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CONTOUR DYNAMICS AND GLOBAL REGULARITY FOR
PERIODIC VORTEX PATCHES AND LAYERS*
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Abstract. We study vortex patches for the two-dimensional incompressible Euler equations.
Prior works on this problem take the support of the vorticity (i.e., the vortex patch) to be a bounded
region. We instead consider the horizontally periodic setting. This includes both the case of a
periodic array of bounded vortex patches and the case of vertically bounded vortex layers. We
develop the contour dynamics equation for the boundary of the patch in this horizontally periodic
setting and demonstrate global C1+¢ regularity of this patch boundary. In the process of formulating
the problem, we consider different notions of periodic solutions of the two-dimensional incompressible
Euler equations and demonstrate equivalence of these.
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1. Introduction. A two-dimensional (2D) vortex patch is a solution to the 2D
Euler equations for which the vorticity is a constant multiplied by the characteristic
function of a domain. We investigate the behavior of vortex patches in an infinite strip
periodic in one direction, topologically S* x R, and the corresponding behavior of the
vortex patch or layer in the full plane. Our main results are the extension of the C'+
global regularity theory for the boundary of the vortex patch to this case, developing
and using the appropriate contour dynamics equation (CDE) for this purpose. Here,
and throughout, we fix ¢ € (0,1).

1.1. The Euler equations. We can write the 2D incompressible Euler equa-
tions (without forcing) on a domain U in vorticity form as

Ow+u-Vw=0 inRxU,
(1.1) u=Klw] in RxU,
w(0) =w? in U.

Here, w is the vorticity—the scalar curl of the velocity field u. The vorticity is
transported by the velocity field as in (1.1);, and the velocity field is recovered from
the vorticity field by the constitutive law in (1.1) so as to be divergence-free and
to satisfy any boundary conditions, decay at infinity, or periodicity that might be
demanded based, in part, upon the nature of the domain U.
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Classically, if U = R? and the solution has sufficient decay, one uses the Biot—
Savart law as the constitutive law:

1 xt

2m [x[?

Here, K is the Biot—Savart kernel, which we note lies in L}, (R?), though K ¢ LP(R?)
for any p € [1,00]. To handle solutions having insufficient spatial decay of the vorticity,
we must either find an appropriate substitute for the Biot—Savart law or avoid it
entirely by using a velocity- pressure formulation.

(1.2) Klw]:=Kx*w, K(x):=V* [;ﬂ log |x] =

1.2. The plane and the cylinder. In this paper, we will consider two domains:
U =R? and U =11, the infinite flat periodic strip, S* x R =2 R?/Z =2 C/Z, which we
will most often treat in the form
(1.3) II:=[—3,3] xR with {—1} x R identified with {1} xR.
We will also find use for the same set as a subset of R? or C without identifying its
sides:

(1.4) IL,:=(-1,1) xRCR>

Suppose we have an initial vorticity w® = 1q for  a bounded domain in II. We
can periodize it to obtain an initial vorticity in R? that is periodic in z;. What results
may consist of an infinite number of disconnected domains repeated periodically, one
connected, x1-periodic domain, or a combination of each. Figure 1 displays an example
of a simply connected bounded domain in IT yielding an infinite number of copies of
the domain in R2. Figure 2 displays two examples of a non-simply connected domain
in I producing one domain in R? periodically repeating in x;, a so-called vortex layer.

On the other hand, we could instead formulate the problem by starting with an
initial vortex patch in R? and periodize it in z;. If we can translate the evolution of
the patch in R? to the evolution in IT and back, we can use an understanding of patch
behavior in IT to gain an understanding of the periodic behavior in R2. The translation
back and forth between IT and R? is best understood in the more general setting of
weak solutions to the 2D Euler equations for bounded vorticity, which includes vortex
patch data as a special case.

1.3. Three types of solutions. Toward this end, we consider three types of
solution to the 2D Euler equations. We summarize the three types of solution briefly
now, giving more complete descriptions in later sections.

Type 1 Assume that u® € L>°(R?) is divergence-free with w? := curlu® € L*>°(R?)
as well. Obtain a bounded vorticity, bounded velocity solution to the 2D
Euler equations on all of R? having initial velocity u® as done by Serfati

in [37].
G

FIG. 1. Ezample of a periodic vortezx patch in R? and in II.
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F1G. 2. Two examples of a periodic vortex layer in R? and in II.

Type 2 Assume u® € L°°(I) is divergence-free with w® := curlu® € L>°(II) as well.
Solve the 2D Euler equations in II, as done in [2, 20, 21].

Type 3 Let w® € L>°(R?) be compactly supported. Solve the 2D Euler equations
in vorticity form in all of R? with initial vorticity w®, but recovering the
velocity by applying the Biot—Savart law symmetrically to pairs of the
periodically extended copies of w. This leads to a replacement Biot—Savart
kernel, K.

Type 1 and Type 2 solutions are for (potentially) nondecaying velocity and vor-
ticity, but for Type 3 we restrict our attention to vertically decaying solutions, since
our primary application is to vortex patch data. Moreover, the convolution K, * w
cannot be easily defined without some decay assumption.

We will find that all three types of solution are equivalent for a large class of initial
data. Since our primary interest is in vortex patches and layers, we will keep things
simple by assuming compact support in IT. Assuming, then, that g € LS°(R?)—the
space of essentially bounded functions with compact support—we define Per(g) on II
by

Per(g)(x) =Y g(x— (n,0)),

nez

noting that for each x the sum has only finitely many nonzero terms. For any mea-
surable function f on II we define Rep(f) on R? by

Rep(f)(x) := f(z1 — |21 + 3], 22).

DEFINITION 1.1. Two functions g1,g92 € L (R?) are equivalent, g1 ~ go, if
Per(g1) =Per(gz). Figure 3 depicts the support of two functions in the same equiva-
lence class.

Suppose that g € L°(R?), and for purposes of illustration, let us treat it as the
characteristic function of a bounded domain (our primary application), whose support
is depicted as in either (a) or (b) of Figure 3. Below, we construct an initial vorticity
from g and depict the support of w® for each type of solution (the time-evolved
vorticity being of a similar nature).
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Fia. 3. Support of two L (R?) functions in the same equivalence class.

Type 1 Let w®=Rep(Per(g)).

TN

Type 2 Let w® =Per(g).

Type 3 Let w® = ¢g. The vorticity w is transported by the flow from the single
copy of g, and so is no longer the curl of u. There are, in effect, multiple
phantom copies of g matching those of Type 1.

\

or
\ \

The vorticity w® for Types 1 and 2 does not depend upon the representative for
the equivalence class, though Type 3 does. We will find, nonetheless, that the velocity
field for solutions of Type 3 is independent of the representative.

It is mentioned in [19] that a Type 2 solution is equivalent to a Type 1 solution
with periodic velocity and pressure. Following up on this comment, we will show
that all three types of solution are equivalent. The equivalence of Type 1 and Type 2
solutions, which applies to a larger class of initial data than we have so far discussed,
will rely upon the properties of the pressure required for uniqueness for those two
types of solution. The equivalence of Type 3 and Type 2 (and so of Type 1) will
rest primarily on showing that solutions of Type 2 reduce to those of Type 3 when
the vorticity has sufficient vertical decay. A side benefit of this approach is that it
will give the well-posedness of Type 3 solutions. Such a well-posedness result could
be obtained by adapting in a fairly straightforward way the approach Marchioro and
Pulvirenti take in [31, 32] for the 2D Euler equations, except for subtle points regarding
the periodicity of the pressure. It is thus more efficient to leverage the technology
developed in [2, 20, 21], though it is more than is strictly needed to develop Type 3
solutions alone.

