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A B S T R A C T

Support vector machine (SVM) is a powerful model for supervised learning. This article addresses the
nonlinear binary classification problem using kernel-based SVM with uncertainty involved in the input data
specified by the first- and second-order moments. To achieve a robust classifier with small probabilities of
misclassification, we investigate a distributionally robust chance-constrained kernel-based SVM model. Since
the moment information in the original problem becomes unclear/unavailable in the feature space via kernel
transformation, we develop a data-driven approach utilizing empirical moments to provide a second-order
cone programming (SOCP) reformulation for efficient computation. To speed up the required computations
for solving large-size problems in higher dimensional space and/or with more sampling points involved in
estimating empirical moments, we further design an alternating direction multipliers-based algorithm for fast
computations. Extensive computational results support the effectiveness and efficiency of the proposed model
and solution method. Results on public benchmark datasets without any moment information indicate that the
proposed approach still works and, surprisingly, outperforms some commonly used state-of-the-art kernel-based
SVM models.

1. Introduction

Support vector machines (SVMs) have been extensively studied and
widely used for data classification. SVM aims to find a maximum-
margin hyperplane that separates the data points into different classes
(Cortes and Vapnik, 1995). When the datasets are non-linearly separa-
ble, a feature map is usually adopted to lift the data points to a higher
dimensional feature space where it is more likely to be linearly sepa-
rable. This is typically achieved by using kernel tricks, which yield the
kernel-based SVM, a powerful tool for nonlinear classification (Vapnik,
1999; Carrizosa and Morales, 2013). Recently, kernel-free nonlinear
SVMs have also been studied and shown attractive performance (Luo
et al., 2016; Gao et al., 2021).

The success of standard SVMs relies on the assumption that the
input data pertaining to the classification task are known exactly.
However, real-world data often involve uncertainties due to imprecise
data collection and inaccurate measurements during data gathering.
Failing to acknowledge these uncertainties may result in significant
classification performance degeneration (Goldfarb and Iyengar, 2003).
To address this challenge, robust optimization-based SVM models are
developed for applications whose data points are fluctuating within an
uncertain set, specified by the norm uncertainty (Trafalis and Gilbert,
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2006), ellipsoidal uncertainty (Bhattacharyya et al., 2004), and oth-
ers (Bertsimas et al., 2019; Singla et al., 2020). In general, these robust
models tend to be on the conservative side since they ignore the hidden
distribution information embedded in the data sets.

To handle the uncertainties characterized by data distributions,
models incorporating chance constraints are often utilized to ensure
a minimal probability of misclassification for SVM models. Chance-
constrained problems are usually challenging to solve and often require
time-consuming Monte Carlo approximations. For example, Peng et al.
(2023) proposed a Monte Carlo-based approximation method that em-
pirically estimates the actual distribution using training data. It is
noteworthy that finding an accurate estimation of the true distribution
is challenging. Also, finding a well-estimated distribution may still be
susceptible to the ‘‘optimizer’s curse’’ (Kuhn et al., 2019), which leads
to unsatisfactory performance. In an effort to address these issues,
researchers consider using distributionally robust optimization (DRO)
to hedge against distributional uncertainty (Lin et al., 2022).

Rather than relying on a single estimate of the distribution, DRO
characterizes the distributional uncertainty by adopting the ambiguity
set, which consists of a collection of distributions based on given
prior information on the uncertainty. Distance-based DRO models have
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been studied for handling different machine learning tasks (Duchi
and Namkoong, 2019, 2021; Staib and Jegelka, 2019). Recently, the
Wasserstein DRO models have been rigorously investigated for ma-
chine learning tasks (Kuhn et al., 2019; Liu et al., 2022). Specifically,
the SVM models with Wasserstein ambiguity sets were investigated
in Lee and Mehrotra (2015), Shafieezadeh-Abadeh et al. (2019). An-
other major way to characterize the ambiguity sets can be constructed
with generalized moment conditions. Multiple DRO-based classification
models (Lanckriet et al., 2001; Wang and Pardalos, 2014) have been
proposed by utilizing the moment information. This paper specifi-
cally aims to explore the efficacy of distributionally robust chance-
constrained (DRC) SVM for solving binary classification problems with
uncertain input data points specified by the first- and second-order
moments information. In this context, DRC linear SVM models have
been well studied (Ben-Tal et al., 2011; Wang et al., 2018; Khanjani-
Shiraz et al., 2023; Faccini et al., 2022). In particular, Chebyshev
inequality (Marshall and Olkin, 1960) was used in Wang et al. (2018),
Khanjani-Shiraz et al. (2023) to yield a second-order cone programming
(SOCP) problem whose solution is guaranteed to satisfy the distribu-
tionally robust chance constraints. Moreover, Ben-Tal et al. (2011)
employed the Bernstein bounding scheme to develop a less conserva-
tive SOCP reformulation. Such DRC SVM models with tractable SOCP
reformulations/approximations were also applied to classification tasks
involving missing values in the data (Shivaswamy et al., 2006), as well
as unsupervised classification (Huang et al., 2013) where a kernelized
formulation was also discussed. With the promising performance of the
DRC SVM models, we intend to conduct a study of kernel-based DRC
SVM models for nonlinear classification.

The nature of DRO brings challenges for implementation, espe-
cially when applied to solve large-scale problems (Cheramin et al.,
2022). In recent research, the alternating direction multiplier method
(ADMM) (Boyd et al., 2011) has been frequently utilized to solve DRO
models. Li et al. (2019), Jiajin (2021) investigated the performance
of multiple ADMM variants for solving Wasserstein distributionally
robust logistic regression models. Ohmori (Ohmori, 2021) solved large-
scale �-divergence based DRO models with a distributed optimization
algorithm that use consensus ADMM. In addition, the ADMM-based
algorithms have also been applied to implement the DRO models
in real-world applications such as integrated transmission-distribution
systems (Zhai et al., 2022), power plants operations (Esfahani et al.,
2024) and energy trading (Mohseni and Pishvaee, 2023; Zhang et al.,
2023). In this paper, we design a fast ADMM algorithm to efficiently
implement the corresponding SOCP reformulations of the proposed
model.

The research presented in this paper contributes to the study of
DRC kernel-based SVMs, with a specific focus on binary classification
involving uncertain input data characterized by first- and second-order
moments. The primary contributions are summarized as the following:

• We propose a DRC kernel-based SVMmodel for providing a robust
classifier for nonlinear classification with stochastic input using
the first- and second-order moments information.
• We develop a data-driven approach utilizing an assured empirical
moment estimation in the higher dimensional feature space to
provide a tractable SOCP reformulation for solving the proposed
DRC kernel-based SVM model. This approach addresses the diffi-
culty of missing corresponding moment information in the feature
space.
• We design an ADMM-based algorithm for our data-driven SOCP,
which significantly improves the computational efficiency com-
pared to using commercial solvers, especially for large-scale prob-
lems.
• Computational experiments support the effectiveness of the pro-
posed DRC kernel-based model and the computation efficiency of
the proposed solution method. Results on public benchmark data
sets without any given moment information show the promising
performance of the proposed model over classical kernel-based
SVMs.

The rest of the paper is organized as follows. Section 2 presents the
proposed distributionally robust chance-constrained SVM model using
kernel tricks for nonlinear classification with uncertain input data spec-
ified by the first- and second-order moments. An SOCP reformulation
based on a data-driven approach using assured empirical moments for
tractable computation is also included. Section 3 proposes an ADMM-
based algorithm for solving the corresponding SOCP reformulation with
fast computations. Extensive computational experiments reported in
Section 4 evaluate the performance of the proposed DRC kernel-based
model and validate the efficiency of the proposed solution method.
Finally, conclusions and future works are provided in Section 5.

2. Distributionally robust chance-constrained kernel-based SVM

To address the problem of classifying nonlinearly separable data
with uncertain input data points with only the first- and second-
order moments being known, this section presents a distributionally
robust chance-constrained kernel-based support vector machine model,
denoted as DRCKSVM. Section 2.1 proposes the DRCKSVM model and
provides an equivalent SOCP reformulation relying on the moments in
the higher dimensional feature space. To address the challenge that
the transformed moments are difficult to know exactly, Section 2.2
proposes a data-driven approach that employs the empirical moment
estimation with assured quality to implement the DRCKSVM model.

