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Abstract— Cluster analysis plays an indispensable role in
machine learning and data mining. Learning a good data rep-
resentation is crucial for clustering algorithms. Recently, deep
clustering (DC), which can learn clustering-friendly represen-
tations using deep neural networks (DNNs), has been broadly
applied in a wide range of clustering tasks. Existing surveys
for DC mainly focus on the single-view fields and the network
architectures, ignoring the complex application scenarios of
clustering. To address this issue, in this article, we provide a
comprehensive survey for DC in views of data sources. With
different data sources, we systematically distinguish the clustering
methods in terms of methodology, prior knowledge, and architec-
ture. Concretely, DC methods are introduced according to four
categories, i.e., traditional single-view DC, semi-supervised DC,
deep multiview clustering (MVC), and deep transfer clustering.
Finally, we discuss the open challenges and potential future
opportunities in different fields of DC.

Index Terms— Deep clustering (DC), multiview clustering
(MVC), semi-supervised clustering, transfer learning.

NOMENCLATURE

i Counter variable.
j Counter variable.
|·| Length of a set.
∥·∥ 2-norm of a vector.
X Data for clustering.
X s Data in source domain (UDA methods).
Y s Labels of source domain instances

(UDA methods).
X t Data in target domain (UDA methods).
Ds Source domain of UDA methods.
Dt Target domain of UDA methods.
xi Vector of an original data sample.
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X i i th view of X in multiview learning.
Ŷ Predicted labels of X .
S Soft data assignments of X .
R Adjusted assignments of S.
A Pairwise constraint matrix.
ai j Constraint of samples i and j .
zi Vector of the embedded representation of xi .
ε Noise used in generative model.
E Expectation.
Ln Network loss.
Lc Clustering loss.
Lext Extra task loss.
L rec Reconstruction loss of autoencoder network.
Lgan Loss of GAN.
LELBO Loss of evidence lower bound.
k Number of clusters.
n Number of data samples.
µ Mean of the Gaussian distribution.
θ Variance of the Gaussian distribution.
KL(·∥·) Kullback–Leibler divergence.
p(·) Probability distribution.
p(·|·) Conditional probability distribution.
p(·, ·) Joint probability distribution.
q(·) Approximate probability distribution of p(·).
q(·|·) Approximate probability distribution

of p(·|·).
q(·, ·) Approximate probability distribution

of p(·, ·).
f (·) Feature extractor.
φe(·) Encoder network of AE or VAE.
φr (·) Decoder network of AE or VAE.
φg(·) Generative network of GAN.
φd(·) Discriminative network of GAN.
M Graph adjacency matrix.
D Degree matrix of Q.
C Feature matrix of a graph.
H Node hidden feature matrix.
W Learnable model parameters.

I. INTRODUCTION

WITH the development of online media, abundant data
with high complexity can be gathered easily. Through

pinpoint analysis of these data, we can dig the value out and
use these conclusions in many fields, such as face recog-
nition [1], [2], sentiment analysis [3], [4], and intelligent
manufacturing [5], [6].

A model that can be used to classify the data with different
labels is the base of many applications. For labeled data, it is
taken granted to use the labels as the most important infor-
mation as a guide. For unlabeled data, finding a quantifiable
objective as the guide of the model-building process is the
key question of clustering. Over the past decades, a large
number of clustering methods with shallow models have been
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proposed, including centroid-based clustering [7], [8], density-
based clustering [9], [10], [11], [12], [13], distribution-based
clustering [14], hierarchical clustering [15], ensemble cluster-
ing [16], [17], and multiview clustering (MVC) [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30].
These shallow models are effective only when the features are
representative, while their performance on the complex data
is usually limited due to the poor power of feature learning.

In order to map the original complex data to a feature
space that is easy to cluster, many clustering methods focus on
feature extraction or feature transformation, such as principal
component analysis (PCA) [31], kernel method [32], spectral
method [33], and deep neural network (DNN) [34]. Among
these methods, the DNN is a promising approach because of
its excellent nonlinear mapping capability and its flexibility
in different scenarios. A well-designed deep learning-based
clustering approach [referred to deep clustering (DC)] aims at
effectively extracting more clustering-friendly features from
data and performing clustering with learned features simul-
taneously. Different from the traditional clustering method,
the fundamental concept behind DC involves incorporating the
clustering objective into the robust representation capabilities
offered by deep learning. Thus, acquiring a vital data repre-
sentation becomes an essential requirement for DC.

Much research has been done in the field of DC and there
are also some surveys about DC methods [35], [36], [37],
[38]. Specifically, existing systematic reviews for DC mainly
focus on the single-view clustering tasks and the architectures
of neural networks. For example, Aljalbout et al. [35] focus
only on deep single-view clustering methods that are based
on deep autoencoder (DAE). Min et al. [36] classify DC
methods from the perspective of different deep networks.
Nutakki et al. [37] divide deep single-view clustering methods
into three categories according to their training strategies:
multistep sequential DC, joint DC, and closed-loop multistep
DC. Zhou et al. [38] categorize deep single-view clustering
methods by the interaction way between feature learning and
clustering modules. However, in the real world, the datasets
for clustering are always associated, e.g., the taste for reading
is correlated with the taste for a movie, and the side face
and full face from the same person should be labeled the
same. For these data, DC methods based on semi-supervised
learning, multiview learning, and transfer learning have also
made significant progress. Unfortunately, existing reviews do
not discuss them too much.

Therefore, it is important to classify DC from the perspec-
tive of data sources. In this survey, we summarize the DC
from the perspective of initial settings of data combined with
deep learning methodology. We introduce the newest progress
of DC from the perspective of network and data structure,
as shown in Fig. 1. Specifically, we organize the DC methods
into the following four categories. Since we divide methods
from the perspective of data source, the implementation of
specific methods is not completely separated from each other.
There is a part of the method that is interrelated with each
other internally.

1) Deep Single-View Clustering: For conventional cluster-
ing tasks, it is often assumed that the data are of the
same form and structure, as known as single-view or
single-modal data. The extraction of representations for
these data by DNNs is a significant characteristic of
DC. However, what is more noteworthy is the different

Fig. 1. Directory tree of this survey.

applied deep learning techniques, which are highly
correlated with the structure of DNNs. To compare
the technical route of specific DNNs, we divide those
algorithms into five categories: DAE-based DC, DNN-
based DC, variational autoencoder (VAE)-based DC,
generative adversarial network (GAN)-based DC, and
graph neural network (GNN)-based DC.

2) DC Based on Semi-Supervised Learning: When the data
to be processed contain a small part of prior constraints,
traditional clustering methods cannot effectively utilize
this prior information and semi-supervised clustering is
an effective way to solve this question. In presence, the
research of deep semi-supervised clustering has not been
well explored. However, semi-supervised clustering is
inevitable because it is feasible to let a clustering method
become a semi-supervised one by adding the additional
information as a constraint loss to the model.

3) DC Based on Multiview Learning: In the real world,
data are often obtained from different feature collectors
or have different structures. We call those data “mul-
tiview data” or “multimodal data,” where each sample
has multiple representations. The purpose of DC based
on multiview learning is to utilize the consistent and
complementary information contained in multiview data
to improve clustering performance. In addition, the idea
of multiview learning may have guiding significance for
deep single-view clustering. In this survey, we summa-
rize deep MVC into three categories: deep-embedded
clustering (DEC)-based, subspace clustering-based, and
GNN-based.

4) DC Based on Transfer Learning: For a task that has
a limited amount of instances and high dimensions,
sometimes we can find an assistant to offer additional
information. For example, if task A is similar to another
task B, and task B has more information for clustering
than A (B is labeled or B is easier to clustering than
A), it is useful to transfer the information from B to
A. Transfer learning for unsupervised domain adaption
(UDA) has been boosted in recent years, which contains
two domains: source domain with labels and target
domain that is unlabeled. The goal of transfer learning
is to apply the knowledge or patterns learned from
the source task to a different but related target task.
DC methods based on transfer learning aim to improve
the performance of current clustering tasks by utilizing
information from relevant tasks.
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It is necessary to pay attention to the different characteristics
and conditions of the clustering data before studying the
corresponding clustering methods. In this survey, existing
DC methods are systematically classified from data sources.
The advantages, disadvantages, and applicable conditions of
different clustering methods are analyzed. Finally, we present
some interesting research directions in the field of DC.

II. DEFINITIONS AND PRELIMINARIES

We introduce the notations in this section. Throughout
this article, we use uppercase letters to denote matrices and
lowercase letters to denote vectors. Unless otherwise stated,
the notations used in this article are summarized in the
Nomenclature.

This survey will introduce four kinds of DC problems based
on different background conditions. Here, we define these
problems formally. Given a set of data samples X , we aim at
finding a map function F , which can map X into k clusters.
The map result is represented with Ŷ . Therefore, the tasks we
cope with are given as follows.

1) Deep Single-View Clustering:

F(X) → Ŷ . (1)

2) Semi-Supervised Deep Clustering:

F(X, A) → Ŷ (2)

where A is a constrained matrix.
3) Deep MVC:

F
(
X1, . . . , Xv

)
→ Ŷ (3)

where X i is the i th view of X .
4) Deep Clustering With Domain Adaptation:

F
(
X s, Y s, X t)

→ Ŷ (4)

where (X s, Y s) is the labeled source domain and X t is
the unlabeled target domain.

III. DEEP SINGLE-VIEW CLUSTERING

The theory of representation learning [39] shows the
importance of feature learning (or representation learning) in
machine learning tasks. However, deep representation learning
is mostly supervised learning that requires many labeled data.
As we mentioned before, the obstacle of the DC problem is
what can be used to guide the training process such as labels
in supervised problem. The most “supervised” information in
DC is the data itself. Thus, how can we train an effective
feature extractor to get good representation? According to
the way the feature extractor is trained, we divide deep
single-view clustering algorithms into five categories: DAE-
based, DNN-based, VAE-based, GAN-based, and GNN-based.
The difference of these methods is mainly about the loss
components, where the loss terms are defined in Table I and
explained as follows.

1) DAE-Based/GNN-Based: L = L rec + Lc.
2) DNN-Based: L = Lext + Lc.
3) VAE-Based: L = LELBO + Lc.
4) GAN-Based: L = Lgan + Lc.
In unsupervised learning, the issue we cope with is to train

a reliable feature extractor without labels. There are mainly
two ways in existing works: 1) a loss function that optimizes
the pseudo-labels according to the principle: narrowing the

inner cluster distance and widening the intercluster distance
and 2) an extra task that can help train the feature extractor. For
the clustering methods with specialized feature extractors, such
as autoencoder, the reconstruction loss L rec can be interpreted
as the extra task. In this article, the clustering-oriented loss Lc
indicates the loss of the clustering objective. DAE-based/GNN-
based methods use an autoencoder/graph autoencoder as the
feature extractor, so the loss functions are always composed
of a reconstruction loss L rec and another clustering-oriented
loss Lc. By contrast, DNN-based methods optimize the feature
extractor with extra tasks or other strategies Lext. VAE-based
methods optimize the loss of evidence lower bound (ELBO)
LELBO. GAN-based methods are based on the generative
adversarial loss Lgan. Based on these five dimensions, exist-
ing deep single-view clustering methods are summarized in
Tables I and II.