Specializing to vortex patch data, we will then show how the CDE is adapted from
the classical form, which allows the propagation of regularity of the boundary of a
vortex patch to be proved, adapting the argument of Bertozzi and Constantin in [10].
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1.4. Prior work. Bounded vortex patches evolving under the 2D Euler equa-
tions have been well-studied, with global regularity of the boundary being established
by Chemin [15] and by Bertozzi and Constantin [10]. Regularity of the vortex patch
boundary can also be seen to follow from a more general approach studying level sets
of the vorticity, establishing striated regularity, as in the work of Chemin [16] and
Serfati [36]. Regularity of bounded vortex patches and/or striated regularity have
been established for solutions of related evolution equations as well, such as aggre-
gation equations [8], active transport equations [6], and the surface quasi-geostrophic
equation and related systems [14, 22, 29]. None of these problems consider unbounded
vortex patches as in the present work.

There are seemingly fewer papers on the evolution of vortex layers. An equation
similar to our version of the CDE for the motion of the patch/layer boundary was de-
veloped in [33] and was subsequently used in [24] for the study of complex singularities
in vortex layers. (We mention that the version of the CDE developed in the present
work lends itself to the study of global regularity.) Atassi, Bernoff, and Lichter study
the interaction of a point vortex with a vortex layer [5]. Crowdy gives some exact
solutions of vortex layers interacting with solid boundaries [18]. Benedetto and Pul-
virenti have shown that vortex layers rigorously approximate vortex sheets in analytic
function spaces [7]. Caflisch, Sammartino, and collaborators have considered vortex
layers which are not sharp fronts in a series of papers [12, 13, 11], considering how such
flows behave in the zero viscosity limit and how such flows may approximate vortex
sheets, which represent a more singular vorticity configuration. In these works, they
take the vorticity to be exponentially decaying (in the vertical direction) away from a
core region, rather than being an indicator function as in the present work. Despite
the difference there are similarities to the present work, such as the development of
velocity integrals similar to the spatially periodic CDE we develop for the periodic
patch/layer problem. Further background on vortex layers may be found in [23].

While we are unaware of other works on the global regularity of unbounded vortex
patches for the 2D Euler equations, the situation is different for the quasi-geostrophic
equation. Rodrigo developed existence theory for a patch which is spatially periodic
and vertically unbounded in one direction (similarly to a half-space) [34, 35]. More
recently Hunter, Shu, and Zhang have studied the related front solutions of the surface
quasi-geostrophic equation [25, 26, 27].

1.5. Organization of this paper. We will find many of our calculations much
more convenient to perform in the complex plane, yet our results are all real-valued.
We describe how to translate back and forth between these settings, largely a matter
of notation, in section 2. In section 3 we describe the process of symmetrizing in pairs
that is behind the Type 1 solutions, which we explore in section 4. In section 5 we
describe the results of [2, 20, 21] that yield Type 2 solutions, and we use those results
in section 6 to obtain Type 3 solutions. We show the equivalence of the three types
of solution in section 7. In section 8 we give expressions for the velocity gradient
in terms of the vorticity, deferring the proofs to Appendix A. We then specialize to
vortex patch solutions for Type 1, 2, and 3 solutions, obtaining their CDE in section
9, and establishing the global-in-time propogation of the regularity of a vortex patch
boundary in section 10.

2. Preliminaries: R? and C.

2.1. Real to complex translation. Some of our calculations will be more
easily performed using complex analysis, though the end results are all real-valued
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functions. For this we need a means, and a corresponding notation, to switch back
and forth between viewing points in the plane as vectors or points in C2. For this
purpose, we will use boldface letters, such as x or u, for quantities that are intrinsically
elements of R? or vector-valued. We define maps,

—: C—R? +:R?=C,
SN and .
x +iy = (,y) (@,y) = +iy

For a vector x = (z,y), we define

xti=(—y, ).

€

Hence, x— is x rotated 90 degrees counterclockwise.

LEMMA 2.1. Let z,w € C and - be the usual dot (inner) product of Fuclidean
vectors. Then

2.1 -
@1 Im (zw) = —% - wt.
IfaeR, z€C,
N —
(2.2) at=az, iz=z% vi=i¥V.

Also, f is analytic in some domain U if and only if div?: curl?: 0 in U, where for
any vector field v,

di ovt N ov? ov? vt
ivvi= — + — = —

Ox1 Oxzy’ Ory  Oxy
are the divergence and (scalar) curl of v.

The boundary integrals we encounter will be real path integrals, but we will
sometimes find it useful to transform them to complex contour integrals as in the
following lemma.

LEMMA 2.2. Let~y: [a,b] = C be a Lipschitz-continuous path on which the complez-
valued function f is continuous. Let T be the unit tangent vector in the direction of ~y
and n the associated unit normal, with (n,T) in the standard orientation of (e1,e3).

L61 C—image Y- Then
¢.} / .} T 7,/ ’ ‘n.

Here, ¢ is a complex contour integral.

Using Lemma 2.1, it is not hard to rewrite the classical Biot—Savart law in the
following hybrid real-complex form.

THEOREM 2.3. Assume that w € L' N L*°(R?). With K as in (1.2),

(2.3) u(x):=K*xw(x) = —% ;Ll) dy
R2 y—X

is divergence-free with curlu = w, and u s the unique such velocity field in L N

H'(R?).
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2.2. The cotangent.
LEMMA 2.4. For any z € C that is not an integer,

N

1 oz 1
cotmz=—+2 ———— = lim .
et z+ ;zQ—nQ Naoon:Z_Nz—l—n

Proof. For the first equality see, for instance, (11) in section 5.2.1 of [3]. The
second equality then follows from

z z 1 1 + 1
22-n2 (z—n)(z+n) 2| z—-n z+n

and summing in pairs, n with —n. ]

LEMMA 2.5. For any x,y € R2,

. N x + (n,0) B — =
lim Z FENEIE y =meot(rX) - y.

N —o0
n=—N

Proof. Letting z =%, w= ¥, and using (2.1)1, we have

x + (n,0) ~y:Re((E+n)w):Re(ern)w:Re w

|x + (n,0)]? |z + nl? |z + n|? z+n
S0

N

| x+ (n,0)
hm —_—
NS 2e Txt (n,0)2

= reot(nX ) -y =meot(nX) -y,
where we again used (2.1);. |

2.3. Useful identities. The identities in (2.4) and (2.5) are easily verifiable;
.6) is 4.3.58 of [1].

-y =Re =7 Re(wcot z)

Ny
)
wlim Y
n=—N

) |sin z|?> = sin® z + sinh? y,
) cosh2z =2sinh?z +1, cos2z=1— 2sin’z,
) __sin2x —isinh2y

ot z = .
cove cosh 2y — cos 2x

2.4. Lifting paths and domains. We will find the need, in the proof of The-
orem 9.6, to apply Lemma 2.2 while integrating in II and apply Cauchy’s residue
theorem. This could be done directly by introducing a version of the residue theorem
for II, which is a (flat) analytic manifold. Alternately, we can transform integrals in
IT to integrals of z1-periodic functions in C by lifting the domain €2 in II to a suitable
domain €2 in C. Our main tool for doing this is the lifting of paths from a topological
space to a covering space.

