
Leveraging Simulation Data to Understand Bias in

Predictive Models of Infectious Disease Spread

ANDREAS ZÜFLE, Computer Science, Emory University, Atlanta, United States

FLORA SALIM, School of Computer Science and Engineering, University of New South Wales, Sydney,

Australia

TAYLOR ANDERSON, George Mason University, Fairfax, United States

MATTHEW SCOTCH, Arizona State University, Tempe, United States

LI XIONG, Emory University, Atlanta, United States

KACPER SOKOL, ETH Zurich, Zurich, Switzerland

HAO XUE, University of New South Wales, Sydney, Australia

RUOCHEN KONG, Computer Science, Emory University, Atlanta, United States

DAVID HESLOP, University of New South Wales, Sydney, Australia

HYE-YOUNG PAIK, University of New South Wales, Sydney, Australia

C. RAINA MACINTYRE, University of New South Wales, Sydney, Australia

The spread of infectious diseases is a highly complex spatiotemporal process, diocult to understand, predict,

and efectively respond to. Machine learning and artiocial intelligence (AI) have achieved impressive results

in other learning and prediction tasks; however, while many AI solutions are developed for disease prediction,

only a few of them are adopted by decision-makers to support policy interventions. Among several issues

preventing their uptake, AI methods are known to amplify the bias in the data they are trained on. This is

especially problematic for infectious disease models that typically leverage large, open, and inherently biased

spatiotemporal data. These biasesmay propagate through themodeling pipeline to decision-making, resulting

in inequitable policy interventions. Therefore, there is a need to gain an understanding of how the AI disease

modeling pipeline can mitigate biased input data, in-processing models, and biased outputs. Speciocally, our

vision is to develop a large-scale micro-simulation of individuals from which human mobility, population,
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and disease ground-truth data can be obtained. From this complete dataset—which may not renect the real

world—we can sample and inject diferent types of bias. By using the sampled data in which bias is known (as

it is given as the simulation parameter), we can explore how existing solutions for fairness in AI can mitigate

and correct these biases and investigate novel AI fairness solutions. Achieving this vision would result in

improved trust in such models for informing fair and equitable policy interventions.

CCS Concepts: • Information systems → Spatial-temporal systems; • Applied computing → Health

informatics;

Additional Key Words and Phrases: Spatial epidemiology, fair and equitable AI, spatiotemporal prediction,

epidemic forecasting

ACM Reference Format:

Andreas Züne, Flora Salim, Taylor Anderson, Matthew Scotch, Li Xiong, Kacper Sokol, Hao Xue, Ruochen

Kong, David Heslop, Hye-Young Paik, and C. Raina MacIntyre. 2024. Leveraging Simulation Data to Under-

stand Bias in Predictive Models of Infectious Disease Spread. ACM Trans. Spatial Algorithms Syst. 10, 2, Arti-

cle 17 (June 2024), 22 pages. https://doi.org/10.1145/3660631

1 INTRODUCTION

The 21st Century has been marked by major epidemics and pandemics caused by infectious dis-
eases like sarbecoviruses (such as SARS-CoV-2), monkeypox, and innuenza. Among the many
strategies to manage these diseases, epidemiological models can advance our understanding of dis-
ease ecology and evolution. Popular modeling approaches include compartmental models [21, 55],
agent-based and networkmodels [36, 72, 78, 87], and curve-ottingmodels [11]. Additionally, artio-
cial intelligence (AI) solutions, which have been successfully applied to complex tasks [71] such
as image recognition [54, 124], speech recognition [14, 57], natural language processing [31, 58]
and time series prediction [31, 58], have shown exceptional results in predicting future time series
of observed cases and deaths much more accurately than classic regressive and simulation-based
models (as documented in recent surveys [92]). However, despite better performance over more
traditional modeling approaches, AI solutions are rarely adopted by decision-makers to support
evidence-based policy-making and policy interventions related to disease outbreaks.
The limitations of AI for infectious diseasemitigationwere discussed at the panel on <The Future

of AI for Spatiotemporal Data Science= held at the DeepSpatial’20 workshop co-located with the
ACM KDD 2020 conference. Panelists, including three U.S. National Science Foundation Program
Directors, discussed why AI solutions cannot be used to curb the COVID-19 pandemic. Given their
data-driven nature, a key limitation of AI models is the lack of high-quality infectious disease data,
especially near the onset of an outbreak, onwhich to learn and build AI models. Furthermore, it has
been shown that inherent biases in model input data can be unintentionally propagated through
the AI prediction pipeline [67], meaning that highly accurate model outputs may only renect the
model’s ability to predict trends in the data rather than true cases and deaths [67]. Given that
input data for such models tend to be biased across geographic and demographic dimensions, such
models may fail to generalize to populations that are underrepresented in the data the models are
trained on [50].

For example, test data used as inputs for AI models that measure the prevalence of infectious dis-
eases over space and time are subject to a variety of biases that are diocult to estimate and correct.
For the case of COVID-19 case data, some of this bias stems from the willingness, access, or ability
of certain groups to participate in testing. Participation in testing is innuenced by symptom sever-
ity [50], symptom recognition [18], occupation such as healthcare workers [112], ethnicity [34, 77],
frailty (susceptibility of more signiocant adverse efects) [56], place of residence [39], social con-
nectedness [69], internet access [12], and medical/scientioc interest [113].

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 17. Publication date: June 2024.



Leveraging Simulation Data to Understand Bias in Predictive Models 17:3

Therefore, our vision is to use simulated worlds as a virtual testbed to better understand and min-

imize bias in AI models of infectious disease prediction to improve their reliability and fairness as a

tool for decision support. Toward this vision, we seek to answer two questions:

(1) For diferent infectious disease spread prediction models, can we measure and quantify the
link between data bias and prediction bias? In other words, can we measure how susceptible
(or robust) a given infectious disease spread prediction model is to diferent sources of data
bias? For example, if we know that a geographic region is underrepresented in the data,
then can we understand to what degree the predicted number of cases will be systematically
underrepresented in the predictions?