A. DAE-Based
The autoencoder network [39] is originally designed for

unsupervised representation learning of data and can learn
a highly nonlinear mapping function. Using DAE [97] is
a common way to develop DC methods. DAE aims to
learn a low-dimensional embedding feature space by min-
imizing the reconstruction loss of the network, which is
defined as

L rec = min
1
n

n∑
i=1

∥xi − φr (φe(xi ))∥
2 (5)

where φe(·) and φr (·) represent the encoder network and
decoder network of autoencoder, respectively. Using the
encoder as a feature extractor, various clustering objec-
tive functions have been proposed. We summarize these
DAE-based clustering methods as DAE-based DC. In DAE-
based DC methods, there are two main ways to get the labels.
The first way embeds the data into low-dimensional features
and then clusters the embedded features with traditional clus-
tering methods such as the k-means algorithm [7]. The second
way jointly optimizes the feature extractor and the clustering
results. We refer to these two approaches as “separate analysis”
and “joint analysis” and elaborate on them in the following.

“Separate analysis” means that learning features and clus-
tering data are performed separately. In order to solve the
problem that representations learned by “separately analy-
sis” are not cluster-oriented due to its innate characteristics,
Huang et al. [41] propose a deep embedding network (DEN)
for clustering, which imposes two constraints based on DAE
objective: locality-preserving constraint and group sparsity
constraint. Locality-preserving constraint urges the embedded
features in the same cluster to be similar. Group sparsity
constraint aims to diagonalize the affinity of representations.
These two constraints improve the clustering performance
while reducing the inner cluster distance and expanding inter-
cluster distance. The objective of most clustering methods
based on DAE is working on these two kinds of distance. Thus,
in Table I, we summarize these methods from the perspective
of “characteristics,” which shows the way to optimize the inner
cluster distance and intercluster distance.

Peng et al. [42] propose a novel deep learning-based frame-
work in the field of subspace clustering, namely, deep subspace
clustering with sparsity prior (PARTY). PARTY enhances the
autoencoder by considering the relationship between different
samples (i.e., structure prior) and solves the limitation of
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TABLE I
SUMMARIES OF DAE- AND DNN-Based METHODS IN DEEP SINGLE-VIEW CLUSTERING. WE SUMMARIZE THE DAE-Based METHODS

BASED ON “JOINTLY OR SEPARATELY” AND “CHARACTERISTICS”

TABLE II
SUMMARIES OF VAE-, GAN-, AND GNN-Based METHODS IN DEEP SINGLE-VIEW CLUSTERING

traditional subspace clustering methods. As far as we know,
PARTY is the first deep learning-based subspace clustering
method, and it is the first work to introduce the global structure

prior to the neural network for unsupervised learning. Different
from PARTY, Ji et al. [45] propose another deep subspace
clustering network (DSC-Net) architecture to learn nonlinear
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mapping and introduce a self-expressive layer to directly learn
the affinity matrix.

Density-based clustering [9], [98] is another kind of
popular clustering method. Ren et al. [57] propose deep
density-based image clustering (DDIC) that uses DAE to learn
the low-dimensional feature representations and then performs
density-based clustering on the learned features. In particular,
DDIC does not need to know the number of clusters in
advance.

“Joint analysis” aims at learning a representation that is
more suitable for clustering, which is different from separate
analysis approaches that deep learning and clustering are
carried out separately, and the neural network does not have
a clustering-oriented objective when learning the features
of data. Most subsequent DC studies combine clustering
objectives with feature learning, which enables the neural
network to learn features conducive to clustering from the
potential distribution of data. In this survey, those methods
are summarized as “joint analysis.”

Inspired by the idea of nonparametric algorithm t-distributed
stochastic neighbor embedding (t-SNE) [99], Xie et al. [43]
propose a joint framework to optimize feature learning and
clustering objective, which is named DEC. DEC first learns a
mapping from the data space to a lower dimensional feature
space via L rec and then iteratively optimizes the clustering
loss KL(S∥R) (i.e., Kullback–Leibler (KL) divergence). Here,
S denotes the soft assignments of data that describe the sim-
ilarity between the embedded data and each cluster centroid
(centroids are initialized with k-means), and R is the adjusted
target distribution, which has purer cluster assignments com-
pared to S.

DEC is a representative method in DC due to its joint
learning framework and low computing complexity. Based on
DEC, a number of variants have been proposed. For example,
to guarantee local structure in the fine-tuning phase, improved
DEC (IDEC) with local structure preservation [44] is proposed
to optimize the weighted clustering loss and the reconstruction
loss of autoencoder jointly. DEC with data augmentation
(DEC-DA) [49] applies the data augmentation strategy in
DEC. Li et al. [50] propose discriminatively boosted image
clustering (DBC) to deal with image representation learning
and image clustering. DBC has a similar pipeline as DEC, but
the learning procedure is self-paced [100], where the easiest
instances are first selected and more complex samples are
expanded progressively.

In DEC, the predicted clustering assignments are calculated
by the Student’s t-distribution. Differently, Dizaji et al. [46]
propose a deep-embedded regularized clustering (DEPICT)
with a novel clustering loss by stacking a softmax layer on
the embedded layer of the convolutional autoencoder (CAE).
What is more, the clustering loss of DEPICT is regularized by
a prior for the frequency of cluster assignments and layer-wise
features reconstruction loss function. Yang et al. [47] directly
take the objective of k-means as the clustering loss. The
proposed model, named DC network (DCN), is a joint dimen-
sionality reduction and k-means clustering approach, in which
dimensionality reduction is accomplished via learning a DAE.
Shah and Koltun [51] propose deep continuous clustering
(DCC), an extension of robust continuous clustering [52] by
integrating autoencoder into the paradigm. DCC performs
clustering learning by jointly optimizing the defined data loss,
pairwise loss, and reconstruction loss. In particular, it does
not need prior knowledge of the number of clusters. Tzor-

eff et al. [53] propose deep discriminative latent space for
clustering (DDLSC) to optimize the DAE with respect to a
discriminative pairwise loss function.

Deep manifold clustering (DMC) [48] is the first method to
apply deep learning in multimanifold clustering [101], [102].
In DMC, an autoencoder consisting of stacked RBMs [103]
is trained to obtain the transformed representations. Both
the reconstruction loss and the clustering loss of DMC are
different from previous methods, that is, the reconstruction of
one sample and its local neighborhood are used to define the
locality-preserving objective. The penalty coefficient and the
distance, measured by the Gaussian kernel between samples
and cluster centers, are used to define the clustering-oriented
objective.

The recently proposed DAE-based clustering algorithms
also use the variants of DAE to learn better low-dimensional
features and focus on improving the clustering performance by
combining the ideas of traditional machine learning methods.
For example, deep spectral clustering using dual autoencoder
network (DSCDAE) [55] and spectral clustering via ensem-
ble DAE learning (SC-EDAE) [58] aim to integrate spectral
clustering into the carefully designed autoencoders for DC.
Zhang et al. [56] propose neural collaborative subspace cluster-
ing (NCSC) using two confidence maps, which are established
on the features learned by autoencoder, as supervision infor-
mation for subspace clustering. In adaptive self-paced DC
with data augmentation (ASPC-DA) [59], self-paced learning
idea [100] and data augmentation technique are simultaneously
incorporated. Its learning process is the same as DEC and
consists of two stages, i.e., pre-training the autoencoder and
fine-tuning the encoder.

In general, we notice that the network structure adopted
is related to the type of data to be processed. For example,
fully connected networks are generally used to extract 1-D
data features, while convolutional neural networks (CNNs) are
used to extract image features. Most of the above DAE-based
DC methods can be implemented by both fully connected
autoencoder and CAE, and thus, they apply to various types of
data to some extent. However, in the field of computer vision,
there is a class of DC methods that focus on image clustering.
Those methods can date back to [104] and are summarized as
DNN-based DC because they generally use CNNs to perform
image feature learning and semantic clustering.

B. DNN-Based
This section introduces the DNN-based clustering methods.

Unlike DAE-based clustering methods, DNN-based methods
have to design extra tasks to train the feature extractor. In this
survey, we summarize DNN-based DC methods in Table I
from two perspectives: “clustering-oriented loss” and “charac-
teristics.” “Clustering-oriented loss” shows whether there is a
loss function that explicitly narrows the inner cluster distance
or widens the intercluster distance. Fig. 2 shows the framework
of deep unsupervised learning based on a CNN.

When the DNN training process begins, the randomly
initialized feature extractor is unreliable. Thus, DC meth-
ods based on randomly initialized neural networks generally
employ traditional clustering tricks such as hierarchical clus-
tering [105] or focus on extra tasks such as instance generation.
For instance, Yang et al. [63] propose a joint unsupervised
learning method named JULE, which applies agglomerative
clustering magic to train the feature extractor. Specifically,
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Fig. 2. Framework of DNN-based learning (single-view clustering).
X is the data for clustering and f is the feature extractor for X . Part I
describes the framework of supervised learning. Y means the real labels and S
denotes the predicted results. With Y and S, we can compute the classification
loss for backpropagation. Part II is the framework of methods with extra
tasks. The extra tasks are used to train the nets for good embedding Z .
Part III describes the process of the methods that need to fine-tune the cluster
assignments. S denotes the predicted results and R is an adjustment of S.

JULE formulates the joint learning in a recurrent framework,
where merging operations of agglomerative clustering are
considered as a forward pass, and representation learning
of DNN is considered as a backward pass. Based on this
assumption, JULE also applies a loss that shrinks the inner
cluster distance and expands the intracluster distance at the
same time. In each epoch, JULE merges two clusters into one
and computes the loss for the backward pass.

Chang et al. [65] propose deep adaptive image clustering
(DAC) to tackle the combination of feature learning and clus-
tering. In DAC, the clustering problem is reconstructed into
binary pairwise classification problems that judge whether the
pairwise images with estimated cosine similarities belong to
the same cluster. Then, it adaptively selects similar samples to
train DNN in a supervised manner. DAC provides a novel per-
spective for DC, but it only focuses on relationships between
pairwise patterns. Deep discriminative clustering (DDC) anal-
ysis [54] is a more robust and generalized version of DAC
by introducing global and local constraints of relationships.
Spatial transformer-deep adaptive clustering (ST-DAC) [69]
applies a visual attention mechanism [106] to modify the
structure of DAC. Haeusser et al. [68] propose associative
DC (ADC), which contains a group of centroid variables with
the same shape as image embeddings. With the intuition that
centroid variables can carry over high-level information about
the data structure in the iteration process, they introduce an
objective function with multiple loss terms to simultaneously
train those centroid variables and the DNN’s parameters along
with a clustering mapping layer.