Defining

p: C—TII, p(ry+ize) =21 — |21+ %J + ix9,

we see that (C,p) is a covering space of II (see section IX.7 of [17], for instance). This
will allow us to lift a path in II to a path in R? or C.

Remark 2.6. Rep(f)(x) = f(p(x)), though we do not make direct use of this.
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DEFINITION 2.7. A path in the topological space X is a continuous map from an
interval I to X. The path 4 in C is a lift or lifting of the path ~ in Il if poy =-.

LEMMA 2.8. Let ~ be a finite length continuous path in I with initial point xq.
For any Xo € p~Y(xo), there exists a unique lifting 4 with initial point Xg.

Proof. This is a classical result; see, for instance, Corollary IX.7.5 of [17]. 0

This lifting allows us to relate path integrals in II to lifted path integrals in R?
or C.

LEMMA 2.9. Let v be a Lipschitz-continuous path in II with a lift & as given by
Lemma 2.8. For any continuous function f on II,

Lf=Lfop-

Moreover, the normal vector field n on v lifts to itself as does T; that is, n(y(a)) =
n(y(«)) for all « in the domain of v (which is the same as the domain of ).

Proof. Suppose that v: [a,b] — II, in which case also v: [a,b] — C with poy =1.
Then

/:YfOP=Lbfop(§(a))?/(a)da=/abf(v(a))v’(a)da:/vf,

We used that 4'(a) = ~/(c), since locally 4 and ~ differ by a constant (if we view ~
as giving values in II,). This also gives that n and 7 lift to themselves. ]

Lemma 2.9 is not, however, the entire story when we lift the entire boundary of
a domain in II. An immediate difficulty stems from the ambient space II, which is
topologically a cylinder, having nontrivial fundamental (and first homology) group
Z. Let us say that a closed curve on II wraps around the cylinder n times if it
crosses {x1 =0} (any vertical slice would do) n times counted with sign, positive in
one direction, negative in the other (arbitrarily fixing which direction is positive).

A closed path that wraps zero times around the cylinder is homotopic to a point
and lifts to a closed path in C. A closed path that wraps around the cylinder n times,
however, will lift by Lemma 2.8 to a nonclosed path in C that contains |n|+ 1 points
of xg 4+ L, where we define here and for future use,

(2.7) L:={Z} x {0}, £*:==°L)\(0,0),

treated as subsets of R? or of C. Since we are lifting paths that are boundary compo-
nents, they will always be closed in II, but can wrap only 0 or +1 times around the
cylinder; else they would of necessity self-intersect.

Figure 4 shows an example of a domain €2 in II having two boundary components
I'y, T’y which lift to nonclosed paths I'y, I's. To make a domain from these paths, we
could connect I'y, I's with vertical paths at z; = —% and x = %, oppositely oriented,
so that the four paths together form the boundary of a lifted domain Q.

Equivalently, and in a manner more easily generalizable, we cut the cylinder
IT vertically! along the line ¢ = {:1:1 ::I:%}, which in effect means we view II in
the form suggested in (1.3). For any line segment formed by ¢ N 0Q we introduce

n pathological cases, we would have to perturb this cut to avoid producing an infinite number
of boundary components, but we will not explore this issue further.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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D
oy
.

Fic. 4. Lifting of 02 with base points at x1 = 7%,

oppositely oriented paths; together, the lifted components of 02 and these paths,
properly oriented, form the boundary components of the lifted domain €.

In lifting these components and paths, however, we need to ensure compatible
initial points for the paths. To do this, fix any x¢ in 2. Let y be any point in {2 and
let v, be a path connecting xo to y. Being a domain, {2 is path-connected so this is
always possible. By Lemma 2.8, there is a unique lifting ,7y of 7, with initial point
Xo. Then Q:= Uyeq 7y is the desired lifting of Q.

Lifted in this way, we have the following lemma.

LEMMA 2.10. Let Q be a bounded domain in I and let Q) be the lifted domain as
described above. Let ~ be a parameterization of O and 4 a parameterization of 0S).
Let f be any continuous complex-valued function. Then

e [
o0

£f=§éfop, | o= Gomer [

Proof. The proof follows from Lemma 2.9, since the cuts introduce integrals that
cancel in pairs. 0

L
L

op) - n.

3. Periodized functions and Biot—Savart kernels.
DEFINITION 3.1. Letw € L'NL>(R?). We say that the velocity field u is obtained
by symmetrizing in pairs (about 0) if, letting w™ (x) = w(x + (n,0)), we have

u=Kgnw:=K*w+ ZK* (w(_") +w(")) )
n=1

DEFINITION 3.2. Let S = S(R?) be the Serfati space of bounded, divergence-free
vector fields on R? having bounded vorticity with norm,

[lulls := [Ju| Lo (r2y + [[curl ul| oo (r2)-

We define S(IT) similarly.

Remark 3.3. As shown in (2.11) of [21], for any w € L (II) there is a divergence-
free vector field u in L°°(II) and so in S(II) for which curlu = w. S(R?) is very
different, for there is no known general condition on w € L°(IR?) alone that guarantees
auin L°°(R?).

PROPOSITION 3.4. For w € L2°(R?), let u = Kyym[w] as in Definition 3.1. Then
u € S(R?) with curlu = curl Ky, [w] = Rep(w). Further,

—

. L
(3.1) u=Kyymw] = Ko *w, Koo(x)::—%cotﬂ§: ?] ,

———
|:C0t T

|~
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where we note that K, is periodic in x1 with period 1, as is u. We also have
(32) Koo (x) = K(x) + H(x),

where H is harmonic on R? \ L*, where L* is defined in (2.7).
Proof. Applying Theorem 2.3, we have

I, =K x (w(_”) +w(")) (x) = _ [ w(y) n w(y) dy,
27T R2 y—X—n yé_x_’_n

SO

21 Jpe (y< —X)2 —n?

From Definition 3.1 with Lemma 2.4, then (the compact support of w allows us to
interchange integration and summation)

%

W) =5 [ cot(rG=x)ly) dy.

and (3.1) follows from (2.2). Since the singularity of cot(nz) at z =0 is like 1/(72)
and w is compactly supported, we see that the above integral lies in L°(R?). Since
the curl of each I,, is w(~™ + w(™ while its divergence is zero and the sum converges
absolutely and uniformly, we know that divu=0 and curlu =Rep(w).

But cotz =1 + h(z) on C\ L*, where h is analytic. From this (3.2) follows. 0O

PROPOSITION 3.5. If wy ~ wq in L°(R?) as in Definition 1.1, then Ky * wy =
Koo *wa.

Proof. For any w € LS°(R?),

KoxPer(w) /K x —y)Per(w)(y)dy = /K X — y w(y — (n,0))dy

€L

/ S Kaclx = (v = (1,0)) )y — (n,0)) dy
_Z/K x — (y — (n,0)))w(y — (n,0)) dy = Z/ —y)w(y)dy

nez Iy —(n, 0)

= |, Koolx = y)(y) dy = Koo % (x).

We were able to interchange the integral and sum here because for any fixed x, the
compact support of w makes all but a finite number of terms in the sum zero. Hence,
if wy ~we, then Ko *xwi = Koo x Per(w) = Koo * wa. a

We will see in subsection 5.1 that K, also serves as the Biot—Savart kernel on II.

