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Abstract— The interconnection between brain regions in
neurological disease encodes vital information for the ad-
vancement of biomarkers and diagnostics. Although graph
convolutional networks are widely applied for discovering
brain connection patterns that point to disease conditions,
the potential of connection patterns that arise from multiple
imaging modalities has yet to be fully realized. In this
paper, we propose a multi-modal sparse interpretable GCN
framework (SGCN) for the detection of Alzheimer’s disease
(AD) and its prodromal stage, known as mild cognitive
impairment (MCI). In our experimentation, SGCN learned
the sparse regional importance probability to find signature
regions of interest (ROIs), and the connective importance
probability to reveal disease-specific brain network con-
nections. We evaluated SGCN on the Alzheimer’s Disease
Neuroimaging Initiative database with multi-modal brain
images and demonstrated that the ROI features learned
by SGCN were effective for enhancing AD status iden-
tification. The identified abnormalities were significantly
correlated with AD-related clinical symptoms. We further
interpreted the identified brain dysfunctions at the level of
large-scale neural systems and sex-related connectivity ab-
normalities in AD/MCI. The salient ROIs and the prominent
brain connectivity abnormalities interpreted by SGCN are
considerably important for developing novel biomarkers.
These findings contribute to a better understanding of the
network-based disorder via multi-modal diagnosis and offer
the potential for precision diagnostics. The source code is
available at https:/github.com/Houliang-Zhou/SGCN.

Index Terms— Computer aided analysis, graph convolu-
tional network, multi-modality, neuroimaging, sparse inter-
pretation
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[. INTRODUCTION

Neuroimaging-based diagnostics have demonstrated recent
advances in predicting Alzheimer’s disease (AD) and mild
cognitive impairment (MCI) from multi-modal brain images,
such as magnetic resonance imaging (MRI) and positron
emission tomography (PET) scans [1]. In disease diagnosis,
MRI images can detect structural changes in the brains of
AD/MCI patients [2]. In contrast, the fluorodeoxyglucose
PET, and florbetapir PET measure separately the metabolic
abnormality or pathological process of their brains [3]. Thus,
it is crucial to combine the contribution of all these modalities
in a multi-modal analysis for the identification of AD/MCI.
Recent neuroimaging studies have reached an agreement that
the interactions between brain regions are the essential driv-
ing factor for neural development and neurological disorder
analysis [4]. Large improvements in understanding the brain’s
organization have been made by representing the brain as a
connectivity graph to describe the interactions between regions
[4]. In this graph, nodes are defined as brain regions of
interest (ROIs), and edges as the connections between ROIs.
This representation is compatible with graph convolutional
networks (GCNs) model with demonstrated capabilities for
analyzing graph-structured data [5].

In brain imaging, GCNs have shown significant promise in
finding abnormalities in brain connectivity and in discovering
biomarkers for various mental disorders [6]-[9]. In recent
years, the importance of explainable artificial intelligence
(XAI) has been increasingly recognized in mental health to
clarify the mechanism underlying the association between
neural circuits and behavior/cognition [10], [11]. In medical
diagnosis, the explainability of GCN predictions is crucial
for helping identify biomarkers that contribute to the brain
disorder. For example, Yang et al. applied an Edge-weighted
Graph Attention Network with dense hierarchical pooling
to understand the derivation of Bipolar disorder [12]. Cui
et al. designed a globally explainable generator to highlight
disorder-specific biomarkers related to the disorder [7]. Li et
al. proposed BrainGNN with ROI-aware graph convolutional
layers to analyze functional MRI for neurological biomarker
prediction [4]. Although several approaches have been recently
proposed to explain the GCN model [4], [6], [13], [14], most
of them have focused only on data from a single modality.
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The existing multi-modal GCN method, proposed by Zhang
et al. [15], concatenates multi-modal features for disease
prediction, limiting the multi-modal interpretation of salient
ROIs and the most discriminative connections. Overall, recent
methods for interpreting brain networks have applied limited
consideration to multi-modal regional features and their con-
nections in brain network-based disease analysis, even though
recent studies have indicated that different imaging modalities
provide essential complementary information that can improve
accuracy in disease diagnosis [16]-[20]. We argue here that
multi-modal interpretations create an improved opportunity
for identifying salient ROIs and discovering prominent brain
network connections related to AD and MCI. Given that ROIs
can be partitioned into different neural systems based on
their structural and functional roles [21], the neural system-
level connectivity abnormalities via multi-modal analysis can
facilitate the discovery of novel neurological biomarkers.

In this paper, we present a multi-modal sparse interpretable
GCN framework (SGCN) for detecting AD and for explain-
ing AD pathology as it relates to individual brain regions,
connections, and neural systems. An overview of the multi-
modal SGCN model for Alzheimer’s diagnosis and biomarker
interpretation is shown in Fig. 1. The innovation of SGCN
is listed as follows: 1) SGCN is the first to introduce the
importance probability to detect the salient ROIs and the most
prominent subgraph structure to discriminate subjects between
HC, AD, and MCI, which exhibited superior prediction perfor-
mance. 2) SGCN provides interpretability of both brain regions
and brain connectivity through the importance probability
technique, which is confirmed by extensive statistical analyses
of the learned topological patterns. We observed that these
patterns correlate significantly with typical AD-related clinical
measures including Mini-Mental State Examination (MMSE),
Alzheimer’s Disease Assessment Score 13 (ADAS13), and
Clinical Dementia Rating Scale Sum of Boxes (CDR-SOB).
3) SGCN further identifies biomarkers that are correlated
to connectivity abnormalities in neural systems, to disease
progression and to sex-related differences in AD/MCI. We
observed that SGCN rediscovered multiple established find-
ings relating to these applications, as well as several new
ones. Altogether, these results point to potential applications
of our SGCN method for identifying novel biomarkers and
brain network connectivity abnormalities from multi-modal
brain images.