The abovementioned clustering methods estimate the cluster
of an instance by passing it through the entire deep network,
which tends to extract the global features of the instance [107].
Some clustering methods use a mature classification network
to initialize the feature extractor. For instance, DeepClus-
ter [66] applies k-means on the output features of the deep
model (such as AlexNet [108] and VGG-16 [109]) and uses
the cluster assignments as “pseudo-labels” to optimize the
parameters of the CNNs. Hsu and Lin [67] propose clustering
CNN (CCNN) that integrates mini-batch k-means with the
model pretrained from the ImageNet dataset [110].

To improve the robustness of the model, more and more
approaches make use of data augmentation for DC [49], [59],
[76]. For example, Huang et al. [76] extend the idea of
classical maximal margin clustering [111], [112] to establish
a novel deep semantic clustering method [named PartItion
Confidence mAximization (PICA)]. In PICA, three operations,
including color jitters, random rescale, and horizontal flip, are
adopted for data augmentation and perturbations.

Mutual information is also taken as a criterion to learn
representations [113], [114] and has become popular in recent
clustering methods, especially for image data. Various data
augmentation techniques have been applied to generate trans-
formed images that are used to mine their mutual information.
For example, Ji et al. [71] propose invariant information
clustering (IIC) for semantic clustering and image segmen-
tation. In IIC, every image and its random transformation
are treated as a sample pair. By maximizing mutual infor-
mation between the clustering assignments of each pair, the
proposed model can find semantically meaningful clusters and
avoid degenerate solutions naturally. Instead of only using
pairwise information, deep comprehensive correlation mining
(DCCM) [72] is a novel image clustering framework, which
uses pseudo-label loss as supervision information. Besides,
the authors extend the instance-level mutual information
and present triplet mutual information loss to learn more
discriminative features. Based on the currently fashionable
contrastive learning [115], Zhong et al. [75] propose deep
robust clustering (DRC), where two contrastive loss terms are
introduced to decrease intraclass variance and increase inter-
class variance. Mutual information and contrastive learning are
related. In DRC, the authors summarize a framework that can
turn maximize mutual information into minimizing contrastive
loss.

In the field of image clustering on the semantic level,
people think that the prediction of the original image should
be consistent with that of the transformed image by data
augmentation. Therefore, in the unsupervised learning context,
data augmentation techniques not only are used to expand the
training data but also can easily obtain supervised informa-
tion. This is why data augmentation can be widely applied
in many recently proposed image clustering methods. For
example, Nina et al. [70] propose a decoder-free approach
with data augmentation [called random triplet mining (RTM)]
for clustering and manifold learning. To learn a more robust
encoder, the model consists of three encoders with shared
weights and is a triplet network architecture conceptually. The
first and the second encoders take similar images generated
by data augmentation as positive pair, and the second and
the third encoders take a negative pair selected by RTM.
Usually, the objective of triplet networks [116] is defined to
make the features of the positive pair more similar and that
of the negative pair more dissimilar.

Although many existing DC methods jointly learn the
representations and clusters, such as JULE and DAC, there
are specially designed representation learning methods [117],
[118], [119], [120], [121] to learn the visual representations
of images in a self-supervised manner. Those methods learn
semantical representations by training deep networks to solve
extra tasks. Such tasks can be predicting the patch con-
text [117], inpainting patches [118], colorizing images [119],
solving jigsaw puzzles [120], and predicting rotations [121],
and so on. Recently, these self-supervised representation learn-
ing methods have been adopted in image clustering. For
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example, multimodal DC (MMDC) [73] leverages an auxiliary
task of predicting rotations to enhance clustering performance.
Semantic clustering by adopting nearest neighbors (SCAN)
[74] first employs a self-supervised representation learning
method to obtain semantically meaningful and high-level fea-
tures. Then, it integrates the semantically meaningful nearest
neighbors as prior information into a learnable clustering
approach.

Since DEC [43] and JULE [63] are proposed to jointly learn
feature representations and cluster assignments by DNNs,
many DAE- and DNN-based DC methods have been pro-
posed and have made great progress in clustering tasks.
However, the feature representations extracted in clustering
methods are difficult to extend to other tasks, such as gen-
erating samples. The deep generative models have recently
attracted a lot of attention because they can use neural
networks to obtain data distributions so that samples can
be generated (VAE [122], GAN [123], Pixel-RNN [124],
InfoGAN [125], and PPGN [126]). Specifically, GAN and
VAE are the two most typical deep generative models.
In recent years, researchers have applied them to various tasks,
such as semi-supervised classification [127], [128], [129],
[130], clustering [131], and image generation [132], [133]. In
Sections III-C and III-D, we introduce the DC algorithms
based on the generated models: VAE-based DC and GAN-
based DC, respectively.

C. VAE-Based
Deep learning with nonparametric clustering (DNC) [134]

is a pioneer work in applying deep belief networks to DC.
However, in DC based on the probabilistic graphical model,
more research comes from the application of VAE, which
combines variational inference and DAE together.

Most VAE-based DC algorithms aim at solving an optimiza-
tion problem about ELBO (see the deduction details in [122]
and [135]), p is the joint probability distribution, q is the
approximate probability distribution of p(z|x), x is the input
data for clustering, and z is the latent variable generated
corresponding to x

LELBO = Eq(z|x)

[
log

p(x, z)
q(z|x)

]
. (6)

The difference is that different algorithms have different
generative models of latent variables or different regularizers.
We list several VAE-based DC methods that have attracted
much attention in recent years as follows. For convenience,
we omit the parameterized form of the probability distribution.

Traditional VAE generates a continuous latent vector z, and
x is the vector of an original data sample. For the clustering
task, the VAE-based methods generate latent vector (z, y),
where z is the latent vector representing the embedding and y
is the label. Thus, the ELBO for optimization becomes

LELBO = Eq(z,y|x)

[
log

p(x, z, y)

q(z, y|x)

]
. (7)

The first proposed unsupervised deep generative clustering
framework is variational deep embedding (VaDE) [77]. VaDE
models the data generative procedure with a Gaussian mixture
model (GMM) [136] combining a VAE. In this method,
the cluster assignments and the latent variables are jointly
considered in a Gaussian mixture prior rather than a single
Gaussian prior.

Similar to VaDE, Gaussian mixture VAE (GMVAE) [78] is
another DC method that combines VAE with GMM. Specifi-
cally, GMVAE considers the generative model p(x, z, n, c) =
p(x |z)p(z|n, c)p(n)p(c), where c is uniformly distributed
k categories and n is normally distributed. z is a con-
tinuous latent variable, whose distribution is a Gaussian
mixture with means and variances of c and n. Based on
the mean-field theory [137], GMVAE factors q(z, n, c|x) =

q(z|x)q(n|x)p(c|z, n) as posterior proxy. In the same way,
those variational factors are parameterized with neural net-
works and the ELBO loss is optimized.

Based on GMM and VAE, latent tree VAE (LTVAE) [80]
applies latent tree model [138] to perform representation learn-
ing and structure learning for clustering. Differently, LTVAE
has a variant of VAE with a superstructure of latent variables.
The superstructure is a tree structure of discrete latent variables
on top of the latent features. The connectivity structure among
all variables is defined as a latent structure of the latent tree
model that is optimized via message passing [139].

The success of some deep generative clustering meth-
ods depends on good initial pre-training. For example,
in VaDE [77], pre-training is needed to initialize cluster
centroids. In DC via GMVAE with graph embedding (DGG)
[140], pre-training is needed to initialize the graph embed-
dings. Although GMVAE [78] learns the prior and posterior
parameters jointly, the prior for each class is dependent on
a random variable rather than the class itself, which seems
counter-intuitive. Based on the ideas of GMVAE and VaDE,
to solve their fallacies, Prasad et al. [82] propose a new model
leveraging VAE for image clustering (VAEIC). Different from
the methods mentioned above, the prior of VAEIC is deter-
ministic, and the prior and posterior parameters are learned
jointly without the need for a pre-training process. Instead
of performing Bayesian classification as done in GMVAE
and VaDE, VAEIC adopts more straightforward inference
and more principled latent space priors, leading to a simpler
inference model p(x, z, c) = p(x |z)p(z|c)p(c) and a simpler
approximate posterior q(z, c|x) = q(c|x)q(z|x, c). The cluster
assignment is directly predicted by q(c|z). What is more,
the authors adopt data augmentation and design an image
augmentation loss to make the model robust.

In addition to the VAE-based DC methods mentioned above,
Figueroa and Rivera [79] use the continuous Gumbel-Softmax
distribution [141], [142] to approximate the categorical distri-
bution for clustering. Willetts et al. [81] extend variational
ladder autoencoders [143] and propose a disentangled clus-
tering algorithm. Cao et al. [83] propose a simple, scalable,
and stable variational DC algorithm, which introduces generic
improvements for variational DC.

D. GAN-Based
In adversarial learning, standard GANs [123] are defined

as an adversarial game between two networks: generator φg
and discriminator φd . Specifically, the generator is optimized
to generate fake data that “fool” the discriminator, and the
discriminator is optimized to tell apart real from fake input
data, as shown in Fig. 3.

GAN has already been widely applied in various fields
of deep learning. Many DC methods also adopt the idea of
adversarial learning due to their strength in learning the latent
distribution of data. We summarize the important GAN-based
DC methods as follows. Probabilistic clustering algorithms
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Fig. 3. Framework of GAN-based learning. φg is the generator, φd is the
discriminator, both εn and εc are inputs to the generator, εn is the noise, and
εn is the class information. X is the data for clustering, X̂ is the fake data
that “fools’ the discriminator, and the function f (·) operates on X̂ to generate
ε̂n and ε̂c .

address many unlabeled data problems, such as regularized
information maximization (RIM) [144] or the related entropy
minimization [145]. The main idea of RIM is to train a
discriminative classifier with unlabeled data. Unfortunately,
these methods are prone to overfitting spurious correlations.
Springenberg [86] propose categorical GANs (CatGAN) to
address this weakness. To make the model more general,
GAN is introduced to enhance the robustness of the classifier.
In CatGAN, all real samples are assigned to one of the k
categories using the discriminator while staying uncertain of
clustering assignments for samples from the generative model
rather than simply judging the false and true samples. In this
way, the GAN framework is improved so that the discriminator
can be used for multiclass classification. In particular, CatGAN
can be applied to both unsupervised and semi-supervised tasks.