2.1. DRC kernel-based SVM model

Given a set of N data points with n attributes {(x̃i, yi)|x̃i * Rn, yi *

{−1, 1}, i = 1,& , N}, we assume that each input data point is a random
variable, i.e., x̃i < Fi, where Fi is a probability measure on (�i,ôi), for a
given outcome space �i and its �-algebra ôi ⊆ 2�i . That is, Fi ∶ ôi ³ R,
and Fi * û(�i,ôi), the space of all probability measures defined
on (�i,ôi). Let Fi be mutually independent for i = 1,& , N . Assume
that the true distribution Fi is unknown, but its first two moments
are known a priori, that is, mean �i | EFi

[x̃i] and covariance matrix
�i | EFi

[(x̃i−EFi
[x̃i])(x̃i−EFi

[x̃i])T]. We consider that Fi belongs to an
ambiguous distribution family þi defined by the two moments as

þi(x̃
i;�i,�i) |

⎧
⎪⎨⎪⎩
Fi * û(�i,ôi)

|||||||

PFi
(x̃i * �i) = 1,

EFi
[x̃i] = �i,

EFi
[(x̃i − �i)(x̃i − �i)T] = �i

⎫
⎪⎬⎪⎭
.

(1)

For nonlinearly separable datasets, a nonlinear transformation �(x) ∶

Rn
³ Rd is first applied to map each data point x̃i from the original

space Rn to a higher-dimensional feature space Rd , where d e n. To
ensure the probability of misclassification under all possible distribu-
tions to be no larger than � (0 < � < 1), we can consider the following
distributionally robust chance-constrained kernel-based SVM model:

min
1

2
‖w‖2

2
+ C

N1
i=1

�i

s.t. sup
Fi*þi

PFi

{
yi
(
wT�(x̃i) + b

)
d 1 − �i

}
d �, i = 1,& , N,

w * Rd , b * R, � * RN
+
,

(DRCKSVM)

where C > 0 is a given parameter. If the first- and second-order
moments of the mapped data �(x̃i) * Rd are known exactly, denoted as
mean �i

�
* Rd and covariance �i

�
* Sd

++
, respectively, the (DRCKSVM)

model can be equivalently reformulated as an SOCP problem (following
directly from Shivaswamy et al., 2006; Ben-Tal et al., 2011; Wang et al.,
2018):

min
1

2
‖w‖2

2
+ C

N1
i=1

�i

s.t. yi

(
wT�i

�
+ b

)
e 1 − �i + �(�)‖(� i

�
)

1

2 w‖2 , i = 1,& , N,

w * R
d , b * R, � * R

N
+
,

(DRCKSVMSOCP )
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where �(�) =

√
1 − �

�
. Notice that the constraints in (DRCKSVMSOCP )

can be explained from a geometric viewpoint here. Assume that z * Rd

takes values within an ellipsoid with the center �i
�
, metric �i

�
, and

radius r, i.e.,

z * ó
(
�i
�
,�i

�
, r

)
|
{
z * Rd E (z − �i

�
)T(�i

�
)−1(z − �i

�
) d r2

}

=
{
z * Rd E z = �i

�
+ r(�i

�
)
1
2 u, ‖u‖2 d 1

}
.

Then, for each i, the constraint in the (DRCKSVMSOCP ) model becomes

yi
(
wTzi + b

)
e 1 − �i, " zi * ó

(
�i
�
,�i

�
, �(�)

)
. (2)

This equivalency implies that the chance constraints in (DRCKSVM)

turn out to be separating the ellipsoids ó
(
�i
�
,�i

�
, �(�)

)
in the feature

space, for i = 1,& , N . Now we consider its dual problem.

Lemma 1. The Lagrange dual of (DRCKSVMSOCP ) is

min
1

2

N1
i=1

N1
j=1

�iyi

(
�i
�
+ �(�)(� i

�
)

1

2 ui
)T

(
�
j

�
+ �(�)(�

j

�
)

1

2 uj
)
�jyj −

N1
i=1

�i

s.t.
N1
i=1

yi�i = 0,

‖ui‖2 d 1, i = 1,& , N,

0 d �i d C, i = 1,& , N,

� * R
N , ui * R

d , i = 1,& , N.

(Dual-DRCKSVMSOCP )

Proof. The Lagrangian of (DRCKSVMSOCP ) is given by

ú(w, b, �,�, �) =
1

2
‖w‖2

2
+ C

N1
i=1

�i

−

N1
i=1

�i

(
yi(w

T�i
�
+ b) − 1 + �i − �(�)‖(� i

�
)
1

2 w‖2
)
− �T�.

Note that for any x * Rn, we have ‖x‖2 = max‖y‖2d1 y
Tx. Using this fact

to eliminate the term ‖(�i
�
)
1
2 w‖2 in ú, we have a modified Lagrangian

ú1(w, b, �,�, �, u)

=
1

2
‖w‖2

2
+ C

N1
i=1

�i

−
N1
i=1

�i

(
yi(w

T�i
�
+ b) − 1 + �i + �(�)yi(u

i)T(�i
�
)
1
2 w

)
− �T�,

and the relation ú(w, b, �,�, �) = max‖ui‖2d1,i=1,&,N ú1(w, b, �,�, �, u).
Here we use −yiu

i in ú1 in consideration of the future computation
and it will not affect the result since ui is an arbitrary vector satisfying
‖ui‖2 d 1. The modified Lagrangian leads to an easier construction of
the dual problem using the fact of

max
�e0,�e0

min
w,b,�

ú(w, b, �,�, �) = max
�e0,�e0,‖ui‖2d1,"i

min
w,b,�

ú1(w, b, �,�, �, u).

Taking partial derivatives of ú1 with respect to w, b, and �, respectively,
yields

)wú1 = w −

N1
i=1

yi�i

(
�i
�
+ �(�)((�i

�
)
1
2 )Tui

)
,

)bú1 = −

N1
i=1

yi�i,

)�ú1 = Ce − � − �.

Setting them to zero, we have

w =

N1
i=1

yi�i

(
�i
�
+ �(�)((�i

�
)
1
2 )Tui

)
,

N1
i=1

yi�i = 0,

0 d � d Ce.

Substituting the above into ú1, then the Lagrange dual problem can
be derived accordingly. ¦

An interesting fact is that compared to the dual of the classical
kernel-based SVM model (Wang, 2005), the uncertain dual model

(Dual-DRCKSVMSOCP ) uses �
i
�
+ �(�)((�i

�
)
1
2 )Tui with ‖ui‖2 d 1 as the

separation objectives, which represents the points in ó(�i
�
,�i

�
, �(�)), to

construct the kernel matrix. Let (w∗, b∗, �∗) and (�∗, u∗) be the primal
and dual optimal solutions, respectively. Then we can explore more
from the KKT conditions that can be derived from Lemma 1:

yi

(
(w∗)T�i

�
+ b∗

)
e 1 − �i + �(�)‖(�i

�
)
1
2 w∗‖2, i = 1,& , N,

w∗ =

N1
i=1

yi�
∗
i

(
�i
�
+ �(�)((�i

�
)
1
2 )T(ui)∗

)
, i = 1,& , N,

N1
i=1

yi�
∗
i
= 0,

�∗
i

(
yi

(
(w∗)T�i

�
+ b∗

)
− 1 + �i − �(�)‖(�i

�
)
1
2 w∗‖2

)
= 0, i = 1,& , N,

(C − �∗
i
)�i = 0, �i e 0, 0 d �∗

i
d C, i = 1,& , N.

(5)

The KKT conditions (5) of the problem provide some interesting in-
sights:

• The vector w∗ is in the span of the points from the uncertainty
ellipsoids ó(�i

�
,�i

�
, �(�)), i = 1,& , N .

• The unit vector ui that maximizes (ui)T(�i
�
)
1
2 w has the same

directions as (�i
�
)
1
2 w.

• Similarly as the support vector developed in the basic SVM mod-
els, we can define the support ellipsoid for (DRCKSVMSOCP ). In
particular, the ellipsoid ó(�i

�
,�i

�
, �(�)) is a support ellipsoid when

�∗
i
� 0.