We have demonstrated the prediction ability of the sparse
interpretable GCN method originally presented at the MICCAI
conference to distinguish AD from HC [22]. In this paper,
we advance the original work through extensive experimental
analyses: first, an identification of disease-related ROIs and of
brain connectivity abnormalities. Second, a comparison and
interpretation of neural system-level and sex-related abnor-
malities in brain connectivity, as observed in multiple modal-
ities. Third, a statistical investigation of the predictability of
circuit abnormalities for AD symptoms. Fourth, a prediction
evaluation of generalizability on ADNI-2/GO and independent
ADNI-1 test set. Finally, we describe a method for the multi-
modal diagnosis of MCI and the progression from MCI into
AD.

II. METHODS
A. Notations

We parcellate the entire brain into /N ROIs based on the
automated anatomical labeling (AAL) atlas [23]. Multiple
modalities are concatenated into the ROI’s feature vector. We
define a brain adjacency matrix A € RY*¥ and node feature
matrix X € RV*P where N denotes the number of ROIs and
D denotes the dimension of multi-modal features. Given each
ROI is considered as a node, we viewed the brain connectivity
graph as an undirected weighted graph G = (V, E). In this
graph, the vertex set V. = {v1,---,vn} is composed of
ROIs in the brain. Meanwhile, the edge set E' is composed
of connections between ROIs, which are weighted by similar
strength.

B. Brain graph construction

In order to deal with the noisy edges, we define the K-
Nearest Neighbor (KNN) graph G = (V, E) from the multi-
modal regional information [16], where K is the number
of the nearest neighbor. In this KNN graph, the edges are
weighted using the Gaussian similarity function based on
Euclidean distances. Mathematicall};, this function can be
written as e(v;, v;) = exp(—%), where o is the stan-
dard deviation of the Gaussian function and influences the
sensitivity of the similarity measure. Here, /V; denotes the set
of K-nearest neighbors of vertex v; and IV; denotes the set
of K-nearest neighbors of vertex v;. We build the similarity
function between vertex v; and vertex v; if v; € N; or
v; € N;. Finally, the weighted adjacency matrix A reflects the
similarity between ROIs and their nearest similar neighbors.
The elements of defined adjacency matrix A can be denoted

as follows:
e(vi,v;), ifv; € Njoruv; € N;
a;j = .
0, otherwise.

)

C. Graph convolutional network

In the graph classification problem, the Graph Convolutional
Network (GCN) can embed node-level features into a low
dimensional space, and summarize them into graph-level fea-
tures [5]. The summarized graph-level features are flattened
into a feature vector, which is fed into a multilayer perceptron
(MLP) classifier. Our architecture composes of three types of
layers: graph convolutional layers, a node pooling layer, and an
MLP layer. In our architecture, the graph convolutional layer
recursively learns a node representation by transforming and
aggregating the neighboring feature vectors. Mathematically,
the propagation update of node representation in our SGCN
model can be calculated as:

H"' = o(D 2 AD > H'W') 2)

where H? = X, H' € RV*4 js the output of the [** graph
convolution layer, d; is the number of output channels at layer
. We add self-loops into the adjacency matrix A = A + I,
where I € RV*N is the identity matrix. In this equation,
we define that W' € R%*di+1 are the learnable parameters,
D is the diagonal degree matrix with D;; = > j A; j, and
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An overview of the proposed SGCN model for Alzheimer’s diagnosis and biomarker interpretation. The multi-modal brain images are

converted to graphs by using the Gaussian similarity to construct the connections between ROls. The graphs combined with the feature importance
probability Px and the edge importance probability P4 are sent to our proposed sparse GCN model to predict the disease. The importance
probabilities Px on nodes and P4 on edges provide the interpretation for the salient ROls and the prominent disease-specific connections.

o is the s1gm01d function. Meanwhile, A is normalized by
multiplying D~ 2, which can keep a fixed feature scale after
graph convolut1on layer.

After the graph convolution layer, the node pooling layer is
applied to group the node-level features together to summarize
the graph-level features. Next, the summarized output H” of
the graph convolution layer is flattened into a single feature
vector, which is fed into an MLP classifier with a sigmoid
function for the final classification. Finally, we apply the
supervised cross-entropy loss function for disease prediction.

D. Sparse interpretability

1) Importance probabilities as the interpretation: Because
the brain connectivity graph G and regional feature X may
contain redundant or noisy information, the original graph G
and feature matrix X into the GCN model f(-) are not highly
beneficial for predicting disease. Hence, we hypothesize that
an important subgraph G; C G and an important subset of
multi-modal features X, = {xz;|v; € Gs} contribute most
to the disease prediction. In order to find such X, and G,
we propose to learn a shared multi-modal feature importance
probability Px, and the individual edge importance probabil-
ity P4 between nodes for each subject. Specifically, we define
the important subgraph as G; = A ® P4, and the important
subset of multi-modal feature as Xy, = X @ Px. Therefore,
we mathematically expressed the final prediction output g of
the GCN model f(-) as

)= f(A©® Py, X © Px) 3)

Generally, the problem of exploring the important subgraph
and the important subset of node feature is translated into

the inference of importance probability P4 on edges and
Px on nodes. The importance probabilities are applied to the
individual brain network and multi-modal node feature across
all subjects from HC, AD, and MCIL.