Interpretable representation learning in the latent space has
been investigated in the seminal work of InfoGAN [125].
Although InfoGAN does use discrete latent variables, it is
not specifically designed for clustering. VAE [122] can jointly
train the inference network and autoencoder, which enables
mapping from initial sample X to latent space Z that could
potentially preserve cluster structure. Unfortunately, there is
no such inference mechanism in GAN. To make use of their
advantages, Mukherjee et al. [90] propose ClusterGAN as a
new mechanism for clustering. ClusterGAN samples latent
variables from a mixture of one-hot variables and continuous
variables and establishes a reverse-mapping network to project
data into a latent space. It jointly trains a GAN along with
the inverse-mapping network with a clustering-specific loss to
achieve clustering.

There is another GAN-based DC method [89] (we denote it
as ClusterGAN-SPL) that has a similar network module with
ClusterGAN. The main difference is that ClusterGAN-SPL
does not set discrete latent variables but applies self-paced
learning [100] to improve the robustness of the algorithm.

In some GAN-based DC methods (e.g., deep adversarial
Gaussian mixture autoencoder for clustering (DAGC) [87],
deep adversarial subspace clustering (DASC) [88], adversar-
ial graph autoencoder (AGAE) [94], and adversarial DEC
(ADEC) [91]), GAN and DAE are both applied. For example,
inspired by the adversarial autoencoders [131] and GAN [123],
Harchaoui et al. [87] propose DAGC. To make the data
representations easier to cluster than in the initial space,
it builds an autoencoder [146] consisting of an encoder and
a decoder. In addition, an adversarial discriminator is added
to continuously force the latent space to follow the Gaussian
mixture prior [136]. This framework improves the performance
of clustering due to the introduction of adversarial learning.

Most existing subspace clustering approaches ignore the
inherent errors of clustering and rely on the self-expression of
handcrafted representations. Therefore, their performance on
real data with complex underlying subspaces is not satisfac-
tory. Zhou et al. [88] propose DASC to alleviate this problem
and apply adversarial learning to deep subspace clustering.
DASC consists of a generator and a discriminator that learn
from each other. The generator outputs subspace clustering
results and consists of an autoencoder, a self-expression layer,
and a sampling layer. The DAE and self-expression layer
are used to convert the original input samples into better
representations. In the pipeline, a new “fake” sample is gen-
erated by sampling from the estimated clusters and sent to the
discriminator to evaluate the quality of the subspace cluster.

Many autoencoder-based clustering methods use reconstruc-
tion for pretraining and let reconstruction loss be a regularizer
in the clustering phase. Mrabah et al. [91] point out that such
a tradeoff between clustering and reconstruction would lead to
feature drift phenomena. Hence, the authors adopt adversarial
training to address the problem and propose ADEC. It first
pretrains the autoencoder, where reconstruction loss is reg-
ularized by an adversarially constrained interpolation [147].
Then, the cluster loss (similar to DEC [43]), reconstruction
loss, and adversarial loss are optimized in turn. ADEC can be
viewed as a combination of DEC and adversarial learning.

Besides the abovementioned methods, there are a small
number of DC methods whose used networks are diffi-
cult to categorize. For example, information maximizing
self-augmented training (IMSAT) [113] uses very simple
networks to perform unsupervised discrete representation
learning. SpectralNet [148] is a deep learning method to
approximate spectral clustering, where unsupervised Siamese
networks [149], [150] are used to compute distances. In clus-
tering tasks, it is a common phenomenon to adopt the
appropriate neural network for different data formats. In this
survey, we focus more on deep learning techniques that are
reflected in the used systematic neural network structures.

E. GNN-Based

GNNs [151], [152] allow end-to-end differentiable losses
over data with arbitrary graph structure and have been applied
to a wide range of applications. Many tasks in the real
world can be described as a graph, such as social networks,
protein structures, and traffic networks. With the suggestion of
Banach’s fixed point theorem [153], GNN uses the following
classic iterative scheme to compute the state. F is a global
transition function, and the value of H is the fixed point of
H = F(H, X) and is uniquely defined with the assumption
that F is a contraction map [154]

H t+1
= F

(
H t , X

)
. (8)

In the training process of GNN, many methods try to introduce
attention and gating mechanism into a graph structure. Among
these methods, graph convolutional network (GCN) [155],
which utilizes the convolution for information aggregation,
has gained remarkable achievement. H is the node hidden
feature matrix, W is the learnable model parameters, and C is
the feature matrix of a graph. The compact form of GCN is
defined as

H = D̃−
1
2 Q̃ D̃−

1
2 CW. (9)
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Fig. 4. Data stream framework of graph autoencoder applied in clustering. GCN(N , M) is a graph autoencoder, GCN(·) is used to represent a graph CNN,
and graph autoencoder consists of two layers of graph CNNs. Both node attributes N and graph structure M are utilized as inputs to this encoder. Z is a
matrix of node embedding vectors. α is an activation function and M̃ is the prediction of graph adjacency matrix M .

In the domain of unsupervised learning, there are also a variety
of methods trying to use the powerful structure capturing
capabilities of GNNs to improve the performance of clustering
algorithms. We summarize the GNN-based DC methods as
follows.

Tian et al. [156] propose learning deep representations
for graph clustering (DRGC) to replace traditional spectral
clustering with sparse autoencoder and k-means algorithm.
In DRGC, sparse autoencoder is adopted to learn nonlinear
graph representations that can approximate the input matrix
through reconstruction and achieve the desired sparse proper-
ties. The last layer of the deep model outputs a sparse encoding
and k-means serves as the final step on it to obtain the clus-
tering results. To accelerate graph clustering, Shao et al. [157]
propose deep linear coding (DLC) for fast graph clustering.
Unlike DRGC, DLC does not require eigendecomposition and
greatly saves running time on large-scale datasets while still
maintaining a low-rank approximation of the affinity graph.

The research on GNNs is closely related to graph embed-
ding or network embedding [158], [159], [160], as GNNs
can address the network embedding problem through a graph
autoencoder framework [161]. The purpose of graph embed-
ding [162] is to find low-dimensional features that maintain
similarity between the vertex pairs in a sample similarity
graph. If two samples are connected in the graph, their latent
features will be close. Thus, they should also have similar clus-
ter assignments. Based on this motivation, Yang et al. [140]
propose DGG. Like VaDE [77], the generative model of DGG
is p(x, z, c) = p(x |z)p(z|c)p(c). The prior distributions of
z and c are set as a Gaussian mixture distribution and a
categorical distribution, respectively. The learning problem
of GMM-based VAE is usually solved by maximizing the
ELBO of the log-likelihood function with reparameterization
trick. To achieve graph embedding, the authors add a graph
embedding constraint to the original optimization problem,
which exists not only on the features but also on the clustering
assignments. Specifically, the similarity between data points is
measured with a trained Siamese network [149].

Autoencoder also works on graphs as an effective embed-
ding method. In AGAEs, Tao et al. [94] apply ensemble
clustering [16], [163] in the deep graph embedding pro-
cess and develop an adversarial regularizer to guide the
training of the autoencoder and discriminator. Recent stud-
ies have mostly focused on the methods that are two-step
approaches. The drawback is that the learned embedding may
not be the best fit for the clustering task. To address this,
Wang et al. [164] propose a unified approach named deep
attentional embedded graph clustering (DAEGC). DAEGC
develops a graph attention-based autoencoder to effectively
integrate both structure and content information, thereby

TABLE III
SEMI-SUPERVISED DEEP CLUSTERING METHODS

achieving better clustering performance. The data stream
framework of graph autoencoder is applied in clustering in
Fig. 4.

As one of the most successful feature extractors for deep
learning, CNNs are mainly limited by Euclidean data. GCNs
have proved that graph convolution is effective in DC,
e.g., Zhang et al. [93] propose an adaptive graph convo-
lution (AGC) method for attributed graph clustering. AGC
exploits high-order graph convolution to capture global cluster
structure and adaptively selects the appropriate order for
different graphs. Nevertheless, AGC might not determine the
appropriate neighborhood that reflects the relevant information
of connected nodes represented in graph structures. Based on
AGC, Zhu et al. [95] exploit heat kernel to enhance the per-
formance of graph convolution and propose AGC using heat
kernel (AGCHK), which could make the low-pass performance
of the graph filter better.

In summary, we can realize the importance of the structure
of data. Motivated by the great success of GNNs in encoding
the graph structure, Bo et al. [96] propose a structural DCN
(SDCN). By stacking multiple layers of GNN, SDCN is able
to capture the high-order structural information. At the same
time, benefiting from the self-supervision of AE and GNN,
the multilayer GNN does not exhibit the so-called oversmooth
phenomenon. SDCN is the first work to apply structural
information to DC explicitly.

IV. SEMI-SUPERVISED DEEP CLUSTERING

Traditional semi-supervised learning can be divided into
three categories, i.e., semi-supervised classification [170],
[171], semi-supervised dimension reduction [172], [173], and
semi-supervised clustering [13], [174], [175]. Commonly, the
constraint of unsupervised data is marked as “must-link” and
“cannot-link.” Samples with the “must-link” constraint belong
to the same cluster, while samples with the “cannot-link”
constraint belong to different clusters. Most semi-supervised
clustering objectives are the combination of unsupervised
clustering loss and constraint loss.

Semi-supervised DC has not been explored well. Here,
we introduce several representative works. These works use
different ways to combine the relationship constraints and
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the neural networks to obtain better clustering performance.
We summarize these methods in Table III.

Semi-supervised DEC (SDEC) [165] is based on DEC [43]
and incorporates pairwise constraints in the feature learning
process. Its loss function is defined as

Loss = KL(S∥R) + λ
1
n

n∑
i=1

n∑
k=1

ai j
∥∥zi − z j

∥∥2 (10)

where λ is a tradeoff parameter. ai j = 1 if xi and x j are
assigned to the same cluster, and ai j = −1 if xi and x j
satisfy cannot-link constraints, ai j = 0 otherwise. As the
loss function shows, it is formed by two parts. The first
part is KL divergence loss, which has been explained in
Section III-A. The second part is semi-supervised loss that
denotes the consistency between the embedded feature {zi }

n
i=1

and parameter ai j . Intuitively, if ai j = 1, to minimize the loss
function, ∥zi − z j∥

2 should be small. In contrast, if ai j = −1,
to minimize the loss, ∥zi − z j∥

2 should be large, which means
that zi is apart from z j in the latent space Z .