4. Type 1: Periodized solutions. We review here results, obtained variously
n [4, 28, 37, 38], on bounded vorticity, bounded velocity solutions to the 2D Euler
equations in R2.
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DEFINITION 4.1. Fiz T >0 and let u € L>(0,T;S5) NC([0,T] x R?) with vorticity
w:=curlu. We say that u is a bounded weak Eulerian solution to the Fuler equations
without forcing if, on the interval [0,T], dyw+u-Vw =0 as a distribution on (0,T)xR2.
We say that u is a Lagrangian solution if w(t, X (t,z)) =w(0,z) for all (t,x) € [0,T] x
R?, where X is the flow map for u (noting that u has sufficient reqularity to ensure
the existence of a unique classical flow map).

Let ar be a radial cutoff function: ag(-) = a(-/R) for any R > 0, where a €
C*°(R?) is radially symmetric and equal to 1 in a neighborhood of the origin. For
definitiveness, we will assume that a =1 on B;(0), a =0 on B(0)°, and |a| < 1 on R

THEOREM 4.2 ([28]). Any weak solution to the Euler equations (Eulerian or
Lagrangian) with u € L>(0,T;5) N C([0,T] x R?) having vorticity w with u(0) =u°,
w(0) =w®, must satisfy, for some Uy, € C([0,T))%, the Serfati identity,

u? (t) = (u°)! = UL (t) + (aK7) * (w(t) — w")

4.1 t )
1) _/0 (VV*[(1 = a)KI]) *(u@u)(s)ds,

7=1,2, and the renormalized Biot-Savart law,

(4.2) u(t) —u’=U(t) + Rli_r}rloo(aRK) * (w(t) —w)

on [0,T] x R2. Furthermore, the corresponding pressure is of the form
(4.3) plt,x) = —UL(t)  x+q(t,x),

where q grows sublinearly at infinity.

Theorem 4.2 characterizes solutions to the 2D Euler equations that have bounded
vorticity and bounded velocity: their existence and uniqueness under the condition
that (4.1) holds is shown, for Uy, =0, in [37] and elaborated on in [4], their extension
to a general U, being a simple matter. Uniqueness under the assumption of sublinear
growth of the pressure is established in [38].

Combining these results leads to the following.

THEOREM 4.3. Let u® € S(R?) and set w® = curlu®. There ezists a solution (u,p)
to the 2D Euler equations with u € L>(0,T;S5) N C([0,T] x R?) having initial velocity
u. Eristence and uniqueness hold if we require that the solution satisfy any one (and

hence all) of (4.1) through (4.3) with Uy =0.

5. Type 2: Solutions in an infinite periodic strip. Let BUC(II) be the
space of bounded, uniformly continuous functions, noting that any vector field in
S(IT) lies in BUC(II). Well-posedness of solutions to the Navier—Stokes equations for
initial velocity in BUC(II) was established by Afendikov and Mielke in [2]. Building
on this, Gallay and Slijepcevi¢ in [21] (and see the comments in [19]) obtained im-
proved bounds for the case where the initial velocity lies in S(II), having established
properties of the pressure in [20]. These works are for the Navier-Stokes equations,
but as the authors point out, the pertinent estimates are uniform in small viscosity
and hold for solutions to the Euler equations as well (by repeating the argument with
the viscous terms missing or by using known vanishing viscosity results).

In Theorem 5.3 we give the well-posedness result as derived from [2, 20, 21], but
for this we need to first explore some aspects of the analysis in these references.
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5.1. Biot—Savart kernels. The authors of [2, 20, 21] orient their periodic strip
(infinite cylinder) horizontally and S! is, in effect, parametrized from 0 to 1. Let
(2, 25) be the coordinates for the horizontal strip of [2, 20, 21], while we will keep
(z1,x2) for our vertical strip. Rotating the horizontal strip 90 degrees counterclock-
wise induces the change of variables,

Ty e, xhey —my.

The Biot-Savart kernel on IT used in [2] and (2.7) of [20] is VG, where

1
Gz, 25) = yo log (2 cosh(2mx}) — 2 cos(2mzh))
7

is the Green’s function for the Dirichlet Laplacian on II. In (z1,x5) variables,
1

(5.1) G(z1,22) = = log (2 cosh(27mz2) — 2 cos(2mz1)).
T

LEMMA 5.1. We have Ko, = V1 G. Moreover, G(x) = (2rr) 1 log p(x), where

1

(5.2) p(x) = (sin2(7'rm1) + SiIth(TFJJQ)) .

Proof. From (2.5), 2cosh(27w3) — 2cos(2mx1) = 4p(x)?, gives our alternate ex-
pression for G (noting that the Green’s function on II is unique up to an additive
constant). From (2.6) and (5.1), we have

1 (—msinh(27xs), wsin(2rxy)) 1 —
5.3 ta = ’ — Zcot
(5:3) VoGl a) 21 cosh(2mwzy) — cos(2mxy) 2% (2)”,
matching the expression for K in (3.1). Here, we used (2.6). ad

LEMMA 5.2. The function log p(x) — log |x| is harmonic on R? \ L*, where p is
defined in (5.2).

Proof. Letting z = §7 we have, using (2.4),

. 2
sz

1 2 1 . .
log plx) —log|x| = 5 log p|(xx|l =5ls —log| ™% | = Relog ™7,
which is the real part of a function that is complex analytic on C\ L*. ]

5.2. Mean horizontal values. As observed below Lemma 2.2 of [2], although
K € L}, (1), K2 € L'(II) (accounting for the different orientation of the strip).
Moreover, convolution with K! can be handled by subtracting from u? its mean
horizontal value to give it mean value zero. We summarize here this process as
described on page 1748 of [20].

If v(t) € S(I), the mean value of v%(t) along the horizontal line segment x5 = a
is independent of a € R, and if (v,p) solves the Euler equations on II, then it is

independent of time as well. Hence, we can define
(5.4) ma(t) = ma[v(t)] := (v (1)),

the mean value of v?(t) along any such horizontal line segment, and we will have

(v*(1)) = (v5)-

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/14/24 to 73.187.247.212 by David Ambrose (ambrose@math.drexel.edu). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2298 D. M. AMBROSE, F. HADADIFARD, AND J. P. KELLIHER

The mean value of v!(t), however, will depend upon s, so we write

D=

my (t, z2) =mq[v(t)](z2) ::/ vl (t, xy, x0) dy.

1
2

Similarly, we define

(w)(t, 22) ::/§ w(t,x1, ) dy

1
2

and O(t, x1,x2) (= w(t,z) — (W) (¢, z2). Also,
(55) <w>(t,x2) = <81U2 — 82u1>(t,x2) = —<62U,1>(t,l‘2) = —32m1 (f, .732).

A form of the Biot—Savart law given in (2.5), (2.6) of [20] (suppressing the time
variable) is

(5.6) v(x) = (‘mli”)) + [ o; [ K (X - )5() duys du.

m 1
2

We note here that in transforming from the expression as written in [20], a velocity
(v, v?) in (2},2%) becomes (vZ, —v!) in (z1,22), which accounts for the minus sign in
—m (1’2)

5.3. Type 2 solutions. We can now summarize the known result we need for
Type 2 solutions.

THEOREM 5.3 ([2, 20, 21]). For v° € S(II) with (v3) = 0 there exists a unique
solution (v,q) to the Euler equations,

Ov+v-Vv+Vg=0 in[0,00) xII,
(5.7) divv=0 in [0,00) x II,
v(0)=v" in II

for which ma(t) = 0 with v € C([0,00); BUC(II)) N L*°([0,00); S(II)) and pressure
qeWHe2([0,00) x IT). The pressure is given by’

q= —(u2)2 + 2K§o * (wul).

