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Figure 1: Schematic illustration of MRL-Mol framework. a. Data Processing. b. Modality Integration. c. Learning and Prediction.

ABSTRACT

Drug discovery is a challenging process, requiring the optimization
of compounds to become safe and effective. Predicting molecular

properties is an indispensable step in the drug discovery pipeline.
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Traditionally, this process is costly, involving multiple rounds of ex-
periments, rendering it impractical for every candidate compound.
Deep learning techniques have emerged as a promising approach
to drug discovery to reduce the cost during the process. However,
prevalent research in deep learning models focused on predicting
molecular properties has primarily fixated on single-modal mod-
els, neglecting the potential benefits of combining different data
modalities. To overcome this limitation, we introduce MRL-Mol: a
deep Multimodal Representation Learning framework for accurate
Molecular properties prediction. MRL-Mol harnesses three data
modalities: sequence, graph, and image, augmenting the depth of
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comprehension. Leveraging a large-scale unlabeled dataset ( 1M
unique molecules), we pretrain MRL-Mol to extract inter- and intra-
modal information. Our study demonstrates the superior perfor-
mance of MRL-Mol in predicting molecular properties across six
benchmark datasets. Notably, MRL-Mol outperforms other state-
of-the-art molecular properties prediction models. These findings
suggest that by combining information from multiple data modali-
ties, MRL-Mol can comprehend molecules better than single-modal
deep learning models and identify molecular properties with better
accuracy.
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1 INTRODUCTION

Drug discovery persists as a formidable challenge in the realms
of biology and medicine, marked by the costly, slow, and often
unsuccessful conventional process [1]. One of the fundamental
challenges is to accurately predict molecular properties. However,
the landscape of drug discovery is undergoing a transformation,
driven by substantial advancements in data analysis algorithms
and computational capabilities. These strides have led to a new
era of drug discovery, where the convergence of data science and
molecular biology holds the promise of more efficient and effec-
tive approaches. Over the past decade, a significant turning point
has been the accessibility of extensive compound data repositories,
exemplified by the ChemBL database [19] and the PubChem data-
base [13]. These vast datasets of chemical information have set the
stage for the development of several deep learning techniques tai-
lored to accurately predict molecular properties. These techniques,
driven by the fusion of computational power and data, have begun
to yield promising results, offering a glimpse into the potential of
data-driven drug discovery.

Presently, most deep learning models for molecular properties
prediction are engineered to harness a single data modality, such
as sequence data (derived from compound’s simplified molecular-
input line-entry system (SMILES) formulas [25]), graph data (sourced
from compound structures), or image data (derived from 2D snap-
shots of molecular structures). For instance, in the study outlined
in [24], a graph neural network undergoes self-supervised learning
to acquire molecular representations exclusively from molecular
graphs. Similarly, other investigations, exemplified by [10, 12], ad-
vocate the use of compound SMILES formulas as input, employing
BERT [5] which is based on transformer encoders [23] to process
the sequence-based information. In [28], compound structures are
encoded into images, and self-supervised learning techniques are
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employed to extract crucial molecular features. Additionally, [27]
innovatively merges information from both compounds and protein
targets, offering valuable insights into leveraging information from
diverse data sources. While these individual works have undoubt-
edly enriched our understanding of molecular properties prediction
and drug discovery, there is a growing recognition of the necessity
to break free from the constraints of a single data modality. The
convergence of sequence data, graph data, and image data, each
offering unique insights into molecular properties, has the potential
to revolutionize the field. This synergy among diverse data sources
holds the promise of unraveling previously hidden patterns and re-
lationships between molecular structures, offering a more accurate
prediction of molecular properties.

In this work, we present MRL-Mol, a deep multimodal repre-
sentation learning framework for molecular properties prediction.
MRL-Mol integrates three modality networks specifically designed
for graph data, image data, and sequence data, enabling the ex-
traction of information-rich representations from these compound
data modalities. Through these efforts, our goal is to elevate the
precision and efficiency of molecular properties prediction, thereby
contributing to the ongoing evolution of this critical field at the
intersection of biology and technology.