Like SDEC, most semi-supervised DC methods are based
on unsupervised DC methods. It is straightforward to expand
an unsupervised DC method to a semi-supervised DC one by
adding the semi-supervised loss. Compared with unsupervised
DC methods, the extra semi-supervised information of data can
help the neural network to extract features more suitable for
clustering. There are also some works focusing on extending
the existing semi-supervised clustering method to a deep
learning version. For example, the feature extraction process of
both semi-supervised learning with DEC (SSLDEC) for image
classification and segmentation [166] and deep constrained
clustering (DECC) [167] is based on DEC. Their training
process is similar to semi-supervised k-means [174], which
learns feature representations by alternatively using labeled
and unlabeled data samples. During the training process, the
algorithms use labeled samples to keep the model consistent
and choose a high degree of confidence unlabeled samples as
newly labeled samples to tune the network. Semi-supervised
clustering with neural networks [168] combines a k-means loss
and pairwise divergence to simultaneously learn the cluster
centers as well as semantically meaningful feature repre-
sentations. GDAN [169] acquires domain-invariant features
via a pretext task, employing instance discrimination criteria.
Subsequently, GDAN aligns the two domains by exclusively
focusing on high-level semantic features through the clustering
of semantic neighbors.

V. DEEP MVC
The abovementioned DC methods can only deal with single-

view data. In practical clustering tasks, the input data usually
have multiple views. For example, the report of the same topic
can be expressed in different languages, the same dog can
be captured from different angles by cameras, and the same
word can be written by people with different writing styles.
MVC methods [18], [176], [177], [178], [179], [180], [181],
[182], [183], [184], [185] are proposed to make use of the
complementary information among multiple views to improve
clustering performance.

In recent years, the application of deep learning in MVC
has been a hot topic [186], [187], [188], [189], [190]. Those
deep MVC algorithms focus on solving clustering problems
with different forms of input data. Since the network structures
used in most of these methods are autoencoders, we divided

them into three categories based on the adopted clustering
theoretical basis: DEC-based, subspace clustering-based, and
GNN-based. They are summarized in Table IV.

A. DEC-Based
As mentioned previously, DEC [43] uses autoencoder

to learn the low-dimensional embedded feature representa-
tion and then minimizes the KL divergence of Student’s
t-distribution and auxiliary target distribution of feature rep-
resentations to achieve clustering. IDEC [44] emphasizes data
structure preservation and adds the term of the reconstruction
loss for the lower dimensional feature representation when
processing fine-tuning tasks. Some deep MVC methods also
adopt this deep learning pipeline.

Traditional MVC methods mostly use linear and shallow
embedding to learn the latent structure of multiview data.
These methods cannot fully utilize the nonlinear property of
data, which is vital to reveal a complex clustering structure.
Based on adversarial learning and DAE, Li et al. [191]
propose deep adversarial MVC (DAMC) to learn the intrinsic
structure embedded in multiview data. Specifically, DAMC
consists of a multiview encoder E , a multiview generator
(decoder) φg , V discriminators D1, . . . , DV (V denotes the
number of views), and a DEC layer. The multiview encoder
outputs low-dimensional embedded features for each view.
For each embedded feature, the multiview generator generates
the corresponding reconstruction sample. The discriminator is
used to identify the generated sample from the real sample and
output feedback. The total loss function of DAMC is defined as

Loss = min
E,G

max
D1,...,DV

Lr + αLc + βLGAN (11)

where Lc comes from DEC [43] and represents the clustering
loss; Lr and LGAN represent the reconstruction loss and GAN
loss, respectively; and α and β are hyperparameters. Compared
with traditional MVC algorithms, DAMC can reveal the non-
linear property of multiview data and achieve better clustering
performance.

Xu et al. [186] propose a novel collaborative training
framework for deep-embedded MVC (DEMVC). Specifically,
DEMVC defines a switched shared auxiliary target distribution
and fuses it into the overall clustering loss. Its main idea is that
by sharing optimization objectives, each view, in turn, guides
all views to learn the low-dimensional embedded features
that are conducive to clustering. At the same time, optimiz-
ing reconstruction loss makes the model retain discrepancies
among multiple views. Experiments show that DEMVC can
mine the correct information contained in multiple views
to correct other views, which helps improve the clustering
accuracy. Existing methods tend to fuse multiple views’ rep-
resentations, and Xu et al. [193] present a novel VAE-based
MVC framework (Multi-VAE) by learning disentangled visual
representations.

Lin et al. [194] propose a contrastive multiview hyperbolic
hierarchical clustering (CMHHC). It consists of three compo-
nents, multiview alignment learning, aligned feature similarity
learning, and continuous hyperbolic hierarchical clustering.
Through capturing the invariance information across views and
learning the meaningful metric property for similarity-based
continuous hierarchical clustering, CMHHC is capable of
clustering multiview data at diverse levels of granularity.
Xu et al. [195] propose a framework of multilevel feature
learning for contrastive MVC (MFLVC), which combines
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TABLE IV
SUMMARIES OF DEEP MVC METHODS

MVC with contrastive learning to improve clustering effec-
tiveness. MFLVC can learn different levels of features and
reduce the adverse influence of view-private information.

For the incomplete multiview data, the absence of some
views will increase the difficulties of information excavation
and lead to the failure of most conventional MVC methods
based on the assumption of view completion [201], [202].
Lin et al. [203] design to recover the missing data with
contrastive learning. Xu et al. [196] also explore incomplete
MVC, through mining the complementary information in the
high-dimensional feature space via a nonlinear mapping of
multiple views. The proposed method is an imputation-free
and fusion-free deep IMVC (DIMVC) framework that can
handle the incomplete data primely.

B. Subspace Clustering-Based

Subspace clustering [204] is another popular clustering
method, which holds the assumption that data points of
different clusters are drawn from multiple subspaces. Subspace
clustering typically first estimates the affinity of each pair of
data points to form an affinity matrix and then applies spectral
clustering [205] or a normalized cut [206] on the affinity
matrix to obtain clustering results. Some subspace clustering
methods based on self-expression [207] have been proposed.
The main idea of self-expression is that each point can be
expressed with a linear combination C of the data points X
themselves. The general objective is

Loss = Lr + αR(C) = ∥X − XC∥ + αR(C) (12)

where ∥X − XC∥ is the reconstruction loss and R(C) is the
regularization term for subspace representation C . In recent
years, a lot of works [208], [209], [210], [211], [212], [213],
[214] generate a good affinity matrix and achieve better results
by using the self-expression methodology.

There are also MVC methods [178], [180], [183], which are
based on subspace learning. They construct the affinity matrix
with shallow features and lack of interaction across different
views, thus resulting in insufficient use of complementary
information included in multiview datasets. To address this,
researchers focus more on multiview subspace clustering
methods based on deep learning recently.

Exploring the consistency and complementarity of mul-
tiple views is a long-standing important research topic of
MVC [215]. Tang et al. [188] propose the deep multiview
sparse subspace clustering (DMVSSC), which consists of

a canonical correlation analysis (CCA)-based [216], [217],
[218] self-expressive module and CAEs. The CCA-based self-
expressive module is designed to extract and integrate deep
common latent features to explore the complementary infor-
mation of multiview data. A two-stage optimization strategy
is used in DMVSSC. First, it only trains CAEs of each view
to obtain suitable initial values for parameters. Second, it fine-
tunes all the CAEs and CCA-based self-expressive modules to
perform MVC.

Unlike CCA-based deep MVC methods (e.g.,
DMVSSC [188]) which project multiple views into a
common low-dimensional space, Li et al. [189] present
a novel algorithm named reciprocal multilayer subspace
learning (RMSL). RMSL contains two main parts: hierarchical
self-representative layers (HSRLs) and backward encoding
networks (BENs). The self-representative layers (SRLs)
contain the view-specific SRL, which maps view-specific
features into view-specific subspace representations, and the
common SRL, which further reveals the subspace structure
between the common latent representation and view-specific
representations. BEN implicitly optimizes the subspaces of
all views to explore consistent and complementary structural
information to get a common latent representation.

Many multiview subspace clustering methods first extract
handcrafted features from multiple views and then learn the
affinity matrix jointly for clustering. This independent feature
extraction stage may lead to the multiview relations in data
being ignored. To alleviate this problem, Zhu et al. [190]
propose a novel multiview deep subspace clustering net-
work (MVDSCN), which consists of diversity net (Dnet) and
universality net (Unet). Dnet is used to learn view-specific self-
representation matrices and Unet is used to learn a common
self-representation matrix for multiple views. The loss function
is made up of the reconstruction loss of autoencoders, the
self-representation loss of subspace clustering, and multiple
well-designed regularization items.

C. GNN-Based
In the real world, graph data are far more complex. For

example, we can use text, images, and links to describe the
same web page, or we can ask people with different styles
to write the same number. Obviously, traditional single-view
clustering methods are unable to meet the needs of such
application scenarios, that is, one usually needs to employ
a multiview graph [219], rather than a single-view graph,
to better represent the real graph data. Since GCN has made
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considerable achievements in processing graph-structured data,
Khan and Blumenstock [197] develop a graph-based convolu-
tional network (Multi-GCN) for multiview data. Multi-GCN
focuses attention on integrating subspace learning approaches
with recent innovations in GCNs and proposes an efficient
method for adapting graph-based semi-supervised learning
(GSSL) to multiview contexts.

Most GNNs can effectively process single-view graph data,
but they cannot be directly applied to multiview graph data.
Cheng et al. [198] propose multiview attribute graph
convolution networks for clustering (MAGCN) to handle
graph-structured data with multiview attributes. The main
innovative method of MAGCN is designed with two-pathway
encoders. The first pathway develops multiview attribute graph
attention networks to capture the graph embedding features of
multiview graph data. Another pathway develops consistent
embedding encoders to capture the geometric relationship and
the consistency of probability distribution among different
views.

Fan et al. [187] attempt to employ deep-embedded learning
for multiview graph clustering. The proposed model is named
One2Multi graph autoencoder for multiview graph clustering
(O2MAC), which utilizes graph convolutional encoder of one
view and decoders of multiple views to encode the multiview
attributed graphs to a low-dimensional feature space. Both
the clustering loss and reconstruction loss of O2MAC are
similar to other DEC methods in form. What is special
is that GCN [155] is designed to deal with graph cluster-
ing tasks [220]. Huang et al. [200] propose deep-embedded
MVC via jointly learning latent representations and graphs
(DMVCJ). By introducing a self-supervised GCN module,
DMVCJ jointly learns both latent graph structures and feature
representations.

The graph in most existing GCN-based MVC methods
is fixed, which makes the clustering performance heavily
dependent on the predefined graph. A noisy graph with unre-
liable connections can result in ineffective convolution with
wrong neighbors on the graph [221], which may worsen the
performance. To alleviate this issue, Wang et al. [199] propose
a consistent multiple graph embedding clustering (CMGEC)
framework, which is mainly composed of multiple graph
autoencoder (M-GAE), multiview mutual information maxi-
mization module (MMIM), and graph fusion network (GFN).
CMGEC develops a multigraph attention fusion encoder to
adaptively learn a common representation from multiple views,
and thereby, CMGEC can deal with three types of multiview
data, including multiview data without a graph, multiview data
with a common graph, and single-view data with multiple
graphs.