Given that the different modalities of ROIs contribute
differently to the disease prediction, we define the multi-
modal feature importance probability Px € RY*P | where
Px = [p1,p2,--»pN), and p; € RP, 1 < i < N,
indicates the ROI’s feature importance probability. Because
the multi-modal node features are associated with the weight
of their connections, we define the edge importance probability
P4 € RV*N between node i and j by considering the joint
connection between multi-modal node features x; and x;:

Py, , =o(v”[z; © pillz; © pjllai,]) (4)

where p; is the feature importance probability from node ¢,
a; ; is the weight of edge between node i and j, v € R?P+!
denotes the learnable parameter, ® denotes the Hadamard
element-wise product function, and || denotes the concatena-
tion function. The edge importance probability is calculated by
incorporating multi-modal node features and their importance
probabilities together. This mechanism is beneficial to discover
the prominent connectivity abnormalities from the information
of the multi-modal node features.

2) Loss function: In this section, we define the conditional
entropy loss to determine the importance probabilities Px and
Py, as well as the ¢; loss and entropy regularization loss to
promote sparsity on them. The interpretability of the GCN
model is achieved by exploring the important subgraph G,
and the important subset of node feature X, which exhibit
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Fig. 2. Multiclass classification comparison between the state-of-the-art machine learning models and our proposed SGCN by using different

modalities. The highest a) accuracy, b) sensitivity, and c) specificity labeled with a white star are 0.826, 0.804, and 0.845 respectively, which are

achieved by our SCGN when using all three modalities.

the maximum mutual information with the distribution of truth
labels. Specifically, we train the SGCN model and find the
Px and P, by maximizing the mutual information between
the true label y from the original graph and the predictive
output g learned from the G5 and X ;. Maximizing this mutual
information is equivalent to minimizing conditional entropy
[24]. Assuming there are C' disease classes, the conditional
entropy loss L, is expressed as:

C
£m:—21[yzc]10gpf(g:y|Gs:AQPA,
c=1
X,=X0oPx) (5

Our method minimized the conditional entropy loss to
determine the importance probability Px and P4 for disease
prediction. The ¢; and entropy regularization were further
applied to promote the sparsity on Px and P4. We define
the ¢; regularization on Px and P, as:

Ls = [|Px|ly + (| Pally (6)

Meanwhile, element-wise entropy regularization is applied
to encourage discreteness in the probability distribution:

1 N N
EPA,e = _ﬁ Z ZPAi,jlog(PAi,j)+
i=1 j=1

(1 - PAi,j)log(l - PAz‘,j)

1 L&
55 2 O P log(Px, )+

i=1 m=1
(1 - PXi,m)log(l - PXi,m)

where Lp, . denotes the entropy regularization on Py, and
Lp, . denotes the entropy regularization on Px. The total
entropy regularization is summarized as L. = Lp, . +Lp, -
Both ¢; and entropy regularization serve to induce the sparsity

)

EPX@ -

on Px and P4, which encourage the probabilities of unim-
portant or noisy entries to approach zero. Simultaneously, the
mechanism of entropy regularization ensures that important
features and connections have higher probabilities closer to
one, facilitating disease prediction.

After combing all of the loss functions, the final training
objective of our SGCN can be expressed as:

L=LcAMLyn+ XLs + 3L (8)

where L. is the supervised cross-entropy loss used for dis-
ease prediction, and \’s denote the tunable hyper-parameters
serving as penalty coefficients for the various loss terms. The
optimized solution on our objective function £ is similar to
the regular GCN model, with the exception of the learnable
parameters Px and Pj4. In our result, the importance probabil-
ity Px and P4 learned from SGCN provide the interpretation
regarding the salient ROIs and the prominent disease-related
brain connectivity abnormalities.

[1l. RESULTS
A. Dataset and preprocessing

In this work, we evaluated the SGCN framework on a multi-
modal brain imaging dataset from the public Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) [25], which consisted of
three modal brain images including structural Magnetic Reso-
nance Imaging (VBM-MRI), 18F-fluorodeoxyglucose Positron
Emission Tomography (FDG-PET), and 18F-florbetapir PET
(AV45-PET). These brain imaging data were gathered from
739 non-Hispanic Caucasian participants, including 172 HC
subjects, 471 MCI subjects, and 96 AD subjects. All scans
in this study meet all quality-controlled criteria described in

[26]. In the MCI group, 142 MCI subjects progress into AD
(pMCI) after more than one year while the rest 329 MCI
subjects remain stable (sMCI).
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In the preprocessing step, the multi-modal brain imaging
scans were aligned to the corresponding visit of each partic-
ipant. Specifically, all brain imaging scans were aligned to a
T1-weighted template image. Subsequently, these scans were
segmented into white matter (WM), gray matter (GM), and
cerebrospinal fluid (CSF) maps. They were then normalized
to the standard Montreal Neurological Institute (MNI) space
as 2 x 2 x 2 mm? voxels and further smoothed using an 8 mm
full-width at half-maximum (FWHM) kernel. The structural
MRI was preprocessed with voxel-based morphometry (VBM)
and the FDG-PET and AV45-PET were registered to the MNI
space by applying the SPM software [27]. The entire brain was
subsampled to 90 ROIs (excluding the cerebellum and vermis)
based on the automated anatomical labeling (AAL) atlas [23].
Finally, we summarized ROI-level measures by averaging all
of the voxel-level measures within each ROL