Example 1. Consider a two-dimensional binary classification problem
with three uncertain data points {x̃i * R2, i = 1, 2, 3} knowing the
means �1 = [2, 2]T, �2 = [−2,−2]T, �3 = [0, 0]T, and covariance matrices

�1 = �2 =

[
0.5 0

0 0.5

]
, �3 =

[
4 0

0 0.01

]
, with labels {y1 = y2 =

1, y3 = −1}. Note that for each i, x̃i
1
and x̃i

2
are independent. One

can easily observe that it is not linearly separable from Fig. 1(a). We
define a mapping �(x̃1, x̃2) = [x̃1, x̃2, x̃1x̃2]

T * R3. In this case, the mean
and covariance matrix could be derived explicitly as E(�(x̃1, x̃2)) =

[E(x̃1),E(x̃2),E(x̃1)E(x̃2)]
T, and

Cov(�(x̃1, x̃2)) =

⎡
⎢⎢⎢⎣

V ar(x̃1) 0 V ar(x̃1)E(x̃2)

0 V ar(x̃2) V ar(x̃2)E(x̃1)

V ar(x̃1)E(x̃2) V ar(x̃2)E(x̃1) V ar(x̃1)E(x̃
2
2
) + V ar(x̃2)E

2(x̃1)

⎤
⎥⎥⎥⎦
.

Then �i
�

= E(�(x̃i
1
, x̃i

2
)) and �i

�
= Cov(�(x̃i

1
, x̃i

2
)) can be obtained

accordingly, for i = 1, 2, 3. The (DRCKSVM) model can be applied
to find a hyperplane separating ellipsoids in two classes by solving
(DRCKSVMSOCP ), as shown in Fig. 1(b).

With strong assumptions on mean and covariance, we can explicitly
show the classification result in the three-dimensional feature space
for a simple two-dimensional example. However, even knowing �,
it is not easy to compute �i

�
and �i

�
of �(x̃) directly based on the

first two moments �i and �i for most cases, not to mention that the
nonlinear mapping � is usually defined implicitly and the mapped
feature space could be in R@. The development of computationally
tractable solution methods for solving (DRCKSVM) remains a crucial
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Fig. 1. Geometric illustration of Example 1.

issue. In the following subsections, we propose a data-driven approach
employing empirical moment estimation to address this issue.

2.2. Data-driven SOCP reformulation

Suppose that, for i = 1,& , N , a batch of mi independent extractions

Si | {xij * R
n, j = 1,& , mi} (6)

of the uncertain input x̃i are available. Let m =
1N

i=1
mi be the total

number of samples such that {xs}m
s=1

=
åN

i=1
{xij }

mi

j=1
. Based on the

independence assumption among x̃is, we will focus on x̃i for each
i in this section. The basic mechanism of the data-driven approach
for solving (DRCKSVMSOCP ) is using �(Si) = {�(xij ) * Rd , j =

1,& , mi} to estimate the moment information, �
i
�
and �i

�
. This raises a

reliability concern about the empirical estimation. In other words, we
need to know how close the sample mean based on �(Si) is to the true
expectation �i

�
= E[�(x̃i)] = +

�i
�(x̃i)dFi. We denote the sample mean

by �̂
Si

�
| 1

mi

1mi

j=1
�(xij ). There are two related results in the literature

(Lemmas 2 and 3 below).

Lemma 2 (Theorem 3 in Shawe and Taylor, 2003). For i = 1,& , N , let
Ri = supxi*�i

‖�(xi)‖2. Over the choice of Si, we have

‖�̂Si

�
− �i

�
‖2 d

Ri√
mi

(
2 +

√
2 ln

1

�

)
, (7)

with a probability at least 1 − � (0 < � < 1).

Next, consider the covariance matrix defined by �i
�

= E[(�(x̃i) −

�i
�
)(�(x̃i) − �i

�
)T]. Let the empirical estimate of this quantity be

�̂
Si

�
| 1

mi

mi1
j=1

(�(xij )−�̂
Si

�
)(�(xij )−�̂

Si

�
)T =

1

mi

mi1
j=1

�(xij )�(xij )T−�̂
Si

�
(�̂

Si

�
)T.

Likewise, a comparable result can be extended to the covariance.

Lemma 3 (Corollary 6 in Shawe and Taylor, 2003). For i = 1,& , N , let
Ri = supxi*�i

‖�(xi)‖2. Over the choice of Si, we have

‖�̂Si

�
−�i

�
‖F d

2R2
i√
mi

(
2 +

√
2 ln

2

�

)
, (8)

with a probability at least 1 − � (0 < � < 1), provided that mi e(
2 +

√
2 ln(

2

�
)

)2

, where ‖ ç ‖F is the Frobenius norm of matrices.

Lemmas 2 and 3 provide us with confidence regions for the sample
mean and covariance containing the true mean and covariance matrix
with a high probability.

Following this, we investigated the reliability of the chance con-
straints with the ambiguity set after incorporating these estimations.

The obtained outcome will be used to create an ambiguity set that
provides probabilistic assurances of the robustness of the data-driven
solution with respect to the true distribution of the random vector.

Theorem 1. For i = 1,& , N , let Ri = supxi*�i
‖�(xi)‖2, r1i = R2

i√
mi
(2 +

√
2 ln

2

�
), and r2i =

R2
i√
mi
(2 +

√
2 ln

4

�
). Over the choice of Si, we have

sup
Fi*þi

PFi

{
yi
(
wT�(x̃i) + b

)
d 1 − �i

}
d �,

with a probability at least 1 − � (0 < � < 1), provided that mi e (2 +√
2 ln

4

�
)2, and

yi

(
wT�̂

Si

�
+ b

)
e 1 − �i + �(�)‖(�̂Si

�
+ riI)

1
2 w‖2,

where ri =
r1i

�(�)
+ r2i.

Proof. See Appendix A.2. ¦

With assured reliability of the empirical moment estimates, we
then apply �̂

Si

�
and �̂

Si

�
to find an approximated and solvable model

for (DRCKSVMSOCP ). A straightforward empirical approximated model
employing the empirical estimations is

min
1

2
‖w‖2

2
+ C

N1
i=1

�i

s.t. yi

(
wT�̂

Si

�
+ b

)
e 1 − �i + �(�)‖(�̂Si

�
)
1
2 w‖2, i = 1,& , N,

w * Rd , b * R, � * RN
+
.

(9)

Remark 2.1. Theorem 1 leads to a norm term ‖(�̂Si

�
+riI)

1
2 w‖2, distinct

from norm term ‖(�̂Si

�
)
1
2 w‖2 in (9). Notice that ri is determined by Ri,

which is supxi*�i
‖�(xi)‖2. It is hard to calculate the value of Ri since

for most kernels, the mapping � might be implicit. We cannot solve
the corresponding model directly. Moreover, the findings in Theorem 1
furnish a theoretical assurance that, under certain conditions, there
exists a high probability of satisfying the original chance constraints
when the data-driven empirical constraints are met. This insight re-
mains valid without the diagonal matrix term rią, providing us with
valuable intuition.

Nonetheless, a persistent challenge arises due to the implicit nature
of mapping � for most kernel functions, making it impractical to
directly utilize the empirical estimations-based model (9). The key to
constructing a solvable data-driven model lies in obtaining parameters
directly constructed from samples Si defined by (6). Next, we leverage
some theoretical results obtained in Section 2.1 and the inner product
technique in kernel trick to address this issue.

According to the KKT conditions (5), the optimal w∗ can be equiv-
alently represented by a span of the points from the uncertainty
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ellipsoids ó(�i
�
,�i

�
, �(�)), i = 1,& , N , i.e., w∗ =

1N

i=1
yi�

∗
i
(�i

�
+

�(�)((�i
�
)
1
2 )T(ui)∗). When the shape of the ellipsoid ó(�i

�
,�i

�
, �(�)) is

determined by the covariance matrix �i
�
, any point in this ellipsoid

is in the span of the empirical points used in estimating the covariance
matrix, since the eigenvectors of the covariance matrix span the entire
ellipsoid. The eigenvectors of a covariance matrix are in the span of
the empirical points from which the covariance matrix is estimated.

