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Figure 1: Schematic illustration of MRL-Mol framework. a. Data Processing. b. Modality Integration. c. Learning and Prediction.

ABSTRACT

Drug discovery is a challenging process, requiring the optimization

of compounds to become safe and effective. Predicting molecular

properties is an indispensable step in the drug discovery pipeline.
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Traditionally, this process is costly, involving multiple rounds of ex-

periments, rendering it impractical for every candidate compound.

Deep learning techniques have emerged as a promising approach

to drug discovery to reduce the cost during the process. However,

prevalent research in deep learning models focused on predicting

molecular properties has primarily fixated on single-modal mod-

els, neglecting the potential benefits of combining different data

modalities. To overcome this limitation, we introduce MRL-Mol: a

deep Multimodal Representation Learning framework for accurate

Molecular properties prediction. MRL-Mol harnesses three data

modalities: sequence, graph, and image, augmenting the depth of
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comprehension. Leveraging a large-scale unlabeled dataset ( 1M

unique molecules), we pretrain MRL-Mol to extract inter- and intra-

modal information. Our study demonstrates the superior perfor-

mance of MRL-Mol in predicting molecular properties across six

benchmark datasets. Notably, MRL-Mol outperforms other state-

of-the-art molecular properties prediction models. These findings

suggest that by combining information from multiple data modali-

ties, MRL-Mol can comprehend molecules better than single-modal

deep learning models and identify molecular properties with better

accuracy.
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1 INTRODUCTION

Drug discovery persists as a formidable challenge in the realms

of biology and medicine, marked by the costly, slow, and often

unsuccessful conventional process [1]. One of the fundamental

challenges is to accurately predict molecular properties. However,

the landscape of drug discovery is undergoing a transformation,

driven by substantial advancements in data analysis algorithms

and computational capabilities. These strides have led to a new

era of drug discovery, where the convergence of data science and

molecular biology holds the promise of more efficient and effec-

tive approaches. Over the past decade, a significant turning point

has been the accessibility of extensive compound data repositories,

exemplified by the ChemBL database [19] and the PubChem data-

base [13]. These vast datasets of chemical information have set the

stage for the development of several deep learning techniques tai-

lored to accurately predict molecular properties. These techniques,

driven by the fusion of computational power and data, have begun

to yield promising results, offering a glimpse into the potential of

data-driven drug discovery.

Presently, most deep learning models for molecular properties

prediction are engineered to harness a single data modality, such

as sequence data (derived from compound’s simplified molecular-

input line-entry system (SMILES) formulas [25]), graph data (sourced

from compound structures), or image data (derived from 2D snap-

shots of molecular structures). For instance, in the study outlined

in [24], a graph neural network undergoes self-supervised learning

to acquire molecular representations exclusively from molecular

graphs. Similarly, other investigations, exemplified by [10, 12], ad-

vocate the use of compound SMILES formulas as input, employing

BERT [5] which is based on transformer encoders [23] to process

the sequence-based information. In [28], compound structures are

encoded into images, and self-supervised learning techniques are

employed to extract crucial molecular features. Additionally, [27]

innovatively merges information from both compounds and protein

targets, offering valuable insights into leveraging information from

diverse data sources. While these individual works have undoubt-

edly enriched our understanding of molecular properties prediction

and drug discovery, there is a growing recognition of the necessity

to break free from the constraints of a single data modality. The

convergence of sequence data, graph data, and image data, each

offering unique insights into molecular properties, has the potential

to revolutionize the field. This synergy among diverse data sources

holds the promise of unraveling previously hidden patterns and re-

lationships between molecular structures, offering a more accurate

prediction of molecular properties.

In this work, we present MRL-Mol, a deep multimodal repre-

sentation learning framework for molecular properties prediction.

MRL-Mol integrates three modality networks specifically designed

for graph data, image data, and sequence data, enabling the ex-

traction of information-rich representations from these compound

data modalities. Through these efforts, our goal is to elevate the

precision and efficiency of molecular properties prediction, thereby

contributing to the ongoing evolution of this critical field at the

intersection of biology and technology.

We summarize the advancements of MRL-Mol over current state-

of-the-art methods as follows:

• MRL-Mol integrates three modality networks, each designed

for a specific data modality.

• Unlike current state-of-the-art methods using unsupervised

pretraining or self-supervised pretraining, MRL-Mol em-

ploys a supervised pretraining method with pseudolabels

generated from K-Means clustering [8] of MACCS finger-

prints [2, 6] of molecules. This supervised pretraining proce-

dure facilitates MRL-Mol in acquiring valuable insights into

the features and structures of molecules.