We summarize the advancements of MRL-Mol over current state-
of-the-art methods as follows:

e MRL-Mol integrates three modality networks, each designed
for a specific data modality.

o Unlike current state-of-the-art methods using unsupervised
pretraining or self-supervised pretraining, MRL-Mol em-
ploys a supervised pretraining method with pseudolabels
generated from K-Means clustering [8] of MACCS finger-
prints [2, 6] of molecules. This supervised pretraining proce-
dure facilitates MRL-Mol in acquiring valuable insights into
the features and structures of molecules.

e MRL-Mol achieves superior performance compared to state-
of-the-art methods despite being pretrained on a smaller
dataset.

In the following sections, we first delve into relevant prior re-
search and existing literature in Section 2. Following that, in Sec-
tion 3, we pivot towards the core contribution, meticulously detail-
ing MRL-Mol’s development and datasets employed for training
and validation. In Section 4, we further provide a thorough presen-
tation of all conducted numerical tests and corresponding results.
Finally, Section 5 offers further discussion and draws conclusions.

2 RELATED WORKS

In this section, we offer a concise overview of multimodal deep
learning, providing essential context for the subsequent discussions.

2.1 Multimodal deep learning

Multimodal deep learning is a powerful approach aimed at pro-
cessing information by learning from diverse data modalities. This
technique encompasses two primary strategies for fusing different
modalities of data, known as early fusion and late fusion, distin-
guished by when the fusion of modalities takes place [21].
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Early fusion in multimodal models involves the integration of
various data types at the input level. Typically, early fusion tech-
niques commence by projecting distinct modalities into a common
lower-dimensional space, often using methods such as Principal
Component Analysis (PCA) and Independent Component Analy-
sis (ICA). For instance, in the context of textual-visual sentiment
analysis [3], an early fusion approach is employed to combine tex-
tual and visual features.

Conversely, late fusion multimodal models leverage separate
sub-models, each tailored to handle a specific modality. These sub-
models generate feature representations for their respective modal-
ities, and the combination of these feature representations occurs
just before the final prediction. In an example [11], visual and audio
features are independently generated by separate models and then
combined prior to the ultimate recognition of emotions.

Each of these studies offers valuable insights into the design
of a multimodal deep learning model that combines three distinct
modalities for drug discovery.

3 METHODOLOGY

Our proposed MRL-Mol framework encompasses three key phases (See

Fig. 1): 1. Data processing, which converts input SMILES formulas
to molecular images, sequences, and graphs. 2. Modality integration,
which uses three modality networks to extract information-rich
representations from each data modality and integrate them us-
ing a late-fusion manner. And 3. Learning and prediction, which
leverages a large-scale pretraining dataset to enable MRL-Mol to
learn useful patterns from diverse data modalities, and performs
downstream finetuning to predict molecular properties.

3.1 Data Processing

We begin by delving into the technical details of the data pro-
cessing phase, wherein SMILES formulas of input molecules are
transformed into each modality (See Fig. 1a). Given a SMILES for-
mula s, we use RDKit [16] to obtain the 2D molecular structure.
From this, the molecular image x;mg is generated by drawing atoms
and chemical bonds based on the provided 2D coordinates. Simul-
taneously, the molecular graph x4, is constructed by encoding
atoms into nodes and connecting atoms via edges within the graph.
The molecular sequence x4 is derived by tokenizing the SMILES
formula and encoding it into integers through embedding.

3.2 Modality Integration

We next turn our attention to the technical details of the modal-
ity integration phase, where the three modality networks learn
representations from the three data modalities and merge these
representations using late-fusion techniques (See Fig. 1b).