(2) If we know (or at least, can estimate) the data bias, then can we use the above understanding
to account for and correct the systematic bias?

Given the explosion of AI solutions across a wide range of applications, this vision supports the in-

creasing demand for transparency, fairness, and inclusion in AI and calls for increased consideration

of bias propagation by the modeling community as a whole.

1.1 Stylized Example: How Data Bias Impacts Model Bias

To better illustrate the underlying problem motivating our vision, consider the following example
that we will refer back to throughout the article:

Assume an outbreak of a novel infectious disease in a city with four neighborhoods. Testing kits
to test, detect, and report the disease are available at grocery stores but at a high monetary price.
Ground Truth (Hidden): In reality, at T0 there are outbreaks in three neighborhoods of the
city—one anuent high-income neighborhood and two low-income neighborhoods.
Observed Data: Using the testing kit results, we observe a large number of cases in the anuent
neighborhood. Due the the high price of testing kits, we observe a small number of cases in the
two afected low-income areas, and zero cases in the fourth neighborhood.
Two prediction models are developed to predict the spread of the disease (assuming no interven-
tions) over time, as follows.
Prediction Model 1: A spatial compartmental Susceptible-Infectious-Recovered (SIR)

model [61], which extends the traditional SIR so that the number of I in neighborhood i at time
t + 1, is also a function of the number of I in adjacent neighborhoods j at time t and the trans-
mission probability β between those in neighborhoods i and j. The model parameters β and
the recovery rate γ are informed by domain expertise about infectiousness and transmission
pathways. This model forecasts a uniform spread across all neighborhoods in two weeks.
Prediction Model 2: A predictive AI model (such as surveyed in Reference [92]) that aims to
minimize the diference between predicted cases and the cases that will be detected in the next
two weeks. This model is trained on the observed data and predicts a steady number of cases in
anuent neighborhoods but a low number of cases in all low-income neighborhoods.
Two weeks later, at time T1 the infectious disease has spread.
Ground Truth (Hidden): The infectious disease has spread uniformly across all neighborhoods.
Observed Data: High-income areas have a large number of observed cases. Low-income areas
have a small number of observed cases.
The forecasts for Prediction Models 1 and 2 for Time T1 are compared with the observed data.
We observe that Prediction Model 1 has a large error: It predicted too many cases in low-income
neighborhoods, compared to the observed data. Prediction Model 2, however, has a very low
error. It successfully predicted the trends in the observed data.
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This example illustrates the idea that data-driven approaches, such as Prediction Model 2, may
demonstrate high prediction accuracy based on their ability to predict trends in the data. This is
particularly problematic in the case of predicting infectious diseases, where the data used to train
such models is highly biased [50]. Without understanding and correcting for biases in such data,
we hypothesize that AI models may be less reliable for predicting the real trends in cases and
deaths.
We acknowledge that Example 1.1 is highly stylized, making potentially unrealistic assumptions

about bias in infectious disease data. The question is: How do diferent types of data bias found in
real-world data propagate through the AI modeling pipeline afecting the prediction results? This
is a particularly challenging problem, given that bias in real data is relatively diocult to quantify
and isolate—a classic problem of <we don’t know what we don’t know.=
Therefore, to meet our vision of using simulated worlds for better understanding and minimiz-

ing bias in AI models of infectious disease prediction, we propose the following solution. First,
an agent-based model of infectious disease spread that allows for in silico1 collection of simula-
tion data (both simulation ground-truth and sampled simulation data that is biased in some way).
This simulation allows for the investigation of which AI models are robust to data bias and which
models overot to data bias. We will employ various scenarios of data bias across geographic and
demographic dimensions to quantify how such biases impact AI model outputs, and thus we em-
phasize that we do not necessarily require that the sampled data is a perfect match to real biased
datasets. Where not possible using real datasets, this approach allows us to have both a perfect
measurement of the bias found in the sampled data and to isolate diferent types of bias.
Second, once the link between data bias and AI model bias is understood, we aim to combine (1)

the understanding obtained about the link between data bias and model bias obtained in silico, and
(2) knowledge about the bias in real data, to correct the bias in AI models for infectious disease
spread.While this bias correction can also be performed in our in silico simulation, it will remain an
open question whether the correction techniques learned in our simulated world also apply to the
real world.However, we hypothesize that the bias correction learned from our simulated world(s) may

be better than simply ignoring the data bias and treating infectious disease samples as representative

and unbiased.

1.2 Vision of Simulating Bias in Infectious Disease Case Data

Given the challenge of estimating the type and magnitude of such bias in the variety of data sets
used as model inputs, it is diocult to evaluate how this bias propagates through the AI model
pipeline and how tomitigate this efect. Therefore, we envision using a massive agent-basedmodel
to simulate a (virtual) world in which we can collect perfect data with a 100% sampling rate and
100% accuracy of all information of the simulated world. We note that this simulated world may
not renect the real world, as <all models are wrong, but some are useful= [19] and may have their
own biases [62]. We propose to use a realistic agent-based simulation based on realistic patterns
of life such as going to work, going to restaurants, and meeting friends to socialize. Informed by
real-world data about the environment (road network and buildings of a city), we hope that such a
simulation, while not being a true representation of the real world, may be representative of some
aspects of a real population.
Based on these data, we can then implement sampling strategies with diferent types of bias

common to both the sampling methods used to collect these data and the participation of simu-
lated individuals (agents). Using the example of Section 1.1, the simulated world allows to increase

1An in silico experiment refers to an experiment performed in a computer simulation and is an alternative to experiments

involved in vivo (on living beings) and in vitro (in a laboratory).
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(decrease) the participation of high-income (low-income) individuals to produce diferent data sets
with diferent levels of data bias. Applying state-of-the-art AI-based spatiotemporal infectious dis-
ease prediction to this sampled (and biased) data set will allow us to compare predicted results to
the results obtained using the full (or unbiased) data set. While this bias that we simulate may or
may not perfectly renect the real-world, it still allows us to answer the research question of <If
there is a certain type X of bias in the data, then the spatiotemporal infectious disease predictions
become biased by Y .= Or formally:

[Data Bias X ] → [Model Bias Y ].

