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PERIODIC VORTEX PATCHES AND LAYERS\ast 
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Abstract. We study vortex patches for the two-dimensional incompressible Euler equations.
Prior works on this problem take the support of the vorticity (i.e., the vortex patch) to be a bounded
region. We instead consider the horizontally periodic setting. This includes both the case of a
periodic array of bounded vortex patches and the case of vertically bounded vortex layers. We
develop the contour dynamics equation for the boundary of the patch in this horizontally periodic
setting and demonstrate global C1,\varepsilon regularity of this patch boundary. In the process of formulating
the problem, we consider different notions of periodic solutions of the two-dimensional incompressible
Euler equations and demonstrate equivalence of these.
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1. Introduction. A two-dimensional (2D) vortex patch is a solution to the 2D
Euler equations for which the vorticity is a constant multiplied by the characteristic
function of a domain. We investigate the behavior of vortex patches in an infinite strip
periodic in one direction, topologically S1\times R, and the corresponding behavior of the
vortex patch or layer in the full plane. Our main results are the extension of the C1,\varepsilon 

global regularity theory for the boundary of the vortex patch to this case, developing
and using the appropriate contour dynamics equation (CDE) for this purpose. Here,
and throughout, we fix \varepsilon \in (0,1).

1.1. The Euler equations. We can write the 2D incompressible Euler equa-
tions (without forcing) on a domain U in vorticity form as\left\{     

\partial t\omega + u \cdot \nabla \omega = 0 in R\times U,

u=K[\omega ] in R\times U,

\omega (0) = \omega 0 in U.

(1.1)

Here, \omega is the vorticity---the scalar curl of the velocity field u. The vorticity is
transported by the velocity field as in (1.1)1, and the velocity field is recovered from
the vorticity field by the constitutive law in (1.1)2 so as to be divergence-free and
to satisfy any boundary conditions, decay at infinity, or periodicity that might be
demanded based, in part, upon the nature of the domain U .
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PERIODIC VORTEX PATCHES AND LAYERS 2287

Classically, if U = R2 and the solution has sufficient decay, one uses the Biot--
Savart law as the constitutive law:

K[\omega ] :=K \ast \omega , K(x) :=\nabla \bot 
\biggl[ 
1

2\pi 
log | x| 

\biggr] 
=

1

2\pi 

x\bot 

| x| 2
.(1.2)

Here, K is the Biot--Savart kernel, which we note lies in L1
loc(R2), though K /\in Lp(R2)

for any p\in [1,\infty ]. To handle solutions having insufficient spatial decay of the vorticity,
we must either find an appropriate substitute for the Biot--Savart law or avoid it
entirely by using a velocity- pressure formulation.

1.2. The plane and the cylinder. In this paper, we will consider two domains:
U = R2 and U = \Pi , the infinite flat periodic strip, S1 \times R \sim = R2/Z \sim = C/Z, which we
will most often treat in the form

\Pi :=
\bigl[ 
 - 1

2 ,
1
2

\bigr] 
\times R with

\bigl\{ 
 - 1

2

\bigr\} 
\times R identified with

\bigl\{ 
1
2

\bigr\} 
\times R.(1.3)

We will also find use for the same set as a subset of R2 or C without identifying its
sides:

\Pi p :=
\bigl( 
 - 1

2 ,
1
2

\bigr) 
\times R\subseteq R2.(1.4)

Suppose we have an initial vorticity \omega 0 = 1\Omega for \Omega a bounded domain in \Pi . We
can periodize it to obtain an initial vorticity in R2 that is periodic in x1. What results
may consist of an infinite number of disconnected domains repeated periodically, one
connected, x1-periodic domain, or a combination of each. Figure 1 displays an example
of a simply connected bounded domain in \Pi yielding an infinite number of copies of
the domain in R2. Figure 2 displays two examples of a non--simply connected domain
in \Pi producing one domain in R2 periodically repeating in x1, a so-called vortex layer.

On the other hand, we could instead formulate the problem by starting with an
initial vortex patch in R2 and periodize it in x1. If we can translate the evolution of
the patch in R2 to the evolution in \Pi and back, we can use an understanding of patch
behavior in \Pi to gain an understanding of the periodic behavior in R2. The translation
back and forth between \Pi and R2 is best understood in the more general setting of
weak solutions to the 2D Euler equations for bounded vorticity, which includes vortex
patch data as a special case.

1.3. Three types of solutions. Toward this end, we consider three types of
solution to the 2D Euler equations. We summarize the three types of solution briefly
now, giving more complete descriptions in later sections.

Type 1 Assume that u0 \in L\infty (R2) is divergence-free with \omega 0 := curlu0 \in L\infty (R2)
as well. Obtain a bounded vorticity, bounded velocity solution to the 2D
Euler equations on all of R2 having initial velocity u0 as done by Serfati
in [37].

Fig. 1. Example of a periodic vortex patch in R2 and in \Pi .
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2288 D. M. AMBROSE, F. HADADIFARD, AND J. P. KELLIHER

Fig. 2. Two examples of a periodic vortex layer in R2 and in \Pi .

Type 2 Assume u0 \in L\infty (\Pi ) is divergence-free with \omega 0 := curlu0 \in L\infty (\Pi ) as well.
Solve the 2D Euler equations in \Pi , as done in [2, 20, 21].

Type 3 Let \omega 0 \in L\infty (R2) be compactly supported. Solve the 2D Euler equations
in vorticity form in all of R2 with initial vorticity \omega 0, but recovering the
velocity by applying the Biot--Savart law symmetrically to pairs of the
periodically extended copies of \omega . This leads to a replacement Biot--Savart
kernel, K\infty .

Type 1 and Type 2 solutions are for (potentially) nondecaying velocity and vor-
ticity, but for Type 3 we restrict our attention to vertically decaying solutions, since
our primary application is to vortex patch data. Moreover, the convolution K\infty \ast \omega 
cannot be easily defined without some decay assumption.

We will find that all three types of solution are equivalent for a large class of initial
data. Since our primary interest is in vortex patches and layers, we will keep things
simple by assuming compact support in \Pi . Assuming, then, that g \in L\infty 

c (R2)---the
space of essentially bounded functions with compact support---we define \scrP er(g) on \Pi 
by

\scrP er(g)(x) =
\sum 
n\in Z

g(x - (n,0)),

noting that for each x the sum has only finitely many nonzero terms. For any mea-
surable function f on \Pi we define \scrR ep(f) on R2 by

\scrR ep(f)(x) := f(x1  - \lfloor x1 +
1
2\rfloor , x2).

Definition 1.1. Two functions g1, g2 \in L\infty 
c (R2) are equivalent, g1 \sim g2, if

\scrP er(g1) =\scrP er(g2). Figure 3 depicts the support of two functions in the same equiva-
lence class.

Suppose that g \in L\infty 
c (R2), and for purposes of illustration, let us treat it as the

characteristic function of a bounded domain (our primary application), whose support
is depicted as in either (a) or (b) of Figure 3. Below, we construct an initial vorticity
from g and depict the support of \omega 0 for each type of solution (the time-evolved
vorticity being of a similar nature).
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PERIODIC VORTEX PATCHES AND LAYERS 2289

Fig. 3. Support of two L\infty 
c (R2) functions in the same equivalence class.

Type 1 Let \omega 0 =\scrR ep(\scrP er(g)).

Type 2 Let \omega 0 =\scrP er(g).

Type 3 Let \omega 0 = g. The vorticity \omega is transported by the flow from the single
copy of g, and so is no longer the curl of u. There are, in effect, multiple
phantom copies of g matching those of Type 1.

or

The vorticity \omega 0 for Types 1 and 2 does not depend upon the representative for
the equivalence class, though Type 3 does. We will find, nonetheless, that the velocity
field for solutions of Type 3 is independent of the representative.

It is mentioned in [19] that a Type 2 solution is equivalent to a Type 1 solution
with periodic velocity and pressure. Following up on this comment, we will show
that all three types of solution are equivalent. The equivalence of Type 1 and Type 2
solutions, which applies to a larger class of initial data than we have so far discussed,
will rely upon the properties of the pressure required for uniqueness for those two
types of solution. The equivalence of Type 3 and Type 2 (and so of Type 1) will
rest primarily on showing that solutions of Type 2 reduce to those of Type 3 when
the vorticity has sufficient vertical decay. A side benefit of this approach is that it
will give the well-posedness of Type 3 solutions. Such a well-posedness result could
be obtained by adapting in a fairly straightforward way the approach Marchioro and
Pulvirenti take in [31, 32] for the 2D Euler equations, except for subtle points regarding
the periodicity of the pressure. It is thus more efficient to leverage the technology
developed in [2, 20, 21], though it is more than is strictly needed to develop Type 3
solutions alone.

Specializing to vortex patch data, we will then show how the CDE is adapted from
the classical form, which allows the propagation of regularity of the boundary of a
vortex patch to be proved, adapting the argument of Bertozzi and Constantin in [10].
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2290 D. M. AMBROSE, F. HADADIFARD, AND J. P. KELLIHER

1.4. Prior work. Bounded vortex patches evolving under the 2D Euler equa-
tions have been well-studied, with global regularity of the boundary being established
by Chemin [15] and by Bertozzi and Constantin [10]. Regularity of the vortex patch
boundary can also be seen to follow from a more general approach studying level sets
of the vorticity, establishing striated regularity, as in the work of Chemin [16] and
Serfati [36]. Regularity of bounded vortex patches and/or striated regularity have
been established for solutions of related evolution equations as well, such as aggre-
gation equations [8], active transport equations [6], and the surface quasi-geostrophic
equation and related systems [14, 22, 29]. None of these problems consider unbounded
vortex patches as in the present work.

There are seemingly fewer papers on the evolution of vortex layers. An equation
similar to our version of the CDE for the motion of the patch/layer boundary was de-
veloped in [33] and was subsequently used in [24] for the study of complex singularities
in vortex layers. (We mention that the version of the CDE developed in the present
work lends itself to the study of global regularity.) Atassi, Bernoff, and Lichter study
the interaction of a point vortex with a vortex layer [5]. Crowdy gives some exact
solutions of vortex layers interacting with solid boundaries [18]. Benedetto and Pul-
virenti have shown that vortex layers rigorously approximate vortex sheets in analytic
function spaces [7]. Caflisch, Sammartino, and collaborators have considered vortex
layers which are not sharp fronts in a series of papers [12, 13, 11], considering how such
flows behave in the zero viscosity limit and how such flows may approximate vortex
sheets, which represent a more singular vorticity configuration. In these works, they
take the vorticity to be exponentially decaying (in the vertical direction) away from a
core region, rather than being an indicator function as in the present work. Despite
the difference there are similarities to the present work, such as the development of
velocity integrals similar to the spatially periodic CDE we develop for the periodic
patch/layer problem. Further background on vortex layers may be found in [23].