3.2.1 Image Network. The Image Network, built on Residual Net-
works (ResNet) [9], acts as a feature extractor Rgp, mapping molec-
ular images Ximg t0 image representations rimg € RY:

Timg = Rd)(ximg)s (1)

where @ is the trainable parameters of R and d is the dimensionality
of the rimg.
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3.2.2  Sequence Network. The Sequence Network, based on BERT [5]
comprising transformer encoders [23], serves as a feature extrac-
tor Sy transforming molecular sequence data xs¢q into sequence
representations rseq € RY:

T'seq = S\If(xseq)> 2
where ¥ is the trainable parameters of S.

3.2.3  Graph Network. The Graph Network, consisting of a series
of graph convolutional layers [14], maps molecular graphs xgrqppn

to graph representations Tgraph € R4:

Tgraph = GO (xgraph)s ®)
where Gg is the Graph Network with trainable parameters ©.

3.2.4 Late Fusion. The representations from the three modality
networks are integrated in a late-fusion manner:

T =Timg + Tseq * Tgraphs (4)

where r € RY is the combined representation with a dimension of

3.3 Learning and Prediction

To enable MRL-Mol to grasp inter- and intra-modality informa-
tion, extract information-rich representations, and make accurate
predictions, we adopt a pretraining-finetuning strategy (See Fig. 1c).

3.3.1 Large-scale Dataset Pretraining. The initial step involves pre-
training MRL-Mol in a supervised fashion. Considering the absence
of label information within the pretraining dataset, each molecule is
assigned a pseudolabel based on the methodology outlined in [28].
Initially, MACCS fingerprints [2, 6] are extracted from all molecules
in the pretraining dataset. Subsequently, employing K-Means clus-
tering [8], the molecules are grouped into k clusters based on their
MACGCS fingerprints. Each molecule is then assigned the cluster
index as its pseudolabel. MRL-Mol is then pretrained using these
pseudolabels. To facilitate the prediction of pseudolabels, a fully
connected projection head ¥ (+) is appended after the combined
representation. We then utilize Cross Entropy (CE) loss function
with backpropagation to optimize MRL-Mol:

C eltic
lep(ui 0i) = - Z log —7———uic
=1 Zj:l et/
i eTal(ric)
=- ) log —————uic,
Zj:l eTQ(ri’j) "

c=1

©)

where 1; ¢ is the output of Fo () of ith sample of cluster ¢ and u; ¢
is the ground truth pseudolabel of ith sample of cluster c.

3.3.2 Downstream Finetuning. Utilizing the pretrained MRL-Mol,
we commence by substituting the original projection head with a
new fully-connected prediction head Hr (-) encompassing trainable
parameters I'. This prediction head is responsible for predicting the
molecular property based on the combined representations:

g =Hr(r), (6)

where 7 is the predicted molecular property.
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Dataset BACE | BBBP | ClinTox
# Molecules ‘ 1,513 ‘ 2,039 ‘ 1,478
CHEM-BERT [12] | 0.8102 | 0.8240 0.9292
ImageMol [28] 0.7489 | 0.8743 0.9133
MolCLR [24] 0.7762 | 0.8099 0.9304
MRL-Mol (Ours) | 0.8353 | 0.9067 | 0.9527

Table 1: Predictive performance of different models con-
ducted on classification benchmark datasets measured by
Aera Under Receiver Operating Characteristic (AUROC).

Dataset ESOL | FreeSolv | Lipo

# Molecules ‘ 1,128 ‘ 642 4,200
CHEM-BERT [12] | 0.3486 0.3217 0.4019
ImageMol [28] 0.3618 0.3596 0.4068
MOolCLR [24] 0.4829 0.5198 0.3972
MRL-Mol (Ours) | 0.3220 | 0.3040 | 0.3212

Table 2: Predictive performance of different models con-
ducted on regression benchmark datasets measured by Root
Mean Squared Error (RMSE).