Using our example in Section 1.1: Assume that we scale the bias at which data is collected
from the high-income and low-income neighborhoods in our simulation. We evaluate Model 1
(the spatiotemporal compartmental SIR model) and Model 2 (the AI model) using this simulation
by comparing prediction results (based on the biased simulation data) to the simulation ground
truth. Assume that we observe the following implications:

Model 1: [High Data Bias] → [Low Prediction Bias];

Model 2: [High Data Bias] → [High Prediction Bias].

That is, we ond that Model 1 is robust to the simulated type of data bias and still make accu-
rate prediction; while Model 2 overots to the simulated data bias and leads to strongly biased
predictions.
This result, by itself, does not allow us to make any inference on the real world, where we do

not know if the simulated data bias holds. The bias that we simulated is an assumption that may
or may not hold in the real world. Implications (A → B) such as the above (if inferred in the in
silico simulation) still hold even if the premise (A) does not hold (logically: ex falso quodlibet). But
if the premise (A) does not hold in the real world, then the implication (A → B) does not yield any
information, as both A → B and A → ¬B hold logically if A is false.

But now, assume that for a specioc infectious disease data set observed in the real world, we
know that the observed case data is highly biased toward high income. In other words, we know
that the premise (A) holds. Then, the implication (A → B) allows us to infer the conclusion (B).
In the example, if we know that a given dataset is highly biased toward a high income (premise
[High Data Bias]), then we can use the two implications above to infer that:

Model 1: [High Data Bias] → [Low Prediction Bias] ∧ [High Data Bias]

−→ Model 1: [Low Prediction Bias];

Model 2: [High Data Bias] → [High Prediction Bias] ∧ [High Data Bias]

−→ Model 2: [High Prediction Bias].

This knowledge will allow decision-makers to understand which models to trust given their
knowledge about real-world data bias and the in silico inferred link between data bias and model
bias.

1.3 Overview of the Proposed Vision

Figure 1 presents an overview of our proposed vision for a novel methodology that can assess and
mitigate bias in AI solutions. The methodology is made up of two components, as follows:

(1) Developing a scalable agent-based model from which we will collect simulation

data with controlled bias. Our vision is to leverage scalable agent-based simulation [7,
63, 85, 87] to create a simulated sandbox world from which data sets are collected under
various bias scenarios. Such simulation will be able to model a real region (such as Fairfax
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Fig. 1. Overview of the vision.

County [87] or NewOrleans [63]) using large sets of humanmobility data and census data to
create a realistic digital twin of the region. Within this world, we can leverage state-of-the-
art privacy solutions [75] to emulate privacy-aware data collection or aggregation to obtain
realistic data sets from the simulation. Informed by public health experts, we will use the
simulation to (1) simulate the spread of an emerging aerosol or sexually transmitted disease,
and (2) simulate various forms of data collection bias.

(2) Understanding and correcting bias in AI systems. The simulation sandbox will allow
us to explore links between bias in data collection and the resulting bias in an AI model
prediction based on such biased data, and investigate solutions to correct such bias. Lever-
aging recent work on fairness in AI [102, 104], a sandbox world will allow us to evaluate
existing solutions for measuring bias and fairness in predictive models induced by diferent
types and levels of bias in the simulated data collection. As one source of bias is privacy
mechanisms during data collection and aggregation, the sandbox will allow investigating
solutions to mitigate the data bias induced by diferent privacy constraints. In addition, we
can also investigate privacy-enhanced predictive models using the raw simulated data (as
versus adding privacy at the data collection or aggregation stage) and how they may am-
plify the bias in the data. Once bias and fairness in data are understood, we can leverage
work on class-contrastive counterfactual explanations [88, 103, 105] to explain and mitigate
bias.

In the following section, we provide a brief overview of diferent state-of-the-art models for data-
driven infectious disease spread prediction. Section 3 provides further details on our vision of
using a sandbox agent-based simulation to simulate and control bias in data collection. Section 4
presents a prototype simulation and benchmark bias dataset. Section 5 details the vision of using
this sandbox to understand and mitigate the prediction bias that may be amplioed from the simu-
lated data bias for diferent prediction models. Broader potential societal impacts of our vision are
described in Section 6.
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2 RELATEDWORK ON UNDERSTANDING BIAS IN INFECTIOUS DISEASE SPREAD

PREDICTION MODELS

In this section, we survey state-of-the-art methods for data-driven infectious disease spread pre-
diction (Section 2.1) as well as methods for handling bias in infectious disease models (Section 2.2)

2.1 Existing Models for Data-driven Infectious Disease Spread Prediction

Data-driven epidemic forecasting has been a very large research oeld in the past decade. A recent
survey summarizes more than 300 publications in this oeld [92]. Even before the COVID-19 pan-
demic, this oeld was already a focus of the computing community [79] in the context of innuenza-
like illnesses [2]. For example, ACM KDD has been organizing the International Workshop on
Epidemiology meets Data Mining and Knowledge Discovery since 2018 [1, 3]. The COVID-19 pan-
demic has brought forth very large sets of human mobility data [39, 45, 90], which enabled new
data-driven models. The ACM SIGSPATIAL has been organizing the International Workshop on
Modeling and Understanding the Spread of COVID-19 [10], the International Workshop on Spa-
tial Computing for Epidemiology [8, 9], and community papers on challenges for Mobility Data
Science [83, 84], which include improving the understanding of infectious disease spread using
mobility data. Existing data-driven models to predict the spread of infectious diseases include
compartmental models [4, 61], agent-based models [87, 114], regression models [47], of-the-shelf
sequential models [115], graph neural network models [32, 119], density estimation models [20],
ensemble models [26, 91], contrastive predictive coding [108], as well as many other types of mod-
els [92]. Despite the plethora of data-driven models to predict the spread of infectious diseases, our
understanding of how bias in data collection may afect the accuracy and reliability of resulting
predictions of diferent models is lacking.