• MRL-Mol achieves superior performance compared to state-

of-the-art methods despite being pretrained on a smaller

dataset.

In the following sections, we first delve into relevant prior re-

search and existing literature in Section 2. Following that, in Sec-

tion 3, we pivot towards the core contribution, meticulously detail-

ing MRL-Mol’s development and datasets employed for training

and validation. In Section 4, we further provide a thorough presen-

tation of all conducted numerical tests and corresponding results.

Finally, Section 5 offers further discussion and draws conclusions.

2 RELATED WORKS

In this section, we offer a concise overview of multimodal deep

learning, providing essential context for the subsequent discussions.

2.1 Multimodal deep learning

Multimodal deep learning is a powerful approach aimed at pro-

cessing information by learning from diverse data modalities. This

technique encompasses two primary strategies for fusing different

modalities of data, known as early fusion and late fusion, distin-

guished by when the fusion of modalities takes place [21].
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Early fusion in multimodal models involves the integration of

various data types at the input level. Typically, early fusion tech-

niques commence by projecting distinct modalities into a common

lower-dimensional space, often using methods such as Principal

Component Analysis (PCA) and Independent Component Analy-

sis (ICA). For instance, in the context of textual-visual sentiment

analysis [3], an early fusion approach is employed to combine tex-

tual and visual features.

Conversely, late fusion multimodal models leverage separate

sub-models, each tailored to handle a specific modality. These sub-

models generate feature representations for their respective modal-

ities, and the combination of these feature representations occurs

just before the final prediction. In an example [11], visual and audio

features are independently generated by separate models and then

combined prior to the ultimate recognition of emotions.

Each of these studies offers valuable insights into the design

of a multimodal deep learning model that combines three distinct

modalities for drug discovery.

3 METHODOLOGY

Our proposedMRL-Mol framework encompasses three key phases (See

Fig. 1): 1. Data processing, which converts input SMILES formulas

to molecular images, sequences, and graphs. 2. Modality integration,

which uses three modality networks to extract information-rich

representations from each data modality and integrate them us-

ing a late-fusion manner. And 3. Learning and prediction, which

leverages a large-scale pretraining dataset to enable MRL-Mol to

learn useful patterns from diverse data modalities, and performs

downstream finetuning to predict molecular properties.

3.1 Data Processing

We begin by delving into the technical details of the data pro-

cessing phase, wherein SMILES formulas of input molecules are

transformed into each modality (See Fig. 1a). Given a SMILES for-

mula 𝑠 , we use RDKit [16] to obtain the 2D molecular structure.

From this, the molecular image 𝑥𝑖𝑚𝑔 is generated by drawing atoms

and chemical bonds based on the provided 2D coordinates. Simul-

taneously, the molecular graph 𝑥𝑔𝑟𝑎𝑝ℎ is constructed by encoding

atoms into nodes and connecting atoms via edges within the graph.

The molecular sequence 𝑥𝑠𝑒𝑞 is derived by tokenizing the SMILES

formula and encoding it into integers through embedding.

3.2 Modality Integration

We next turn our attention to the technical details of the modal-

ity integration phase, where the three modality networks learn

representations from the three data modalities and merge these

representations using late-fusion techniques (See Fig. 1b).

3.2.1 Image Network. The Image Network, built on Residual Net-

works (ResNet) [9], acts as a feature extractor RΦ, mapping molec-

ular images 𝑥𝑖𝑚𝑔 to image representations 𝑟𝑖𝑚𝑔 ∈ R𝑑 :

𝑟𝑖𝑚𝑔 = RΦ (𝑥𝑖𝑚𝑔), (1)

where Φ is the trainable parameters of R and𝑑 is the dimensionality

of the 𝑟𝑖𝑚𝑔 .

3.2.2 Sequence Network. The SequenceNetwork, based on BERT [5]

comprising transformer encoders [23], serves as a feature extrac-

tor SΨ transforming molecular sequence data 𝑥𝑠𝑒𝑞 into sequence

representations 𝑟𝑠𝑒𝑞 ∈ R𝑑 :

𝑟𝑠𝑒𝑞 = SΨ (𝑥𝑠𝑒𝑞), (2)

where Ψ is the trainable parameters of S.

