α,C > 0, all privacy
rates above the minimax KL-divergence in (1) are achievable,
i.e.,

ε⋆(α,C) ≤ KL⋆(α,C). (17)

Furthermore, for any rate ε > ε⋆(α,C), there is a continuous
and spherically-symmetric noise Z (independent of X) such
that the additive mechanism Y = X+Z falls within the utility
set R(α,C) and achieves the privacy rate ε.

Proof. We first apply Theorem 5 to extract a spherically-
symmetric PDF p over Rm that achieves the minimax KL-
divergence: KL⋆(α,C) = KLmax

p . Fix any C ′ > C.
The difficulty is that we may not apply Theorem 4 on p

directly, since it does not satisfy Assumption 1. Nevertheless,
we approximate p via the convolution q = p ∗ ψσ where
ψσ ∝ exp(−∥z/σ∥1/2) and σ > 0 is small enough. Note that
q is spherically symmetric.3 This convolution satisfies several
key properties. First, denoting cα(z) = ∥z∥α, we prove in
Proposition 8 in the extended version [22] that there is small
enough σ = σ(α,C ′, p) so that

Eq[cα] ≤ C ′. (18)

In addition, by the data-processing inequality,

D(q ∥ Taq) ≤ D(p ∥ Tap) for all a ∈ Rm, (19)

where we denote the shift by (Taf)(x) = f(x− a). Therefore,

KL⋆(α,C ′) ≤ KLmax
q ≤ KLmax

p = KL⋆(α,C). (20)

Importantly, by Proposition 9 in the extended version [22],

Vmax
q <∞, (21)

which follows from the key property that
∣∣∣log q(x)

q(y)

∣∣∣ ≤ ∥x−y∥γ

σγ .
Now, we may proceed by applying Theorem 4 on q. Let

δk = min(1,Vmax
q /

√
k), so δk → 0 as k → ∞. Applying

3Indeed, q(Mz) =
∫
Rm p(v)ψσ(Mz − v)dv =

∫
Rm p(MT v)ψσ(z −

MT v)dv =
∫
Rm p(v)ψσ(z − v)dv = q(z) for all orthogonal matrices M .

Theorem 4 on the mechanism QY |X where Y = X + Z for
Z ∼ q independent of X , we get the upper bound

ε⊗k
QY |X

(δk) ≤ k · KLmax
q +

√
1

δk
· k · Vmax

q (22)

≤ k ·
(

KL⋆(α,C) +
1

k1/4

)
, (23)

where the second inequality follows for all large k. Hence, any
ε > KL⋆(α,C) is an achievable privacy rate for (α,C ′). In
sum, we have shown that for any 0 < C < C ′,

ε⋆(α,C ′) ≤ KL⋆(α,C). (24)

Note that this is not yet the desired inequality, since there is a
mismatch in the cost bounds C and C ′.

The last ingredient is the continuity of the function C 7→
KL⋆(α,C) over (0,∞) (Proposition 10 in the extended
version [22]). Using this continuity, we infer from (24) that

ε⋆(α,C ′) ≤ lim
C↗C′

KL⋆(α,C) = KL⋆(α,C ′). (25)

As 0 < C < C ′ were arbitrary, the proof of (17) is complete.
Finally, we note that the constructed QY |X can be made to

satisfy the last statement in the theorem. Starting from C ′ > 0
and ε > ε⋆(α,C ′), pick small enough η > 0 so that ε(α,C ′) ≤
ε⋆(α,C ′ − η) + η < ε; this is possible since inequality (17)
combined with Theorem 6 imply ε⋆(α, · ) = KL⋆(α, · ), which
is continuous by [22, Proposition 10]. Then, applying the above
construction of p and q for C = C ′ − η yields that q achieves
the privacy rate ε in view of KL⋆(α,C) = ε⋆(α,C). This
completes the proof of the theorem.

IV. CONCLUDING REMARKS

We prove a new fundamental limit for universal approximate
differential privacy guarantees under composition. First, we
define the universal composition curve via its universal property
as the best privacy guarantee under k-fold composition if
one has access to only the sensitivity of the query. Then, we
introduce the concept of privacy capacity via its operational
definition as the best possible ε DP parameter per composition
among all mechanisms satisfying a prescribed utility constraint
and for which the other DP parameter δ converges to 0. Our
main result is deriving the corresponding information definition
of privacy capacity, showing that it is equal to a minimax KL-
divergence term. Our result extends previous results by showing
the explicit relationship between DP and the KL-divergence
without restriction on the underlying privacy mechanisms.

We note that our proofs can be extended to the case of
adaptive composition, where the same privacy capacity formula
holds. In addition, our results also hold for utility functions
beyond ∥ · ∥α. Due to space limitations, we relegate this
discussion to the extended version [22].

It would be interesting to extend our results to the com-
position of distinct mechanisms. Another future line of work
is analyzing the finite-composition regime, e.g., what is the
fastest rate of decay of δk subject to εk achieving the privacy
capacity?
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