2.2 Existing Approaches to Handling Data Bias in Infectious Disease Models

Studies that focus solely on minimizing data bias to support analysis and modeling are numer-
ous [50]. There are, however, few studies that explicitly describe their approach to handling data
bias in their models of infectious disease spread. Take traditional compartmental models for exam-
ple; most compartmental models assume perfect reporting of infected cases, resulting in incorrect
model parameters when otting the model to the data [44]. Techniques such as Bayesian infer-
ence [106], maximum likelihood estimation, and data smoothing and interpolation [74] can help
identify and adjust for reporting biases in the data. Additionally, a few studies investigate the
impact of bias using simulated data on parameter estimation and prediction using compartmen-
tal models. For example, Suhail et al. [107] ond that bias toward testing symptomatic individuals
increases the predicted number of cases over time. Krishnan et al. [68] investigates the impact
of diferent spatial aggregations of case data on R0 estimation, which is typically an important
parameter in models to gain insight into the early growth rate of an epidemic.
Recently more attention has been given to the problem of the natural changes within popu-

lations that occur as a consequence of the epidemic itself, and how traditional infectious disease
modeling approaches largely ignore or are incapable of modeling such interactions. Meadows et al.
[82] reviewed and analyzed the issue of input data bias and its impact on disease modeling during
the COVID-19 pandemic, and highlighted the importance of correction of biases prior to model
parameterization. Equally, evolving biases such as behavioral changes in human populations (self
initiated reductions in mobility, reduced contact, social distancing) as they become aware of a
pandemic over time can lead to substantial discrepancies between estimates from models and real-
world epidemiology for the estimation of key epidemic parameters such as R0 [38]. Correcting
for evolving biases within models is most easily dealt with in individual-based models, while
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deterministic and stochastic models can only address such efects using larger-scale population
approximations.
To handle bias in AI models, researchers use diferent approaches depending on the source

and type of bias, the goal and context of the application, and the ethical and legal implications
of the bias. Some of the common approaches surveyed in References [97, 101, 123] are: (1) Pre-
processing the data to correct for known bias, such as up-sampling or downsampling datasets.
Such an approach is challenging in the context of infectious disease spread where the bias (e.g.,
the testing rates of diferent neighborhoods) is not known a priori; (2) Post-processing the output
of models to adjust for known data bias, which is also diocult when the underlying data bias is
not known, and; (3) incorporating fairness constraints by rewarding models to yield a fair result.
In the context of infectious disease spread, this may also be diocult or even dangerous, where
incurring deliberate false predictions for fairness may mislead public health decision-makers.
In general, tackling bias in prediction models appears to be largely overlooked in the literature

and typically lacks a focus on social fairness. Additionally, despite such important eforts at cor-
recting for data bias, the multifaceted and complex nature of such bias means that it is impossible
to perfectly quantify so that its efects in the modeling pipeline can be fully studied. The following
describes our vision of using a sandbox world in which we can (1) control the bias in observable
data, (2) evaluate the robustness of diferent models to data bias, and (3) investigate solutions to
mitigate prediction bias.

3 AGENT-BASED MODEL FOR SIMULATING DATA WITH CONTROLLED BIAS

To measure and correct the efects of bias in the AI modeling pipeline, we require a perfect under-
standing of the bias inherent to data commonly used as input for AI models. Ideally, we would need
a complete understanding of the real system (i.e., infectious disease spreading through a set of in-
dividuals over space and time) and the degree to which the data that are captured from the system
are representative. Therefore, the objective is to build a scalable agent-based microsimulation

(ABM) that will serve as a sandbox world of which we have perfect knowledge and can collect data
that capture characteristics, mobility, and disease prevalence of 100% of individuals—the Ground-
truth data. In addition, we can collect samples of such data under various bias scenarios, which we
refer to as Observable Data. In Figure 2, we show an overview of our methodology of simulating
both the sandbox world and the data collection within this world. While real data sets have un-
known biases that are challenging to measure, ABM provides the opportunity for diferent types
of bias in the Observable Data to be injected and measured so that its propagation through the
AI modeling pipeline can be thoroughly investigated. It should be noted that the purpose of ABM
is not to be a perfect representation of the real world, but rather a complete representation of a
system from which data can be collected. For this purpose, existing solutions for scalable epidemic
simulations can be leveraged [7, 63, 64, 85, 87, 125].

We can extend existing ABMs of disease spread [87] that are both nexible and general so that
they can be re-parameterized to simulate a variety of infectious human diseases that are transmit-
ted through droplet spread or direct contact (e.g., sexually transmitted diseases). We can utilize a
synthetic population generation approach to generate synthetic individuals and their character-
istics both in terms of socio-demographic make-up (such as gender, race, age, sexual orientation,
and the like) and daily activity sequences. We can modify the selected agent characteristics and ac-
tivities as needed based on the model application (i.e., the disease that is modeled, and the research
questions). Based on the synthetic population’s characteristics, behaviors, and mobility, physical
contact and sexual contact networks can be estimated alongwhich the diseasesmay be transmitted.
We can simulate the collection of four data types, derived from the synthetic population in

the ABM: (1) mobility data, (2) census data capturing socio-economic prooles of various regions,
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Fig. 2. Overview of agent-based modeling framework.

(3) conormed case data, and (4) phylogenetic tree data. These data will be used as the input for
existing AI models to test and correct for bias. For each observable data set, we can orst simulate
the sampling bias inherent to the data. Each of these open data sets can be considered volunteered
information, meaning that synthetic individuals in the ABM decide whether or not to own a smart-
phone and share their location data, whether to participate in the census, whether to get tested,
and whether to report symptoms. Sampling bias can occur in this type of data when the groups of
individuals that choose to volunteer their information difer from the individuals that do not and
thus the data are not representative of the entire population. This can emerge in the case where
certain individuals lack trust or access to the systems that collect the data.
The simulation will allow for sampling bias scenarios where the populations that volunteer

their information can be modioed through a variety of hypothetical scenarios or estimated based
on existing studies. In addition, we can apply privacy mechanisms including data aggregation and
noise addition, calibrated to meet the standards of diferential privacy (DP) [28, 37]. Privacy
mechanisms can unintentionally create additional forms of bias in data. Recent work has demon-
strated that when privacy-protected data are used for downstream decision-making as if they were
true, diferent population groups may be treated diferently [89]. Other works have shown that pri-
vacy protection can mask statistical disparities and thus conceal evidence of the disparate impact
that is potentially discriminatory [122]. Privacy-preserving models also have a disparate impact
on model accuracy, i.e., larger misclassiocation rates for underrepresented groups compared to
well-represented groups [15].