The solutions are Eulerian in velocity and satisfy the vorticity equation. Moreover, u
can be recovered from w by the Biot-Savart law as in (5.6).

5.4. Compactly supported vorticity. As a prelude to obtaining Type 3 so-
lutions, let us consider the special case of Type 2 solutions that we can obtain when
the vorticity is compactly supported in II. First, we specialize the Biot—Savart law in
(5.6) to compactly supported vorticity.

LEMMA 54. Let v € S(II) with w := curlv compactly supported in II. Then
mi(—o0) +mq(00) =mae =0 if and only if v= K *xw.

242K2 is —02G in (2.8) of [20]: we have made the transformation from a horizontal to a vertical
strip.
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Proof. Since (w) = —damy, we have

g l/ / ¥) (@) (y) dyr dys

/;/ Kl ((x— ',y —y' )0 (y') dy' da’.

Lemma 5.7, below, gives that I? =0.

We now consider I'. Because w is compactly supported within some [—1/2,1/2] x
[—Ro, Ro], so, too, are (w) and then, by (5.5), dam;. Choose ¢ € C&F (R) equal to 1 on
[—R, R] and equal to zero outside [-R + 1, R + 1] where we will choose R > Ry more
precisely later. Let m§ = n. x my, where 7. is a (compactly supported) Friedrich’s
mollifier. As in [2], we treat K1 as a distribution on II with ¢m§ a test function.
Since also K., € L} (II), we have, for fixed x,

' lim / / KL ((z— 2,y — o)) p(y)0ams (v') dy da’

e—0
:Ehg%Koo (¢Damy) = lim K2+ Ba(ipms) — lim K2 (Oapmy).
Now,
KL = —02G = —AG + °G = —5 + 0°G

where G is the Green’s function for the Dirichlet Laplacian on II as in (5.1) and ¢ is
the Dirac delta function on II. Hence,

S
a(ems) = i)~ [ [ 3G~ o'y~ ) da'm o) df = (),

oo -1

where the integral vanishes after integrating by parts, since G is periodic in x;. Hence,
I' =my(z2) — lim KL % (9aoms5),
e—0

and this equality holds regardless of our choice of R > Ry. Therefore, if we can
evaluate K1 * (92¢m5) in the limit as R — oo, it will be its common value for all
R > Ry.

We see from (5.3) that K1 (z —y) — £1/2 as y» — +o0o and . K. (z —y) — 0 as
Yo — £00, so

—R R+1
lim K1 % (0ypm5)= lim / +/ Bap K5 (x — y)mS
R—o0 R—=oo \J_r-1 JR

= Jim [(K7°mi)(=R) — (K7°mi)(R)]

—1%51100</R ) /R+1>9082K (x —y)m

:_51%151100 [m$(—R) +mi(R)].

We also used here that dom§ = —1). * 92{w) =0 for R > Ry. Since this limit gives the
value for all R > Ry, we can take € — 0 to conclude that

I = ma(2) + 5 i (—00) + ma o0)].
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Returning to (5.6), then, we see that

1 (ma(=00) +mi(00)
(5.8) v(t,x)= 3 ( 9m + (Koo *w(t)(x).
This shows that mq(—o0) +mi(c0) =0 and mg =0 if and only if v =K, *w. d

COROLLARY 5.5. Let w € LX(II). Then v = K *w is the unique element in
S(IT) for which curlv =w, ma[v] =0, and my[v](—o0) + my[v](c0) =0.

PROPOSITION 5.6. Assume that w® € L2 (I1), v° = Ko *w°, and v is a Type 2
solution as in (5.3) with v given by (5.6). Then v(t) = Koo *w(t) for all t.

Proof. Tt follows from Lemma 5.4 that m1(0, —00) + m1(0,00) = 0. But as ob-
served following (2.11) of [20], 9;m; = —(u?w), which we note vanishes for all suffi-
ciently large z because of the compact support of w. Hence, m1(t, —oo)+mq (t,00) =0
for all t. We conclude from (5.8) that v(t) = Ko * w(t) for all .

We used Lemma 5.7 in the proof of Lemma 5.4, above.

LEMMA 5.7. For all y € R, K} (x1,72) is even in x1 and odd in xo, while
K2 (z1,72) is odd in x1 and even in x.

Proof. This follows directly from (5.3), since V+G = K. |

6. Type 3: Solutions with a periodized kernel.
THEOREM 6.1. Let w° € L°(R?). There exists a solution u to

Op+w-Vu=0 in[0,00)x R?,
w=K,*u in [0,00) x R,
p(0) =w® in R2.

Moreover, curlw = Rep(Per(u)), and w € L>(0,T;S) N C([0,T] x R?) is the unique
solution to

Ow+w-Vw+Vr=0 in[0,00) x R2,
(6.1) divw =0 in [0,00) x R?,
w(0) = K * u(0) in R?,

with the uniqueness criteria being that v is periodic. Finally, r € L>=([0,T] x R?).

Proof. From Proposition 3.4 we know that K, *w" € L>(R?) and is periodic in
x1 with period 1; hence, abusing notation, we can set v® = K, * w°|;; and obtain by
Theorem 5.3 a unique solution (v,q) to (5.7) for which ¢ is periodic in z; and ms(t) =
0. Since curlv’ = WO is compactly supported and so curlv remains compactly
supported for all time, we know from Proposition 5.6 that v = K, *curlv. So letting
¢ =curlv, we see that

O +v-V¢=0 1in [0,00) xII,
v=K,*( in [0,00) x II,
¢(0) = w® in 1L

Setting w = v, u = ¢ gives the desired solution of Type 3. Moreover, since ¢(t) is
periodic, we can let r = Rep(q), and we obtain a unique solution to (6.1). d
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7. Three types of solution are equivalent. For certain classes of initial data,
our three types of solution are equivalent. The equivalence of Type 1 and Type 2 holds
for a broader class, so we first prove it in Theorem 7.1. The equivalence of the third
type holds for initial data in L3°(R?), as we show in Theorem 7.2. This includes
vortex patch data, our application in section 9.

THEOREM 7.1. Let v? € S(II) and periodize it to give u’ = Rep(v’) € S(R?).
Let (u,p) be the solution of Type 1 with initial velocity u° given by Theorem 4.3 and

let (v,q) the solution of Type 2 with initial velocity v° given by Theorem 5.3. Then
Rep(v) =u.

Proof. We have curl v(0) = curlu®|;, where we abuse notation somewhat. From
Theorem 5.3, we have a pressure ¢ with ¢(¢) € L (II) for which

Ov+v-Vv+Vg=0 in [0,00) xII,
(7.1) divv=0 in [0,00) x II,
v(0)=vY in II.