While we are unaware of other works on the global regularity of unbounded vortex
patches for the 2D Euler equations, the situation is different for the quasi-geostrophic
equation. Rodrigo developed existence theory for a patch which is spatially periodic
and vertically unbounded in one direction (similarly to a half-space) [34, 35]. More
recently Hunter, Shu, and Zhang have studied the related front solutions of the surface
quasi-geostrophic equation [25, 26, 27].

1.5. Organization of this paper. We will find many of our calculations much
more convenient to perform in the complex plane, yet our results are all real-valued.
We describe how to translate back and forth between these settings, largely a matter
of notation, in section 2. In section 3 we describe the process of symmetrizing in pairs
that is behind the Type 1 solutions, which we explore in section 4. In section 5 we
describe the results of [2, 20, 21] that yield Type 2 solutions, and we use those results
in section 6 to obtain Type 3 solutions. We show the equivalence of the three types
of solution in section 7. In section 8 we give expressions for the velocity gradient
in terms of the vorticity, deferring the proofs to Appendix A. We then specialize to
vortex patch solutions for Type 1, 2, and 3 solutions, obtaining their CDE in section
9, and establishing the global-in-time propogation of the regularity of a vortex patch
boundary in section 10.

2. Preliminaries: R2 and C.

2.1. Real to complex translation. Some of our calculations will be more
easily performed using complex analysis, though the end results are all real-valued

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PERIODIC VORTEX PATCHES AND LAYERS 2291

functions. For this we need a means, and a corresponding notation, to switch back
and forth between viewing points in the plane as vectors or points in C2. For this
purpose, we will use boldface letters, such as x or u, for quantities that are intrinsically
elements of R2 or vector-valued. We define maps,\Biggl\{ 

 - \rightarrow : C\rightarrow R2,
 -  -  - \rightarrow 
x+ iy= (x, y)

\Biggr\} 
and

\Biggl\{ 
\leftarrow  - : R2\rightarrow C,
\leftarrow  -  -  - 
(x, y) = x+ iy

\Biggr\} 
.

For a vector x= (x, y), we define

x\bot := ( - y,x).

Hence, x\bot is x rotated 90 degrees counterclockwise.

Lemma 2.1. Let z,w \in C and \cdot be the usual dot (inner) product of Euclidean
vectors. Then

Re(zw) =\vec{}z \cdot \vec{}w,
Im(zw) = - \vec{}z \cdot \vec{}w\bot .

(2.1)

If a\in R, z \in C,

 - \rightarrow az = a\vec{}z,
 - \rightarrow 
iz = \vec{}z\bot ,

\leftarrow  - 
v\bot = i\leftarrow  - v .(2.2)

Also, f is analytic in some domain U if and only if div\vec{}f = curl\vec{}f = 0 in U , where for
any vector field v,

divv :=
\partial v1

\partial x1
+

\partial v2

\partial x2
, curlv :=

\partial v2

\partial x1
 - \partial v1

\partial x2

are the divergence and (scalar) curl of v.

The boundary integrals we encounter will be real path integrals, but we will
sometimes find it useful to transform them to complex contour integrals as in the
following lemma.

Lemma 2.2. Let \bfitgamma : [a, b]\rightarrow C be a Lipschitz-continuous path on which the complex-
valued function f is continuous. Let \bfittau be the unit tangent vector in the direction of \bfitgamma 
and \bfitn the associated unit normal, with (\bfitn ,\bfittau ) in the standard orientation of (e1,e2).
Let C = image\bfitgamma . Then \int 

\bfitgamma 

Cf =

\int 
C

\vec{}f \cdot \bfittau + i

\int 
C

\vec{}f \cdot \bfitn .

Here,
\int 
C is a complex contour integral.

Using Lemma 2.1, it is not hard to rewrite the classical Biot--Savart law in the
following hybrid real-complex form.

Theorem 2.3. Assume that \omega \in L1 \cap L\infty (R2). With K as in (1.2),

u(x) :=K \ast \omega (x) = - 
 -  -  -  -  -  -  -  -  -  -  -  -  - \rightarrow 
i

2\pi 

\int 
R2

\omega (y)
\leftarrow  -  -  - 
y - x

dy(2.3)

is divergence-free with curlu = \omega , and u is the unique such velocity field in L\infty \cap 
H1(R2).
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2292 D. M. AMBROSE, F. HADADIFARD, AND J. P. KELLIHER

2.2. The cotangent.
Lemma 2.4. For any z \in C that is not an integer,

\pi cot\pi z =
1

z
+ 2

\infty \sum 
n=1

z

z2  - n2
= lim

N\rightarrow \infty 

N\sum 
n= - N

1

z + n
.

Proof. For the first equality see, for instance, (11) in section 5.2.1 of [3]. The
second equality then follows from

z

z2  - n2
=

z

(z  - n)(z + n)
=

1

2

\biggl[ 
1

z  - n
+

1

z + n

\biggr] 
and summing in pairs, n with  - n.

Lemma 2.5. For any x,y \in R2,

lim
N\rightarrow \infty 

N\sum 
n= - N

x+ (n,0)

| x+ (n,0)| 2
\cdot y= \pi 

 -  -  -  -  - \rightarrow 
cot(\pi \leftarrow  - x ) \cdot y.

Proof. Letting z =\leftarrow  - x , w=\leftarrow  - y , and using (2.1)1, we have

x+ (n,0)

| x+ (n,0)| 2
\cdot y=

Re((z + n)w)

| z + n| 2
=Re

(z + n)w

| z + n| 2
=Re

w

z + n

so

lim
N\rightarrow \infty 

N\sum 
n= - N

x+ (n,0)

| x+ (n,0)| 2
\cdot y=Re

\Biggl[ 
w lim

N\rightarrow \infty 

N\sum 
n= - N

1

z + n

\Biggr] 
= \pi Re(w cot\pi z)

= \pi 
 -  -  -  -  - \rightarrow 
cot(\pi \leftarrow  - x ) \cdot y= \pi 

 -  -  -  -  - \rightarrow 
cot(\pi \leftarrow  - x ) \cdot y,

where we again used (2.1)1.

2.3. Useful identities. The identities in (2.4) and (2.5) are easily verifiable;
(2.6) is 4.3.58 of [1].

| sin z| 2 = sin2 x+ sinh2 y,(2.4)

cosh2x= 2sinh2 x+ 1, cos2x= 1 - 2 sin2 x,(2.5)

cot z =
sin2x - i sinh2y

cosh2y - cos2x
.(2.6)

2.4. Lifting paths and domains. We will find the need, in the proof of The-
orem 9.6, to apply Lemma 2.2 while integrating in \Pi and apply Cauchy's residue
theorem. This could be done directly by introducing a version of the residue theorem
for \Pi , which is a (flat) analytic manifold. Alternately, we can transform integrals in
\Pi to integrals of x1-periodic functions in C by lifting the domain \Omega in \Pi to a suitable
domain \widetilde \Omega in C. Our main tool for doing this is the lifting of paths from a topological
space to a covering space.

Defining

p : C\rightarrow \Pi , p(x1 + ix2) = x1  - \lfloor x1 +
1
2\rfloor + ix2,

we see that (C, p) is a covering space of \Pi (see section IX.7 of [17], for instance). This
will allow us to lift a path in \Pi to a path in R2 or C.

Remark 2.6. \scrR ep(f)(x) = f(p(x)), though we do not make direct use of this.
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PERIODIC VORTEX PATCHES AND LAYERS 2293

Definition 2.7. A path in the topological space X is a continuous map from an
interval I to X. The path \widetilde \bfitgamma in C is a lift or lifting of the path \bfitgamma in \Pi if p \circ \widetilde \bfitgamma = \bfitgamma .

Lemma 2.8. Let \bfitgamma be a finite length continuous path in \Pi with initial point x0.
For any \widetilde x0 \in p - 1(x0), there exists a unique lifting \widetilde \bfitgamma with initial point \widetilde x0.

Proof. This is a classical result; see, for instance, Corollary IX.7.5 of [17].

This lifting allows us to relate path integrals in \Pi to lifted path integrals in R2

or C.

Lemma 2.9. Let \bfitgamma be a Lipschitz-continuous path in \Pi with a lift \widetilde \bfitgamma as given by
Lemma 2.8. For any continuous function f on \Pi ,\int 

\bfitgamma 

f =

\int 
\widetilde \bfitgamma f \circ p.

Moreover, the normal vector field \bfitn on \bfitgamma lifts to itself as does \bfittau ; that is, \bfitn (\bfitgamma (\alpha )) =
\bfitn (\widetilde \bfitgamma (\alpha )) for all \alpha in the domain of \bfitgamma (which is the same as the domain of \widetilde \bfitgamma ).

Proof. Suppose that \bfitgamma : [a, b]\rightarrow \Pi , in which case also \widetilde \bfitgamma : [a, b]\rightarrow C with p\circ \widetilde \bfitgamma = \bfitgamma .
Then \int 

\widetilde \bfitgamma f \circ p=
\int b

a

f \circ p(\widetilde \bfitgamma (\alpha ))\widetilde \bfitgamma \prime (\alpha )d\alpha =

\int b

a

f(\bfitgamma (\alpha ))\bfitgamma \prime (\alpha )d\alpha =

\int 
\bfitgamma 

f.

We used that \widetilde \bfitgamma \prime (\alpha ) = \bfitgamma \prime (\alpha ), since locally \widetilde \bfitgamma and \bfitgamma differ by a constant (if we view \bfitgamma 
as giving values in \Pi p). This also gives that \bfitn and \bfittau lift to themselves.