B. Experimental setup

We trained and tested our proposed method on Pytorch
framework by using a Nvidia RTX A5000 with 24GB GPU
memory. The model architecture included the brain graph con-
struction and GCN model learning as shown in Fig. 1. Because
we used K -Nearest Neighbor (KNN) graphs to construct the
brain connectivity graphs, we tested K € {3, 5, 10, 15, 20,
25, 30, 35, 40} to compare the classification performance.
We noted that the smaller K is not enough to exploit the
intrinsic neighborhood structure to identify the AD, and the
larger K brings noisy information to affect the performance,
which can be supported by both previous Graph Laplacian
study [28] and a brain connectivity study [29] to apply
K = 10 in KNN Graph to construct multiple sparse brain
functional connectivity networks for various neuro-disease
analyses. Therefore, we used K = 10 and o = 1 to build the
KNN graph in our experiment. After building the graph data,
we used a GCN model with three graph convolutional layers
followed by three fully-connected layers, a dropout layer, and
a softmax classifier with parameters N = 90, D = dy = 3,
di = 3, dy = 3, and C = 2. The hidden dimensions of the
three fully-connected layers are 16, 16, and 1 respectively. The
dropout rate is 0.5. In the experiment, we use grid search to
find the best hyperparameters and set A\; to 1.0, Ay to 0.1,
and A3 to 0.1 in the loss terms of our method. We trained the
SGCN for 100 epochs with a learning rate of 0.001. Adam
was used as the learning optimizer. Each batch contained 32
graphs during training. Meanwhile, we performed the 5-fold
cross validation to examine the performance.

C. Classification performance

In our experiments, three contrasts including HC vs. AD,
HC vs. MCI, and MCI vs. AD were examined to evaluate
classification results. We use the one-against-one strategy to
classify three contrasts and compare the results via one, two,
or three modalities. This experimental design measures our
method’s classification performance on different modalities
since it is a multi-modal method, and on different contrasts. We
performed the 5-fold cross validation to examine the classifica-
tion performance. The average classification accuracy, the area

TABLE |
BINARY CLASSIFICATION COMPARISON BETWEEN THE STATE OF THE
ART MACHINE LEARNING MODELS AND SGCN USING ALL MODALITIES
UNDER SMCI vs. PMCI CONTRAST.

Methods Accuracy ROC-AUC  Sensitivity  Specificity

SVM 562 £.131 .625 +£.078 531 +.089 .642 +.083
MLP .607 £.084 .645 +£.069 .582 £+.091 .667 £.075
CNN 589 £.109 .638 +.052 .579 £+.087 .668 £.068
GCN .635 £.063 .669 +.068 .594 +.094 .671 £.055
GAT .657 £.057 .682 +.045 .605 £.076 .676 £.061
BrainNetCNN .642 £.071 .691 +£.073 .597 +.069 .679 £.064
GIN .654 £.048 .698 +.065 .611 £.071 .672 £.078
BrainGNN .673 £.062 .714 £.069 .607 £.065 .691 £.055
IBGNN .669 £.055 .708 +.072 .614 +.087 .683 £.068
SGCN 702 £.041 736 +£.065 .637 £.072 .714 £.059

under the receiver operating characteristic curve (ROC-AUC),
sensitivity, specificity, and standard deviations are reported.

Fig. 2 shows the multiclass classification comparison be-
tween the state-of-the-art machine learning models and our
proposed SGCN method via different modalities. Our method
was compared with Support Vector Machine (SVM) using a
Radical Basis Function (RBF) kernel, Convolutional Neural
Network (CNN) models, and BrainNetCNN [30]. The SVM
and CNN models utilized vectorized adjacency matrices as
inputs, and BrainNetCNN utilized brain network correlation
as inputs. In addition to the traditional machine learning
methods, our method was also compared with other GCN-
based methods including GCN [5], GAT [31], GIN [32],
BrainGNN [4], and IBGNN [33]. In our result, after com-
bining the VBM-MRI and FDG-PET modalities, the SGCN
model achieves an accuracy, sensitivity, and specificity in-
crease of 3%, 4%, and 6% respectively compared to using
only the VBM-MRI modality. When using all three modalities,
the accuracy, sensitivity, and specificity of our SGCN model
increase by between 3% and 9%. The best accuracy is achieved
by combining all different modalities, indicating that differ-
ent imaging modalities can provide essential complementary
information that can improve accuracy in disease diagnosis

[16], [17]. Based on these classification results, multi-modal
brain images were used to evaluate the interpretability.

To predict the conversion of MCI into AD, a binary clas-
sification experiment for sMCI vs. pMCI under the 5-fold
cross validation was conducted. Table. I shows the binary
classification comparison between the state-of-the-art machine
learning models and SGCN using all modalities for sMCI
vs. pMCI. The best classifying result was achieved by using
our method. The accuracy and sensitivity of SGCN increase
around 3% compared to SOTA brain network-based methods
including BrainGNN and IBGNN. The standard deviation of
classification scores in SGCN is also small.