Expertise in spatiotemporal data privacy [23, 24, 51–53, 111, 116, 120] can help inform the data
collection and aggregation process to apply various diferential privacy mechanisms in the gen-
erated data. For example, data on cases may not be published (and thus, observable) for spatial
regions (such as census blocks in the United States) having a population below a certain threshold
to avoid identiocation of individuals; or diferent level of noise may be added to diferent regions
depending on the case frequency. Such data privacy mechanisms and policies can be implemented
in the simulation to gain an unprecedented insight (as in the real world, we do not knowwhat data
we do not have) as to how such simple privacy policies may incur data bias and how this data bias
may afect infectious disease models. We can also simulate more complex privacy-preservation
approaches such as diferential privacy to create observable data sets that have a similar bias as
observed in the real-world described in the following paragraphs.

Human Mobility Data. Human mobility data capture the movement of individuals from a set of
origins to a set of destinations and are commonly used as input for models that simulate the spread
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of disease across geographic space and time [87]. Individual-level mobility is captured by mobile
phone data, collected actively through call detail records and passively through smartphone ap-
plications. These data are typically anonymized and aggregated to produce a range of mobility
data products at various spatial resolutions [13, 33, 43, 45, 49, 96]. For example, SafeGraph [96]
estimates the number of individuals that move from a census block group to a set of commercial
points of interest. Publicly available mobility data sets capture a small fraction of the population
(less than 5%) and thus tend to be subject to sampling bias. For example, the SafeGraph data are
biased toward populations that use smartphones. In addition, data may be subject to noise per-
turbation for privacy protection. For example, the SafeGraph data set applies diferential privacy
approaches to home census block groups of individuals as well as to visited locations [95].

Demographic Data (Census Data). The U.S. Census Bureau’s American Community Survey

(ACS) captures the demographic makeup of populations at various geographies ranging from very
large at the state level to very small at the census block group level. In disease response and mit-
igation, these data are commonly used to identify vulnerable populations that may be more sus-
ceptible to outbreaks or may need tailored interventions. These data can also be used to measure
associations between population demographics and cases, deaths, vaccine uptake, and so on. ACS
data are subject to response biaswhere populations who complete the census difer from those who
do not, referred to as non-respondents. Non-respondents are typically greater in areas with non-
White populations, and areas having lower household incomes, less home ownership and fewer
college graduates, thus these populations may be underrepresented in census data [94]. Typically,
demographic information becomes less detailed as resolution increases to preserve privacy. Indi-
vidual level data are only available in the Public Use Microdata Sample, which is a 5% sample of
the population within a large Public Use Microdata Area.

Conormed Case Data. Health departments and other agencies collect counts of conormed cases
and may make these data available, aggregated at various spatial resolutions. There are many
sources of bias in the collection of epidemic data in public health [40, 118]. One is testing bias,
where some countries have better testing infrastructure, well-funded access to testing and less
stigma around getting tested. Such countries may appear to have more cases than a country where
a lack of resources or stigma results in low testing rates [81]. Another source of bias are case
deonitions. It is reported from many countries that some population groups, such as women and
children, have greater barriers to accessing testing or vaccination [93, 109]. This may bias the case
data toward men, and more importantly, miss spillover transmission into wider population groups.
The presence of asymptomatic infection may also lead to a substantial underestimation of the case
count if only symptomatic people receive testing. In the case of SARS-CoV-2, up to 30% of cases
have asymptomatic infections [98], leading to undetected community transmission.

Phylogenetic Data. Originally an initiative to foster the collaborative sharing of innuenza virus
data, Global Initiative on Sharing Avian Innuenza Data (GISAID) is a trusted and widely
used platform for the rapid sharing of sequence data for a variety of diseases such as innuenza,
monkeypox and SARS-CoV-2. The database captures virus sequences as well as related clinical, epi-
demiological and geographical metadata [100]. Users can then download both sequence data and
metadata to develop phylogenetic (evolutionary) trees. In particular, users may generate a spatially
and temporally resolved tree that shows the evolutionary difusion (spread) of sampled viruses to
their most recent common ancestor (MRCA) [16]. In the case of a pandemic, the estimated
location of the MRCA may suggest the origin of then outbreak [73]. We note that there is obvious
sampling bias in the available sequence data. For example, during the SARS-CoV-2 pandemic, the
United Kingdom and the United States at one point represented 61% (38% and 23%, respectively) of
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the SARS-CoV-2 sequences in GISAID [100], whereas after Denmark (6.6%), every other country
contributed less than 4%. Based on the recorded case data, this means that GISAID has, on the
surface, adequate representation of the U.S. cases (since it has 25% of the global cases), but inad-
equate representation of countries like India and Brazil, each of which has about 10% of the total
worldwide amount but well less than 1% of the sequences in GISAID. To account for sampling bias,
we will proportionally sample GenBank and GISAID at the country level based on known case
counts [35]. In our sandbox, we will have a complete phylogenetic tree. However, the data set that
is produced from our sandbox will be a subset of case data and an even further subset of cases that
are sequenced.
Existing algorithms for infectious disease spread forecastingwill then be applied to bothGround-

truth and Observable Data as described here to understand how biased data lead to biased predic-
tions. We can then evaluate bias for diferent regions and populations, in particular populations
underrepresented in the data.