Since Rep(v) and Rep(q) are zq-periodic with period 1, we can set v = Rep(v)
and ¢ = Rep(q), and both will lie in L>([0,7] x R?) with curlv(t) = Rep(curlv(t)).
Thus, Vv is v periodized and curlv is curlv periodized, meaning that (7.1) in effect
holds on II, translated by (n,0) for any integer n, so we see that

OVv+v-Vv+Vqg=0 in[0,00)x R?,
(7.2) divv=0 in [0,00) x R?

v(0) =u’ in R2.
We see that (V,q) is a solution to the Euler equations on [0,00) x R2. Manifestly, v,
curlv, and ¢ each lie in L>°([0,00) x R?), being periodic in x;. Hence, Vv is a bounded
velocity, bounded vorticity solution to the Euler equations on [0,00) x R?. Because

the pressure ¢ grows sublinearly it is, in fact, the (unique) Serfati solution (it satisfies
the Serfati identity), as follows from Theorem 4.3. Therefore, u=v. a0

THEOREM 7.2. For w® € L(R?), let u® = Ky [wP] be obtained by symmetrizing
in pairs as in Definition 3.1, and let v° = K, *Per(w°). Let (u,p), (v,q) be the Type
1, 2 solutions with initial velocity u®, v° and let w® be the velocity field for the Type
3 solution given by Theorem 6.1. Then Rep(v) =u=w.

Proof. Theorem 7.1 gives Rep(v) =u, while Rep(v) = w is inherent in the proof
of Theorem 6.1. ]

8. The velocity gradient. The following expression for V(K *w) is classical
(see, for instance, Proposition 2.20 of [30]).

LEMMA 8.1. Assume that w € L>(R?) is compactly supported and let u= K  w.
Then

Vu(x) =w(x) ((1) _01> +p.v. . VK(x—y)w(y)dy,

where we can write

VEG) = -T obim o (3 ).

T or X2 - x]2 \@3 —23 2212,

The analogue for the K, kernel is Lemma 8.2.
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LEMMA 8.2. Assume that w € L*(R?) is compactly supported and let u = K. xw.
Then

vup = O (§ N v [ TRy dy,
nez

where p is as in (5.2) and where we can write

T B(x
VEl) = 5 55
where
B(x) = IR < sin(2mx;) sinh(27as) cos(.27rm1) cosh.(27rac2) - 1)
2p(x)2 \cos(2mxy)cosh(2mry) —1  —sin(2mx;)sinh(2723)
Proof. The proof is given in Appendix A. ]

Remark 8.3. Like o, the matrix § is symmetric with trace zero. Near the origin,
p(x)? ~ 7%|x|?, and we can see that B(x) ~ 47%|x|?/(27%|x|?) ~ 2 ~ o(x), and so
VK (x) =21 /(272]x)?) ~ 1/(n]x|?) ~ VK (x). Also like o, 811 and (a9 integrate to
zero over circles centered at the origin, but unlike o, neither 315 nor 8o integrates to
zZero.

We have the following immediate corollary of Lemma 8.2.

COROLLARY 8.4. Let v € S(II) with w = curlv compactly supported and let u =
Ko *xw. Then

vu) =00 (1 ) v [ T yetay

and VK., can be written as in Lemma 8.2.

9. Contour dynamics equations. First we review the CDE for a classical
vortex patch—the characteristic function of a bounded, simply connected domain
evolving under the vorticity equation for the Euler equations on all of R2—then turn
to the CDE for Type 2 solutions.

In what follows we use the Lipschitz space Lip and homogeneous Lipschitz space
lip. On U CR? for d > 1, we define their seminorm and norm,

I flliip(uy == sup 1f(z) = fy)l

v Wl zipy = N flleee @y + 1 f liipwy -
byl \x—y| ip(U) ) ip(U)

9.1. Classical vortex patches. In the classical setting of a vortex patch in R?,
we have Theorems 9.1 and 9.2, as in Proposition 8.6 of [30] and the derivation of the
classical CDE that appears before it.

In what follows, wq is a fixed, nonzero real constant.

THEOREM 9.1. Let ~v: [0,27] — R? be a C' counterclockwise® parameterization
of the boundary of a bounded, simply connected domain 2. Then
2m

20 log [x — 7(a)[0av (@) da

(9.1) u(x) = ~3- ;

s the unique divergence-free vector field decaying at infinity for which curlu=wylq.

31In [30], the patch boundary is parameterized clockwise, but (7,m) is in the standard (e1,e2)
orientation; the two resulting sign changes between [30] and us cancel, so there is no sign change in
our expressions.
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Now let us suppose that Q is a simply connected bounded domain in R? with
a C1¢ boundary. Let u be the unique weak solution to the Euler equations with
initial vorticity w® :=wolq and let X be the flow map for u. Then we know that the
vorticity w(t) =wolg,, where Q; = X(¢,9Q).

Let v(0,-) be a Cl-regular counterclockwise parameterization of I' = 9). Define
a parameterization of 9 = X(¢,T') by ~(¢t,-) := X(¢,7(0,-)). The log-Lipschitz
regularity of u(t) induces C°®-regularity of the flow map X(t,-) with ¢(t) € (0,1)
and decreasing with time, as in Lemma 8.2 of [30]. This is insufficient regularity to
obtain a Cl-parameterization of 9, so let us suppose that our (classical) solution
has u € C(0,T;lip). Then ~(t,-) is a Cl-parameterization of 9.

Since we assumed 0f) is C’1 ¢, we could give v(0,-) Ct¢-regularity, but this does
not itself ensure that ~(¢,-) is C%: proving that is tantamount to establishing the
propagation of regularity of the vortex patch boundary.

THEOREM 9.2. Let u(t,x) be given by (9.1) applied with ~(t,-), that is,

2
u(tx) 1=~ / log |x — (£, @) ey (£, ) da.

Then u is a weak solution to the 2D Euler equations on [0, T]xR? with u € C(0,T; Lip)
if and only if v is a C*([=T,T);C([0,2x])) N C([-T,T);C*([0,27])) solution to the
CDE,

27
02 Gt =22 [ loght.a) - y(ta)ow(ta) o
Theorems 9.1 and 9.2 were expressed for simply connected domains. As pointed
out on page 330 of [30], the only difference for multiply connected domains is that the

integrals in (9.1) and (9.2) are summed over each component of the boundary.

THEOREM 9.3. Theorems 9.1 and 9.2 hold for bounded, multiply connected do-
mains if we evaluate and sum each of the boundary integrals over each boundary
component.

We view (9.2) as a form of the Euler equations applying specifically to a vortex
patch: it comes directly from (9.1), which we view as a form of the Biot—Savart law
that recovers the velocity from the vorticity, as it is encoded by . We work, now,
to obtain replacements for these expressions that apply to periodized vortex patches.
This is a matter of deriving the CDE for a solution to the Euler equations and showing,
conversely, that any solution to the CDE satisfies the Euler equations.

9.2. Type 2 solutions. Turning to Type 2 solutions, we make the following
assumptions on €.

Assumption 9.4. Assume that 2 C1I is bounded with a finite number of boundary
components, I'1,..., Ty, each C¢ regular.

With © as in Assumption 9.4, we let u be the unique Type 2 solution having
initial vorticity w® := wolg with my = my (¢, —00) + ma(t,00) = 0 given by Theorem
5.3 and Proposition 5.6 (m;, mg are defined in subsection 5.2). Set

Qt = X(t,Q), Ft,j = X(t,FJ),

noting that because X (¢,-) is a homeomorphism of R? onto R?, I'; ; is the jth of the J
components of 9€;. We then define a parameterization «; of I'; ; as we parameterized
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082 in subsection 9.1, setting ~;(t,-) := X(t,7,(0,-)). As in that section, a priori,
we do not even know that v;(t) has C! regularity for t > 0; proving that it has C'*¢
regularity is the ultimate goal (of section 10).