D. Interpretation Analysis

To interpret the salient ROIs for distinguishing HC and AD,
we average the feature importance probability Px learned by
our method across different modalities and obtain a scalar
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Fig. 3. The interpretation of salient ROIs and the most discriminative
brain connections in distinguishing AD from HC. a) Interpreting top 20
salient ROIs based on the importance probability Px between different
modalities. The commonly detected salient ROls across different modal-
ities are circled in blue. b) Comparison between the KNN graph and
the sparse interpretation of prominent brain network connections in AD
group. ¢) The significant difference of the interpreted most discriminative
connections for distinguishing HC and AD was evaluated by two-sample
t-tests with false discovery rate (FDR) corrected p-value < 0.05. Here,
the top 20 most discriminative ROl connections are visualized for in-
terpretation by using multi-modalities. The dark-red and dark-blue color
indicates the high positive and low negative t values.

important score for each ROI. After ranking these scores in
descending order, we visualized the top 20 most salient brain
regions between HC and AD in the Fig. 3(a) identified by
different modalities as well as the multi-modal analysis. The
BrainNet Viewer [34] was used to plot the top 20 most salient
ROIs in lateral views, medial views, and ventral views of
the brain surface via the different modalities. We found the
salient ROIs including the hippocampus, the parahippocampus,
the parietal lobe, the temporal lobe, and the cingulate gyri
regions were important for identifying AD, which was highly
consistent to AD pathology based on previous studies [35],
[36]. In Fig. 3(a), these commonly detected ROIs across
different modalities are circled in blue. The right hippocampus,
right cuneus, left superior parietal gyrus, and left angular gyrus
achieved higher important probabilities by using multiple
modalities than a single modality.

We further visualized the top 20 most salient brain regions
between HC and MCI in the Fig. 4(a) identified by different
modalities as well as the multi-modal analysis. It illustrates the
interpreted top 20 most salient ROIs for identifying MCI from
different modalities. We found that the middle occipital gyrus

Fig. 4. The interpretation of salient ROls and the most discriminative
brain connections in distinguishing MCI from HC. This interpretation
in MCI was reported by using the same strategy from AD analysis.

and middle temporal gyrus were important for identifying MCI
via all different modalities. The right middle occipital gyrus,
and left inferior temporal gyrus achieved higher important
probabilities by using multiple modalities than a single modal-
ity. The olfactory cortex was only identifiable under the multi-
modality analysis, which was highly related to MCI pathology
based on previous studies [37]-[39]. The top 20 most salient
brain regions in MCI vs. AD from Supplementary Fig. S2(a)
suggest that Parahippocampal and Posterior cingulate gyrus
were important by using multiple modalities. We can also
discover similar salient patterns in sMCI vs. pMCI contrast
from Supplementary Fig. S3(a) under multiple modalities.
These salient brain regions around the limbic structure are
highly associated with the studies on progressive MCI [40].
The interpretation of salient ROIs in AD and MCI contrasts
suggests that incorporating all modalities can provide en-
hanced support for the interpretation of these salient ROIs in
biomarker detection.

In brain connectivity, we categorized the ROIs into different
neural systems based on their structural and functional roles
using a specific atlas, which offers valuable benefits for veri-
fying our interpretation result from a neuroscience perspective
[41]. Those ROIs on the AAL-90 atlas were mapped into
eight commonly used neural systems [42], including Visual
Network (VN), Auditory Network (AN), Bilateral Limbic
Network (BLN), Default Mode Network (DMN), Somato-
Motor Network (SMN), Subcortical Network (SCN), Memory
Network (MN), and Cognitive Control Network (CCN).
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GCN layer. The prediction performance was evaluated using 5-fold cross-validation. The significance of the prediction was confirmed by random
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lines.

In Fig. 3(b), we evaluated the efficacy of edge importance
probabilities P4 learned by our method in identifying AD.
It shows the average KNN graph, average sparse graph, and
edge importance probability on AD contrast perspectively.
The average sparse graph was visualized by element-wise
multiplying the original KNN graph with edge importance
probability P4. Moreover, the figure from edge importance
probability illustrates the sparsity of average Pa on AD
contrast. These results revealed that our method effectively
assigned the important connections to have higher probabilities
towards one and those unimportant connections towards zero,
which demonstrates the sparse effectiveness of P4 learned by
our method on the KNN graph. The same interpreted measures
were used in MCI contrast. The result of the average KNN
graph, sparse graph, and the edge importance probability in
MCI contrast were visualized in Fig. 4(b). The similar results
in MCI vs. AD and sMCI vs. pMCI contrasts were visualized
in Supplementary Fig. S2(b) and S3(b) respectively.

We further interpreted the most discriminative connections
between ROIs based on the edge importance probability P, .
We applied two-sample t-tests on sparse brain graphs to
detect the most discriminative connections between HC and
AD/MCI. Fig. 3(c) listed the top 20 most discriminative
connections with false discovery rate (FDR) correlated p-value
< 0.05 between brain ROIs in AD contrast. The lines between
ROIs showed the ¢ value of the discriminative connections in
multi-modalities. In addition, Fig. 4(c) listed the top 20 most
discriminative connections based on the same standard in MCI
contrast. The Supplementary Fig. S2(c) and S3(c) listed the top
20 most discriminative connections based on the same standard
in MCI vs. AD and sMCI vs. pMCI contrasts.

E. Prediction ability of circuit abnormalities for AD
symptoms

In this subsection, we further investigated the relationship
between the identified circuit abnormalities and AD-related

clinical symptoms including ADAS13, MMSE, and CDR-
SOB. We used the learned topological patterns in the last
GCN layer of SGCN to predict each of these clinical measures
across HC, AD, and MCI subjects. These patterns were z-score
normalized and then used to train standard linear regression
models for the prediction via the 5-fold cross validation.