Hence, we represent �i
�
+ �(�)((�i

�
)
1
2 )T(ui)∗ as a linear combination of

the empirical points Si defined by (6), i.e.,
1mi

j=1
�0
ij
�(xij ). Note that w

is in the span of the training data points in the feature space, such that

w =

N1
i=1

yi�i

mi1
j=1

�0
ij
�(xij ) = �(X)Ȳ v, (10)

where v = [v1,& , vm]
T * Rm is a rearranged dual variable of �,�0

ij
as-

sociated with all m reservations, �(X) = [�(x11 ),& , �(x
1m1 ),& , �(xN1 ),

& , �(x
NmN )] * Rd×m, and Ȳ = diag(

1N

i=1
yie

i) * Rm×m with ei * Rm

defined by

ei
s
=

{
1, if xs is a sample of x̃i,

0, otherwise,
for s = 1,& , m. (11)

Define an m-dimensional kernel space and the kernel matrix K̄ |
�(X)T�(X) * Rm×m where K̄sp = �(xs)T�(xp) = �(xs,xp) for s, p =

1,& , m, determined by a kernel function � ∶ Rn × Rn
³ R.

We then derive a solvable data-driven model for (9). We have
‖w‖2

2
= vTȲ K̄Ȳ v. For i = 1,& , N , we further have

wT�̂
Si

�
= (�(X)Ȳ v)T

(
1

mi

mi1
j=1

�(xij )

)
= vTȲ K̄

i
,

where K̄
i
=

1

mi
K̄ei. Similarly, we have

wT�̂
Si

�
w = wT

(
1

mi

mi1
j=1

(
�(xij ) − �̂

Si

�

)(
�(xij ) − �̂

Si

�

)T
)
w

=
1

mi

mi1
j=1

(
wT(�(xij ) − �̂

Si

�
)
)2

=
1

mi

mi1
j=1

(
vTȲ K̄

ij − vTȲ K̄
i
)2

= vT

(
1

mi

mi1
j=1

(K̄
ij − K̄

i
)(K̄

ij − K̄
i
)T

)
v,

where for i = 1,& , N , j = 1,& , mi, K̄
ij = K̄eij , and eij * Rm with

e
ij
s =

{
1, if xs is the jth sample of x̃i,

0, otherwise,
for s = 1,& , m. (12)

Denote �i
K

=
1

mi

1mi

j=1
(K̄

ij − K̄
i
)(K̄

ij − K̄
i
)T * Sm

+
. Then we have an

approximated SOCP of the (DRCKSVMSOCP ) model as

min
1

2
vTȲ K̄Ȳ v + C

N1
i=1

�i

s.t. yi(v
TȲ K̄

i
+ b) e 1 − �i + �(�)‖(�i

K
)
1
2 v‖2, i = 1,& , N,

v * Rm, b * R, � * RN
+
.

(DRCKSVMaSOCP )

For an optimal solution (v∗, b∗, �∗) of (DRCKSVMaSOCP ), the classifica-
tion function is given by f�(x; v

∗, b∗) = Sign(
1N

i=1
1

mi

1mi

j=1
yiv

∗
ij
�(xij ,x)+

b∗).
(DRCKSVMaSOCP ) provides a tractable formulation for solving

(DRCKSVMSOCP ), which can be solved by commercial conic opti-
mization solvers. The interior-point method for solving SOCP (Lobo

et al., 1998) yields a worst-case complexity of O(m2(N + 1)
3
2 ) for

(DRCKSVMaSOCP ). Note that it is often the case that m =
1N

i=1
mi ≫

N > n. However, a good approximation usually requires a large sample

size m, which significantly increases the computational complexity.
We notice that although the authors discussed the kernel-based SVMs
with moment information in the context of data with missing values
and semi-supervised learning (Shivaswamy et al., 2006; Huang et al.,
2013), they utilized optimization solvers to find solutions and avoided
discussing the inevitable computational burden for data with large
samples. In the next section, considering computational efficiency, we
propose an ADMM-based algorithm to solve (DRCKSVMaSOCP ).

3. ADMM-based algorithm

This section develops an ADMM algorithm to provide fast compu-
tations for solving (DRCKSVMaSOCP ). The ADMM algorithm partitions
a large optimization problem into several smaller sub-problems that
are easier to solve (Boyd et al., 2011). In this section, we successfully
derived the explicit solution for each sub-problem, thereby significantly
enhancing computational efficiency.

We notice that there are 2-norm terms, ‖(�i
K
)
1
2 v‖2, i = 1,& , N ,

in (DRCKSVMaSOCP ). Since ∇v‖(�i
K
)
1
2 v‖2 = �i

K
v∕‖(�i

K
)
1
2 v‖2 whose

denominator is a function of v, it is hard to find explicit solutions

if such a term is involved. According to the fact that ‖(�i
K
)
1
2 v‖2 =

max‖zi‖2d1 z
T
i
(�i

K
)
1
2 v for zi * Rm, we first rewrite (DRCKSVMaSOCP )

as

min
v,b,a,zi

1

2
vTȲ K̄Ȳ v + C

N1
i=1

(ai)
+ +

N1
i=1

1ï(zi)

s.t. a = eN −

⎡
⎢⎢⎢⎣
YM − �(�)

⎡
⎢⎢⎢⎣

zT
1
(�1

K
)
1
2

Ď

zT
N
(�N

K
)
1
2

⎤
⎥⎥⎥⎦

Y eN

⎤
⎥⎥⎥⎦

[
v

b

]
,

(13)

where M = (Ȳ [K̄
1
,& , K̄

N
])T * RN×m, eN = (1,& , 1)T * RN , and Y

is a diagonal matrix of labels, i.e., Y = diag(y1,& , yN ). For each i, let
a+
i
| max{0, ai} and 1ï(zi) be the indicator function of the convex set

ï | {z * Rm|‖z‖2 d 1} defined by

1ï(zi) =

{
0, if zi * ï,

@, otherwise.

Please refer to Appendix A.3 for the detailed proof.

Also, letH(z1,& , zN ) |

⎡⎢⎢⎢⎣
YM − �(�)

⎡⎢⎢⎢⎣

zT
1
(�1

K
)
1
2

Ď

zT
N
(�N

K
)
1
2

⎤⎥⎥⎥⎦
Y eN

⎤⎥⎥⎥⎦
* RN×(m+1),

abbreviated by H(Z) for Z = (z1,& , zN ). The augmented Lagrangian
of (13) becomes

L(v, b,a,Z, �) =
1

2
vTȲ K̄Ȳ v + C

N1
i=1

(ai)
+ +

N1
i=1

1ï(zi)

+ �T

(
H(Z)

[
v

b

]
+ a − eN

)
+

�

2

‖‖‖‖‖‖
H(Z)

[
v

b

]
+ a − eN

‖‖‖‖‖‖

2

2

,

(14)

where � * RN is a Lagrangian multiplier, and � > 0 is the penalty
parameter. Our ADMM optimizer solves the convex problem (13) by
splitting it into N + 3 sub-problems with respect to variables (v, b),
(zi)i=1,&,N , a, and �:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(v(t+1), b(t+1)) = argmin
v,b

L(v, b, z
(t)

1
,& , z

(t)

N
,a(t), �(t))

z
(t+1)

1
= argmin

z1
L(v(t+1), b(t+1), z1,& , z

(t)

N
,a(t), �(t))

&

z
(t+1)

N
= argmin

zN
L(v(t+1), b(t+1), z

(t+1)

1
,& , zN ,a(t), �(t))

a(t+1) = argmin
a

L(v(t+1), b(t+1), z
(t+1)

1
,& , z

(t+1)

N
,a, �(t))

�(t+1) = argmin
�

L(v(t+1), b(t+1), z
(t+1)

1
,& , z

(t+1)

N
,a(t+1), �),

(15)
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where t denotes the iteration numbers. To find explicit solutions of
(v(t+1), b(t+1)) in (15), we can solve a linear system with given (z

(t)

1
,& ,

z
(t)

N
,a(t), �(t)):

∇(v,b)L(v, b,Z,a, �) =

([
Ȳ K̄Ȳ

0

]
+H(Z)TH(Z)

)[
v

b

]

+H(Z)T(� + �(a − eN )) = 0

ó

[
v

b

]
= −

([
Ȳ K̄Ȳ

0

]
+H(Z)TH(Z)

)−1

H(Z)T(� + �(a − eN )).