According to our research, deep MVC algorithms have
not been explored well. Other than the abovementioned three
categories, Yin et al. [192] propose a VAE-based deep MVC
method [deep MVC via VAEs (DMVCVAE)]. DMVCVAE
learns a shared generative latent representation that obeys a
mixture of Gaussian distributions and thus can be regarded as
the promotion of VaDE [77] in MVC. There are also some
application researches based on deep MVC. For example,
Perkins and Yang [222] introduce the dialog intent induction
task and present a novel deep MVC approach to tackle the
problem. Abavisani and Patel [223] and Hu et al. [224] study
multimodal clustering, which is also related to MVC. Taking
advantage of both DC and multiview learning will be an
interesting future research direction of deep MVC.

VI. DEEP CLUSTERING WITH TRANSFER LEARNING

Transfer learning has emerged as a new learning framework
to address the problem that the training and testing data are
drawn from different feature spaces or distributions [225].
For complex data such as high-resolution real pictures of
noisy videos, traditional clustering methods even DC methods
cannot work very well because of the high dimensionality of
the feature space and no uniform criterion to guarantee the
clustering process. Transfer learning provides new solutions
to these problems through transferring the information from
source domain that has additional information to guide the
clustering process of the target domain. In the early phase,
the ideas of deep domain adaption are simple and clear,
such as deep reconstruction-classification networks (DRCNs)
[226] that use classification loss for the source domain and
reconstruction loss for target domain. The two domains share
the same feature extractor. With the development of DNN,
we now have more advanced ways to transfer knowledge.

In this section, we introduce some transfer learning work
about clustering, which is separated into two parts. The first
part is “DNN-based,” and the second part is “GAN-based.”
They are summarized in Table V.

A. DNN-Based
DNN-based UDA methods generally aim at projecting

the source and target domains into the same feature space,
in which the classifier trained with source embedding and
labels can be applied to the target domain.

Through a summary of the network training processes,
Yosinski et al. [227] find that many DNNs trained on natural
images exhibit a phenomenon in common: the features learned
in the first several layers appear not to be specific to a
particular dataset or task and applicable to many other datasets
or tasks. Features must eventually transition from general to
specific by the last layers of the network. Thus, we can use
a mature network (e.g., AlexNet [108] and GoogleNet [228]),
which can provide credible parameters as the initialization for
a specific task. This trick has been frequently used in feature
extracted networks.

Domain adaptive neural network (DaNN) [229] first used
maximum mean discrepancy (MMD) [230] with DNN.

Many domain-discrepancy-based methods adopt similar
techniques with DaNN. Deep adaption networks (DANs) [231]
use multiple kernel variants of MMD (MK-MMD) as its
domain adaption function. As shown in Fig. 5, the net of
DAN minimizes the distance at the last feature-specific layers,
and then, the features from source-net and target-net would
be projected into the same space. After DAN, more and more
methods based on MMD are proposed. The main optimization
way is to choose different versions of MMD, such as joint
adaption network (JAN) [232] and weighted DAN (WDAN)
[233]. JAN maximizes joint MMD to make the distributions of
both source and target domains more distinguishable. WDAN
is proposed to solve the question about imbalanced data
distribution by introducing an auxiliary weight for each class
in the source domain. RTN (unsupervised domain adaptation
with residual transfer networks) [234] uses residual networks
and MMD for UDA task.

Some discrepancy-based methods do not use MMD.
Domain adaptive hash (DAH) [235] uses supervised hash loss
and unsupervised entropy loss to align the target hash values
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Fig. 5. Data stream framework of DAN. Ds is the source domain. Dt is
the target domain. f is the shared encoder of both domains, which can be
initialized with the existing network. The first layers of f are frozen, and the
last layers of f can be fine-tuned in the training process. fs is the encoder
of Ds . ft is the encoder of Dt . Ss is the predicted label vector of Ds . Y is
the real label of Ds . St is the predicted result of Dt .

to their corresponding source categories. Sliced Wasserstein
discrepancy (SWD) [236] adopts the novel SWD to capture the
dissimilarity of probability. Correlation alignment (CORAL)
[237] minimizes domain shift by aligning the second-order
statistics of source and target distributions. Higher order
moment matching (HoMM) [238] shows that the first-order
HoMM is equivalent to MMD and the second-order HoMM is
equivalent to CORAL. Contrastive adaptation network (CAN)
[239] proposes contrastive domain discrepancy (CDD) to min-
imize the intraclass discrepancy and maximize the interclass
margin. Besides, several new measurements are proposed for
the source and target domain [240], [241], [242]. Analysis of
representations for domain adaptation [243] contributes a lot in
the domain adaption distance field. Some works try to improve
the performance of UDA in other directions, such as unsu-
pervised domain adaptation via structured prediction-based
selective pseudo-labeling that tries to learn a domain-invariant
subspace by supervised locality-preserving projection (SLPP)
using both labeled source data and pseudo-labeled target data.

The tricks used in DC have also been used in UDA meth-
ods. For example, structurally regularized DC (SRDC) [244]
implements the structural source regularization via a simple
strategy of joint network training. It first minimizes the KL
divergence between the auxiliary distribution (that is the same
as the auxiliary distribution of DEC [43]) and the predictive
label distribution. Then, it replaces the auxiliary distribution
with that of ground-truth labels of source data. Wang and
Breckon [245] propose a UDA method that uses a novel
selective pseudo-labeling strategy and learns domain-invariant
subspace by SLPP [246] using both labeled source data and
pseudo-labeled target data. Zhou et al. [247] apply ensemble
learning in the training process. Prabhu et al. [248] apply
entropy optimization in the target domain.

B. GAN-Based
DNN-based UDA methods mainly focus on an appropriate

measurement for the source and target domains. By contrast,
GAN-based UDA methods use the discriminator to fit this
measurement function. Usually, in GAN-based UDA methods,
the generator φg is used to produce data followed by one
distribution from another distribution, and the discriminator
φd is used to judge whether the data generated follow the

Fig. 6. Data stream framework of Co-GAN applied in UDA. It consists
of a pair of GANs: GAN1 and GAN2. GAN1 and GAN2 share the weight
in the first layers of φg and last layers of φd . Ds is the source domain. Dt
is the target domain. φd . D̂s and φd . D̂t are generated by the noise. The
first layer of φg is responsible for decoding high-level semantics and the
last layer of φd is responsible for encoding high-level semantics. Adding
weight-sharing constraint in these layers can guarantee similar high-level
semantic representations of both domains with different low-level feature
representations.

distribution of the target domain. Traditional GAN cannot
satisfy the demands to project two domains into the same
space, so different frameworks based on GAN are proposed
to cope with this challenge.

In 2016, domain-adversarial neural network (DANN) [255]
and coupled GANs (Co-GANs) [254] are proposed to intro-
duce adversarial learning into transfer learning. DANN uses a
discriminator to ensure that the feature distributions over the
two domains are made similar. Co-GAN applies generator and
discriminator all in UDA methods. It consists of a group of
GANs, each corresponding to a domain. In UDA, there are
two domains. The framework of Co-GAN is shown in Fig. 6.

In deep transfer learning, we need to find the proper layers
for MMD or weight sharing. In general, we could see that
the networks that want to transfer knowledge through domain
adaption must pay more attention to the layers that are
responsible for high-level semantic layers. In DAN, the first
layers are for basic features and the high layers for semantic
information are zoomed in where the last layers are chosen
to be projected with MMD. In Co-GAN, also the semantic
layers are chosen as the transferring layers (take notice, the
first layers of DAN are not transferring layers between two
domains, as it is transferring the feature extracting power of a
mutual network to our domains’ feature extracting part). The
weight-sharing constraint in the first layers of the generator
urges two instances from a different domain to extract the
same semantics and are destructed into different low-level
details in the last layers of φg . On opposite, the discriminator
learns the features from low level to high level, so if we add a
weight-sharing constraint in the last layers, this can stimulate
it to learn a joint distribution of multidomain images from
different low-level representations.

Co-GAN contributed significant thought to UDA. Adversar-
ial methods in domain adaptation have sprung up. For the job
that relies on the synthesized instances to assist the domain
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TABLE V
SUMMARIES OF DNN- AND GAN-Based METHODS IN DEEP CLUSTERING WITH TRANSFER LEARNING

adaptation process, they always perform not very well on real
images such as the OFFICE dataset. GenToAdapt-GAN [259]
is proposed in cases where data generation is hard, even though
the generator network they use performs a mere style transfer,
yet this is sufficient for providing good gradient information
for successfully aligning the domains. Unlike Co-GAN, there
is just one generator and one discriminator. In addition, there
are two classifiers and one encoder to embed the instances into
vectors.

Co-GAN and GenToAdapt adopt different strategies to train
a classifier for an unlabeled domain. The biggest difference
between Co-GAN and GenToAdapt-GAN is whether the fea-
ture extractor is the same. The feature extractor of Co-GAN is
the GAN itself, but the feature extractor of GenToAdapt-GAN
is a specialized encoder. In Co-GAN, GAN must do the jobs
of adversarial process and encoding at the same time, but
in GenToAdapt-GAN, these two jobs are separated, which
means that GenToAdapt-GAN will be stabler and perform
better when the data are complex. Most of the methods
proposed in recent years are based on these two ways.
Liu et al. [256] adopted different GAN for different domains
and weight sharing. The main change is that the generator is
replaced by VAE. Adversarial discriminative domain adapta-
tion (ADDA) [257] adopted the discriminative model as the
feature extractor is based on Co-GAN. ADDA can be viewed
as a generalization of Co-GAN framework. Volpi et al. [262]
extended ADDA using a pair of feature extractors. Laradji and
Babanezhad [265] use a metric learning approach to train the

source model on the source dataset by optimizing the triplet
loss function as an optimized method and then using ADDA
to complete its transferring process. SymNet [264] proposed a
two-level domain confusion scheme that includes category-
and domain-level confusion losses. With the same feature
extractor of the source and target domains, multiadversarial
domain adaptation (MADA) [261] sets the generator as its fea-
ture extractor expanding the UDA problem to multidomains.
Similarity-based domain adaption network (SimNet) [260]
uses discriminator as a feature extractor and a similarity-based
classifier, which compares the embedding of an unlabeled
image with a set of labeled prototypes to classify an image.
Yan et al. [266] use mixup formulation and a feature-level con-
sistency regularizer to address the generalization performance
for target data. Xu et al. [268] use domain mixup on both pixel
and feature levels to improve the robustness of models.