For optimizing the trainable parameters, in regression tasks, we
employ the Mean Squared Error (MSE) loss function with backprop-
agation:

Inse(yis §i) = (yi = 91)%, ™
where y; is the ground truth molecular property of the ith sample
within the training dataset. In classification tasks, we continue
using the Cross Entropy loss function with backpropagation to
optimize the trainable parameters.

To maximize the benefits derived from the pretrained MRL-Mol,
we follow the methodology outlined in [15] to finetune MRL-Mol on
downstream datasets. This involves linear probing of the prediction
head, followed by the subsequent finetuning of the entire model.

3.4 Dataset

We now delve into the details of the pretraining and downstream
benchmark datasets, serving as the foundation for training and
validating our MRL-Mol.

3.4.1 Pretraining dataset. Our pretraining dataset comprises se-
lected ~1 million unique unlabeled drug-like and bioactive molecules’
SMILES data sourced from PubChem database [13]. To process this

dataset, we utilize RDKit [16] for converting SMILES data to mole-
cule images and constructing molecule graphs.

3.4.2 Downstream datasets. For our downstream experiments, we
select six datasets from MoleculeNet [26]. These datasets encompass
various predictive tasks: (1) Molecular Target Prediction, focusing
on the human f-secreatse 1 (BACE-1) target [22], (2) Blood-Brain
Barrier Penetration (BBBP) prediction, predicting the permeability
of molecules through the blood-brain barrier [18], (3) Molecular
Toxicity Prediction, particularly targeting clinical trial toxicity (Clin-
Tox) [7], (4) Molecular Solubility Prediction, including estimated
solubility (ESOL) [4], free solvation (FreeSolv) [20], and lipophilic-

ity (Lipo).
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4 EXPERIMENTS

4.1 Experiment Setup

In the pretraining step, 95% of the molecules (9,499,921 molecules)
from the pretraining dataset are utilized to train MRL-Mol, while
the remaining 5% (499,996 molecules) serve as the validation dataset
for hyperparameter selection purposes. We set the number of clus-
ters k as 100. Each downstream benchmark dataset is randomly
divided into three subsets, training, validation, and test, using an
80%/10%/10% ratio. Labels of regression benchmark datasets are
normalized to the range of [—1, 1]:

y — min(y)

an(y) —min() 0.5 x2, (8)

Ynorm =

where ynorm is the normalized regression label and y is the original
regression label.

Both pretraining and finetuning procedures utilize the AdamW
optimizer [17] with an initial learning rate of 1 x 10> and a weight
decay coefficient of 1x 1073, The pretraining step involves training
the model for 50 epochs until convergence, while the downstream
finetuning consists of a linear probing phase for 30 epochs followed
by an additional 30 epochs of finetuning to reach convergence.

In our benchmark analysis, we compare the performance of MRL-
Mol against three state-of-the-art single-modal molecular proper-
ties prediction models: a sequence-based model (CHEM-BERT [12]),
a graph-based model (MoICLR [24]), and an image-based model (Im-
ageMol [28]). Each baseline model was pretrained using a larger
pretraining dataset comprising ~10M unique molecules. We con-
duct finetuning on the downstream benchmark datasets and adhere
to their original training setups.

Evaluation metrics for classification datasets encompass the Aera
Under Receiver Operating Characteristic (AUROC). For regression
datasets, we measure Pearson’s correlation coefficient R (Pearson
R) and Root Mean Squared Error (RMSE) to evaluate performance.

4.2 Benchmark evaluation

We commence our assessment by benchmarking the performance
of MRL-Mol against three baseline models across six downstream
datasets. In classification tasks, MRL-Mol achieves remarkable re-
sults in terms of the AUROC metric on BACE (AUROC: 0.8353),
BBBP (AUROC: 0.9067), and ClinTox (AUROC: 0.9527) datasets (See
Table 1). Compared to the three baselines, MRL-Mol consistently
outperforms them, showcasing an average improvement of 6.354%
on AUROC. Notably, MRL-Mol achieves an enhancement of 11.952%
at best when compared to MolCLR on the BBBP dataset (See Ta-
ble 1).