Lemma 2.9 is not, however, the entire story when we lift the entire boundary of
a domain in \Pi . An immediate difficulty stems from the ambient space \Pi , which is
topologically a cylinder, having nontrivial fundamental (and first homology) group
Z. Let us say that a closed curve on \Pi wraps around the cylinder n times if it
crosses \{ x1 = 0\} (any vertical slice would do) n times counted with sign, positive in
one direction, negative in the other (arbitrarily fixing which direction is positive).

A closed path that wraps zero times around the cylinder is homotopic to a point
and lifts to a closed path in C. A closed path that wraps around the cylinder n times,
however, will lift by Lemma 2.8 to a nonclosed path in C that contains | n| +1 points
of x0 +\scrL , where we define here and for future use,

\scrL := \{ Z\} \times \{ 0\} , \scrL \ast :=\scrL \setminus (0,0),(2.7)

treated as subsets of R2 or of C. Since we are lifting paths that are boundary compo-
nents, they will always be closed in \Pi , but can wrap only 0 or \pm 1 times around the
cylinder; else they would of necessity self-intersect.

Figure 4 shows an example of a domain \Omega in \Pi having two boundary components
\Gamma 1, \Gamma 2 which lift to nonclosed paths \widetilde \Gamma 1, \widetilde \Gamma 2. To make a domain from these paths, we
could connect \widetilde \Gamma 1, \widetilde \Gamma 2 with vertical paths at x1 = - 1

2 and x1 =
1
2 , oppositely oriented,

so that the four paths together form the boundary of a lifted domain \widetilde \Omega .
Equivalently, and in a manner more easily generalizable, we cut the cylinder

\Pi vertically1 along the line \ell =
\bigl\{ 
x1 =\pm 1

2

\bigr\} 
, which in effect means we view \Pi in

the form suggested in (1.3). For any line segment formed by \ell \cap \partial \Omega we introduce

1In pathological cases, we would have to perturb this cut to avoid producing an infinite number
of boundary components, but we will not explore this issue further.
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2294 D. M. AMBROSE, F. HADADIFARD, AND J. P. KELLIHER

Fig. 4. Lifting of \partial \Omega with base points at x1 = - 1
2
.

oppositely oriented paths; together, the lifted components of \partial \Omega and these paths,
properly oriented, form the boundary components of the lifted domain \widetilde \Omega .

In lifting these components and paths, however, we need to ensure compatible
initial points for the paths. To do this, fix any x0 in \Omega . Let y be any point in \Omega and
let \bfitgamma y be a path connecting x0 to y. Being a domain, \Omega is path-connected so this is
always possible. By Lemma 2.8, there is a unique lifting \widetilde \bfitgamma y of \bfitgamma y with initial point\widetilde x0. Then \widetilde \Omega :=\cup y\in \Omega \widetilde \bfitgamma y is the desired lifting of \Omega .

Lifted in this way, we have the following lemma.

Lemma 2.10. Let \Omega be a bounded domain in \Pi and let \widetilde \Omega be the lifted domain as
described above. Let \bfitgamma be a parameterization of \partial \Omega and \widetilde \bfitgamma a parameterization of \partial \widetilde \Omega .
Let f be any continuous complex-valued function. Then\int 

\bfitgamma 

Cf =

\int 
\widetilde \bfitgamma Cf \circ p,

\int 
\partial \Omega 

\vec{}f \cdot \bfittau =

\int 
\partial \widetilde \Omega (

\vec{}f \circ p) \cdot \bfittau ,
\int 
\partial \Omega 

\vec{}f \cdot \bfitn =

\int 
\partial \widetilde \Omega (

\vec{}f \circ p) \cdot \bfitn .

Proof. The proof follows from Lemma 2.9, since the cuts introduce integrals that
cancel in pairs.

3. Periodized functions and Biot--Savart kernels.
Definition 3.1. Let \omega \in L1\cap L\infty (R2). We say that the velocity field u is obtained

by symmetrizing in pairs (about 0) if, letting \omega (n)(x) = \omega (x+ (n,0)), we have

u=Ksym[\omega ] :=K \ast \omega +
\infty \sum 

n=1

K \ast 
\Bigl( 
\omega ( - n) + \omega (n)

\Bigr) 
.

Definition 3.2. Let S = S(R2) be the Serfati space of bounded, divergence-free
vector fields on R2 having bounded vorticity with norm,

\| u\| S := \| u\| L\infty (R2) + \| curlu\| L\infty (R2).

We define S(\Pi ) similarly.

Remark 3.3. As shown in (2.11) of [21], for any \omega \in L\infty (\Pi ) there is a divergence-
free vector field u in L\infty (\Pi ) and so in S(\Pi ) for which curlu = \omega . S(R2) is very
different, for there is no known general condition on \omega \in L\infty (R2) alone that guarantees
a u in L\infty (R2).

Proposition 3.4. For \omega \in L\infty 
c (R2), let u=Ksym[\omega ] as in Definition 3.1. Then

u\in S(R2) with curlu= curlKsym[\omega ] =\scrR ep(\omega ). Further,

u=Ksym[\omega ] =K\infty \ast \omega , K\infty (x) :=

 -  -  -  -  -  -  - \rightarrow 
 - i

2
cot\pi \leftarrow  - x =

1

2

\biggl[  -  -  -  - \rightarrow 
cot\pi \leftarrow  - x

\biggr] \bot 
,(3.1)
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PERIODIC VORTEX PATCHES AND LAYERS 2295

where we note that K\infty is periodic in x1 with period 1, as is u. We also have

K\infty (x) =K(x) +H(x),(3.2)

where H is harmonic on R2 \setminus \scrL \ast , where \scrL \ast is defined in (2.7).

Proof. Applying Theorem 2.3, we have

In :=K \ast 
\Bigl( 
\omega ( - n) + \omega (n)

\Bigr) 
(x) = - 

 -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - \rightarrow 
i

2\pi 

\int 
R2

\Biggl[ 
\omega (y)

\leftarrow  -  -  - 
y - x - n

\Biggr] 
+

\Biggl[ 
\omega (y)

\leftarrow  -  -  - 
y - x+ n

\Biggr] 
dy,

so

\leftarrow  - 
In = - i

2\pi 

\int 
R2

2

\leftarrow  -  -  - 
y - x

(
\leftarrow  -  -  - 
y - x)2  - n2

\omega (y)dy.

From Definition 3.1 with Lemma 2.4, then (the compact support of \omega allows us to
interchange integration and summation)

\leftarrow  -  - 
u(x) = - i

2

\int 
R2

cot(\pi (
\leftarrow  -  -  - 
y - x))\omega (y)dy,

and (3.1) follows from (2.2). Since the singularity of cot(\pi z) at z = 0 is like 1/(\pi z)
and \omega is compactly supported, we see that the above integral lies in L\infty (R2). Since
the curl of each In is \omega ( - n) +\omega (n) while its divergence is zero and the sum converges
absolutely and uniformly, we know that divu= 0 and curlu=\scrR ep(\omega ).

But cot z = 1
z + h(z) on C \setminus \scrL \ast , where h is analytic. From this (3.2) follows.

Proposition 3.5. If \omega 1 \sim \omega 2 in L\infty 
c (R2) as in Definition 1.1, then K\infty \ast \omega 1 =

K\infty \ast \omega 2.

Proof. For any \omega \in L\infty 
c (R2),

K\infty \ast \scrP er(\omega )(x) =
\int 
\Pi 

K\infty (x - y)\scrP er(\omega )(y)dy=

\int 
\Pi p

K\infty (x - y)
\sum 
n\in Z

\omega (y - (n,0))dy

=

\int 
\Pi p

\sum 
n\in Z

K\infty (x - (y - (n,0)))\omega (y - (n,0))dy

=
\sum 
n\in Z

\int 
\Pi p

K\infty (x - (y - (n,0)))\omega (y - (n,0))dy=
\sum 
n\in Z

\int 
\Pi p - (n,0)

K\infty (x - y)\omega (y)dy

=

\int 
R2

K\infty (x - y)\omega (y)dy=K\infty \ast \omega (x).

We were able to interchange the integral and sum here because for any fixed x, the
compact support of \omega makes all but a finite number of terms in the sum zero. Hence,
if \omega 1 \sim \omega 2, then K\infty \ast \omega 1 =K\infty \ast \scrP er(\omega ) =K\infty \ast \omega 2.

We will see in subsection 5.1 that K\infty also serves as the Biot--Savart kernel on \Pi .

4. Type 1: Periodized solutions. We review here results, obtained variously
in [4, 28, 37, 38], on bounded vorticity, bounded velocity solutions to the 2D Euler
equations in R2.
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2296 D. M. AMBROSE, F. HADADIFARD, AND J. P. KELLIHER

Definition 4.1. Fix T > 0 and let u\in L\infty (0, T ;S)\cap C([0, T ]\times R2) with vorticity
\omega := curlu. We say that u is a bounded weak Eulerian solution to the Euler equations
without forcing if, on the interval [0, T ], \partial t\omega +u\cdot \nabla \omega = 0 as a distribution on (0, T )\times R2.
We say that u is a Lagrangian solution if \omega (t,X(t, x)) = \omega (0, x) for all (t, x)\in [0, T ]\times 
R2, where X is the flow map for u (noting that u has sufficient regularity to ensure
the existence of a unique classical flow map).

Let aR be a radial cutoff function: aR(\cdot ) = a(\cdot /R) for any R > 0, where a \in 
C\infty (R2) is radially symmetric and equal to 1 in a neighborhood of the origin. For
definitiveness, we will assume that a\equiv 1 on B1(0), a\equiv 0 on B2(0)

C , and | a| \leqslant 1 on R2.

Theorem 4.2 ([28]). Any weak solution to the Euler equations (Eulerian or
Lagrangian) with u \in L\infty (0, T ;S) \cap C([0, T ]\times R2) having vorticity \omega with u(0) = u0,
\omega (0) = \omega 0, must satisfy, for some U\infty \in C([0, T ])2, the Serfati identity,

uj(t) - (u0)j =U j
\infty (t) + (aKj) \ast (\omega (t) - \omega 0)

 - 
\int t

0

\bigl( 
\nabla \nabla \bot \bigl[ (1 - a)Kj

\bigr] \bigr) 
\ast \cdot (u\otimes u)(s)ds,

(4.1)

j = 1,2, and the renormalized Biot--Savart law,

u(t) - u0 =U\infty (t) + lim
R\rightarrow \infty 

(aRK) \ast (\omega (t) - \omega 0)(4.2)

on [0, T ]\times R2. Furthermore, the corresponding pressure is of the form

p(t,x) = - U\prime 
\infty (t) \cdot x+ q(t,x),(4.3)

where q grows sublinearly at infinity.