3.2.3 Graph Network. The Graph Network, consisting of a series

of graph convolutional layers [14], maps molecular graphs 𝑥𝑔𝑟𝑎𝑝ℎ

to graph representations 𝑟𝑔𝑟𝑎𝑝ℎ ∈ R𝑑 :

𝑟𝑔𝑟𝑎𝑝ℎ = GΘ (𝑥𝑔𝑟𝑎𝑝ℎ), (3)

where GΘ is the Graph Network with trainable parameters Θ.

3.2.4 Late Fusion. The representations from the three modality

networks are integrated in a late-fusion manner:

𝑟 = 𝑟𝑖𝑚𝑔 + 𝑟𝑠𝑒𝑞 + 𝑟𝑔𝑟𝑎𝑝ℎ, (4)

where 𝑟 ∈ R𝑑 is the combined representation with a dimension of

𝑑 .

3.3 Learning and Prediction

To enable MRL-Mol to grasp inter- and intra-modality informa-

tion, extract information-rich representations, and make accurate

predictions, we adopt a pretraining-finetuning strategy (See Fig. 1c).

3.3.1 Large-scale Dataset Pretraining. The initial step involves pre-

training MRL-Mol in a supervised fashion. Considering the absence

of label information within the pretraining dataset, each molecule is

assigned a pseudolabel based on the methodology outlined in [28].

Initially, MACCS fingerprints [2, 6] are extracted from all molecules

in the pretraining dataset. Subsequently, employing K-Means clus-

tering [8], the molecules are grouped into 𝑘 clusters based on their

MACCS fingerprints. Each molecule is then assigned the cluster

index as its pseudolabel. MRL-Mol is then pretrained using these

pseudolabels. To facilitate the prediction of pseudolabels, a fully

connected projection head FΩ (·) is appended after the combined

representation. We then utilize Cross Entropy (CE) loss function

with backpropagation to optimize MRL-Mol:

𝑙𝐶𝐸 (𝑢𝑖 , 𝑢𝑖 ) = −

𝐶
∑︁

𝑐=1

log
𝑒𝑢̂𝑖,𝑐

∑𝐶
𝑗=1 𝑒

𝑢̂𝑖,𝑗
𝑢𝑖,𝑐

= −

𝐶
∑︁

𝑐=1

log
𝑒FΩ (𝑟𝑖,𝑐 )

∑𝐶
𝑗=1 𝑒

FΩ (𝑟𝑖,𝑗 )
𝑢𝑖,𝑐 ,

(5)

where 𝑢𝑖,𝑐 is the output of FΩ (·) of 𝑖
𝑡ℎ sample of cluster 𝑐 and 𝑢𝑖,𝑐

is the ground truth pseudolabel of 𝑖𝑡ℎ sample of cluster 𝑐 .

3.3.2 Downstream Finetuning. Utilizing the pretrained MRL-Mol,

we commence by substituting the original projection head with a

new fully-connected prediction headHΓ (·) encompassing trainable

parameters Γ. This prediction head is responsible for predicting the

molecular property based on the combined representations:

𝑦 = HΓ (𝑟 ), (6)

where 𝑦 is the predicted molecular property.
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Dataset BACE BBBP ClinTox

# Molecules 1,513 2,039 1,478

CHEM-BERT [12] 0.8102 0.8240 0.9292

ImageMol [28] 0.7489 0.8743 0.9133

MolCLR [24] 0.7762 0.8099 0.9304

MRL-Mol (Ours) 0.8353 0.9067 0.9527

Table 1: Predictive performance of different models con-

ducted on classification benchmark datasets measured by

Aera Under Receiver Operating Characteristic (AUROC).

Dataset ESOL FreeSolv Lipo

# Molecules 1,128 642 4,200

CHEM-BERT [12] 0.3486 0.3217 0.4019

ImageMol [28] 0.3618 0.3596 0.4068

MolCLR [24] 0.4829 0.5198 0.3972

MRL-Mol (Ours) 0.3220 0.3040 0.3212

Table 2: Predictive performance of different models con-

ducted on regression benchmark datasets measured by Root

Mean Squared Error (RMSE).

For optimizing the trainable parameters, in regression tasks, we

employ the Mean Squared Error (MSE) loss function with backprop-

agation:

𝑙𝑀𝑆𝐸 (𝑦𝑖 , 𝑦𝑖 ) = (𝑦𝑖 − 𝑦𝑖 )
2, (7)

where 𝑦𝑖 is the ground truth molecular property of the 𝑖𝑡ℎ sample

within the training dataset. In classification tasks, we continue

using the Cross Entropy loss function with backpropagation to

optimize the trainable parameters.