In regression tasks, MRL-Mol exhibits robust predictive perfor-
mance and low predictive error across ESOL (Pearson R: 0.6334 and
RMSE: 0.3220), FreeSolv (Pearson R: 0.7287 and RMSE: 0.3040), and
Lipo (Pearson R: 0.6551 and RMSE: 0.3212) datasets (See Fig. 2 and
Table 2). Compared to the three baseline models, MRL-Mol consis-
tently showcases superior performance, with an average improve-
ment of ~20% improvement in RMSE. Particularly noteworthy is
the 41.52% improvement over MolCLR on the FreeSolv dataset (See
Fig. ??b). These performance enhancements indicate the superiority
of MRL-Mol, especially considering its utilization of a pretraining
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Figure 2: Predictive performance of our proposed MRL-Mol on the three regression benchmark datasets. Predicted label and
ground truth label of each compound for each dataset are contour plotted with point density. Pearson’s correlation coefficient

(R) and P values are labeled.
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Figure 3: Ablation studies on the impact of pretraining
dataset scale on the performance of MRL-Mol. The Means
denote the average performance of MRL-Mol on bench-
mark datasets concerning different pretraining dataset sizes.
a. Classification results measured by AUROC, and b. regres-
sion results measured by MAE.

dataset roughly one-tenth the size of the pretraining datasets used
in the three baseline models (~1M vs. ~10M).

4.3 Interpreting the multimodal deep learning
model

To delve deeper into understanding the impact of the pretraining
process and individual modality networks on the predictive perfor-
mance of MRL-Mol, we trained separate models with various sizes
of pretraining datasets and removed one of the three modality net-
works. For the ablation study involving pretraining with different
dataset sizes, we randomly sampled 10K and 100K unique molecules
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Figure 4: Ablation studies on the impact of each modality net-
work in MRL-Mol. ‘Baseline’ refers to MRL-Mol without any
modality network removed. ‘No Graph’ refers to removing
the Graph Network. ‘No Image’ refers to removing the Im-
age Network. ‘No Sequence’ represents MRL-Mol removing
the Sequence Network. ‘Mean’ denotes the average perfor-
mance of MRL-Mol across benchmark datasets with specific
networks removed. a. Classification results measured by AU-
ROC, and b. regression results measured by MAE.

from our 1M pretraining dataset. Following the identical pretraining
procedure for the MRL-Mol on the 1M dataset, we trained MRL-Mol
using these smaller pretraining datasets. Subsequently, we bench-
marked these pretrained models on six downstream benchmark
datasets.

As shown in Fig. 3, the predictive performance of MRL-Mol
elevates with the increase in the size of the pretraining dataset. The
MRL-Mol trained on the largest pretraining dataset (~1M molecules)
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outperforms the MRL-Mol trained on a medium-sized pretraining
dataset (~100K molecules) by an average of 14.362% in terms of
AUROC (0.8982 vs. 0.7854) and 14.523% in terms of MAE (0.2472
vs. 0.2892). Furthermore, it surpasses the performance of the MRL-
Mol trained on the smallest pretraining dataset (~10K molecules)
by an average of 20.710% in terms of AUROC (0.8982 vs. 0.7441)
and an average of 26.538% in terms of MAE (0.2472 vs. 0.3365).
Additionally, it outperforms the MRL-Mol without any pretraining
by an average of 32.263% in terms of AUROC (0.8982 vs. 0.6791) and
an average of 32.716% in terms of MAE (0.2472 vs. 0.3674). These
results validate that the pretraining process and a larger pretraining
dataset significantly enhance the performance and generalization
ability of MRL-Mol.