We show in Theorems 9.5 and 9.6 that the analogue of Theorem 9.3 holds for
Type 2 solutions.

THEOREM 9.5. Let  be as in Assumption 9.4, and for each j, let~;: [0,27] — R?
be a C' counterclockwise parameterization of the boundary component T';. With p as

n (5.2),
27
(9.3) a0 =52 3~ [ 1o px = 7,(0))0,% (o) do

is the unique divergence-free vector field in S(II) having curl equal to wolq for which
me =0 and my(—o0) + my(c0) =0.

Proof. By Corollary 5.5, we know that u = K, * w is the unique divergence-free
vector field in S(II) having curl equal to wylq for which my = 0 and m;(—o0) +
my(oc0) = 0. Then we have, using Lemma 5.1 and parameterizing I'y ; by arc length
from 0 to £;, setting y(s) =~;(a(s)),

(x) = Koo 5 w(x) = V-G 5 w(x) / V- log p(x — y) dy

/VLlogp(x y)d Z/ log p(x — y(s))(—n?n')ds
Z/ log p(x — y ()7 Z/Wlogpx () 8a () da.

Here (n',n?)=n and (—n? n') =7 (see Lemma 2.2), and we used that

_m ayes a=T(s)as
00ty (@) do = (5L 00 () do = (5) s

From this, (9.3) follows. O

THEOREM 9.6. Let u be the Type 2 solution described above and assume that each
v, is in CY[-T,T);C([0,27]))) N C([-T,T); C*([0,2x])). Then

J 2m

w

(94) u(t.x) = =50 3" [ 1o plx—,0.00)0,7,.0) d
j=1
and lies in C(0,T; Lip). Moreover, each -, satisfies the CDE,
d Wo o [T

0

(95) %ﬁ)Ik(taO‘) = 271_;/0 logp('.)/k(tva) 7’7j(t7a/))aa7j(taa) do/

Conversely, if each v, in C*([-T,T);C([0,2x])) N C([-T,T); C*([0,27])) satisfies
(9.5), then u given by (9.4) is a Type 2 solution with u € C(0,T;Lip) and mg =
my(t, —00) + ma(t,00) =0.
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Proof. The forward direction follows directly from Theorem 9.5.

For the converse, we parallel the proof of Proposition 8.6 of [30], which consists
of two steps: (1) Show that u given by (9.4) is divergence-free with curlu = 1 ;.
(2) Show that u solves the 2D Euler equations.

To prove (1), let u be given by (9.4). Reparameterizing by arc length as in the
proof of Theorem 9.5,

Z/ log p(x — y(s))7( Z/F log p(x — -

To apply div and curl to this expression, we use that for a constant vector field w
and scalar function g, div(gw) = Vg-w and curl(gw) = V1tg-w. Also, letting
v=(21)"1V+logp(x — ) and f =¥, we see that

curlu(t,x) = Z VLlogp(X—~)~T=_WOZ/ ?'Tz—wo/ ?~7-7
Ty ST 89,
w J Wo &

. ) _ Wo 1L
dlvu(t,x)_—gzz/F Vlogp(x—-)q-—%z g .V logp(x—-)n

Jj=1 t,J j=1 t,j

J = =

=wo / / n—wo/ f-n

Up to this point, we have been integrating over paths in II treated as R?/L, but
we wish to apply Lemma 2.2, which obliges us to work in C. To do this, we lift ; to
) as described in subsection 2.4. Applying Lemmas 2.2 and 2.10 (writing f in place
of fop by viewing f as x1-periodic with period 1) gives for all x not lying on 9 (a
set of measure 0)

f=wo Cf=wp f-T 4w f-n=—curlu(t,x) +idivu(t, x).
CioR Eion EIoN Ziok

But we see from Lemma 5.1 that v =K (x — ) and that

1 1l — 1= )
f= Ecot(wf _— §icot(7rz) = iicot(wz) = —% cot(mz),

where we used (2.2) and the identity iz = —iz. The complex meromorphic function
f has simple poles at each point in x + £ with residue (—2m)~ 3. By the residue

theorem, then, summing over all points of £ lying inside 0€2;—that is, lying in Q,

wo Cf=Re <2mw02Res fi(n O))) =wp Re (_2;; Zl) = —won.

%Y,

But ﬁt can contain at most one point of x 4+ L, else the lift given in subsection 2.4
would map x to more than one point in C (which would mean it is not a lift). We
see, then, that

curlu(t,x) = —wy Cf =—wo Cf =wolq,(t,x) =w(t,x).
00 CIoN
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We conclude that for all ¢t € [0, 7], divu =0 and curlu = w = wylg,. Directly from
(9.4), we know that u € L*°(IT) and hence u € S(II). It follows from Theorem 9.5
applied with ;(¢,-) in place of ~; for any fixed ¢ that mo[u(t)] = 0 and m4 [u(¢)](—o0)+
m1[u](c0) =0.

Using (1), the proof of (2) that u solves the 2D Euler equations on the time interval
[T, T] proceeds just as it does in the proof of Proposition 8.6 on page 334 of [30]. O

Remark 9.7. We can view Type 2 solutions as equivalent to Type 1 or 3 solutions
by virtue of Theorem 7.2. For vortex patches it is most natural to start with an
Q) € II satisfying Assumption 9.4 and lift it to R? as in subsection 2.4 to give (.
It is also possible to start with a domain in R? and use it to obtain via the Per
operator a domain in IT, but there are no simple general conditions to guarantee that
the boundary of the domain in II is regular.

10. Regularity of a vortex patch boundary. To prove the propagation of
regularity of a vortex patch boundary for our Type 1, 2, or 3 solutions, it will be
easiest to work with Type 2 solutions, the result then immediately following for the
other two types by Theorem 7.2. We will prove, in Theorem 10.1, that for Type 2
solutions, the regularity of the boundary of a periodic vortex patch is maintained for
all time, as in the classical case.

THEOREM 10.1. Let 2 be as in Assumption 9.4 and let Qy = X (t,Q) for a Type
2 solution. Then 0€); is C%¢ for all time. The analogous result holds for Type 1 and
3 solutions.

Proof. We describe only how the proof differs from the now classical proof as
presented in Chapter 8 of [30]. There are two main steps to the proof given in
[30]: First, show local-in-time existence of a C'¢ solution to the CDE (based on [9]),
then show that the solution extends globally in time (based on [10]).

Local-in-time CY¢ solutions. In brief, the first step is to define the function F
on the space BY¢ of closed C1¢ paths in II by (we have translated this to Type 2
solutions)

T or
Here, F' is as defined for each boundary component separately; we suppress the sums
over each boundary component for notational simplicity. First show that F: OM —
B'¢ is Lipschitz-continuous on the open subset
OMi={yeB": [7l.> M7 |7~ <M},

_ /
- 3(0) ()
aFa! |a — O/|

27
F(y(B)) = 22 / log p(7(8) — () Bav(e) da.

[ =

for some M > 0. A Picard fixed point theorem (Theorem 8.3 of [30]) then ensures a
local-in-time solution to the ODE;,

dy
< =FO), v(0)=ve0",
with v € C1([-T,T]; OM) for a T that depends upon M.

To adapt the argument in [30] to Type 2 solutions, we decompose log p(x) as
follows. Let ¢ € Cg°(II) be a radially symmetric cutoff function supported on By 4(0)
with ¢ =1 on By/5(0). Then

log p(x) = p(x) log [x| + R(x),
R(x) := p(x) [log p(x) —log[x[] + (1 — ¢(x))log p(x).