4 PROTOTYPE SIMULATION AND BENCHMARK BIAS DATASET

Acknowledging that this is a vision article, we provide a preliminary prototype study to show
(1) how an in silico simulation can be used to synthetically scale data bias, and (2) to provide a
simple benchmark dataset to scale the bias at which data is collected. This scenario used in this
prototype study follows the running example described in Section 1.1. In this section, we orst
survey an existing agent-based simulation used for this prototype in Section 4.1. Then, Section 4.2
describes how this simulation was applied to the city of Atlanta, Georgia, USA for the prototype,
how a simple disease model was imposed on the simulation, and how data collection bias for a
high-income area was imposed on the simulation. Section 4.3 describes the generated datasets and
evaluates the imposed bias.

4.1 Paterns of Life Simulation

Our prototype is based on a socially plausible agent-based simulation called Urban Life [125]. Ur-
ban Life is an agent-based city-level simulation in which each agent represents a simulated human
in the real world that follows socially plausible patterns of life. The simulation allows to leverage
real-city environment data (road network, buildings, apartments) leveraging a pipeline to extract
data from OpenStreetMap (OSM). Details how the simulation can be adopted for any region in
theworld usingOSMdata can be found in Reference [6]. Agents in this simulation correspond to in-
dividual humans who commute between their home and work locations. Agents go to restaurants
to eat and go to recreational sites to meet friends and socialize. A social network that captures
friendship, family, and co-worker relationships evolves as agents interact with each other over
time.
Agent behavior is driven by Maslowian needs [80] such as physiological needs (shelter, food),

onancial needs (money), and love needs (friends, family). These needs drive the decision-making
of agents that lead to behavior to satisfy the needs, leading to an emerging behavior in which
agents ond a balance between spending time and making money, meeting friends, and satisfying
other needs. An in-depth description of the Urban Life simulation can be found in Reference [125]
and the Java-based source code of the simulation can be found on GitHub at https://github.com/
gmuggs/pol.

4.2 Infectious Disease Model in the Paterns of Life Simulation

To simulate the outbreak of an infectious respiratory disease we augment the Urban Life simula-
tion with a simple SIR disease model. Initially, all agents are in the susceptible state. A small num-
ber of agents is initially set to infectious. Agents that are susceptible become infectious through

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 17. Publication date: June 2024.



17:12 A. Züfle et al.

Fig. 3. Example dataset of a simulated infectious disease outbreak in Atlanta, Georgia, USA. Diferent
datasets with varying degrees of sampling bias can be found at https://github.com/RuochenKong/disease-

simulator.

exposure to another infectious agent (see details below). Infectious agents will automatically be-
come recovered after seven simulation days. Recovered is a terminal state.
To simulate exposure between agents, the Urban Life uses the concept of meetings in which

two or more agents interact in person to increase their social ties. Meetings operate as the main
transmission pathway, allowing for the spread of an infectious respiratory disease. In general, res-
piratory diseases require a longer duration of close-contact exposure. Therefore, in the simulation,
agents must be in a meeting for at least 5 min to become exposed. Thus, every 5 min in a meeting,
any infectious agent in the meeting has a 1% chance of infecting any susceptible agent in the same
meeting. In the simulation, meetings mainly happen at home and recreational sites.
We note that in this prototype simulation, agents do not change their behavior once they are

infectious. In particular, agents do not use any mitigative actions or avoid meetings when they are
infected. We note that such behavior change can be implemented in the Urban Life simulation as
described in Reference [66]. But for this prototype, we want to keep the data generation simplistic.

We have made the resulting simulation, including the infectious disease model, in a GitHub
repository found at https://github.com/RuochenKong/disease-simulator.

4.3 Prototype Biased Data Benchmark

To obtain biased case data from the Urban Life simulation described in Section 4.2, we follow the
narrative of the running example described in Section 1.1 whereby one spatial region is sampled
at a higher rate than other regions. We divide the Atlanta study region into four approximately
equally sized (in terms of population) regions. We deone one of the four regions (Region D) as
having a higher sampling rate. In the running example, this corresponds to the high-income neigh-
borhood. We run the Urban Life simulation (Section 4.1) having with 2,000 agents. Figure 3 shows
the resulting number of cases, both unbiased (Figure 3(a)) and biased having a sampling rate of
80% in Region D and a sampling rate of 8% in Regions A, B, and C .

This dataset, as well as other datasets with diferent sampling rates available at our Github
(https://github.com/RuochenKong/disease-simulator) can then be used as a benchmark for difer-
ent prediction models to experimentally measure the function that maps data bias to prediction
bias. This function can not be observed in the real world allowing this simulation-based approach
to better understand the robustness of diferent prediction models to the underlying data bias.
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5 UNDERSTANDING, MEASURING, MITIGATING, AND CORRECTING BIAS

The simulation framework will provide us with a sandbox world that we can use to generate and
collect data to feed to pre-existing AI models (surveyed in Section 2). The advantage of employing
the aforementioned sandbox over using real-world data is our ability to control the data collection
strategy in addition to having unrestricted access to an authoritative ground truth of the full census
data that spans the entire population. Such a setup allows us to evaluate how injecting diferent
types and strengths of bias into the data generation and collection procedure implemented within
our simulated world afects the AI models in terms of (re)training, tuning and predictive ability.
Additionally, full control over the modeling pipeline provides us with a unique environment to
investigate the suitability of diverse methods to identify, measure, mitigate and correct bias across
a range of distinct scenarios. Speciocally, we want to answer the following questions:

— How do diferent types of human mobility, case report and phylogenetic data bias afect the
ability of AI models to learn fair, robust and predictive representations?

— How can we correct the bias in AI models for a selection of known biases introduced into
the data generation and collection process?

— How do these biases and their correction mechanisms impact the predictive performance of
AI models overall and across individual populations?

— How can we better estimate the true error of AI models without knowing the (source of)
bias in our data?

The major advantage of using a sandbox environment is the ability to repeat the simulation
with diferent starting conditions and parameters to obtain counterfactual worlds. This allows us
to implement diferent patterns of bias in the data and evaluate how these conditions afect the
predictive performance and bias of the AI models when used as a (re)training or tuning sample. By
repeating experiments a suocient number of times we can gain insights of statistical signiocance,
which is of paramount importance for a high-stakes setting such as this one.