Furthermore, we pretrained MRL-Mol by removing one of the
three modality networks while using the ~1M pretraining dataset.
Subsequently, we benchmarked these six downstream datasets. As
shown in Fig. 4, we observed that MRL-Mol achieves optimal per-
formance when all three modality networks are included during
pretraining. This ablation study confirms that each of the three data
modalities and their respective modality networks significantly con-
tribute to the final prediction of molecular properties.

5 CONCLUSION

In this study, we introduced MRL-Mol, a robust multimodal deep
learning framework tailored for predicting molecular properties.
MRL-Mol integrates three diverse data modalities, image-based,
sequence-based, and graph-based, each corresponding to special-
ized models. Leveraging a large-scale molecule dataset along with
MACCS fingerprints, we pretrained MRL-Mol and conducted fine-
tuning for downstream molecular properties prediction tasks. Our
thorough evaluation assessed the performance of MRL-Mol across
six diverse molecular properties prediction datasets encompassing
both classification and regression tasks, showcasing its superiority
over state-of-the-art methods in image-based, sequence-based, and
graph-based molecular property prediction. Through comprehen-
sive comparisons and analysis, our findings definitively demon-
strate the substantial enhancement achieved by integrating these
three data substantially. This innovative approach presents a signifi-
cant stride in advancing the domain of drug discovery by leveraging
the synergy of multiple data modalities.

ACKNOWLEDGMENTS

This material was supported by the National Science Foundation
(NSF) under Grant #2212465, #2217021, #2217104, #2230111, #2238734,
and #2311950.

REFERENCES

[1] John Arrowsmith and Philip Miller. 2013. Trial watch: phase II and phase III
attrition rates 2011-2012. Nature reviews. Drug discovery 12, 8 (2013), 569.

[2] Adria Cereto-Massagué, Maria José Ojeda, Cristina Valls, Miquel Mulero, Santiago

Garcia-Vallvé, and Gerard Pujadas. 2015. Molecular fingerprint similarity search

in virtual screening. Methods 71 (2015), 58—63.

Minghai Chen, Sen Wang, Paul Pu Liang, Tadas Baltrusaitis, Amir Zadeh, and

Louis-Philippe Morency. 2017. Multimodal sentiment analysis with word-level

fusion and reinforcement learning. In Proceedings of the 19th ACM international

conference on multimodal interaction. 163-171.

[4] John S Delaney. 2004. ESOL: estimating aqueous solubility directly from molecular
structure. Journal of chemical information and computer sciences 44, 3 (2004),
1000-1005.

3

765

Yang et al.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[6] Joseph L Durant, Burton A Leland, Douglas R Henry, and James G Nourse. 2002.
Reoptimization of MDL keys for use in drug discovery. Journal of chemical
information and computer sciences 42, 6 (2002), 1273-1280.

[7] Kaitlyn M Gayvert, Neel S Madhukar, and Olivier Elemento. 2016. A data-driven
approach to predicting successes and failures of clinical trials. Cell chemical
biology 23, 10 (2016), 1294-1301.

[8] John A Hartigan and Manchek A Wong. 1979. Algorithm AS 136: A k-means

clustering algorithm. Journal of the royal statistical society. series c (applied

statistics) 28, 1 (1979), 100-108.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition. 770-778.

Shion Honda, Shoi Shi, and Hiroki R Ueda. 2019. Smiles transformer: Pre-trained

molecular fingerprint for low data drug discovery. arXiv preprint arXiv:1911.04738

(2019).

[11] Samira Ebrahimi Kahou, Xavier Bouthillier, Pascal Lamblin, Caglar Gulcehre, Vin-

cent Michalski, Kishore Konda, Sébastien Jean, Pierre Froumenty, Yann Dauphin,

Nicolas Boulanger-Lewandowski, et al. 2016. Emonets: Multimodal deep learn-

ing approaches for emotion recognition in video. Journal on Multimodal User

Interfaces 10 (2016), 99-111.

Hyunseob Kim, Jeongcheol Lee, Sunil Ahn, and Jongsuk Ruth Lee. 2021. A merged

molecular representation learning for molecular properties prediction with a

web-based service. Scientific Reports 11, 1 (2021), 11028.