There is also a very straightforward way to transfer the
knowledge between domains: Generate new instances for the
target domain. If we transfer the instance from the source
domain into a new instance that follows a joint distribution
of both domain and is labeled the same as its mother source
instance, then we get a batch of “labeled fake instances in
target domain.” Training a classifier with these fake instances
should be applicative to the real target data. In this way, we can
easily use all the unsupervised adversarial domain adaptation
methods in UDA as an effective data augmentation method.
This accessible method also performs well in the DC problem
and is called pixel-level transfer learning.
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Fig. 7. Overview of the model architecture. The generator φg generates an
image conditioned on a synthetic image, which is fed into the discriminator
as fake data and a noise vector ε. The discriminator φd discriminates between
real and fake images. Ds is the source domain. Dt is the target domain. D̂s
is the fake image and fs is trained with generated data and source data. Y
means the real labels and Ss denotes the predicted results.

Unsupervised pixel-level domain adaptation with GANs
(Pixel-GAN) [258] aims at changing the images from the
source domain to appear as if they were sampled from the
target domain while maintaining their original content (label).
The authors proposed a novel GAN-based architecture that can
learn such a transformation in an unsupervised manner. The
training process of Pixel-GAN is shown in Fig. 7. It uses a
generator φg to propose a fake image with the input composed
of a labeled source image and a noise vector. The fake
images will be discriminated against with target data by a
discriminator φd . At the same time, fake images D̂s and
source images are put into a classifier fs ; when the model
is convergent, the classifier can be used on the target domain.

On the whole, Pixel-GAN is a very explicit model, but
this net relies on the quality of the generated images too
much. Although the classifier can guarantee the invariant
information of classes, it is also hard to perform on complex
images. Pixel-level transferring and feature-level transferring
are not going against each other, as pixel-level can transfer
visual features and feature-level transferring can transfer the
nature information of the instances. Cycle-consistent adversar-
ial domain adaptation (CyCADA) [263] adapts representations
at both pixel level and feature level while enforcing semantic
consistency. The authors enforce both structural and semantic
consistency during adaptation using a cycle-consistency loss
and semantics losses based on a particular visual recognition
task. The semantics losses both guide the overall represen-
tation to be discriminative and enforce semantic consistency
before and after mapping between domains. Except for GAN,
adopting data augmentation to transfer learning can also be
used in traditional ways. Sun et al. [269] provide the efficiency
to make data augmentation in the target domain even if it
is unlabeled. It adds self-supervised tasks to target data and
shows good performance. More important is that this skill can
be combined with other domain adaptation methods such as
CyCADA and DAN.

VII. FUTURE DIRECTIONS OF DEEP CLUSTERING

Based on the aforementioned literature review and analysis,
DC has been applied to several domains, and we attach
importance to several aspects worth studying further.

1) Theoretical Exploration: Although remarkable cluster-
ing performance has been achieved by designing even

more sophisticated DC pipelines for specific problem-
solving needs, there is still no reliable theoretical
analysis on how to qualitatively analyze the influence of
feature extraction and clustering loss on final clustering.
Thus, exploring the theoretical basis of DC optimization
is of great significance for guiding further research in
this field.

2) Massive Complex Data Processing: Due to the com-
plexity brought by massive data, most of the existing
DC models are designed for specific datasets. Complex
data from different sources and forms bring more uncer-
tainties and challenges to clustering. At present, deep
learning and graph learning are needed to solve complex
data processing problems.

3) Model Efficiency: Deep clustering algorithm requires a
large number of samples for training. Therefore, in small
sample datasets, DC is prone to overfitting, which leads
to the decrease of clustering effect and the reduction
of the generalization performance of the model. On the
other hand, the DC algorithm with large-scale data has
high computational complexity, so the model structure
optimization and model compression technology can
be adopted to reduce the computational load of the
model and improve the efficiency in practical application
conditions.

4) Fusion of Multiview Data: In practical application sce-
narios, clustering is often not just with single image
information but also available text and voice informa-
tion. However, most of the current DC algorithms can
only use one kind of information and cannot make good
use of the existing information. The subsequent research
can consider to fully integrate the information of two or
more views and make full use of the consistency and
complementarity of data of different views to improve
the clustering effect. Furthermore, how to combine fea-
tures of different views while filtering noise to ensure
better view quality needs to be solved.

5) Deep Clustering Based on Graph Learning: In reality,
a large number of datasets are stored in the form of graph
structures. Graph structure can represent the structural
association information between sample points. How
to effectively use the structural information is partic-
ularly important to improve the clustering performance.
Whether it is a single-view DC or a relatively wide
application of multiview DC, existing clustering meth-
ods based on graph learning still have some problems,
such as the graph structure information that is not fully
utilized, and the differences and importance of different
views are not fully considered. Therefore, the effective
analysis of complex graph structure information, espe-
cially the rational use of graph structure information to
complete the clustering task, needs further exploration.

VIII. SUMMARY OF DEEP CLUSTERING METHODS

In this paper, we introduce recent advances in the field
of deep clustering. This is mainly kind of data structures:
single-view, semi-supervised, multi-view, and transfer learn-
ing. Single-view methods are the most important part of our
survey, which inherits the problem settings of traditional clus-
tering methods. We systematically distinguish the clustering
methods with data source, and further introduce them in terms
of the network they are based on. Among these networks,
DAE-based methods and DNN-based methods are proposed
earlier but may be limited with their poor performance on
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real datasets. Compared to DAE-based and DNN-based meth-
ods, VAE-based and GAN-based methods attract attention in
recent years for their strong feature extraction and sample
generation power. Graph neural network is one of the most
popular networks recently, especially in community discovery
problems. So we also summarize the GNN-based clustering
methods. With the development of the Internet, the data for
clustering have different application scenarios, so we summa-
rize some clustering methods which have different problem
settings. Semi-supervised clustering methods cluster the data
with constraints that can be developed from single-view
clustering methods by adding a constraints loss. Multiview
clustering methods use the information of different views as a
supplement. It has been used widely in both traditional neural
networks and graph neural networks. Transfer learning can
transfer the knowledge of a labeled domain to an unlabeled
domain. We introduce clustering methods based on transfer
learning with two types of networks: DNN and GAN. DNN-
based methods focus on the measurement strategy of two
domains, while GAN-based methods use discriminators to
fit the measurement strategy. The complexity of most deep
clustering methods can scale linearly with the data size n,
making them suitable for large-scale real-life applications such
as social networks, bioinformatics, and electronic commerce.

REFERENCES

[1] Z. Wang et al., “Masked face recognition dataset and application,”
2020, arXiv:2003.09093.

[2] J. Guo, X. Zhu, C. Zhao, D. Cao, Z. Lei, and S. Z. Li, “Learning
meta face recognition in unseen domains,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 6163–6172.

[3] A. Yadav and D. K. Vishwakarma, “Sentiment analysis using deep
learning architectures: A review,” Artif. Intell. Rev., vol. 53, no. 6,
pp. 4335–4385, Aug. 2020.

[4] G. Xu, Y. Meng, X. Qiu, Z. Yu, and X. Wu, “Sentiment analysis of com-
ment texts based on BiLSTM,” IEEE Access, vol. 7, pp. 51522–51532,
2019.

[5] J. Zhou, P. Li, Y. Zhou, B. Wang, J. Zang, and L. Meng, “Toward
new-generation intelligent manufacturing,” Engineering, vol. 4, no. 1,
pp. 11–20, 2018.

[6] J. Zhou, Y. Zhou, B. Wang, and J. Zang, “Human–cyber–physical
systems (HCPSs) in the context of new-generation intelligent manu-
facturing,” Engineering, vol. 5, no. 4, pp. 624–636, 2019.

[7] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proc. 5th Berkeley Symp. Math. Statist.
Probab., Oakland, CA, USA, vol. 1, 1967, pp. 281–297.

[8] Y. Ren, U. Kamath, C. Domeniconi, and Z. Xu, “Parallel boosted
clustering,” Neurocomputing, vol. 351, pp. 87–100, Jul. 2019.

[9] M. Ester, “A density-based algorithm for discovering clusters in
large spatial databases with noise,” in Proc. KDD, vol. 96, 1996,
pp. 226–231.

[10] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 24, no. 5, pp. 603–619, May 2002.

[11] Y. Ren, U. Kamath, C. Domeniconi, and G. Zhang, “Boosted mean
shift clustering,” in Proc. ECML-PKDD, 2014, pp. 646–661.

[12] Y. Ren, C. Domeniconi, G. Zhang, and G. Yu, “A weighted adaptive
mean shift clustering algorithm,” in Proc. SIAM Int. Conf. Data Mining,
Apr. 2014, pp. 794–802.

[13] Y. Ren, X. Hu, K. Shi, G. Yu, D. Yao, and Z. Xu, “Semi-supervised
DenPeak clustering with pairwise constraints,” in Proc. 15th Pacific
Rim Int. Conf. Artif. Intell., 2018, pp. 837–850.

[14] C. M. Bishop, Pattern Recognition and Machine Learning. Cham,
Switzerland: Springer, 2006, pp. 430–439.

[15] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”
ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, Sep. 1999.

[16] A. Strehl and J. Ghosh, “Cluster ensembles—A knowledge reuse
framework for combining multiple partitions,” J. Mach. Learn. Res.,
vol. 3, pp. 583–617, Jan. 2002.

[17] Y. Ren, C. Domeniconi, G. Zhang, and G. Yu, “Weighted-object
ensemble clustering: Methods and analysis,” Knowl. Inf. Syst., vol. 51,
no. 2, pp. 661–689, May 2017.

[18] A. Kumar and H. Daumé, “A co-training approach for multi-
view spectral clustering,” in Proc. Int. Conf. Mach. Learn., 2011,
pp. 393–400.

[19] A. Kumar, P. Rai, and H. Daumé, III, “Co-regularized multi-view
spectral clustering,” in Proc. 25th Annu. Conf. Neural Inf. Process.
Syst., Granada, Spain, Dec. 2011, pp. 1413–1421.

[20] X. Cai, F. Nie, and H. Huang, “Multi-view K-means clustering on big
data,” in Proc. 23rd Int. Joint Conf. Artif. Intell. IJCAI, Jun. 2013,
pp. 2598–2604.

[21] Z. Huang, Y. Ren, X. Pu, and L. He, “Non-linear fusion for self-
paced multi-view clustering,” in Proc. 29th ACM Int. Conf. Multimedia,
Oct. 2021, pp. 3211–3219.

[22] Z. Huang, Y. Ren, X. Pu, L. Pan, D. Yao, and G. Yu, “Dual self-
paced multi-view clustering,” Neural Netw., vol. 140, pp. 184–192,
Aug. 2021.

[23] S. Huang, Y. Ren, and Z. Xu, “Robust multi-view data clustering
with multi-view capped-norm K-means,” Neurocomputing, vol. 311,
pp. 197–208, Oct. 2018.

[24] S. Park, J. K. Park, S. J. Shin, and I. C. Moon, “Adversarial dropout for
supervised and semi-supervised learning,” in Proc. AAAI Conf. Artif.
Intell., Apr. 2017, pp. 3917–3924.