Theorem 4.2 characterizes solutions to the 2D Euler equations that have bounded
vorticity and bounded velocity: their existence and uniqueness under the condition
that (4.1) holds is shown, for U\infty \equiv 0, in [37] and elaborated on in [4], their extension
to a general U\infty being a simple matter. Uniqueness under the assumption of sublinear
growth of the pressure is established in [38].

Combining these results leads to the following.

Theorem 4.3. Let u0 \in S(R2) and set \omega 0 = curlu0. There exists a solution (u, p)
to the 2D Euler equations with u\in L\infty (0, T ;S)\cap C([0, T ]\times R2) having initial velocity
u0. Existence and uniqueness hold if we require that the solution satisfy any one (and
hence all) of (4.1) through (4.3) with U\infty \equiv 0.

5. Type 2: Solutions in an infinite periodic strip. Let BUC(\Pi ) be the
space of bounded, uniformly continuous functions, noting that any vector field in
S(\Pi ) lies in BUC(\Pi ). Well-posedness of solutions to the Navier--Stokes equations for
initial velocity in BUC(\Pi ) was established by Afendikov and Mielke in [2]. Building
on this, Gallay and Slijep\v cevi\'c in [21] (and see the comments in [19]) obtained im-
proved bounds for the case where the initial velocity lies in S(\Pi ), having established
properties of the pressure in [20]. These works are for the Navier--Stokes equations,
but as the authors point out, the pertinent estimates are uniform in small viscosity
and hold for solutions to the Euler equations as well (by repeating the argument with
the viscous terms missing or by using known vanishing viscosity results).

In Theorem 5.3 we give the well-posedness result as derived from [2, 20, 21], but
for this we need to first explore some aspects of the analysis in these references.
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PERIODIC VORTEX PATCHES AND LAYERS 2297

5.1. Biot--Savart kernels. The authors of [2, 20, 21] orient their periodic strip
(infinite cylinder) horizontally and S1 is, in effect, parametrized from 0 to 1. Let
(x\prime 

1, x
\prime 
2) be the coordinates for the horizontal strip of [2, 20, 21], while we will keep

(x1, x2) for our vertical strip. Rotating the horizontal strip 90 degrees counterclock-
wise induces the change of variables,

x\prime 
1 \mapsto \rightarrow x2, x\prime 

2 \mapsto \rightarrow  - x1.

The Biot--Savart kernel on \Pi used in [2] and (2.7) of [20] is \nabla \bot G, where

G(x\prime 
1, x

\prime 
2) :=

1

4\pi 
log (2 cosh(2\pi x\prime 

1) - 2cos(2\pi x\prime 
2))

is the Green's function for the Dirichlet Laplacian on \Pi . In (x1, x2) variables,

G(x1, x2) :=
1

4\pi 
log (2 cosh(2\pi x2) - 2cos(2\pi x1)).(5.1)

Lemma 5.1. We have K\infty =\nabla \bot G. Moreover, G(x) = (2\pi ) - 1 log\rho (x), where

\rho (x) :=
\bigl( 
sin2(\pi x1) + sinh2(\pi x2)

\bigr) 1
2 .(5.2)

Proof. From (2.5), 2 cosh(2\pi x2)  - 2cos(2\pi x1) = 4\rho (x)2, gives our alternate ex-
pression for G (noting that the Green's function on \Pi is unique up to an additive
constant). From (2.6) and (5.1), we have

\nabla \bot G(x1, x2) =
1

2\pi 

( - \pi sinh(2\pi x2), \pi sin(2\pi x1))

cosh(2\pi x2) - cos(2\pi x1)
=

1

2

 -  -  -  -  - \rightarrow 
cot(\pi z)\bot ,(5.3)

matching the expression for K\infty in (3.1). Here, we used (2.6).

Lemma 5.2. The function log\rho (x)  - log | x| is harmonic on R2 \setminus \scrL \ast , where \rho is
defined in (5.2).

Proof. Letting z =\leftarrow  - x , we have, using (2.4),

log\rho (x) - log | x| = 1

2
log

\bigm| \bigm| \bigm| \bigm| \rho (x)2| x| 2

\bigm| \bigm| \bigm| \bigm| = 1

2
log

\bigm| \bigm| \bigm| \bigm| sin zz
\bigm| \bigm| \bigm| \bigm| 2 = log

\bigm| \bigm| \bigm| \bigm| sin zz
\bigm| \bigm| \bigm| \bigm| =Re log

sin z

z
,

which is the real part of a function that is complex analytic on C \setminus \scrL \ast .

5.2. Mean horizontal values. As observed below Lemma 2.2 of [2], although
K\infty \in L1

loc(\Pi ), K2
\infty \in L1(\Pi ) (accounting for the different orientation of the strip).

Moreover, convolution with K1
\infty can be handled by subtracting from u2 its mean

horizontal value to give it mean value zero. We summarize here this process as
described on page 1748 of [20].

If v(t) \in S(\Pi ), the mean value of v2(t) along the horizontal line segment x2 = a
is independent of a \in R, and if (v, p) solves the Euler equations on \Pi , then it is
independent of time as well. Hence, we can define

m2(t) =m2[v(t)] := \langle v2(t)\rangle ,(5.4)

the mean value of v2(t) along any such horizontal line segment, and we will have
\langle v2(t)\rangle = \langle v20\rangle .
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2298 D. M. AMBROSE, F. HADADIFARD, AND J. P. KELLIHER

The mean value of v1(t), however, will depend upon x2, so we write

m1(t, x2) =m1[v(t)](x2) :=

\int 1
2

 - 1
2

v1(t, x1, x2)dx1.

Similarly, we define

\langle \omega \rangle (t, x2) :=

\int 1
2

 - 1
2

\omega (t, x1, x2)dx1

and \widehat \omega (t, x1, x2) := \omega (t, x) - \langle \omega \rangle (t, x2). Also,

\langle \omega \rangle (t, x2) = \langle \partial 1u2  - \partial 2u
1\rangle (t, x2) = - \langle \partial 2u1\rangle (t, x2) = - \partial 2m1(t, x2).(5.5)

A form of the Biot--Savart law given in (2.5), (2.6) of [20] (suppressing the time
variable) is

v(x) =

\biggl( 
 - m1(x2)

m2

\biggr) 
+

\int \infty 

 - \infty 

\int 1
2

 - 1
2

K\infty (x - y)\widehat \omega (y)dy1 dy2.(5.6)

We note here that in transforming from the expression as written in [20], a velocity
(v1, v2) in (x\prime 

1, x
\prime 
2) becomes (v2, - v1) in (x1, x2), which accounts for the minus sign in

 - m1(x2).

5.3. Type 2 solutions. We can now summarize the known result we need for
Type 2 solutions.

Theorem 5.3 ([2, 20, 21]). For v0 \in S(\Pi ) with \langle v20\rangle = 0 there exists a unique
solution (v, q) to the Euler equations,\left\{     

\partial tv+ v \cdot \nabla v+\nabla q= 0 in [0,\infty )\times \Pi ,

divv= 0 in [0,\infty )\times \Pi ,

v(0) = v0 in \Pi 

(5.7)

for which m2(t) \equiv 0 with v \in C([0,\infty );BUC(\Pi )) \cap L\infty ([0,\infty );S(\Pi )) and pressure
q \in W 1,\infty ([0,\infty )\times \Pi ). The pressure is given by2

q= - (u2)2 + 2K2
\infty \ast (\omega u1).

The solutions are Eulerian in velocity and satisfy the vorticity equation. Moreover, u
can be recovered from \omega by the Biot--Savart law as in (5.6).

5.4. Compactly supported vorticity. As a prelude to obtaining Type 3 so-
lutions, let us consider the special case of Type 2 solutions that we can obtain when
the vorticity is compactly supported in \Pi . First, we specialize the Biot--Savart law in
(5.6) to compactly supported vorticity.

Lemma 5.4. Let v \in S(\Pi ) with \omega := curlv compactly supported in \Pi . Then
m1( - \infty ) +m1(\infty )\equiv m2 \equiv 0 if and only if v=K\infty \ast \omega .

2+2K2
\infty is  - \partial 2G in (2.8) of [20]: we have made the transformation from a horizontal to a vertical

strip.
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PERIODIC VORTEX PATCHES AND LAYERS 2299

Proof. Since \langle \omega \rangle = - \partial 2m1, we have

Ij :=

\Biggl[ \int \infty 

 - \infty 

\int 1
2

 - 1
2

K\infty (x - y)\langle \omega \rangle (y)dy1 dy2

\Biggr] j

=

\int 1
2

 - 1
2

\int \infty 

 - \infty 
Kj

\infty ((x - x\prime , y - y\prime ))\partial 2m1(y
\prime )dy\prime dx\prime .

Lemma 5.7, below, gives that I2 = 0.
We now consider I1. Because \omega is compactly supported within some [ - 1/2, 1/2]\times 

[ - R0,R0], so, too, are \langle \omega \rangle and then, by (5.5), \partial 2m1. Choose \varphi \in C\infty 
C (R) equal to 1 on

[ - R,R] and equal to zero outside [ - R+ 1,R+ 1] where we will choose R\geqslant R0 more
precisely later. Let m\varepsilon 

1 = \eta \varepsilon \ast m1, where \eta \varepsilon is a (compactly supported) Friedrich's
mollifier. As in [2], we treat K1

\infty as a distribution on \Pi with \varphi m\varepsilon 
1 a test function.

Since also K1
\infty \in L1

loc(\Pi ), we have, for fixed x,

I1 = lim
\varepsilon \rightarrow 0

\int 1
2

 - 1
2

\int \infty 

 - \infty 
K1

\infty ((x - x\prime , y - y\prime ))\varphi (y)\partial 2m
\varepsilon 
1(y

\prime )dy\prime dx\prime 

= lim
\varepsilon \rightarrow 0

K1
\infty \ast (\varphi \partial 2m\varepsilon 

1) = lim
\varepsilon \rightarrow 0

K1
\infty \ast \partial 2(\varphi m\varepsilon 

1) - lim
\varepsilon \rightarrow 0

K1
\infty \ast (\partial 2\varphi m\varepsilon 

1).