Fig. 5 depicted the results for predicting ADAS13, MMSE,
and CDR-SOB scores. It provided a visual perception of how
accurate the prediction result is for the given test. Meanwhile,
the fit of the regression line indicated that there is a substantial
correlation between the prediction scores and ground truth.
The significance of the prediction was further confirmed by
random permutation tests of 10000 times. Table II summarized
the numeric performance comparison between brain network-
based methods and our SGCN for the regression results across
all the HC, AD, and MCI subjects. It contained Pearson’s
correlation coefficient, mean absolute error (MAE), root mean
squared error (RMSE), and R-squared measure. For all three
clinical measures, the identified circuit biomarkers showed
significant prediction performance, indicating their underlying
associations with AD/MCI symptoms.

IV. DISCUSSION
A. Novel biomarkers identified by multi-modal analysis

In both AD and MCI, we observed that the hippocampus,
angular gyrus, and temporal gyrus are the commonly detected
salient ROIs in AD and MCI patients. Most salient ROIs are
identified by using multiple modalities, indicating that multi-
modal prediction is superior to that of a single modality.
The modality-specific salient ROIs suggest that three modal-
ities contribute differently to discriminating AD/MCI from
HC. Furthermore, the detected salient ROIs are associated
with previous evidence that the hippocampus is important in
memory and recognition [43]. Specifically, we found the left
hippocampus (HIP.L), and right hippocampus (HIP.R) were
the commonly detected salient ROIs between the multiple
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TABLE I
REGRESSION COMPARISON BETWEEN BRAIN NETWORK-BASED
METHODS AND SGCN TO PREDICT AD SYMPTOMS. THE EVALUATION
METRICS BETWEEN THE PREDICTED AND TRUE SCORES OF ADAS13,
MMSE, AND CDR-SOB WERE REPORTED.

Metrics Methods ADAS13 MMSE CDR-SOB
SGCN 1.58E-12 3.23E-12 1.42E-13
IBGNN 2.98E-10 4.37E-10 1.98E-11

P Value BrainGNN 7.21E-9 4.69E-10 5.43E-10
GIN 1.92E-8 2.48E-8 1.26E-7
BrainNetCNN | 2.48E-6 1.65E-5 4.71E-6
SGCN 0.864 0.857 0.872
IBGNN 0.789 0.763 0.791

Correlation | BrainGNN 0.753 0.761 0.759
GIN 0.692 0.687 0.645
BrainNetCNN | 0.654 0.602 0.637
SGCN 4.954 1.597 0.854
IBGNN 5.237 1.873 0.935

RMSE BrainGNN 5.468 1.949 1.181
GIN 6.137 2.536 1.543
BrainNetCNN | 7.583 2.778 1.672
SGCN 0.775 0.754 0.793
IBGNN 0.692 0.663 0.681

R Squared | BrainGNN 0.648 0.605 0.619
GIN 0.564 0.539 0.487
BrainNetCNN | 0.432 0.397 0.401

modalities. Numerous studies have reported a high volume
reduction in the left and right hippocampus in AD patients
than in HC [44], implying that the structural change of the
left and right hippocampus detected by our model are highly
associated with the derivation of AD. Meanwhile, the atrophy
in the hippocampus has been found as the early biomarker
for the identification of AD/MCI in some studies [45], again
supporting the outputs of our model. Additionally, we also
found right olfactory cortex (OLF.R) kept a high important
probability via multiple analyses, which was associated with
the findings of some studies that AD preferentially attacked
the patient’s central olfactory structures and led to earlier
symptoms of olfactory deficits than clinical cognitive and
memory deficits [37]. Thus, the salient olfactory cortex (OLF)
can be regarded as an earlier biomarker for the identification
of HC and MCI. The high importance probabilities in the
middle occipital gyrus and olfactory cortex for distinguishing
HC and MCI imply that these regions are the most salient brain
regions in the early identification of AD/MCI. In addition,
parahippocampal (PHG) and posterior cingulate gyrus (PCG)
were important in predicting the pMCI, suggesting that the
alteration of limbic structures and hypometabolism in the
posterior cingulate context were related to the progression to
dementia [46]. Several other biomarkers including cuneus,
superior parietal gyrus, and median cingulate gyrus may also
help to identify patients.

B. The most discriminative brain connections identified
by multi-modal analysis

Our interpretation of brain connectivity abnormalities in-
dicated that the most discriminative connections between HC
and AD were ANG.L-MTG.L, HIP.L-TPOsup.R, and MTG.R-
ITG.L. The regions within these connections are associated
with a recent study that showed the functional connectivity
alterations of the temporal lobe (e.g., MTG.L, TPOsup.R,
ITG.L) and hippocampus (e.g., HIP.L) in AD [47]. Moreover,
we found that OLFL-OLFR and ACG.L-PCG.L were the
top discriminative connections, which were associated with
findings on abnormal connections around the cingulate gyrus
within the DMN system in AD patients [48], [49]. Accord-
ingly, the identified abnormal connections around the cingulate
gyrus support our previous regional finding and imply that
the structural atrophy and connectivity dysfunction around the
cingulate gyrus were related to severe cognitive impairment.

In addition, the interpreted discriminative connections be-
tween HC and MCI included HIP.L-TPOsup.L, OLE.L-PHG.L,
ACG.R-HIPR, and MOG.R-MOG.L. The HIP, OLF in the
BLN system, and ACG, PCG in the DMN system corroborate
previous studies, which have indicated that patients of AD and
MCI have the similar brain regional connectivity abnormalities
in BLN and DMN compared with HC [50]. The strong con-
nections on OLF and MOG also support our previous finding
that the middle occipital gyrus and olfactory cortex can be
the earlier biomarkers to identify MCI patients. Although the
occipital gyrus and olfactory cortex can support our previous
salient regional finding, the most discriminative connections
provide new insights into brain connectivity dysfunctions
around BLN and DMN systems via multi-modal analysis. The
interpretation of the most discriminative connections suggests
that ROIs associated with these connections could serve as
potential biomarkers for the identification of AD/MCI.