(16)

Notice that the kernel matrices in real applications may suffer ill-
conditioned problems. In general, we have Rank(H(Z)TH(Z)) d N <

m + 1. Consequently, computing the inverse matrix in (16) could be a
computational issue. Note that a summation of vector outer products
can be obtained if we expand H(Z)TH(Z) as follows:

H(Z)TH(Z) = �

N1
i=1

⎡⎢⎢⎣
yiK̄ i − �(�)�

1
2

Ki
zi

yi

⎤⎥⎥⎦
[(yiK̄ i − �(�)�

1
2

Ki
zi)

T yi].

This special structure makes a significant contribution to the develop-
ment of Algorithm , and the details are shown in Appendix B.1.

Algorithm 1 Inverse matrix for an ill-conditioned matrix with special
structure.

Input: An ill-conditioned kernel matrix K̄ , Ȳ ,K̄ i,�Ki
, zi, yi, �(�),

i = 1,& , N , �, � > 0.
Output:
⎛⎜⎜⎝

[
Ȳ K̄Ȳ 0

0 0

]
+ �

1N

i=1

⎡⎢⎢⎣
yiK̄ i − �(�)�

1
2

Ki
zi

yi

⎤⎥⎥⎦
[(yiK̄ i − �(�)�

1
2

Ki
zi)

T yi]

⎞⎟⎟⎠

−1

.

1: Set K̂ = Ȳ K̄Ȳ + �In ≻ 0.

2: Compute �i = yiK̄ i − �(�)�
1
2

Ki
zi, i = 1,& , N .

3: Compute

A1 =

[
K̂

−1
0

0
1

�

]
−

1

�T
1
K̂

−1
�1+

1
�
+

1
�

[
K̂

−1
�1

1

�
y1

]
[(K̂

−1
�1)

T 1

�
y1].

4: for i = 2,& , N do

5: gi = [�T
i

yi]Ai−1

[
�i

yi

]
+

1

�
.

6: Ai = Ai−1 −
1

gi
Ai−1

[
�i

yi

]
[�T

i
yi]Ai−1.

7: Return([
Ȳ K̄Ȳ 0

0 0

]
+ �

1N

i=1

[
yiK̄ i − �(�)�

1

2

Ki
zi

yi

]
[(yiK̄ i − �(�)�

1

2

Ki
zi)

T yi]

)−1

= AN −AN (AN −
1

�
I)−1AN .

It is not straightforward to solve for z(t)
i
, i = 1,& , N . However, we

give some closed-form solutions in Lemma 4.

Lemma 4. At each iteration t, the optimal solution of

z
(t+1)
i

= argmin
z1

L(v(t+1), b(t+1), z
(t+1)

1
,& , zi,& , z

(t)

N
,a(t), �(t)),

i = 1,& , N , has a closed form of

z
(t+1)
i

=ℎ(�
(t)
i
, v(t+1), b(t+1), a

(t)
i
) min

⎧⎪⎨⎪⎩

‖(�i
K
)
1
2 v(t+1)‖2

|ℎ(�(t)
i
, v(t+1), b(t+1), a

(t)
i
)|
, 1

⎫⎪⎬⎪⎭

×
(�i

K
)
1
2 v(t+1)

‖(�i
K
)
1
2 v(t+1)‖2

2

,

(17)

where ℎ(�(t)
i
, v(t+1), b(t+1), a

(t)
i
) =

1

�(�)
(
�
(t)
i

�
− 1 + yi((K̄

i
)Tv(t+1) + b(t+1)) + a

(t)
i
)

for each i.

Proof . See Appendix A.1. ¦

Adopting the stopping criterion evaluated by the primal residual
and solution errors (Boyd et al., 2011), the ADMM-based algorithm for
solving (DRCKSVMaSOCP ) can be finalized as blow.

Algorithm 2 ADMM-based algorithm for (DRCKSVMaSOCP )

Input: Data matrix Y , Ȳ , M , K , K̄ i, �Ki
, i = 1,& , N .

Preset parameters �, �, and error thresholds "res and "sol.
Output: v∗, b∗.

1: Initialize t = 0, (v(0), b(0)), �(0), z(0)
1
,& , z

(0)

N
, and a

(0)

1
,& , a

(0)

N
. Set the

primal residual r(0) = e, and "(v(0), b(0)) = 1.
2: while ‖r(t)‖2 > "res or "(v

(t, b(t)) > "sol do

3: if

[
Ȳ K̄Ȳ

0

]
+H(Z(t))TH(Z(t)) is ill-conditioned then

4: Update [v(t+1); b(t+1)] by Algorithm .
5: else
6: Solve the following linear equation system for an update

[v(t+1); b(t+1)]:
[
v(t+1)

b(t+1)

]
= −

([
Ȳ K̄Ȳ

0

]
+H(Z (t))TH(Z (t))

)−1

H(Z (t))T(� (t)+�(a(t)−eN )).

7: Update z
(t+1)
i

by (17) in Lemma 4, for i = 1,& , N .

8: a(t+1) = S C

�

(
eN −H(Z(t+1))

[
v(t+1)

b(t+1)

]
−

1

�
�(t)

)
.

9: Update the primal residual

r(t+1) = eN −H(Z(t+1))

[
v(t+1)

b(t+1)

]
− a(t+1).

10: �(t+1) = �(t) + �r(t+1).

11: Update the solution error "(v(t+1), b(t+1)) =
‖‖‖‖‖

[
v(t+1)

b(t+1)

]
−

[
v(t)

b(t)

]‖‖‖‖‖

2

2

.

12: t = t + 1.
13: return (v∗, b∗).

The soft thresholding operator S in Step 4 is given by

S�(�) =

⎡
⎢⎢⎣

S�(�1)

Ď

S�(�N )

⎤
⎥⎥⎦
, where S�(�i) =

⎧⎪⎨⎪⎩

�i − �, �i > �,

0, 0 � �i � �,

�i, �i < 0,

" i, (18)

via solving S�(�i) = argmin�i {��
+
i
+

1

2
‖�i − �‖2

2
}. The proposed ADMM-

based algorithm can also address the commonly seen linear cases
studied in Shivaswamy et al. (2006), Ben-Tal et al. (2011), Huang et al.
(2012), Wang et al. (2018).

4. Computational experiments

This section conducts computational experiments on the proposed
(DRCKSVM) model and solution method. Section 4.1 validates the
effectiveness of the (DRCKSVM) model via solving the proposed data-
driven (DRCKSVMaSOCP ) reformulation, assuming that the first- and
second-order moments information are given. Section 4.2 evaluates the
effectiveness and efficiency of the proposed ADMM-based Algorithm
Lemma 4 for solving (DRCKSVMaSOCP ). Section 4.3 compares the
(DRCKSVM) model with state-of-the-art kernel-based SVM models for
classifying public benchmark data sets without any moment informa-
tion. In this section, all computational experiments were conducted
using MATLAB (R2021a) software on a desktop equipped with Intel(R)
Core(TM) i3-9100 CPU @ 3.60 GHz CPUs and 32 GB RAM.

4.1. Effectiveness of the proposed (DRCKSVM) model

This section aims to verify the effectiveness of the (DRCKSVM)
model for robust classification. The proposed data-driven approach in
Section 2.2 provides a (DRCKSVMaSOCP ) reformulation, which will be
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Table 1
Synthetic data sets for effectiveness validation of (DRCKSVM).

Dataset Syn_2d_20b Syn_8d_40b Syn_16d_100b

Training
data

# feature (n) 2 8 16

# input (batch) (N) 20 40 100

probability distribution Normal, Uniform, T-distribution

data-driven sample size/batch 5, 10, 50

Testing
data

probability distribution Normal, Uniform, T-distribution

# repetitions 100

solved by using the commercial solver Mosek1 in this section. We will
train (DRCKSVMaSOCP ) on synthetic data sets (see Table 1) to vali-
date the effectiveness of robust classification for data with uncertainty
specified by moment information. To validate that our distributionally
robust models can hedge against distribution uncertainty, we did three
groups of experiments using three different distribution functions to
generate the training and testing data, including the Normal, Uniform,
and T-distributions. For example, for the synthetic dataset Syn_2d_20b,
we first generate 20 points (10 points labeled ‘1’ and 10 points labeled
‘−1’) as the mean vectors �i * R2, i = 1,& , 20, for each group. Then,
we set the covariance matrix for each group. For the Normal-distributed
group, we set �i = [0.05 0; 0 0.05] * R2×2, i = 1,& , 20; For the Uniform-
distributed group, we set the interval to be [�i

j
− 0.75, �i

j
+ 0.75], for

j = 1, 2, and i = 1,& , 20; For the T-distributed group, we set �i =

[0.6 0; 0 0.6] * R2×2 with the degree of freedom of value 3, i = 1,& , 20.
Based on the provided information regarding the mean and covariance,
we initially generate 5, 10, or 50 points for each batch i (indicated as
‘data-driven sample size/batch’ in Table 1) for i = 1,& , 20. These
points constitute our training samples, utilized to estimate the empirical
mean and covariance in the kernel space, and are employed in our
proposed data-driven (DRCKSVMaSOCP ) model. Subsequently, in each
group, utilizing the same distributions, we generate 100 points for each
batch i, for i = 1,& , 20, to construct our testing sets.