Now,

\partial 2K
1
\infty = - \partial 2

2G= - \Delta G+ \partial 2
1G= - \delta + \partial 2

1G,

where G is the Green's function for the Dirichlet Laplacian on \Pi as in (5.1) and \delta is
the Dirac delta function on \Pi . Hence,

\partial 2(\varphi m
\varepsilon 
1) =m\varepsilon 

1(x2) - 
\int \infty 

 - \infty 

\int 1
2

 - 1
2

\partial 2
1G((x - x\prime , y - y\prime ))dx\prime m\varepsilon 

1(y
\prime )dy\prime =m\varepsilon 

1(x2),

where the integral vanishes after integrating by parts, since G is periodic in x1. Hence,

I1 =m1(x2) - lim
\varepsilon \rightarrow 0

K1
\infty \ast (\partial 2\varphi m\varepsilon 

1),

and this equality holds regardless of our choice of R \geqslant R0. Therefore, if we can
evaluate K1

\infty \ast (\partial 2\varphi m\varepsilon 
1) in the limit as R \rightarrow \infty , it will be its common value for all

R\geqslant R0.
We see from (5.3) that K1

\infty (x - y)\rightarrow \pm 1/2 as y2\rightarrow \pm \infty and \partial 2K
1
\infty (x - y)\rightarrow 0 as

y2\rightarrow \pm \infty , so

lim
R\rightarrow \infty 

K1
\infty \ast (\partial 2\varphi m\varepsilon 

1) = lim
R\rightarrow \infty 

\Biggl( \int  - R

 - R - 1

+

\int R+1

R

\Biggr) 
\partial 2\varphi K

1
\infty (x - y)m\varepsilon 

1

= lim
R\rightarrow \infty 

[(K\infty 
1 m\varepsilon 

1)( - R) - (K\infty 
1 m\varepsilon 

1)(R)]

 - lim
R\rightarrow \infty 

\Biggl( \int  - R

 - R - 1

+

\int R+1

R

\Biggr) 
\varphi \partial 2K

1
\infty (x - y)m\varepsilon 

1

= - 1

2
lim

R\rightarrow \infty 
[m\varepsilon 

1( - R) +m\varepsilon 
1(R)] .

We also used here that \partial 2m
\varepsilon 
1 = - \eta \varepsilon \ast \partial 2\langle \omega \rangle = 0 for R\geqslant R0. Since this limit gives the

value for all R\geqslant R0, we can take \varepsilon \rightarrow 0 to conclude that

I1 =m1(x2) +
1

2
[m1( - \infty ) +m1(\infty )] .
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Returning to (5.6), then, we see that

v(t,x) =
1

2

\biggl( 
m1( - \infty ) +m1(\infty )

2m2

\biggr) 
+ (K\infty \ast \omega (t)(x).(5.8)

This shows that m1( - \infty ) +m1(\infty )\equiv 0 and m2 \equiv 0 if and only if v=K\infty \ast \omega .
Corollary 5.5. Let \omega \in L\infty 

c (\Pi ). Then v = K\infty \ast \omega is the unique element in
S(\Pi ) for which curlv= \omega , m2[v] = 0, and m1[v]( - \infty ) +m1[v](\infty ) = 0.

Proposition 5.6. Assume that \omega 0 \in L\infty 
c (\Pi ), v0 = K\infty \ast \omega 0, and v is a Type 2

solution as in (5.3) with v given by (5.6). Then v(t) =K\infty \ast \omega (t) for all t.

Proof. It follows from Lemma 5.4 that m1(0, - \infty ) +m1(0,\infty ) = 0. But as ob-
served following (2.11) of [20], \partial tm1 =  - \langle u2\omega \rangle , which we note vanishes for all suffi-
ciently large x2 because of the compact support of \omega . Hence, m1(t, - \infty )+m1(t,\infty ) = 0
for all t. We conclude from (5.8) that v(t) =K\infty \ast \omega (t) for all t.

We used Lemma 5.7 in the proof of Lemma 5.4, above.

Lemma 5.7. For all y \in R, K1
\infty (x1, x2) is even in x1 and odd in x2, while

K2
\infty (x1, x2) is odd in x1 and even in x2.

Proof. This follows directly from (5.3), since \nabla \bot G=K\infty .

6. Type 3: Solutions with a periodized kernel.
Theorem 6.1. Let \omega 0 \in L\infty 

c (R2). There exists a solution \mu to\left\{     
\partial t\mu +w \cdot \nabla \mu = 0 in [0,\infty )\times R2,

w=K\infty \ast \mu in [0,\infty )\times R2,

\mu (0) = \omega 0 in R2.

Moreover, curlw=\scrR ep(\scrP er(\mu )), and w \in L\infty (0, T ;S) \cap C([0, T ]\times R2) is the unique
solution to \left\{     

\partial tw+w \cdot \nabla w+\nabla r= 0 in [0,\infty )\times R2,

divw= 0 in [0,\infty )\times R2,

w(0) =K\infty \ast \mu (0) in R2,

(6.1)

with the uniqueness criteria being that r is periodic. Finally, r \in L\infty ([0, T ]\times R2).

Proof. From Proposition 3.4 we know that K\infty \ast \omega 0 \in L\infty (R2) and is periodic in
x1 with period 1; hence, abusing notation, we can set v0 =K\infty \ast \omega 0| \Pi and obtain by
Theorem 5.3 a unique solution (v, q) to (5.7) for which q is periodic in x1 and m2(t)\equiv 
0. Since curlv0 = \omega 0| \Pi is compactly supported and so curlv remains compactly
supported for all time, we know from Proposition 5.6 that v=K\infty \ast curlv. So letting
\zeta = curlv, we see that \left\{     

\partial t\zeta + v \cdot \nabla \zeta = 0 in [0,\infty )\times \Pi ,

v=K\infty \ast \zeta in [0,\infty )\times \Pi ,

\zeta (0) = \omega 0 in \Pi .

Setting w = v, \mu = \zeta gives the desired solution of Type 3. Moreover, since q(t) is
periodic, we can let r=\scrR ep(q), and we obtain a unique solution to (6.1).
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7. Three types of solution are equivalent. For certain classes of initial data,
our three types of solution are equivalent. The equivalence of Type 1 and Type 2 holds
for a broader class, so we first prove it in Theorem 7.1. The equivalence of the third
type holds for initial data in L\infty 

c (R2), as we show in Theorem 7.2. This includes
vortex patch data, our application in section 9.

Theorem 7.1. Let v0 \in S(\Pi ) and periodize it to give u0 = \scrR ep(v0) \in S(R2).
Let (u, p) be the solution of Type 1 with initial velocity u0 given by Theorem 4.3 and
let (v, q) the solution of Type 2 with initial velocity v0 given by Theorem 5.3. Then
\scrR ep(v) = u.

Proof. We have curlv(0) = curlu0| \Pi , where we abuse notation somewhat. From
Theorem 5.3, we have a pressure q with q(t)\in L\infty (\Pi ) for which\left\{     

\partial tv+ v \cdot \nabla v+\nabla q= 0 in [0,\infty )\times \Pi ,

divv= 0 in [0,\infty )\times \Pi ,

v(0) = v0 in \Pi .

(7.1)

Since \scrR ep(v) and \scrR ep(q) are x1-periodic with period 1, we can set \widetilde v =\scrR ep(v)
and \widetilde q =\scrR ep(q), and both will lie in L\infty ([0, T ]\times R2) with curl \widetilde v(t) =\scrR ep(curlv(t)).
Thus, \widetilde v is v periodized and curl \widetilde v is curlv periodized, meaning that (7.1) in effect
holds on \Pi p translated by (n,0) for any integer n, so we see that\left\{     

\partial t\widetilde v+ \widetilde v \cdot \nabla \widetilde v+\nabla \widetilde q= 0 in [0,\infty )\times R2,

div \widetilde v= 0 in [0,\infty )\times R2,\widetilde v(0) = u0 in R2.

(7.2)

We see that (\widetilde v, \widetilde q) is a solution to the Euler equations on [0,\infty )\times R2. Manifestly, \widetilde v,
curl \widetilde v, and \widetilde q each lie in L\infty ([0,\infty )\times R2), being periodic in x1. Hence, \widetilde v is a bounded
velocity, bounded vorticity solution to the Euler equations on [0,\infty )\times R2. Because
the pressure \widetilde q grows sublinearly it is, in fact, the (unique) Serfati solution (it satisfies
the Serfati identity), as follows from Theorem 4.3. Therefore, u= v.

Theorem 7.2. For \omega 0 \in L\infty 
c (R2), let u0 =Ksym[\omega 0] be obtained by symmetrizing

in pairs as in Definition 3.1, and let v0 =K\infty \ast \scrP er(\omega 0). Let (u, p), (v, q) be the Type
1, 2 solutions with initial velocity u0, v0 and let w0 be the velocity field for the Type
3 solution given by Theorem 6.1. Then \scrR ep(v) = u=w.

Proof. Theorem 7.1 gives \scrR ep(v) = u, while \scrR ep(v) =w is inherent in the proof
of Theorem 6.1.

8. The velocity gradient. The following expression for \nabla (K \ast \omega ) is classical
(see, for instance, Proposition 2.20 of [30]).

Lemma 8.1. Assume that \omega \in L\infty (R2) is compactly supported and let u=K \ast \omega .
Then

\nabla u(x) = \omega (x)

\biggl( 
0  - 1
1 0

\biggr) 
+p.v.

\int 
R2

\nabla K(x - y)\omega (y)dy,

where we can write

\nabla K(x) =
1

2\pi 

\sigma (x)

| x| 2
, \sigma (x) :=

1

| x| 2

\biggl( 
2x1x2 x2

2  - x2
1

x2
2  - x2

1  - 2x1x2

\biggr) 
.

The analogue for the K\infty kernel is Lemma 8.2.
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2302 D. M. AMBROSE, F. HADADIFARD, AND J. P. KELLIHER

Lemma 8.2. Assume that \omega \in L\infty (R2) is compactly supported and let u=K\infty \ast \omega .
Then

\nabla u(x) =
\sum 
n\in Z

\omega (x+ (n,0))

2

\biggl( 
0  - 1
1 0

\biggr) 
+p.v.