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/14/24 to 73.187.247.212 by David Ambrose (ambrose@math.drexel.edu). Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PERIODIC VORTEX PATCHES AND LAYERS 2307

Recall that on II, we use coordinates in which x = (z1,z2) with —1/2 < 27 < 1/2.
Because p(x) =0 for |z1| > 1/4, the function ¢(x)log|x| is in C*°(IT\ (0,0)). Also,
log p(x) is harmonic away from the origin, so R(x) € C*°(II), as follows from Lemma
5.2. In particular, ¢(x)log|x| and R(x) are well-defined as functions on II.

It follows that for each component of 9 o, F'= F} + F5, where

w 2
Fi(2(8) =52 [ o(r(8) = (@) og 1(8) = 7(0) |00 (@) do
2
Rr(8)i= 52 [ RO (B) = v(@)dur(e) do.

Other than the cutoff function, which introduces no real difficulties, F} is the same
expression as in the classical setting and is estimated in B¢ in the same manner. We
note that applying d/dg to Fy(y(8)) leads to a singularity in the integrand at o= .
The key to estimating F is treating dFy/df, beginning in Lemma 8.7 of [30], as a
principal value integral. The situation is no different here than in [30].

Similarly, for F», the key is bounding dF5/dS in C¢. This is much simpler than
bounding dF;/dg, for we have

5Far(B) = 5

Then for any «,
[(VR(Y(8) —¥(@)) - 057(B)) Doy (@)l =
<Oy (@I VR ¢ () 17 (B) — ¥ ()l7ip 1057 (B) | = (0,27) -
But, [0a7(0)| < [¥llip < M and [15(8) — (@) ip = [ lip < M. Hence,

%Fm(m)

/0 "(VR(y(8) — (@) - 05(8)) dary (1) o

< OM?|wolllv]|c=-
C=(0,2m)

We see, then, that the bounds in Lemma 8.10 of [30] hold, and the proof of local-in-
time existence is completed as in [30].

Global-in-time C1¢ solutions. The proof of the global existence of a C'¢ solution
to the CDE is the same as in section 8.3.3 of [30], except that Corollary 8.4 is used
to obtain Vu. By virtue of Proposition 3.4, the estimates differ little from those for
classical vortex patches.

This completes the proof for Type 2 solutions. The result for Type 1 and 3
solutions then follows directly, exploiting the lifting of domains described in subsection
2.4. |

Appendix A. Proof of the formula for Vu. Before giving the proof of the
singular integral operator formula for Vu of Lemma 8.2, let us calculate VK (x) to
obtain the expression for 5. Letting

£(x) = p(x)? = sin?(7x1) + sinh? (rz3),
we have 91 p(x) = wsin(27x1), O2p(x) = wsinh(2725). Then from Lemma 5.1, we have
G(x) = (2m)  log p(x) = (47) ' log(x), 50
V(%) (—028(x),01&(x)  (—sinh(27z2), sin(2mzq))

Foolx) = V2G(x) = iné(x) | dne(x) 1€(x)
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Remark A.1. As in Remark 8.3, near the origin, £(x) = p(x)? ~ 7%|x|%. Hence,
G(x) ~ (1/47)log(n?|x|?) ~ C + (1/27)log|z|, like the fundamental solution to the
Laplacian on R2. Then K, (x) ~ 27|x|/(4£(x)) ~ 27 |x|/ (472 |x|?) = 1/(27|x|), as it is
for the Biot—Savart kernel on R2.

Taking another derivative,

9 sinh(27x,) 9 sinh(27z)
o Y e
o\X)=~
4 9 sin(2may) 9 sin(2may)
LX) ey
1 —sinh(2722)0:1€(x) —sinh(2722)026(x)
EEER sin(2mx1)01€(x) sin(2mx1)02£(x)
1 0 —2m cosh(2mxs)
4€(x) 27 cos(2mx) 0
1 —sinh(27rzs)wsin(2nzy)  —sinh(27xs)wsinh(27wxs)
IEHEE sin(2nxy)mwsin(27z,) sin(27 x4 ) sinh(27r2s)
1 0 —27 cosh(2m29)E(x)
4¢(x) 27 cos(2mwy )& (%) 0
- sinh(27xy) sin(27xq) sinh?(27xz5)
A7 —sin?(27z;) —sin(27rxzy) sinh(27s)
0 —2cosh(2mx2)E(x)
s ™
§(x) 2COS(27T$1)§( ) 0
< X a12 )>
X a22 ) ’
where
o11(x) = —ag2(x) = § sinh(27z2) sin(27xy ),
a2(x) = 3 [sinh*(2722) — 2 cosh(27mz2)E(x)]
az1(x) = 3 [—sin®(2m21) + 2 cos(2ma1 )E(x)] .

Using (2.5) and cosh? z — sinh®z = 1, we see that

2012(x) = sinh? (27x5) — 2 cosh(27 a9 ) (sin? (w1 ) + sinh? (7))
=sinh?(2m25) — 2 cosh(27zs) sin? (w21 ) — cosh(27zy) (cosh(27mx2) — 1)
= —1+ cosh(27rxs)(1 — 2sin*(7z;)) = cosh(27xy) cos(2mz1) — 1,
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2091 (x) = — sin?(27x1) + 2 cos(2mzy ) (sin? (w1 ) + sinh? (wz5))
= —sin®(2rz1) + cos(2mz1 ) (1 — cos(2mz1)) 4 2 cos(2mzy ) sinh? (rz))

= —1+ cos(2mz1) (1 + 2sinh?(7zy)) = cos(27wx1 ) cosh(27wxy) — 1.

Thus,
_ 7 B(x)
V=09 =5
where
B(x) = 1 sin(27x;) sinh(27as) cos(2mxy ) cosh(2mag) — 1
= 2p(x)2 \cos(2mxy)cosh(2mwa) =1  —sin(2mwy)sinh(272s) )7

as given in Lemma 8.2.

Proof of Lemma 8.2. Let M € (H'(£)?*? be arbitrary. We will show that

(Vu, M) = (gw(x—i—;nﬂ)) (? _01) ,M) + %p.v. g VKo (x—y)M(y)dy,

giving the action of Vu € H~1(R?) on any test function in H!(R?), and thus estab-
lishing our expression for Vu.
For any r € (0,1), we let

U, = Br(x+ (n,0)).
nez

Then

(Vu, M) =(u,divM) = (K *w,divM) = lim Ko *w(x) div M (x) dx

r—0 Urc

=—lim | V(K *w)(x)M(x)dx — lim (VM -n)Ky *wdS=:T+11.
r—0 Urc r—0 au,.

We used here that u is integrable and that the orientation of QU is opposite that
of OUC. The limit in I gives the principal value integral in our expression for Vu.
Noting that the compact support of w makes the sum below finite,

1I= lim (VM -n)Ky xwdS
=0 JoB, (x+(n,0))

_ nm/aBr (VM(-+ (n,0)) - 1) Koo % wdS

_ EZ}%/E)B (VM(- + (n,0)) - m)K #wdS
nez r(x)
_7%(;) ((1) _01)’M(.+(n’0)))_7;2<w(x—2(n,0)) <(1) —01>7M).

We used that Ko (y) becomes K(y) in the limit of small y, and then evaluated the
limit of the boundary integral as in the classical case. ]
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