To maximize the benefits derived from the pretrained MRL-Mol,

we follow the methodology outlined in [15] to finetuneMRL-Mol on

downstream datasets. This involves linear probing of the prediction

head, followed by the subsequent finetuning of the entire model.

3.4 Dataset

We now delve into the details of the pretraining and downstream

benchmark datasets, serving as the foundation for training and

validating our MRL-Mol.

3.4.1 Pretraining dataset. Our pretraining dataset comprises se-

lected∼1million unique unlabeled drug-like and bioactivemolecules’

SMILES data sourced from PubChem database [13]. To process this

dataset, we utilize RDKit [16] for converting SMILES data to mole-

cule images and constructing molecule graphs.

3.4.2 Downstream datasets. For our downstream experiments, we

select six datasets fromMoleculeNet [26]. These datasets encompass

various predictive tasks: (1) Molecular Target Prediction, focusing

on the human 𝛽-secreatse 1 (BACE-1) target [22], (2) Blood-Brain

Barrier Penetration (BBBP) prediction, predicting the permeability

of molecules through the blood-brain barrier [18], (3) Molecular

Toxicity Prediction, particularly targeting clinical trial toxicity (Clin-

Tox) [7], (4) Molecular Solubility Prediction, including estimated

solubility (ESOL) [4], free solvation (FreeSolv) [20], and lipophilic-

ity (Lipo).

4 EXPERIMENTS

4.1 Experiment Setup

In the pretraining step, 95% of the molecules (9,499,921 molecules)

from the pretraining dataset are utilized to train MRL-Mol, while

the remaining 5% (499,996 molecules) serve as the validation dataset

for hyperparameter selection purposes. We set the number of clus-

ters 𝑘 as 100. Each downstream benchmark dataset is randomly

divided into three subsets, training, validation, and test, using an

80%/10%/10% ratio. Labels of regression benchmark datasets are

normalized to the range of [−1, 1]:

𝑦𝑛𝑜𝑟𝑚 =

(

𝑦 −min(𝑦)

max(𝑦) −min(𝑦)
− 0.5

)

× 2, (8)

where 𝑦𝑛𝑜𝑟𝑚 is the normalized regression label and 𝑦 is the original

regression label.

Both pretraining and finetuning procedures utilize the AdamW

optimizer [17] with an initial learning rate of 1× 10−5 and a weight

decay coefficient of 1× 10−3. The pretraining step involves training

the model for 50 epochs until convergence, while the downstream

finetuning consists of a linear probing phase for 30 epochs followed

by an additional 30 epochs of finetuning to reach convergence.

In our benchmark analysis, we compare the performance of MRL-

Mol against three state-of-the-art single-modal molecular proper-

ties prediction models: a sequence-based model (CHEM-BERT [12]),

a graph-based model (MolCLR [24]), and an image-based model (Im-

ageMol [28]). Each baseline model was pretrained using a larger

pretraining dataset comprising ∼10M unique molecules. We con-

duct finetuning on the downstream benchmark datasets and adhere

to their original training setups.

Evaluationmetrics for classification datasets encompass the Aera

Under Receiver Operating Characteristic (AUROC). For regression

datasets, we measure Pearson’s correlation coefficient R (Pearson

R) and Root Mean Squared Error (RMSE) to evaluate performance.

4.2 Benchmark evaluation

We commence our assessment by benchmarking the performance

of MRL-Mol against three baseline models across six downstream

datasets. In classification tasks, MRL-Mol achieves remarkable re-

sults in terms of the AUROC metric on BACE (AUROC: 0.8353),

BBBP (AUROC: 0.9067), and ClinTox (AUROC: 0.9527) datasets (See

Table 1). Compared to the three baselines, MRL-Mol consistently

outperforms them, showcasing an average improvement of 6.354%

on AUROC. Notably, MRL-Mol achieves an enhancement of 11.952%

at best when compared to MolCLR on the BBBP dataset (See Ta-

ble 1).

In regression tasks, MRL-Mol exhibits robust predictive perfor-

mance and low predictive error across ESOL (Pearson R: 0.6334 and

RMSE: 0.3220), FreeSolv (Pearson R: 0.7287 and RMSE: 0.3040), and

Lipo (Pearson R: 0.6551 and RMSE: 0.3212) datasets (See Fig. 2 and

Table 2). Compared to the three baseline models, MRL-Mol consis-

tently showcases superior performance, with an average improve-

ment of ∼20% improvement in RMSE. Particularly noteworthy is

the 41.52% improvement over MolCLR on the FreeSolv dataset (See

Fig. ??b). These performance enhancements indicate the superiority

of MRL-Mol, especially considering its utilization of a pretraining
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Figure 2: Predictive performance of our proposed MRL-Mol on the three regression benchmark datasets. Predicted label and

ground truth label of each compound for each dataset are contour plotted with point density. Pearson’s correlation coefficient

(R) and P values are labeled.