\int 
R2

\nabla K\infty (x - y)\omega (y)dy,

where \rho is as in (5.2) and where we can write

\nabla K\infty (x) =
\pi 

2

\beta (x)

\rho (x)2
,

where

\beta (x) =
1

2\rho (x)2

\biggl( 
sin(2\pi x1) sinh(2\pi x2) cos(2\pi x1) cosh(2\pi x2) - 1

cos(2\pi x1) cosh(2\pi x2) - 1  - sin(2\pi x1) sinh(2\pi x2)

\biggr) 
.

Proof. The proof is given in Appendix A.

Remark 8.3. Like \sigma , the matrix \beta is symmetric with trace zero. Near the origin,
\rho (x)2 \approx \pi 2| x| 2, and we can see that \beta (x) \approx 4\pi 2| x| 2/(2\pi 2| x| 2) \approx 2 \approx \sigma (x), and so
\nabla K\infty (x)\approx 2\pi /(2\pi 2| x| 2)\approx 1/(\pi | x| 2)\approx \nabla K(x). Also like \sigma , \beta 11 and \beta 22 integrate to
zero over circles centered at the origin, but unlike \sigma , neither \beta 12 nor \beta 21 integrates to
zero.

We have the following immediate corollary of Lemma 8.2.

Corollary 8.4. Let v \in S(\Pi ) with \omega = curlv compactly supported and let u =
K\infty \ast \omega . Then

\nabla u(x) = \omega (x)

2

\biggl( 
0  - 1
1 0

\biggr) 
+p.v.

\int 
\Pi 

\nabla K\infty (x - y)\omega (y)dy

and \nabla K\infty can be written as in Lemma 8.2.

9. Contour dynamics equations. First we review the CDE for a classical
vortex patch---the characteristic function of a bounded, simply connected domain
evolving under the vorticity equation for the Euler equations on all of R2---then turn
to the CDE for Type 2 solutions.

In what follows we use the Lipschitz space Lip and homogeneous Lipschitz space
lip. On U \subseteq Rd for d\geqslant 1, we define their seminorm and norm,

\| f\| lip(U) := sup
x\not =y\in U

| f(x) - f(y)| 
| x - y| 

, \| f\| Lip(U) := \| f\| L\infty (U) + \| f\| lip(U).

9.1. Classical vortex patches. In the classical setting of a vortex patch in R2,
we have Theorems 9.1 and 9.2, as in Proposition 8.6 of [30] and the derivation of the
classical CDE that appears before it.

In what follows, \omega 0 is a fixed, nonzero real constant.

Theorem 9.1. Let \bfitgamma : [0,2\pi ] \rightarrow R2 be a C1 counterclockwise3 parameterization
of the boundary of a bounded, simply connected domain \Omega . Then

u(x) = - \omega 0

2\pi 

\int 2\pi 

0

log | x - \bfitgamma (\alpha )| \partial \alpha \bfitgamma (\alpha )d\alpha (9.1)

is the unique divergence-free vector field decaying at infinity for which curlu= \omega 01\Omega .

3In [30], the patch boundary is parameterized clockwise, but (\bfittau ,\bfitn ) is in the standard (e1,e2)
orientation; the two resulting sign changes between [30] and us cancel, so there is no sign change in
our expressions.
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PERIODIC VORTEX PATCHES AND LAYERS 2303

Now let us suppose that \Omega is a simply connected bounded domain in R2 with
a C1,\varepsilon boundary. Let u be the unique weak solution to the Euler equations with
initial vorticity \omega 0 := \omega 01\Omega and let X be the flow map for u. Then we know that the
vorticity \omega (t) = \omega 01\Omega t

, where \Omega t =X(t,\Omega ).
Let \bfitgamma (0, \cdot ) be a C1-regular counterclockwise parameterization of \Gamma = \partial \Omega . Define

a parameterization of \partial \Omega t = X(t,\Gamma ) by \bfitgamma (t, \cdot ) := X(t,\bfitgamma (0, \cdot )). The log-Lipschitz
regularity of u(t) induces Cc(t)-regularity of the flow map X(t, \cdot ) with c(t) \in (0,1)
and decreasing with time, as in Lemma 8.2 of [30]. This is insufficient regularity to
obtain a C1-parameterization of \partial \Omega t, so let us suppose that our (classical) solution
has u\in C(0, T ; lip). Then \bfitgamma (t, \cdot ) is a C1-parameterization of \partial \Omega t.

Since we assumed \partial \Omega is C1,\varepsilon , we could give \bfitgamma (0, \cdot ) C1,\varepsilon -regularity, but this does
not itself ensure that \bfitgamma (t, \cdot ) is C1,\varepsilon : proving that is tantamount to establishing the
propagation of regularity of the vortex patch boundary.

Theorem 9.2. Let u(t,x) be given by (9.1) applied with \bfitgamma (t, \cdot ), that is,

u(t,x) := - \omega 0

2\pi 

\int 2\pi 

0

log | x - \bfitgamma (t,\alpha )| \partial \alpha \bfitgamma (t,\alpha )d\alpha .

Then u is a weak solution to the 2D Euler equations on [0, T ]\times R2 with u\in C(0, T ;Lip)
if and only if \bfitgamma is a C1([ - T,T ];C([0,2\pi ])) \cap C([ - T,T ];C1([0,2\pi ])) solution to the
CDE,

d

dt
\bfitgamma (t,\alpha ) = - \omega 0

2\pi 

\int 2\pi 

0

log | \bfitgamma (t,\alpha ) - \bfitgamma (t,\alpha \prime )| \partial \alpha \prime \bfitgamma (t,\alpha \prime )d\alpha \prime .(9.2)

Theorems 9.1 and 9.2 were expressed for simply connected domains. As pointed
out on page 330 of [30], the only difference for multiply connected domains is that the
integrals in (9.1) and (9.2) are summed over each component of the boundary.

Theorem 9.3. Theorems 9.1 and 9.2 hold for bounded, multiply connected do-
mains if we evaluate and sum each of the boundary integrals over each boundary
component.

We view (9.2) as a form of the Euler equations applying specifically to a vortex
patch: it comes directly from (9.1), which we view as a form of the Biot--Savart law
that recovers the velocity from the vorticity, as it is encoded by \bfitgamma . We work, now,
to obtain replacements for these expressions that apply to periodized vortex patches.
This is a matter of deriving the CDE for a solution to the Euler equations and showing,
conversely, that any solution to the CDE satisfies the Euler equations.

9.2. Type 2 solutions. Turning to Type 2 solutions, we make the following
assumptions on \Omega .

Assumption 9.4. Assume that \Omega \subseteq \Pi is bounded with a finite number of boundary
components, \Gamma 1, . . . ,\Gamma J , each C1,\varepsilon regular.

With \Omega as in Assumption 9.4, we let u be the unique Type 2 solution having
initial vorticity \omega 0 := \omega 01\Omega with m2 \equiv m1(t, - \infty ) +m2(t,\infty ) \equiv 0 given by Theorem
5.3 and Proposition 5.6 (m1, m2 are defined in subsection 5.2). Set

\Omega t :=X(t,\Omega ), \Gamma t,j :=X(t,\Gamma j),

noting that because X(t, \cdot ) is a homeomorphism of R2 onto R2, \Gamma t,j is the jth of the J
components of \partial \Omega t. We then define a parameterization \bfitgamma j of \Gamma t,j as we parameterized
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2304 D. M. AMBROSE, F. HADADIFARD, AND J. P. KELLIHER

\partial \Omega t in subsection 9.1, setting \bfitgamma j(t, \cdot ) := X(t,\bfitgamma j(0, \cdot )). As in that section, a priori,
we do not even know that \bfitgamma j(t) has C

1 regularity for t > 0; proving that it has C1,\varepsilon 

regularity is the ultimate goal (of section 10).
We show in Theorems 9.5 and 9.6 that the analogue of Theorem 9.3 holds for

Type 2 solutions.

Theorem 9.5. Let \Omega be as in Assumption 9.4, and for each j, let \bfitgamma j : [0,2\pi ]\rightarrow R2

be a C1 counterclockwise parameterization of the boundary component \Gamma j. With \rho as
in (5.2),

u(x) = - \omega 0

2\pi 

J\sum 
j=1

\int 2\pi 

0

log\rho (x - \bfitgamma j(\alpha ))\partial \alpha \bfitgamma j(\alpha )d\alpha (9.3)

is the unique divergence-free vector field in S(\Pi ) having curl equal to \omega 01\Omega for which
m2 = 0 and m1( - \infty ) +m1(\infty ) = 0.

Proof. By Corollary 5.5, we know that u=K\infty \ast \omega is the unique divergence-free
vector field in S(\Pi ) having curl equal to \omega 01\Omega for which m2 = 0 and m1( - \infty ) +
m1(\infty ) = 0. Then we have, using Lemma 5.1 and parameterizing \Gamma t,j by arc length
from 0 to \ell j , setting y(s) = \bfitgamma j(\alpha (s)),

u(x) =K\infty \ast \omega (x) =\nabla \bot G \ast \omega (x) = \omega 0

2\pi 

\int 
\Omega 

\nabla \bot log\rho (x - y)dy

= - \omega 0

2\pi 

\int 
\Omega 

\nabla \bot 
y log\rho (x - y)dy= - \omega 0

2\pi 

J\sum 
j=1

\int \ell j

0

log\rho (x - y(s))( - n2, n1)ds

= - \omega 0

2\pi 

J\sum 
j=1

\int \ell j

0

log\rho (x - y(s))\bfittau (s)ds= - \omega 0

2\pi 

J\sum 
j=1

\int 2\pi 

0

log\rho (x - \bfitgamma j(\alpha ))\partial \alpha \bfitgamma j(\alpha )d\alpha .

Here (n1, n2) =\bfitn and ( - n2, n1) = \bfittau (see Lemma 2.2), and we used that

\partial \alpha \bfitgamma j(\alpha )d\alpha =
\partial \alpha \bfitgamma j(\alpha )

| \partial \alpha \bfitgamma j(\alpha )| 
| \partial \alpha \bfitgamma j(\alpha )| d\alpha = \bfittau (s)ds.

From this, (9.3) follows.