Furthermore, the important connections to discriminate
AD from MCI included OLF.L-PHG.L, PCG.R-PAL.L, and
AMYG.R-HIPL. Beside, the important connections to dis-
criminate pMCI from sMCI included OLF.R-PHG.R, PCG.R-
PAL.L, and AMYG.L-HIP.L. The brain regions within these
discriminative connections are associated with the observa-
tions reported in the previous neuroimaging studies [SO]-
[52]. Specifically, we found that the hippocampus (HIP) and
amygdala (AMYG) were identified by both contrasts, which
were consistent with the previous finding that the hippocampus
and amygdala were the effective biomarkers to detect the
cognitive impairment of patients by identifying the volumes of
regional gray matter in MRI modality [52]. Accordingly, an-
other study showed that the posterior cingulate gyrus (PCG) is
significantly correlated with the progression of MCI based on
their thinning rate from MCI to AD [51]. The interpretation
of the discriminative connections on the progression of MCI
suggests that these ROIs could serve as potential biomarkers
to discover the conversion into dementia.

C. Neural system-level connectivity abnormality

The neural system-level interpretation via multiple modal-
ities in Fig. 6 indicated that the DMN, BLN, and MN sys-
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Fig. 6. Neural system-level interpretation of the most discriminative

connections. a) The absolute t value of most discriminative ROI con-
nections with FDR correlated p-value < 0.05 were reported between
neural systems by using multi-modalities. The dark-red color indicates
a high score. The non-significant connections are marked as white. b)
Such t values were reported by using different modalities in each neural
system. Here, the reported ¢ values of one modality were the average
results over all single modalities. Similarly, the ¢ values of two modalities
were the average results over all three pairs of modalities.

tems contained stronger discriminative connections than single
modality and double modalities. In fact, the connections within
MN disappeared when only using a single modality, while they
became the strongest after fusing all three modalities. Most
discriminative connections within MN and DMN systems
were found when using all three modalities instead of single
or double modality. These discriminative connection patterns
showed high correspondence with some previous neuroimag-
ing evidence for the derivation of AD and MCI [47], [51],
implying that combining multiple modalities can enhance the
identification of neural system-level connectivity abnormalities
in cognitively impaired patients. The neural system-level con-
nections via multiple modalities including BLN-DMN, DMN-
DMN, and DMN-MN in AD were more discriminative than
using any single or double modalities, suggesting that the
connectivity dysfunctions around DMN were strong in the
multi-modal joint analysis. Moreover, the connections of BLN-
MN and DMN-SCN in MCI also became stronger via multiple
modalities. Besides, the connections around BLN and DMN
were strong to discriminate AD from MCI, and the connec-

a) Male

HC vs. AD

HC vs. MCI

MCI vs. AD sMCI vs. pMCI

i\,

Fig. 7. Interpreting top 20 salient ROIs between males and females
under multi-modalities.

tions around BLN, VN, AN, and MN were the key to identify
the progressive MCI under multiple modalities. Therefore,
these observations suggest that the discriminative connectivity
patterns interpreted by our method within the neural systems
are enhanced with additional modalities of imaging data. Our
finding further provides evidence that the multi-modal joint
analysis can capture the structural and pathological changes
in the brain via multiple modalities and identify the neural
system-level connectivity dysfunctions in dementia.

D. Sex-related differences in the biomarkers

Our results investigated sex-related abnormalities based
on the regional importance probabilities between males and
females, given that the female sex is a major risk factor in
AD with a higher incidence of the disease [53]. Especially,
for identifying AD, our result indicated that the temporal

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on October 01,2024 at 03:41:50 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMI.2024.3432531

10 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2024
TABLE IlI TABLE IV
ABLATION STUDY OF LOSS TERMS IN SGCN. CLASSIFICATION PERFORMANCE OF OUR SGCN METHOD BY USING
— — ADNI-2/GO AND INDEPENDENT ADNI-1 TEST SET.
Model Accuracy ROC-AUC  Sensitivity  Specificity
SGCN(all) .826 £.039 .841 +.043 .804 +.054 .845 +.051 .. ADNI-1 ADNI-2/GO
Modalities | Measures -
SGCN(w/o Ls) 810 £.047 .808 £.048 .775 £.050 .821 +.074 HC vs. MCI | HC vs. MCI | Multi-class
SGCN(w/o Le) 814 £.041 811 +£.044 772 +.047 .828 +.055 Accuracy | 668 +.059 | 645 £.073 | 735 +.048
SGCN(w/o Ls & Le ) |.805 £.060 .799 +.036 .767 £.051 .824 £.048 ROC-AUC | 656 +.047 | 639 +.058 | 751 +.046
SGCN(w/o L) 791 £.049 .784 £.068 .743 £.062 .807 +£.070 VBM L
Sensitivity | .640 £.048 |.553 +.084 |.693 £.052
Specificity | .651 £.045 |.678 £.061 |.724 4.049
gyrus, precuneus, and parahippocampus were identified as the Accuracy | .688 £.044 |.667 £.058 |.759 £.043
most salient ROIs in females than males in Fig. 7. A similar VBM ROC-AUC | .691 £.037 |.672 £.045 |.793 £.039
finding was reported that females with AD dementia could FDG Sensitivity | .663 .058 |.583 £.068 |.725 +.067
have sharper declines in cortical thickness around temporal Specificity | .709 £.051 |.685 £.073 |.787 =£.055
regions, and left precuneus [53]. For identifying MCI, we Accuracy |.706 +.035 |.714 £.045 |.806 £.044
found the frontal gyrus and posterior cingulate gyrus were VBM ROC-AUC | 711 +.046 | 721 +.043 | 812 +.045
. . . . FDG
more important in females than mal.es. The. posterior cmgullate AVAS Sensitivity | .688 +.045 | .626 +.056 | 763 4.056
gyrus has been identified as a cortical region affected during Specificity | 717 +.039 | 741 +.047 | 797 +.048