Figure 3: Ablation studies on the impact of pretraining

dataset scale on the performance of MRL-Mol. The Means

denote the average performance of MRL-Mol on bench-

mark datasets concerning different pretraining dataset sizes.

a. Classification results measured by AUROC, and b. regres-

sion results measured by MAE.

dataset roughly one-tenth the size of the pretraining datasets used

in the three baseline models (∼1M vs. ∼10M).

4.3 Interpreting the multimodal deep learning
model

To delve deeper into understanding the impact of the pretraining

process and individual modality networks on the predictive perfor-

mance of MRL-Mol, we trained separate models with various sizes

of pretraining datasets and removed one of the three modality net-

works. For the ablation study involving pretraining with different

dataset sizes, we randomly sampled 10K and 100K unique molecules

Figure 4: Ablation studies on the impact of eachmodality net-

work in MRL-Mol. ‘Baseline’ refers to MRL-Mol without any

modality network removed. ‘No Graph’ refers to removing

the Graph Network. ‘No Image’ refers to removing the Im-

age Network. ‘No Sequence’ represents MRL-Mol removing

the Sequence Network. ‘Mean’ denotes the average perfor-

mance of MRL-Mol across benchmark datasets with specific

networks removed. a. Classification results measured by AU-

ROC, and b. regression results measured by MAE.

from our 1M pretraining dataset. Following the identical pretraining

procedure for the MRL-Mol on the 1M dataset, we trained MRL-Mol

using these smaller pretraining datasets. Subsequently, we bench-

marked these pretrained models on six downstream benchmark

datasets.

As shown in Fig. 3, the predictive performance of MRL-Mol

elevates with the increase in the size of the pretraining dataset. The

MRL-Mol trained on the largest pretraining dataset (∼1Mmolecules)
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outperforms the MRL-Mol trained on a medium-sized pretraining

dataset (∼100K molecules) by an average of 14.362% in terms of

AUROC (0.8982 vs. 0.7854) and 14.523% in terms of MAE (0.2472

vs. 0.2892). Furthermore, it surpasses the performance of the MRL-

Mol trained on the smallest pretraining dataset (∼10K molecules)

by an average of 20.710% in terms of AUROC (0.8982 vs. 0.7441)

and an average of 26.538% in terms of MAE (0.2472 vs. 0.3365).

Additionally, it outperforms the MRL-Mol without any pretraining

by an average of 32.263% in terms of AUROC (0.8982 vs. 0.6791) and

an average of 32.716% in terms of MAE (0.2472 vs. 0.3674). These

results validate that the pretraining process and a larger pretraining

dataset significantly enhance the performance and generalization

ability of MRL-Mol.

Furthermore, we pretrained MRL-Mol by removing one of the

three modality networks while using the ∼1M pretraining dataset.

Subsequently, we benchmarked these six downstream datasets. As

shown in Fig. 4, we observed that MRL-Mol achieves optimal per-

formance when all three modality networks are included during

pretraining. This ablation study confirms that each of the three data

modalities and their respective modality networks significantly con-

tribute to the final prediction of molecular properties.

5 CONCLUSION

In this study, we introduced MRL-Mol, a robust multimodal deep

learning framework tailored for predicting molecular properties.

MRL-Mol integrates three diverse data modalities, image-based,

sequence-based, and graph-based, each corresponding to special-

ized models. Leveraging a large-scale molecule dataset along with

MACCS fingerprints, we pretrained MRL-Mol and conducted fine-

tuning for downstream molecular properties prediction tasks. Our

thorough evaluation assessed the performance of MRL-Mol across

six diverse molecular properties prediction datasets encompassing

both classification and regression tasks, showcasing its superiority

over state-of-the-art methods in image-based, sequence-based, and

graph-based molecular property prediction. Through comprehen-

sive comparisons and analysis, our findings definitively demon-

strate the substantial enhancement achieved by integrating these

three data substantially. This innovative approach presents a signifi-

cant stride in advancing the domain of drug discovery by leveraging

the synergy of multiple data modalities.
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