Theorem 9.6. Let u be the Type 2 solution described above and assume that each
\bfitgamma j is in C1([ - T,T ];C([0,2\pi ]))\cap C([ - T,T ];C1([0,2\pi ])). Then

u(t,x) = - \omega 0

2\pi 

J\sum 
j=1

\int 2\pi 

0

log\rho (x - \bfitgamma j(t,\alpha ))\partial \alpha \bfitgamma j(t,\alpha )d\alpha (9.4)

and lies in C(0, T ;Lip). Moreover, each \bfitgamma k satisfies the CDE,

d

dt
\bfitgamma k(t,\alpha ) = - 

\omega 0

2\pi 

J\sum 
j=1

\int 2\pi 

0

log\rho (\bfitgamma k(t,\alpha ) - \bfitgamma j(t,\alpha 
\prime ))\partial \alpha \bfitgamma j(t,\alpha )d\alpha 

\prime .(9.5)

Conversely, if each \bfitgamma k in C1([ - T,T ];C([0,2\pi ])) \cap C([ - T,T ];C1([0,2\pi ])) satisfies
(9.5), then u given by (9.4) is a Type 2 solution with u \in C(0, T ;Lip) and m2 \equiv 
m1(t, - \infty ) +m2(t,\infty )\equiv 0.
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Proof. The forward direction follows directly from Theorem 9.5.
For the converse, we parallel the proof of Proposition 8.6 of [30], which consists

of two steps: (1) Show that u given by (9.4) is divergence-free with curlu = 1\Omega 0,t.
(2) Show that u solves the 2D Euler equations.

To prove (1), let u be given by (9.4). Reparameterizing by arc length as in the
proof of Theorem 9.5,

u(t,x) = - \omega 0

2\pi 

J\sum 
j=1

\int \ell j

0

log\rho (x - y(s))\bfittau (s)ds= - \omega 0

2\pi 

J\sum 
j=1

\int 
\Gamma t,j

log\rho (x - \cdot )\bfittau .

To apply div and curl to this expression, we use that for a constant vector field w
and scalar function g, div(gw) = \nabla g \cdot w and curl(gw) = \nabla \bot g \cdot w. Also, letting

v= (2\pi ) - 1\nabla \bot log\rho (x - \cdot ) and f =\leftarrow  - v , we see that

curlu(t,x) = - \omega 0

2\pi 

J\sum 
j=1

\int 
\Gamma t,j

\nabla \bot log\rho (x - \cdot ) \cdot \bfittau = - \omega 0

J\sum 
j=1

\int 
\Gamma t,j

\vec{}f \cdot \bfittau = - \omega 0

\int 
\partial \Omega t

\vec{}f \cdot \bfittau ,

divu(t,x) = - \omega 0

2\pi 

J\sum 
j=1

\int 
\Gamma t,j

\nabla log\rho (x - \cdot ) \cdot \bfittau =
\omega 0

2\pi 

J\sum 
j=1

\int 
\Gamma t,j

\nabla \bot log\rho (x - \cdot ) \cdot \bfitn 

= \omega 0

J\sum 
j=1

\int 
\Gamma t,j

\vec{}f \cdot n= \omega 0

\int 
\partial \Omega t

\vec{}f \cdot n.

Up to this point, we have been integrating over paths in \Pi treated as R2/\scrL , but
we wish to apply Lemma 2.2, which obliges us to work in C. To do this, we lift \Omega t to\widetilde \Omega t as described in subsection 2.4. Applying Lemmas 2.2 and 2.10 (writing f in place
of f \circ p by viewing f as x1-periodic with period 1) gives for all x not lying on \partial \widetilde \Omega t (a
set of measure 0)

\omega 0

\int 
\partial \Omega t

Cf = \omega 0

\int 
\partial \widetilde \Omega t

Cf = \omega 0

\int 
\partial \widetilde \Omega t

\vec{}f \cdot \bfittau + i\omega 0

\int 
\partial \widetilde \Omega t

\vec{}f \cdot n= - curlu(t,x) + idivu(t,x).

But we see from Lemma 5.1 that v=K\infty (x - \cdot ) and that

f =
1

2

\leftarrow  -  -  -  -  -  -  -  -  -  -  - \rightarrow 
cot(\pi z)\bot =

1

2

\leftarrow  -  -  -  -  -  -  -  -  -  - \rightarrow 
icot(\pi z) =

1

2
icot(\pi z) = - i

2
cot(\pi z),

where we used (2.2) and the identity iz =  - iz. The complex meromorphic function
f has simple poles at each point in x + \scrL with residue ( - 2\pi ) - 1i. By the residue
theorem, then, summing over all points of \scrL lying inside \partial \widetilde \Omega t---that is, lying in \widetilde \Omega t,

\omega 0

\int 
\partial \widetilde \Omega t

Cf =Re

\Biggl( 
2\pi i\omega 0

\sum 
n

Res(f, (n,0))

\Biggr) 
= \omega 0Re

\Biggl( 
2\pi i

 - 2\pi i
\sum 
n

1

\Biggr) 
= - \omega 0n.

But \widetilde \Omega t can contain at most one point of x+ \scrL , else the lift given in subsection 2.4
would map x to more than one point in C (which would mean it is not a lift). We
see, then, that

curlu(t,x) = - \omega 0

\int 
\partial \Omega t

Cf = - \omega 0

\int 
\partial \widetilde \Omega t

Cf = \omega 01\Omega t
(t,x) = \omega (t,x).
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We conclude that for all t\in [0, T ], divu= 0 and curlu= \omega = \omega 01\Omega t . Directly from
(9.4), we know that u \in L\infty (\Pi ) and hence u \in S(\Pi ). It follows from Theorem 9.5
applied with \gamma j(t, \cdot ) in place of \gamma j for any fixed t thatm2[u(t)] = 0 andm1[u(t)]( - \infty )+
m1[u](\infty ) = 0.

Using (1), the proof of (2) that u solves the 2D Euler equations on the time interval
[ - T,T ] proceeds just as it does in the proof of Proposition 8.6 on page 334 of [30].

Remark 9.7. We can view Type 2 solutions as equivalent to Type 1 or 3 solutions
by virtue of Theorem 7.2. For vortex patches it is most natural to start with an
\Omega \in \Pi satisfying Assumption 9.4 and lift it to R2 as in subsection 2.4 to give \Omega 0.
It is also possible to start with a domain in R2 and use it to obtain via the \scrP er
operator a domain in \Pi , but there are no simple general conditions to guarantee that
the boundary of the domain in \Pi is regular.

10. Regularity of a vortex patch boundary. To prove the propagation of
regularity of a vortex patch boundary for our Type 1, 2, or 3 solutions, it will be
easiest to work with Type 2 solutions, the result then immediately following for the
other two types by Theorem 7.2. We will prove, in Theorem 10.1, that for Type 2
solutions, the regularity of the boundary of a periodic vortex patch is maintained for
all time, as in the classical case.

Theorem 10.1. Let \Omega be as in Assumption 9.4 and let \Omega t =X(t,\Omega ) for a Type
2 solution. Then \partial \Omega t is C1,\varepsilon for all time. The analogous result holds for Type 1 and
3 solutions.

Proof. We describe only how the proof differs from the now classical proof as
presented in Chapter 8 of [30]. There are two main steps to the proof given in
[30]: First, show local-in-time existence of a C1,\varepsilon solution to the CDE (based on [9]),
then show that the solution extends globally in time (based on [10]).

Local-in-time C1,\varepsilon solutions. In brief, the first step is to define the function F
on the space B1,\varepsilon of closed C1,\varepsilon paths in \Pi by (we have translated this to Type 2
solutions)

F (\bfitgamma (\beta )) :=
\omega 0

2\pi 

\int 2\pi 

0

log\rho (\bfitgamma (\beta ) - \bfitgamma (\alpha ))\partial \alpha \bfitgamma (\alpha )d\alpha .

Here, F is as defined for each boundary component separately; we suppress the sums
over each boundary component for notational simplicity. First show that F : \scrO M \rightarrow 
B1,\varepsilon is Lipschitz-continuous on the open subset

\scrO M :=
\bigl\{ 
\bfitgamma \in B1,\varepsilon : | \bfitgamma | \ast >M - 1, \| \bfitgamma \prime \| L\infty <M

\bigr\} 
,

| \bfitgamma | \ast := inf
\alpha \not =\alpha \prime 

\bfitgamma (\alpha ) - \bfitgamma (\alpha \prime )

| \alpha  - \alpha \prime | 
for some M > 0. A Picard fixed point theorem (Theorem 8.3 of [30]) then ensures a
local-in-time solution to the ODE,

d\bfitgamma 

dt
= F (\bfitgamma ), \bfitgamma (0) = \bfitgamma 0 \in \scrO M ,

with \bfitgamma \in C1([ - T,T ];\scrO M ) for a T that depends upon M .
To adapt the argument in [30] to Type 2 solutions, we decompose log \rho (x) as

follows. Let \varphi \in C\infty 
0 (\Pi ) be a radially symmetric cutoff function supported on B1/4(0)

with \varphi \equiv 1 on B1/8(0). Then

log\rho (x) = \varphi (x) log | x| +R(x),

R(x) := \varphi (x) [log \rho (x) - log | x| ] + (1 - \varphi (x)) log \rho (x).
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Recall that on \Pi , we use coordinates in which x = (x1, x2) with  - 1/2 \leqslant x1 < 1/2.
Because \varphi (x) = 0 for | x1| > 1/4, the function \varphi (x) log | x| is in C\infty (\Pi \setminus (0,0)). Also,
log\rho (x) is harmonic away from the origin, so R(x)\in C\infty (\Pi ), as follows from Lemma
5.2. In particular, \varphi (x) log | x| and R(x) are well-defined as functions on \Pi .

It follows that for each component of \partial \Omega t,0, F = F1 + F2, where

F1(\bfitgamma (\beta )) :=
\omega 0

2\pi 

\int 2\pi 

0

\varphi (\bfitgamma (\beta ) - \bfitgamma (\alpha )) log | \bfitgamma (\beta ) - \bfitgamma (\alpha )| \partial \alpha \bfitgamma (\alpha )d\alpha ,

F2(\bfitgamma (\beta )) :=
\omega 0

2\pi 

\int 2\pi 

0

R(\bfitgamma (\beta ) - \bfitgamma (\alpha ))\partial \alpha \bfitgamma (\alpha )d\alpha .