the prodromal stage of AD by neuroimaging studies [54].
Meanwhile, we also found the posterior cingulate gyrus in
females was also highly related to the progression of MCI. Our
result suggests the atrophy of the posterior cingulate gyrus in
females plays a key role in the derivation of early dementia and
the progression into dementia. Although these findings have
been associated with cognitive impairment in multiple studies
[47], [49], but never in a multi-modal sex-specific analysis.
Therefore, our work provides novel evidence on sex-related
differences in biomarkers and their connectivity dysfunctions
related to cognitive impairment.

E. Ablation study

An ablation study was conducted to validate the effective-
ness of loss term in SGCN for classifying three contrasts
including HC vs. AD, HC vs. MCI, and MCI vs. AD. The
one-vs-one strategy was used to report the classification result.
Specially, we quantitatively measured the impact of differ-
ent loss terms for identifying diseases via multi-modalities
in Table IIIl. Without the conditional entropy loss L,,, the
sensitivity score would drop a lot, suggesting that combing
L, is crucial to discover the important subset of node feature
X, and the important subgraph G related to the disease.
We also ablated the sparse regularization £, and L., which
resulted in the important features and edges having higher
important probabilities towards one, and unimportant ones
towards zero. Without them, the accuracy and sensitivity of
SGCN would drop a little bit, and the salient ROIs and the
prominent connections identified by the model would become
less interpretable. The best performance was achieved after
fusing all loss terms together. Our work provides evidence that
combining conditional entropy loss and sparse regularization
loss can improve the interpretable GCN model to identify the
important disease-related subgraphs and subsets of features.

F. Generalizability of SGCN model on ADNI-2/GO and
independent ADNI-1 test set

In order to analyze the generalizability of SGCN model,
we separated the ADNI dataset into different phases including

ADNI-1, ADNI-GO, and ADNI-2. The ADNI-1 included
20 HC, and 27 MCI subjects, given its goal is to identify
biomarkers and genetic characteristics that would support the
early detection of AD. After combining ADNI-GO and ADNI-
2, the ADNI-2/GO dataset included 152 HC, 444 MCI, and
96 AD subjects.

In our experiments, we performed the 5-fold cross validation
to train and test the performance on ADNI-2/GO dataset. We
used the one-against-one strategy to conduct the multiclass
classification. We regarded the ADNI-1 as the unseen test set.
Given there are only HC and MCI subjects in ADNI-1, the
SGCN model trained on ADNI-2/GO between HC vs. MCI
was further used to test the performance on the unseen ADNI-
1 dataset. Table IV shows the classification performance in
ADNI-2/GO and ADNI-1 using different modalities. Under
the HC vs. MCI contrast, the difference in accuracy between
ADNI-1 and ADNI-2/GO was within 2%. The classification
scores were comparable between ADNI-1 and ADNI-2/GO.
Under the multiclass classification performance, the result was
still comparable between ADNI-2/GO and the whole ADNI
dataset. This result suggests that the SGCN model achieved
great generalizability to new, previously unseen data.

V. CONCLUSIONS

In summary, we presented a multi-modal sparse inter-
pretable GCN framework for identifying AD via multi-modal
brain images. Our method applied sparse importance proba-
bilities to discover novel neurological biomarkers under multi-
modal analysis in AD and MCI. Besides the promising predic-
tion performance, the disease-related network-based patterns
identified by our method show significant predictability for
typical AD-related clinical measures. Our results revealed that
the hippocampus, olfactory cortex, angular, and temporal gyrus
were potential regional biomarkers for detecting AD/MCI,
and that prominent brain connectivity abnormalities within
the memory, bilateral limbic, and default mode networks were
most important for distinguishing AD/MCI from HC. These
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findings show a high correspondence with established neu-
roimaging evidence associated with AD and MCI [37], [39],
[55]. This observation suggests that our method is suitable
for interpreting the most salient ROIs, the most discriminative
brain network connections, and neural systems with additional
imaging modalities.

The possible limitations were the robustness of our method
and the generalization to other neurodegenerative disease
datasets. In the data preprocessing, we applied the standard
AAL atlas to subsample the whole brain and obtain 90 ROIs.
Howeyver, it has been studied that the different atlases showed a
considerable influence in the identification of mental disorders
including AD and MCI for ROI-based analysis [56], [57].
We will investigate how the biomarker findings are robust to
the selection of brain atlases. It is also important to further
test the generalization ability of our model on many more
datasets. In the future, we plan to apply our SGCN model
to the Open Access Series of Imaging Studies (OASIS) [58]
and the Parkinson’s Progression Markers Initiative (PPMI)
[59] cohorts to test the performance. For addressing the real
clinical needs regarding the derivation of AD, it is also worth
further exploring to apply our SGCN model to the longitudinal
data to predict how and when the MCI will be converted into
AD. Because our interpretable approach is model-agnostic, it
is highly generalizable to other brain diseases for developing
novel multi-modal biomarkers.
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