[13] Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Siqian He,
Qingliang Li, Benjamin A Shoemaker, Paul A Thiessen, Bo Yu, et al. 2019. Pub-
Chem 2019 update: improved access to chemical data. Nucleic acids research 47,
D1 (2019), D1102-D1109.

[14] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[15] Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang.
2022. Fine-tuning can distort pretrained features and underperform out-of-
distribution. arXiv preprint arXiv:2202.10054 (2022).

[16] Greg Landrum et al. 2013. RDKit: A software suite for cheminformatics, compu-
tational chemistry, and predictive modeling. Greg Landrum 8 (2013), 31.

[17] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

[18] Ines Filipa Martins, Ana L Teixeira, Luis Pinheiro, and Andre O Falcao. 2012. A
Bayesian approach to in silico blood-brain barrier penetration modeling. Journal
of chemical information and modeling 52, 6 (2012), 1686—1697.

[19] David Mendez, Anna Gaulton, A Patricia Bento, Jon Chambers, Marleen De Veij,

Eloy Félix, Maria Paula Magarifos, Juan F Mosquera, Prudence Mutowo, Michat

Nowotka, et al. 2019. ChEMBL: towards direct deposition of bioassay data. Nucleic

acids research 47, D1 (2019), D930-D940.

David L Mobley and J Peter Guthrie. 2014. FreeSolv: a database of experimental

and calculated hydration free energies, with input files. Journal of computer-aided

molecular design 28 (2014), 711-720.

[21] Dhanesh Ramachandram and Graham W Taylor. 2017. Deep multimodal learning:
A survey on recent advances and trends. IEEE signal processing magazine 34, 6
(2017), 96-108.

[22] Govindan Subramanian, Bharath Ramsundar, Vijay Pande, and Rajiah Aldrin
Denny. 2016. Computational modeling of S-secretase 1 (BACE-1) inhibitors using
ligand based approaches. Journal of chemical information and modeling 56, 10
(2016), 1936-1949.

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. Advances in neural information processing systems 30 (2017).

Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. 2022.

Molecular contrastive learning of representations via graph neural networks.

Nature Machine Intelligence 4, 3 (2022), 279-287.

[25] David Weininger. 1988. SMILES, a chemical language and information system. 1.

Introduction to methodology and encoding rules. Journal of chemical information

and computer sciences 28, 1 (1988), 31-36.

Zhengin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Ge-

niesse, Aneesh S Pappu, Karl Leswing, and Vijay Pande. 2018. MoleculeNet: a

benchmark for molecular machine learning. Chemical science 9, 2 (2018), 513-530.

Yuxin Yang, Yunguang Qiu, Jianying Hu, Michal Rosen-Zvi, Qiang Guan, and

Feixiong Cheng. [n.d.]. A Deep Learning Framework Streamlines Computa-

tional Drug Discovery Via Combining Molecular Image and Protein Structural

Representation. Available at SSRN 4710836 ([n. d.]).

Xiangxiang Zeng, Hongxin Xiang, Linhui Yu, Jianmin Wang, Kenli Li, Ruth Nussi-

nov, and Feixiong Cheng. 2022. Accurate prediction of molecular properties and

drug targets using a self-supervised image representation learning framework.

Nature Machine Intelligence 4, 11 (2022), 1004-1016.

[

[10

=
&,

[20

[24

[26

[27

)
&



	Abstract
	1 Introduction
	2 Related Works
	2.1 Multimodal deep learning

	3 Methodology
	3.1 Data Processing
	3.2 Modality Integration
	3.3 Learning and Prediction
	3.4 Dataset

	4 Experiments
	4.1 Experiment Setup
	4.2 Benchmark evaluation
	4.3 Interpreting the multimodal deep learning model

	5 Conclusion
	Acknowledgments
	References