Other than the cutoff function, which introduces no real difficulties, F1 is the same
expression as in the classical setting and is estimated in B1,\varepsilon in the same manner. We
note that applying d/d\beta to F1(\bfitgamma (\beta )) leads to a singularity in the integrand at \alpha = \beta .
The key to estimating F1 is treating dF1/d\beta , beginning in Lemma 8.7 of [30], as a
principal value integral. The situation is no different here than in [30].

Similarly, for F2, the key is bounding dF2/d\beta in C\varepsilon . This is much simpler than
bounding dF1/d\beta , for we have

d

d\beta 
F2(\bfitgamma (\beta )) =

\omega 0

2\pi 

\int 2\pi 

0

(\nabla R(\bfitgamma (\beta ) - \bfitgamma (\alpha )) \cdot \partial \beta \bfitgamma (\beta ))\partial \alpha \bfitgamma (\alpha )d\alpha .

Then for any \alpha ,

\| (\nabla R(\bfitgamma (\beta ) - \bfitgamma (\alpha )) \cdot \partial \beta \bfitgamma (\beta ))\partial \alpha \bfitgamma (\alpha )\| C\varepsilon 

\leqslant | \partial \alpha \bfitgamma (\alpha )| \| \nabla R\| C\varepsilon (\Pi )\| \bfitgamma (\beta ) - \bfitgamma (\alpha )\| \varepsilon lip\| \partial \beta \bfitgamma (\beta )\| C\varepsilon (0,2\pi ).

But, | \partial \alpha \bfitgamma (\alpha )| \leqslant \| \bfitgamma \| Lip <M and \| \bfitgamma (\beta ) - \bfitgamma (\alpha )\| lip = \| \bfitgamma \| lip <M . Hence,\bigm\| \bigm\| \bigm\| \bigm\| d

d\beta 
F2(\bfitgamma (\beta ))

\bigm\| \bigm\| \bigm\| \bigm\| 
C\varepsilon (0,2\pi )

\leqslant CM2| \omega 0| \| \bfitgamma \| C\varepsilon .

We see, then, that the bounds in Lemma 8.10 of [30] hold, and the proof of local-in-
time existence is completed as in [30].

Global-in-time C1,\varepsilon solutions. The proof of the global existence of a C1,\varepsilon solution
to the CDE is the same as in section 8.3.3 of [30], except that Corollary 8.4 is used
to obtain \nabla u. By virtue of Proposition 3.4, the estimates differ little from those for
classical vortex patches.

This completes the proof for Type 2 solutions. The result for Type 1 and 3
solutions then follows directly, exploiting the lifting of domains described in subsection
2.4.

Appendix A. Proof of the formula for \bfnabla \bfitu . Before giving the proof of the
singular integral operator formula for \nabla u of Lemma 8.2, let us calculate \nabla K\infty (x) to
obtain the expression for \beta . Letting

\xi (x) = \rho (x)2 = sin2(\pi x1) + sinh2(\pi x2),

we have \partial 1\rho (x) = \pi sin(2\pi x1), \partial 2\rho (x) = \pi sinh(2\pi x2). Then from Lemma 5.1, we have
G(x) = (2\pi ) - 1 log\rho (x) = (4\pi ) - 1 log \xi (x), so

K\infty (x) =\nabla \bot G(x) =
\nabla \bot \xi (x)

4\pi \xi (x)
=

( - \partial 2\xi (x), \partial 1\xi (x)
4\pi \xi (x)

=
( - sinh(2\pi x2), sin(2\pi x1))

4\xi (x)
.
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2308 D. M. AMBROSE, F. HADADIFARD, AND J. P. KELLIHER

Remark A.1. As in Remark 8.3, near the origin, \xi (x) = \rho (x)2 \approx \pi 2| x| 2. Hence,
G(x) \approx (1/4\pi ) log(\pi 2| x| 2) \approx C + (1/2\pi ) log | x| , like the fundamental solution to the
Laplacian on R2. Then K\infty (x)\approx 2\pi | x| /(4\xi (x))\approx 2\pi | x| /(4\pi 2| x| 2) = 1/(2\pi | x| ), as it is
for the Biot--Savart kernel on R2.

Taking another derivative,

\nabla K\infty (x) =
1

4

\left(      
 - \partial 1

sinh(2\pi x2)

\xi (x)
 - \partial 2

sinh(2\pi x2)

\xi (x)

\partial 1
sin(2\pi x1)

\xi (x)
\partial 2

sin(2\pi x1)

\xi (x)

\right)      

= - 1

4\xi (x)2

\left(   - sinh(2\pi x2)\partial 1\xi (x)  - sinh(2\pi x2)\partial 2\xi (x)

sin(2\pi x1)\partial 1\xi (x) sin(2\pi x1)\partial 2\xi (x)

\right)  

+
1

4\xi (x)

\left(  0  - 2\pi cosh(2\pi x2)

2\pi cos(2\pi x1) 0

\right)  
= - 1

4\xi (x)2

\left(   - sinh(2\pi x2)\pi sin(2\pi x1)  - sinh(2\pi x2)\pi sinh(2\pi x2)

sin(2\pi x1)\pi sin(2\pi x1) sin(2\pi x1)\pi sinh(2\pi x2)

\right)  

+
1

4\xi (x)2

\left(  0  - 2\pi cosh(2\pi x2)\xi (x)

2\pi cos(2\pi x1)\xi (x) 0

\right)  
=

\pi 

4\xi (x)2

\left(  sinh(2\pi x2) sin(2\pi x1) sinh2(2\pi x2)

 - sin2(2\pi x1)  - sin(2\pi x1) sinh(2\pi x2)

\right)  

+
\pi 

4\xi (x)2

\left(  0  - 2cosh(2\pi x2)\xi (x)

2 cos(2\pi x1)\xi (x) 0

\right)  
=

\pi 

2\rho (x)4

\biggl( 
\alpha 11(x) \alpha 12(x)
\alpha 21(x) \alpha 22(x)

\biggr) 
,

where

\alpha 11(x) = - \alpha 22(x) =
1
2 sinh(2\pi x2) sin(2\pi x1),

\alpha 12(x) =
1
2

\bigl[ 
sinh2(2\pi x2) - 2cosh(2\pi x2)\xi (x)

\bigr] 
,

\alpha 21(x) =
1
2

\bigl[ 
 - sin2(2\pi x1) + 2cos(2\pi x1)\xi (x)

\bigr] 
.

Using (2.5) and cosh2 x - sinh2 x= 1, we see that

2\alpha 12(x) = sinh2(2\pi x2) - 2cosh(2\pi x2)(sin
2(\pi x1) + sinh2(\pi x2))

= sinh2(2\pi x2) - 2cosh(2\pi x2) sin
2(\pi x1) - cosh(2\pi x2)(cosh(2\pi x2) - 1)

= - 1 + cosh(2\pi x2)(1 - 2 sin2(\pi x1)) = cosh(2\pi x2) cos(2\pi x1) - 1,
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PERIODIC VORTEX PATCHES AND LAYERS 2309

2\alpha 21(x) = - sin2(2\pi x1) + 2cos(2\pi x1)(sin
2(\pi x1) + sinh2(\pi x2))

= - sin2(2\pi x1) + cos(2\pi x1)(1 - cos(2\pi x1)) + 2cos(2\pi x1) sinh
2(\pi x2))

= - 1 + cos(2\pi x1)(1 + 2sinh2(\pi x2)) = cos(2\pi x1) cosh(2\pi x2) - 1.

Thus,

\nabla K\infty (x) =
\pi 

2

\beta (x)

\rho (x)2
,

where

\beta (x) =
1

2\rho (x)2

\biggl( 
sin(2\pi x1) sinh(2\pi x2) cos(2\pi x1) cosh(2\pi x2) - 1

cos(2\pi x1) cosh(2\pi x2) - 1  - sin(2\pi x1) sinh(2\pi x2)

\biggr) 
,

as given in Lemma 8.2.

Proof of Lemma 8.2. Let M \in (H1(\Omega )2\times 2 be arbitrary. We will show that

(\nabla u,M) =

\Biggl( \sum 
n\in Z

\omega (x+ (n,0))

2

\biggl( 
0  - 1
1 0

\biggr) 
,M

\Biggr) 
+

1

2\pi 
p.v.

\int 
R2

\nabla K\infty (x - y)M(y)dy,

giving the action of \nabla u \in H - 1(R2) on any test function in H1(R2), and thus estab-
lishing our expression for \nabla u.

For any r \in (0,1), we let

Ur =
\bigcup 
n\in Z

Br(x+ (n,0)).

Then

(\nabla u,M) = (u,divM) = (K\infty \ast \omega ,divM) = lim
r\rightarrow 0

\int 
UC

r

K\infty \ast \omega (x) divM(x)dx

= - lim
r\rightarrow 0

\int 
UC

r

\nabla (K\infty \ast \omega )(x)M(x)dx - lim
r\rightarrow 0

\int 
\partial Ur

(\nabla M \cdot \bfitn )K\infty \ast \omega dS =: I + II.

We used here that u is integrable and that the orientation of \partial U is opposite that
of \partial UC . The limit in I gives the principal value integral in our expression for \nabla u.
Noting that the compact support of \omega makes the sum below finite,

II =
\sum 
n\in Z

lim
r\rightarrow 0

\int 
\partial Br(x+(n,0))

(\nabla M \cdot \bfitn )K\infty \ast \omega dS

=
\sum 
n\in Z

lim
r\rightarrow 0

\int 
\partial Br(x)

(\nabla M(\cdot + (n,0)) \cdot \bfitn )K\infty \ast \omega dS

=
\sum 
n\in Z

lim
r\rightarrow 0

\int 
\partial Br(x)

(\nabla M(\cdot + (n,0)) \cdot \bfitn )K \ast \omega dS

=
\sum 
n\in Z

\biggl( 
\omega 

2

\biggl( 
0  - 1
1 0

\biggr) 
,M(\cdot + (n,0))

\biggr) 
=
\sum 
n\in Z

\biggl( 
\omega (x - (n,0))

2

\biggl( 
0  - 1
1 0

\biggr) 
,M

\biggr) 
.

We used that K\infty (y) becomes K(y) in the limit of small y, and then evaluated the
limit of the boundary integral as in the classical case.
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