Two commonly used nonlinear kernels are tested including the
quadratic polynomial kernel, �quad (x

i,xj ) = (
q + (xi)
T
xj )2, and the

radial basis function (rbf) kernel, �rbf (x
i,xj ) = exp(−‖xi − xj‖2

2
∕(2
2

r
)).

The corresponding models are denoted as DRCKSVMaSOCP -quad and
DRCKSVMaSOCP -rbf, respectively. The parameter C controls the trade-
off between maximizing the margin and minimizing the misclassifica-
tion loss and the parameters 
q and 
r define the kernel functions, as
commonly adopted in most kernel-based SVM models. To show the
influence of parameter � on the proposed model, we plot the results
of both DRCKSVMaSOCP -quad and DRCKSVMaSOCP -rbf models on a
two-dimensional artificial data set Syn-2d-20b for different values of
� by fixing other parameters C = 210, 
q = 22, and 
r = 2−2 (A set
of parameters that performed well for most models after grid search).
Fig. 2 shows the nonlinear classifiers, the training and testing data
points, and Table 2 records the accuracy scores (Acc(%)) with mean
and standard deviation (std), with respect to different values of �. From
Fig. 2 and Table 2, we have the following observations:

• The value of � affects the classifiers learned based on the first-
and second-order moments. When � = 1.00, (DRCKSVM) reduces
to a deterministic model without using moment information. We
can observe that utilizing moment information with � = 0.10, 0.20

will provide better classification accuracy.
• For different kernel functions, the best value of � may vary. The
performance of DRCKSVMaSOCP -quad improves as � decreases,
whereas this behavior is not entirely observed for
DRCKSVMaSOCP -rbf.

1 Mosek is a state-of-the-art interior-point optimizer for conic problems.
https://www.mosek.com/.

• For simulated points coming from three different distributions,
the classification results of the proposed model perform quite
robustly. This validates that the (DRCKSVM) model can hedge
against the distribution uncertainty.

Synthetic data sets with larger feature dimensions have been tested
to investigate the proposed model further. And we also tested the effect
of the sample size for training the data-driven-based (DRCKSVMaSOCP )
reformulation. Table 3 shows the results when we set � = 0.20 and
test on normally distributed testing data points. Table 3 records the
accuracy scores (Acc(%)) with mean and standard deviation (std), and
average training CPU time (s).

Table 3 shows that both DRCKSVMaSOCP -quad and DRCKSVMaSOCP -
rbf can provide high classification accuracy. This validates the effec-
tiveness of the proposed model for robust classification. In addition,
when the sample size increases, the mean of the classification accu-
racy increases and the standard deviation decreases, which indicates
that increasing sample size indeed improves the reliability of the
(DRCKSVMaSOCP ) reformulation. However, we notice that the corre-
sponding training time increases a lot when the sample size increases.
Using the commercial solver Mosek solving (DRCKSVMaSOCP ) costs
drastic computational effort for large-scale data. In the next section,
we shall validate the effectiveness and especially the efficiency of the
proposed ADMM-based algorithm for solving (DRCKSVMaSOCP ).

4.2. The ADMM-based algorithm for fast computations

We have verified that the proposed (DRCKSVM) model effectively
provides a robust classifier of high quality for input data points with
uncertainty specified by moment information. However, solving its
(DRCKSVMaSOCP ) reformulation using Mosek may invoke a huge com-
putational burden when handling large-scale data sets. This section
aims to validate the effectiveness and efficiency of the proposed ADMM-
based Algorithm Lemma 4 for solving (DRCKSVMaSOCP ), focusing on
classification accuracy and training time.

We first test the synthetic datasets used in Section 4.1, as shown
in Table 3, i.e., Syn_2d_20b, Syn_8d_40b, and Syn_16d_100b, each with
50 samples per batch. The same hyperparameters are used for each
dataset as in Section 4.1. Table 4 records the accuracy scores (Acc(%))
with mean and standard deviation (std), and the average training CPU
time (s) obtained by Mosek and ADMM-based Algorithm Lemma 4,
respectively.

From Table 4, we can observe that the mean accuracy scores ob-
tained by Mosek are slightly better than those achieved by the proposed
Algorithm Lemma 4. These results align with the assertion in Hong
et al. (2015) that the ADMM algorithm, when solving optimization
problems with nonconvex bilinear constraints, may converge to a lo-
cally optimal saddle point close to the global optimal solution. Overall,
the proposed ADMM-based algorithm for solving (DRCKSVMaSOCP )
provides a classifier of comparable quality to that of Mosek. The
important observation is that the average training CPU time required by
the ADMM-based algorithm reduces in significant orders compared to
the time used by Mosek. The proposed ADMM-based algorithm indeed
provides a fast algorithm for solving (DRCKSVMaSOCP ).

https://www.mosek.com/
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Fig. 2. Results on the data set Syn-2d-20b with different � using 10 samples per batch for training.

Table 2
Results on the data set Syn-2d-20b with different � using 10 samples per batch for training.

Testing sample Normal Uniform T-distribution

Acc(%) Acc(%) Acc(%)

� mean std mean std mean std

DRCKSVMaSOCP -quad
1.00 87.70 5.15 81.95 8.20 85.70 6.18
0.20 88.45 4.02 83.55 7.75 84.00 5.57
0.10 89.85 5.67 84.20 6.31 86.30 6.12

DRCKSVMaSOCP -rbf
1.00 96.70 5.73 90.55 6.21 92.55 6.45
0.20 97.40 4.38 91.50 6.30 93.65 6.03
0.10 98.00 4.94 91.85 5.73 91.70 5.01

Table 3
Results on the synthetic data with different training sample sizes per batch with � = 0.20.

# Samples /batch Syn_2d_20b Syn_8d_40b Syn_16d_100b

Acc(%)
CPU(s)

Acc(%)
CPU(s)

Acc(%)
CPU(s)

mean std mean std mean std

DRCKSVMaSOCP -quad
5 84.20 7.16 0.99 94.79 3.47 3.38 92.43 2.44 77.90
10 85.90 6.52 5.25 96.15 2.96 12.14 96.81 1.66 338.12
50 88.80 5.40 35.97 98.37 2.03 399.38 98.01 1.32 10215.04

DRCKSVMaSOCP -rbf
5 90.40 6.46 0.82 97.12 2.63 3.51 96.77 1.67 80.21
10 95.20 4.28 4.13 97.53 2.43 12.89 97.20 1.55 342.25
50 96.32 4.12 34.99 98.36 2.05 432.92 98.86 1.05 10142.65



Computers and Operations Research 170 (2024) 106755

9

F. Lin et al.

Table 4
Mosek vs. ADMM-based Algorithm Lemma 4 for solving (DRCKSVMaSOCP ) on synthetic data.

Syn_2d_20b Syn_8d_40b Syn_16d_100b

Acc(%)
CPU(s)

Acc(%)
CPU(s)

Acc(%)
CPU(s)

mean std mean std mean std

DRCKSVMaSOCP -quad
Mosek 88.80 5.40 35.97 98.37 2.03 399.38 98.01 1.32 10215.04
ADMM 86.00 2.02 5.12 97.59 7.71 8.75 97.12 7.02 94.01

DRCKSVMaSOCP -rbf
Mosek 96.32 4.12 34.99 98.36 2.05 432.92 98.86 1.05 10142.65
ADMM 95.70 5.31 2.11 97.43 4.45 11.32 97.06 3.75 92.15

Table 5
Mosek vs. ADMM-based Algorithm Lemma 4 for solving (DRCKSVMaSOCP ) on benchmark data.