5.1 Understanding the Links between Data Bias and Modeling Bias

First, we want to understand how well-deoned (and controlled) data bias afects the bias of the
AI models when (re)trained or tuned on these data. We will inject bias into data sets iteratively
over many simulation runs, magnifying a single bias source and mixing together diferent types of
bias. Each simulation will have data sampling bias parameters, such as the degree to which certain
populations—stratioed by age, gender, race and income—are sampled in terms of human mobility,
disease reports and viral genome sequencing. Depending on the task, each simulation output will
then be fed to the infectious disease spread predictive AI models both to (re)train or tune them and
to provide us with predicted cases. By repeatedly running our simulation with diferent data bias
parameters we can obtain a database linking simulation parameters, data, (ground-truth) labels and
predictions. This database can be mined for patterns and correlations; in particular, we can evaluate
the following hypotheses:

Spatial Aggregation Undersampling a spatial region—for example, caused by a low population
in that region leading to data gaps due to location privacy—may result in the number of
cases being underestimated in that region, as the underlying AI model is unaware of the
population due to sparsity of training data. In addition, the choice of spatial partitioning
of the universe of discourse into regions—a problem known as the Modioable Areal Unit
Problem [42, 46, 117]—may afect the AI model. Some attempts have been made to address
this, although more work in this area is needed [121].

Socio-demographic Population Undersampling a socio-demographic population—such as the
group aged 65+—may lead to an underestimation of cases in regions having a large
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representation of this population. Alternatively, there might be an overestimation due to
the AI model (incorrectly) extrapolating cases from a smaller population, thus increasing
the sample variance.

Overrepresentation Having a large sample size of cases in a region—for example, due to free
testing being ofered in a given location or for a particular population—may lead to having
more cases of an infectious disease in the observed data, which does not necessarily renect
the true distribution, possibly creating an overestimation of spread in that region.

Data Quality Data collection is often subject to errors, noise and missing information with re-
spect to both instances and labels. Poor quality of data—either throughout or for a particu-
lar subpopulation—may cause the model to underperform or learn a biased representation,
which will be renected in the number of estimated cases.

Given the nexibility and full control over data generation, collection and modeling we can easily
investigate these scenarios and assess their severity and impact. Speciocally, we can compare data
generated without any bias with samples polluted by a range of known biases that are processed
with dedicated correction algorithms. The same procedure may be followed when dealing with
state-of-the-art AI models, allowing us to test a wide array of pre-processing, in-processing, and
post-processing methods [5, 17, 22, 27, 41, 59, 65, 70, 76, 102]. Such a test bed allows us to perform
a comprehensive study and evaluation of available techniques, and ofers a development envi-
ronment for novel methods. Among others, our work will cover four mainstream notions of group
fairness [25]—demographic parity, equalised odds, false positive and true positive—paired with three
types of bias correction algorithms based on: pre-processing [17, 22, 41], in-processing [5, 59, 70],
and post-processing [27, 65, 76].

5.2 Robust Solutions for Fairness in AI Models

Once we understand the sources of bias and identify methods that are appropriate to measure it,
we can investigate bias correction mechanisms suitable for various bias scenarios, and their robust-
ness to controlled changes in the data distribution and quality. For example, we can investigate
how the detrimental side efects of (pre-)processing techniques common to this type of (sensitive)
data, e.g., intended to preserve privacy of individuals, can be efectively counteracted with bias cor-
rection algorithms. We may also look into augmenting real-life data or supplementing them with
simulated samples by studying mixtures of samples generated with diferent initial conditions to
identify methods capable of improving the robustness of state-of-the-art data-driven AI models
for infectious diseases spread prediction. In addition, we can investigate adding state-of-the-art
privacy-preserving machine learning techniques [28] for disease predictive models and how it
may amplify the bias in the data. We may also revisit the privacy mechanisms and investigate if
we can develop privacy mechanisms that are equitable or satisfy the fairness notions we discussed
above. It has been recently shown that there are cases where the constraint of diferential privacy
precludes exact statistical notion of fairness (namely, equality of false positives and equality of
false negatives) [29]. However, it is possible to build a classiocation algorithm that maintains util-
ity and satisoes both DP and approximate fairness with high probability. We may investigate data
aggregation and learning algorithms with both DP and fairness constraints with approximations
in either or both of them as appropriate, and then evaluate their impact and how they compose
with the other bias correction algorithms we will develop.

5.3 Evaluation and Error Estimation of Corrected Models

To achieve our vision, it is essential to assess the impacts of biases and correction mechanisms
on AI models, as well as to estimate their performance beyond simulated environments without
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prior knowledge of real-world data sources and distributions. Analyzing the impacts of biases and
correction mechanisms on AI models across various scenarios is important in understanding how
diferent types and strengths of biases could afect the performance and fairness of the AI models.
Levaraging the simulations, we could conduct sensitivity analysis, which enables the evaluation of
the robustness of corrected models to changes in data distribution and quality. Varying input pa-
rameters and data in the simulation environments allow for the assessment of model performance
under diferent conditions and help identify potential vulnerabilities or areas for improvement.
For comparing model outcomes before and after correction, metrics such as disparate impact and
accuracy across diferent demographic groups could quantify the efectiveness of bias correction
mechanisms. To be more specioc, by conducting this analysis, we could potentially identify the
most efective correction mechanism for a particular bias scenario. Further, based on these results,
Mixure-of-Experts-like architectures would be a valuable and interesting working direction to en-
hance the AI models in terms of mitigating the potential unknown biases in real-world scenarios.
Such sensitivity analysis will also provide valuable insights into the resilience of corrected AI mod-
els and guide further debiasing developments.
Estimating the error of AI models (including the corrected AI models) without knowing the

bias in real-world data is a challenging task due to the hidden unexplored bias, complex interac-
tions beyond simulation, and limited and sparse data sources. To address this ongoing challenge,
several directions could be considered. First, robust data sampling and feature engineering: active
sampling could be introduced to strategically select and prioritize data samples that have been
largely investigated in the simulated environments for model training and evaluation. By focus-
ing on informative data points, active sampling can help mitigate the efects of hidden biases and
sparse data sources. Besides, advanced feature engineering approaches including using existing
powerful LLMs (that have general knowledge and common sense about the open world) to extract
informative semantic features could reduce the potential biases caused by the straightforward
spatiotemporal feature selection process. Second, continuous updating with expert feedback: im-
plementing mechanisms for continuous updating of models based on expert feedback could be
beneocial in reducing the bias caused by limited data sources and exploring newly occurred bi-
ases. Similar to leveraging RLHF [60] (Reinforcement learning from human feedback) used for
improving LLMs, we could also design new correction mechanisms based on the feedback from
experts. Additionally, we could reproduce the observed biases from the feedback in our simulation
environments to generate more simulation data to provide high-quality data for investigating the
correction mechanisms.

6 DISCUSSION AND CONCLUSION

Our vision focuses on investigating the way in which bias propagates through the data to models
and predictions derived from AI-based approaches. Here, we discuss the primary contributions
should this vision be achieved.

6.1 Rapid Response to New Emerging Diseases

There is potential to consider a range of infectious diseases including COVID-19, the 2022 global
monkeypox outbreak, and H5N1. For example, the recent emergence of monkeypox ofers a robust
case study and motivation to investigate this problem and address questions of fairness, given that
mpox has been longstanding in African countries, despite a surge in incidence since 2017 [86].
The spread of mpox in non-endemic countries in 2022 is unprecedented, complex and has a difer-
ent pattern to spread in the African continent [110]. As of February 2023, GISAID captures 5,137
sequences of hMPXV—the human mpox virus [48]—which provide a solid sample for contrastive
learning of AI models. However, since monkeypox is transmitted through close and often intimate
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contact with most cases reported in gay, bisexual, and other men who have sex with men [30, 110],
we will need to investigate diferent approaches to simulate data collection bias.

6.2 Improving Understanding of Bias in Disease Spread Prediction Models

We will develop and make available datasets that explicitly incorporate bias, such as overreport-
ing COVID-19 tests in specioc locations (e.g., Section 1.1) or underreporting in certain socio-
demographic groups. Such datasets are critical to support the signiocant advancement of all dis-
ease spread prediction models, providing ground-truth data alongside biased samples, enabling
researchers and modelers to directly investigate and quantify the impact of biases on their analy-
ses and outputs in any data-driven model.
This approach is crucial for enhancing the awareness and understanding of bias within data-

driven models, particularly in public health contexts. By exposing and quantifying the efects of
bias, these datasets empowermodelers to developmore robust, fair, and accurate predictivemodels.
Furthermore, they ofer a valuable educational resource for training the next generation of data
scientists in recognizing and mitigating bias, ultimately leading to more informed and equitable
decision-making processes in various sectors, including healthcare, policy-making, and beyond.

6.3 Trust in AI Models for Disease Spread Prediction

Beyond understanding bias in existing predictive models, we hope that our project will help
decision-makers to improve their trust in AI models used for infectious disease spread predic-
tions. By being able to quantify, evaluate and correct the bias incurred by such model, we hope the
general trust in AI models for disease spread prediction will improve. Or at least, by quantifying
sources of bias in AI models we hope to identify a path forward to improve AI models in future
research to potentially enable the use of AI models for infectious diseases prediction by decision-
makers in the future. This includes a greater understanding of the aspects of the model that are
more robust and reliable, and thus, more trustworthy and safe to be automated and deployed, and
the aspects in the decision making pipeline that require further scrutiny and human experts in the
loop [99].

6.4 Understanding Region-Specific Data Bias

Our proposed approach will enable us to better understand how cultural, demographic and re-
gional diferences, may yield diferent biases in AI model predictions. Consider Example 1.1, where
a large number of cases are observed in a high-income neighborhood. Without accurate informa-
tion on the actual number of cases, it is challenging to determine whether the outbreak is cononed
to this anuent area (Option 1) or if it has also spread to low-income regions but remains unob-
served due to barriers such as the high cost of testing (Option 2). In societies where there is minimal
interaction between anuent and low-income groups, Option 1 might be more likely. However, in
places like the United States, where people of varying incomes share common spaces like grocery
stores and healthcare is costly, Option 2 could be more probable. By incorporating social science
expertise into the project, we can simulate cultural diferences, and thus investigate and correct
diferent types of regional bias in our sampled data.

6.5 Enriching Curricula with Case-Studies on Fair AI

Programs across the world ofer courses on ethical issues in their computer science undergraduate
and graduate curricula. If our vision became reality, then we could enrich such courses through
a demonstration framework that uses a (simplioed) version of an agent-based simulation (such
as envisioned in Section 3) that allows to change the bias at which individual-level data are col-
lected and to evaluate how this data bias afects (simple and complex) predictive algorithms. For
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example, the framework may allow users to decrease the sampling rate of the female population
or increase the chance that a female agent will report symptoms when self-testing negative. The
algorithm may show that such biased sampling may lead to an overestimation of the infection
risk of female agents (and, symmetrically, an underestimation of the infection risk of male agents).
The framework would implement simple statistical models (such as Bayesian classioers), simple
machine learning models (such as decision trees), and state-of-the-art deep learning approaches.
By showing the efect of data collection bias on diferent models, students will be reminded to con-
sider the assumptions made by algorithms (such as i.i.d. sampling), develop an intuition on how to
interpret results when data collection bias is known or suspected, and understand the robustness
against data bias of diferent models.
In conclusion, our vision is a novel approach that will allow for a better understanding and

mitigation of bias in theAI diseasemodeling pipeline. Achieving this visionwouldmean improving
trust in suchmodels for informing fair and equitable policy interventions for rapid response to new
emerging diseases, improving bias detectionmethodologies, and encouraging consideration of bias
for more fair and equitable AI. Beyond this study, our vision calls to the broder data science and
modeling community to investigate and mitigate efects of data bias. This is critical to ensure that
data driven AI models are transparent, fair, and equitable tools for decision support and policy
making.
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