Sonar Ionosphere WIBC

Acc(%)
CPU(s)

Acc(%)
CPU(s)

Acc(%)
CPU(s)

mean std mean std mean std

DRCKSVMaSOCP -quad
Mosek 82.14 7.27 6.76 91.46 3.17 50.57 98.16 3.68 969.36
ADMM 81.36 3.65 0.11 90.04 2.33 0.34 97.57 2.12 12.82

DRCKSVMaSOCP -rbf
Mosek 83.73* 7.30 5.16 95.37 4.71 30.76 97.44 1.99 252.42
ADMM 86.75 3.98 0.41 93.24 2.58 1.67 96.70 1.30 13.97

* Lower accuracy by Mosek due to the ill-conditioned matrix involved.

Table 6
Public benchmark data sets.

Data set Sonar Liver Inosphere WIBC German Car_evaluate Heart Cod_RNA

# Features 60 6 34 9 20 6 15 8
# Samples 208 319 351 666 1000 1594 3658 59535

We also tested several benchmark data sets drawn from the UCI
databases.2 For each data set, we have utilized all points as training
samples to calculate the estimated mean and covariance required by the
proposed model, and then used all the original data points as testing
samples. For example, there are 208 samples in the Sonar data set
which is denoted as {xs, s = 1,& , 208}. We assume that these 208
points are instances of 8 uncertain distributions, {xs, s = 1,& , 208} =

L8
i=1

{xij , j = 1,& , mi}. The values of clusters are determined by the
K-means clustering method. Then, the empirical mean and covariance
calculated from these 208 training points, denoted as {K̄

i
* R208,�i

K
*

S208
+

, i = 1, 2,& , 8} will be utilized to train the DRCKSVMaSOCP model.
The dataset Ionosphere has 351 points with 34 features, and we treat
them as 10 uncertain inputs for calculating the first- and second-order
moments. The dataset WIBC has 208 points with 60 features, and we
treat them as 8 uncertain inputs for calculating the first- and second-
order moments. For benchmark datasets, the cross-validation and grid
methods are adopted to select the best parameters of C, �, and 
q,r
from the ranges of C * {2−1, 21,& , 214}, � * {0.1, 0.2,& , 1}, and

q , 
r * {2−5, 2−4,& , 25}, respectively.

Table 5 records the same measures used in Table 4 and shows
similar results that support the effectiveness and efficiency of the
proposed ADMM-based algorithm for solving (DRCKSVMaSOCP ). This
advantage of computational efficiency becomes more significant when
the sample size increases. Moreover, the results of the Sonar dataset
show that the ADMM-based algorithm may outperform Mosek when
involving ill-conditioned matrices. Unlike the synthetic datasets we
have tested, the benchmark datasets do not assume that all points come
from an underlying distribution. The satisfying performance on the
benchmark datasets using (DRCKSVMaSOCP ) shows the potential of our

2 The UCI Machine Learning Repository is a collection of databases that
are used by the machine learning community. https://archive.ics.uci.edu/ml/
datasets.php.

(DRCKSVM) model for classifying general data without moment infor-
mation, and we shall conduct additional computational experiments in
the next section.

4.3. Performance on public data sets without moment information

The results in the previous section indicate the effectiveness and
promising efficiency of the proposed ADMM-based algorithm for solv-
ing (DRCKSVMaSOCP ). In this section, we conduct computational ex-
periments to compare it with several state-of-the-art kernel-based SVMs
using some commonly seen public benchmark data sets listed in Table 6
without assuming any stochastic uncertainty and moment information.

For all tests, the cross-validation and grid methods are adopted
to select the best parameters of C, �, 
q , and 
r from the ranges of
C * {2−1, 21,& , 214}, � * {0.1, 0.2,& , 1}, and 
q , 
r * {2−5, 2−4,& , 25},
respectively. For the data sets with a sample size larger than 600
(the last 5 data sets in Table 6), we select a small ratio of the data
set as the training data set. All test results are based on the best-
selected parameters. The standard kernel-based SVM models, including
SVM-quad and SVM-rbf, are implemented by LIBSVM (Chang and Lin,
2011). To apply (DRCKSVM), we first use the K-means clustering
algorithm (Vassilvitskii and Arthur, 2006) to partition each dataset
into K clusters, where each cluster can be treated as a random sample
set of an uncertain input and used to calculate the desired mean and
covariance. Note that K cannot be too small or too large; large K

values lead to suboptimal classification performance and excessively
long computation times. Let K = min{8, 10% × Ntrain}, where Ntrain is
the sample size of the training points, and the values 8 and 10% are
user-defined based on the size of the data set. Then the corresponding
DRCKSVMaSOCP -quad and DRCKSVMaSOCP -rbf are solved using the
ADMM-based Algorithm Lemma 4 for robust classifications. Table 7
reports the average accuracy scores (%) and Table 8 reports the average
training CPU time (s).

https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php
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Table 7
Average accuracy scores (%) tested on public benchmark data sets.

Data set Sonar Liver Ionosphere WIBC German Car_evaluate Heart Cod_RNA

SVM-quad 81.95 73.98 91.10 94.88 70.62 94.90 84.76 92.98
SVM-rbf 83.14 76.49 95.01 95.97 71.00 95.98 84.76 81.46

DRCKSVMaSOCP -quad 81.36 73.05 90.04 97.57 70.50 85.81 84.74 94.59
DRCKSVMaSOCP -rbf 86.75 75.99 93.24 96.70 72.20 93.39 84.83 86.07

Table 8
Average CPU time (s) tested on public benchmark data sets.

Data set Sonar Liver Ionosphere WIBC German Car_evaluate Heart Cod_RNA

SVM-quad 0.01 1.08 0.01 0.26 0.03 0.08 0.03 7.80
SVM-rbf 0.01 0.39 0.01 0.01 0.03 0.06 0.01 3.04

DRCKSVMaSOCP -quad 0.11 0.91 0.34 0.01 0.03 0.05 0.02 7.07
DRCKSVMaSOCP -rbf 0.41 1.72 1.67 0.02 0.09 0.10 0.04 13.64

Based on the accuracy score in Table 7 and CPU time in Table 8,
we can observe that the proposed (DRCKSVM) models with quadratic
polynomial kernel and rbf kernel produce more accurate classifications
than the commonly used kernel-based SVM models without considering
uncertainty for most datasets. It indicates that utilizing moment infor-
mation hidden in the data can help improve the generalization of the
classifier for a better prediction.

5. Conclusions

In this paper, we have studied a distributionally robust chance-
constrained kernel-based SVM model for addressing binary classifi-
cation tasks involving uncertain input data characterized by first-
and second-order moments. Notice that the robust chance-constrained
kernel-based SVM model is generally intractable even with true mo-
ments of the mapped data in the feature space, not to mention that
the true moments are hard to obtain. Drawing on theoretical insights
from our proposed (DRCKSVM) model, we have introduced a data-
driven approach utilizing the empirical moments and kernel tricks
to formulate a computationally efficient (DRCKSVMaSOCP ) reformu-
lation. Real-world applications often necessitate solving large-scale
SOCP reformulations. To address this, we have analyzed the problem’s
structural characteristics and developed an efficient ADMM algorithm
tailored for solving (DRCKSVMaSOCP ).

Our computational experiments have validated that the proposed
model can effectively find a robust classifier for data with uncertain
inputs specified by the first- and second-order moments information.
Results on both synthetic and benchmark datasets clearly support
the effectiveness and efficiency of the ADMM-based algorithm. For
the commonly seen public data sets without moment information,
the proposed method utilizing the hidden moment information has
shown better performance over other state-of-the-art kernel-based SVM
models.

This study reveals an interesting fact that incorporating a reasonable
amount of uncertainty during the training phase may significantly
improve the predictive power of a resulting classifier. Future research
can explore several interesting directions. Real-world machine learn-
ing problems frequently face data containing missing values in the
inputs (Pelckmans et al., 2005; Shivaswamy et al., 2006). The proposed
(DRCKSVM) model in this paper has utilized the moment information
of inputs to classify possible realizations of inputs which may include
the ones with missing variables. Extending the work in this paper
may provide a method for resolving problems facing missing values.
In addition, this paper has focused on data with input uncertainty
assuming the output labels are known while, in practice, labels may
be not accurately or not completely recorded. Robust optimization has
been applied to this problem with promising performance (Bertsimas
et al., 2019). Employing a distributionally robust optimization method
for data involving uncertain labels can be an interesting direction for
future research.
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Appendix A. Proofs

A.1. Proof of Lemma 4

Proof. For each i = 1,& , N , L(zi; v, b, zj ,a, �) given (v, b, zj ,a, �), j � i

is convex respect to zi. We derive that

∇zi
L(zi; v, b, zj ,a, �)

= (�i
K
)
1
2 v

(
�(yi(K̄

i
)Tv + b) + ai − 1 + �i − ��(�)((�i

K
)
1
2 v)Tzi

)
.

(A.1)

Note (�i
K
)
1
2 v � 0 since �i

K
≻ 0 and WLOG, the decision variable v � 0.

Thus, let z∗
i
satisfying ∇z∗

i
L(zi; v, b, zj ,a, �) = 0. We have

((�i
K
)
1
2 v)Tz∗

i
=

1

�(�)
(yi(K̄

i
)Tv + b) + ai − 1 +

1

��(�)
�i.

The solution may not be unique but an optimal direction of z∗
i
can be

found by KKT conditions of the original problem (DRCKSVMaSOCP ).

The KKT conditions give an insight that the zi maximizing ((�i
K
)
1
2 v)Tzi

has the same direction with (�i
K
)
1
2 v. Thus, we have

z∗
i
=

(
1

�(�)
(yi(K̄

i
)Tv + b) + ai − 1 +

1

��(�)
�i

)
(�i

K
)
1
2 v

‖(�i
K
)
1
2 v‖2

2

.

Let ℎ(�i, v, b, ai) | 1

�(�)
(yi((K̄

i
)Tv + b) + ai − 1) +

1

��(�)
�i. Then z∗

i
=

ℎ(�i, v, b, ai)
(�i

K
)
1
2 v

‖(�i
K
)
1
2 v‖2

2

. Then the optimal solution of argminziL(zi;
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v, b, zj ,a, �) can be derived as the projection onto ï. We have

�ï(z
∗
i
) =

⎧⎪⎨⎪⎩

z∗
i
, if |ℎ(�i, v, b, ai)| � ‖(�i

K
)
1
2 v‖2,

‖(�i
K
)
1
2 v‖2

|ℎ(�i ,v,b,ai)|z
∗
i
, otherwise.

Then Lemma 4 can be proved accordingly. ¦

A.2. Proof of Theorem 1

Proof. By Lemmas 2 and 3 and the fact of (1 −
�

2
)2 e 1 − �, with

probability at least 1 − �, we have

‖�̂Si

�
− �i

�
‖ d r1i, and ‖�̂Si

�
−�i

�
‖F d r2i,

provided that mi e (2+

√
2 ln

4

�
)2. For the distributionally robust chance

constraints, supFi*þi
PFi

{
yi
(
wT�(x̃i) + b

)
d 1 − �i

}
d �, we have an

equivalent SOC constraint yi(w
T�i

�
+ b) e 1 − �i + �(�)‖(�i

�
)
1
2 w‖2 by

(DRCKSVMSOCP ). The statement of the theorem then follows below:

�(�)‖(�i
�
)
1
2 w‖2 + yi(w

T�i
�
+ b)

= �(�)‖(�i
�
− �̂

Si

�
+ �̂

Si

�
)
1
2 w‖2 + yi(w

T(�i
�
− �̂

Si

�
) +wT�̂

Si

�
+ b)

d �(�)

√
wT�̂

Si

�
w + ‖�i

�
− �̂

Si

�
‖F ‖wwT‖F + yi(w

T�̂
Si

�
+ b)

+yiw
T(�i

�
− �̂

Si

�
)

d �(�)

√
wT(�̂

Si

�
+ r2iI)w + yi(w

T�̂
Si

�
+ b) + yiw

T(�i
�
− �̂

Si

�
)

= �(�)‖(�̂Si

�
+ r2iI)

1
2 w‖2 + yi(w

T�̂
Si

�
+ b) + yiw

T(�i
�
− �̂

Si

�
),

and |yiwT(�i
�
− �̂

Si

�
)| d ‖r1iIw‖2. ¦

A.3. Proof of equivalence between DRCKSVMaSOCP and Problem (13)

Proof. Recall the proposed model (DRCKSVMaSOCP ) and it is equiva-
lent to

min
v,b

1

2
vTȲ K̄Ȳ v + C

N1
i=1

(1 − yi(v
TȲ K̄

i
+ b) + �(�)‖(�i

K
)
1
2 v‖2)+, (A.2)

where x+ | max{0, x} for any x * R. Let ai = 1 − yi(v
TȲ K̄

i
+ b) +

�(�)‖(�i
K
)
1
2 v‖2, for i = 1,& , N . Then the model (A.2) becomes

min
v,b,a

1

2
vTȲ K̄Ȳ v + C

N1
i=1

(ai)
+

s.t. ai = 1 − yi(v
TȲ K̄

i
+ b) + �(�)‖(�i

K
)
1
2 v‖2, i = 1,& , N.

(A.3)

Note that for i = 1,& , N , for any zi * Rm, we have ‖(�i
K
)
1
2 v‖2 =

max‖zi‖2d1 (zi)
T(�i

K
)
1
2 v. We then derive the constraints in (A.3) as

ai = 1 − yi(v
TȲ K̄

i
+ b) + �(�) max‖zi‖2d1 (zi)

T(�i
K
)
1
2 v

= 1 −
[
yi(Ȳ K̄

i
)T − �(�) max‖zi‖2d1 (zi)

T(�i
K
)
1
2 yi

] [
v

b

]
.

Let 1ï(zi) be the indicator function of the convex set ï | {z *

Rm|‖z‖2 d 1} defined by

1ï(zi) =

{
0, if zi * ï,

@, otherwise.

Then the model (A.3) can be rewritten as

min
v,b,a,zi

1

2
vTȲ K̄Ȳ v + C

N1
i=1

(ai)
+ +

N1
i=1

1ï(zi)

s.t. ai = 1 −
[
yi(Ȳ K̄

i
)T − �(�)(zi)

T(�i
K
)
1
2 yi

] [
v

b

]
, i = 1,& , N.

(A.4)

Let M = (Ȳ [K̄
1
,& , K̄

N
])T * RN×m, eN = (1,& , 1)T * RN , and Y be

a diagonal matrix of labels, i.e., Y = diag(y1,& , yN ). Then we may
rewrite model (A.4) into the matrix format and receive (13). ¦

Appendix B. Auxiliary information

B.1. The inverse of the sum of matrices

Lemma 5 (Miller, 1981). If A and A + B are invertible, and B has rank
1, then let g = trace(BA−1). Then g � −1 and

(A + B)−1 = A−1 −
1

g + 1
A−1BA−1.

In steps of Algorithm , solving a linear system needs to find the
inverse matrix of

DN |

[
Ȳ K̄Ȳ 0

0 0

]
+ �
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⎡
⎢⎢⎣
yiK̄ i − �(�)�
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2

Ki
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⎤
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1
2

Ki
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T yi]

=

[
Ȳ K̄Ȳ + �In 0

0 �
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2
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K̂ 0

0 �

]
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[
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]
[(�i)T yi]

)
− �In+1,

where K̂ = Ȳ K̄Ȳ + �In, and �i = yi�
i − �(�)�

1
2

Ki
zi * Rn. Applying

Woodbury matrix identity, we have

D−1
N

=

(([
K̂ 0

0 �
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+ �
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[
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]
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,

(B.1)

where AN |

[
K̂ 0

0 �

]
+ �

1N

i=1

[
�i

yi

]
[(�i)T yi] has inverse because a

proper choice of � can ensure the positive definiteness of the matrix.
By Lemma 5, we have
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=
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(B.2)

When N = 1, we have

A−1
1

= (

[
K̂ 0

0 �

]
+ �
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�1
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]
[�T

1
y1])

−1

=
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1
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and consequently, A−1
N
and D−1

N
can be calculated by (B.2) and (B.1).
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