[25] W. Xia, Q. Gao, Q. Wang, X. Gao, C. Ding, and D. Tao, “Tensorized
bipartite graph learning for multi-view clustering,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 45, no. 4, pp. 5187–5202, Apr. 2023.

[26] W. Xia, T. Wang, Q. Gao, M. Yang, and X. Gao, “Graph embedding
contrastive multi-modal representation learning for clustering,” IEEE
Trans. Image Process., vol. 32, pp. 1170–1183, 2023.

[27] Q. Wang, Z. Tao, W. Xia, Q. Gao, X. Cao, and L. Jiao, “Adversarial
multiview clustering networks with adaptive fusion,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 34, no. 10, pp. 7635–7647, Oct. 2023.

[28] S. Shi, F. Nie, R. Wang, and X. Li, “Multi-view clustering via
nonnegative and orthogonal graph reconstruction,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 34, no. 1, pp. 201–214, Jan. 2023.

[29] Z. Tao, J. Li, H. Fu, Y. Kong, and Y. Fu, “From ensemble clustering to
subspace clustering: Cluster structure encoding,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 34, no. 5, pp. 2670–2681, May 2023.

[30] Z. Uykan, “Fusion of centroid-based clustering with graph clustering:
An expectation-maximization-based hybrid clustering,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 34, no. 8, pp. 4068–4082, Aug. 2023.

[31] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemometrics Intell. Lab. Syst., vol. 2, nos. 1–3, pp. 37–52, Aug. 1987.

[32] M. Hearst, S. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support
vector machines,” IEEE Intell. Syst. Appl., vol. 13, no. 4, pp. 18–28,
Aug. 1998.

[33] M. D. Feit, J. A. Fleck, and A Steiger, “Solution of the Schrodinger
equation by a spectral method,” J. Comput. Phys., vol. 47, no. 3,
pp. 412–433, 1982.

[34] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi,
“A survey of deep neural network architectures and their applications,”
Neurocomputing, vol. 234, pp. 11–26, Apr. 2017.

[35] E. Aljalbout, V. Golkov, Y. Siddiqui, M. Strobel, and D. Cremers,
“Clustering with deep learning: Taxonomy and new methods,” 2018,
arXiv:1801.07648.

[36] E. Min, X. Guo, Q. Liu, G. Zhang, J. Cui, and J. Long, “A survey
of clustering with deep learning: From the perspective of network
architecture,” IEEE Access, vol. 6, pp. 39501–39514, 2018.

[37] G. C. Nutakki, B. Abdollahi, W. Sun, and O. Nasraoui, “An introduc-
tion to deep clustering,” in Clustering Methods for Big Data Analytics.
Cham, Switzerland: Springer, 2019, pp. 73–89.

[38] S. Zhou et al., “A comprehensive survey on deep clustering: Taxonomy,
challenges, and future directions,” 2022, arXiv:2206.07579.

[39] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[40] C. Song, F. Liu, Y. Huang, L. Wang, and T. Tan, “Auto-encoder based
data clustering,” in Proc. CIARP, 2013, pp. 117–124.

[41] P. Huang, Y. Huang, W. Wang, and L. Wang, “Deep embedding network
for clustering,” in Proc. 22nd Int. Conf. Pattern Recognit., Aug. 2014,
pp. 1532–1537.

[42] X. Peng, S. Xiao, J. Feng, W.-Y. Yau, and Z. Yi, “Deep subspace
clustering with sparsity prior,” in Proc. Int. Joint Conf. Artif. Intell.,
2016, pp. 1925–1931.

[43] J. Xie, R. B. Girshick, and A. Farhadi, “Unsupervised deep embedding
for clustering analysis,” in Proc. 33rd Int. Conf. Mach. Learn. (ICML),
Jun. 2016, pp. 478–487.

[44] X. Guo, L. Gao, X. Liu, and J. Yin, “Improved deep embedded
clustering with local structure preservation,” in Proc. 26th Int. Joint
Conf. Artif. Intell., Aug. 2017, pp. 1753–1759.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on October 01,2024 at 03:48:21 UTC from IEEE Xplore.  Restrictions apply. 



REN et al.: DEEP CLUSTERING: A COMPREHENSIVE SURVEY 17

[45] P. Ji, T. Zhang, H. Li, M. Salzmann, and I. Reid, “Deep subspace
clustering networks,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS),
vol. 30, 2017, pp. 24–33.

[46] K. G. Dizaji, A. Herandi, C. Deng, W. Cai, and H. Huang, “Deep
clustering via joint convolutional autoencoder embedding and relative
entropy minimization,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 5736–5745.

[47] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards K-means-
friendly spaces: Simultaneous deep learning and clustering,” in Proc.
Int. Conf. Mach. Learn., 2017, pp. 3861–3870.

[48] D. Chen, J. Lv, and Y. Zhang, “Unsupervised multi-manifold clustering
by learning deep representation,” in Proc. AAAI, 2017, pp. 1–7.

[49] X. Guo, E. Zhu, X. Liu, and J. Yin, “AAAI with data augmentation,”
in Proc. ACML, 2018, pp. 550–565.

[50] F. Li, H. Qiao, and B. Zhang, “Discriminatively boosted image cluster-
ing with fully convolutional auto-encoders,” Pattern Recognit., vol. 83,
pp. 161–173, Nov. 2018.

[51] S. A. Shah and V. Koltun, “Deep continuous clustering,” 2018,
arXiv:1803.01449.

[52] S. A. Shah and V. Koltun, “Robust continuous clustering,” Proc. Nat.
Acad. Sci. USA, vol. 114, no. 37, pp. 9814–9819, Sep. 2017.

[53] E. Tzoreff, O. Kogan, and Y. Choukroun, “Deep discriminative latent
space for clustering,” 2018, arXiv:1805.10795.

[54] J. Chang, Y. Guo, L. Wang, G. Meng, S. Xiang, and C. Pan, “Deep
discriminative clustering analysis,” 2019, arXiv:1905.01681.

[55] X. Yang, C. Deng, F. Zheng, J. Yan, and W. Liu, “Deep spectral
clustering using dual autoencoder network,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 4066–4075.

[56] T. Zhang, P. Ji, M. Harandi, W. Huang, and H. Li, “Neural collaborative
subspace clustering,” 2019, arXiv:1904.10596.

[57] Y. Ren, N. Wang, M. Li, and Z. Xu, “Deep density-based image
clustering,” Knowl.-Based Syst., vol. 197, Jun. 2020, Art. no. 105841.

[58] S. Affeldt, L. Labiod, and M. Nadif, “Spectral clustering via ensemble
deep autoencoder learning (SC-EDAE),” Pattern Recognit., vol. 108,
Dec. 2020, Art. no. 107522.

[59] X. Guo et al., “Adaptive self-paced deep clustering with data augmen-
tation,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 9, pp. 1680–1693,
Sep. 2020.

[60] X. Yang, C. Deng, K. Wei, J. Yan, and W. Liu, “Adversarial learn-
ing for robust deep clustering,” in Proc. NeurIPS, vol. 33, 2020,
pp. 9098–9108.

[61] R. McConville, R. Santos-Rodríguez, R. J. Piechocki, and I. Craddock,
“N2D: (Not Too) deep clustering via clustering the local manifold of
an autoencoded embedding,” in Proc. 25th Int. Conf. Pattern Recognit.
(ICPR), Jan. 2021, pp. 5145–5152.

[62] J. Wang and J. Jiang, “Unsupervised deep clustering via adaptive GMM
modeling and optimization,” Neurocomputing, vol. 433, pp. 199–211,
Apr. 2021.

[63] J. Yang, D. Parikh, and D. Batra, “Joint unsupervised learning of deep
representations and image clusters,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 5147–5156.

[64] M. Kampffmeyer, S. Løkse, F. M. Bianchi, R. Jenssen, and L. Livi,
“Deep kernelized autoencoders,” in Proc. SCIA, 2017, pp. 419–430.

[65] J. Chang, L. Wang, G. Meng, S. Xiang, and C. Pan, “Deep adaptive
image clustering,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 5879–5887.

[66] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering
for unsupervised learning of visual features,” in Proc. Eur. Conf.
Comput. Vis. (ECCV), 2018, pp. 132–149.

[67] C. Hsu and C. Lin, “CNN-based joint clustering and representation
learning with feature drift compensation for large-scale image data,”
IEEE Trans. Multimedia, vol. 20, no. 2, pp. 421–429, Feb. 2018.

[68] P. Haeusser, J. Plapp, V. Golkov, E. Aljalbout, and D. Cremers,
“Associative deep clustering: Training a classification network with no
labels,” in Proc. GCPR, 2018, pp. 18–32.

[69] T. V. M. Souza and C. Zanchettin, “Improving deep image clustering
with spatial transformer layers,” 2019, arXiv:1902.05401.

[70] O. Nina, J. Moody, and C. Milligan, “A decoder-free approach for
unsupervised clustering and manifold learning with random triplet min-
ing,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshop (ICCVW),
Oct. 2019, pp. 3987–3994.

[71] X. Ji, A. Vedaldi, and J. Henriques, “Invariant information clustering
for unsupervised image classification and segmentation,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 9865–9874.

[72] J. Wu et al., “Deep comprehensive correlation mining for image clus-
tering,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 8150–8159.

[73] G. Shiran and D. Weinshall, “Multi-modal deep clustering: Unsuper-
vised partitioning of images,” 2019, arXiv:1912.02678.

[74] W. Van Gansbeke, S. Vandenhende, S. Georgoulis, M. Proesmans, and
L. Van Gool, “SCAN: Learning to classify images without labels,”
in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2020.
pp. 268–285.

[75] H. Zhong, C. Chen, Z. Jin, and X.-S. Hua, “Deep robust clustering by
contrastive learning,” 2020, arXiv:2008.03030.

[76] J. Huang, S. Gong, and X. Zhu, “Deep semantic clustering by partition
confidence maximisation,” in Proc. IEEE Comput. Soc. Conf. Comput.
Vis. Pattern Recognit, Sep. 2020, pp. 8849–8858.

[77] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou, “Variational deep
embedding: An unsupervised and generative approach to clustering,”
2016, arXiv:1611.05148.

[78] N. Dilokthanakul et al., “Deep unsupervised clustering with Gaussian
mixture variational autoencoders,” 2016, arXiv:1611.02648.

[79] J. A. Figueroa and A. R. Rivera, “Is simple better: Revisiting simple
generative models for unsupervised clustering,” in Proc. 2nd Workshop
Bayesian Deep Learn. (NeurIPS), 2017, pp. 1–6.

[80] X. Li, Z. Chen, L. K. M. Poon, and N. L. Zhang, “Learning latent
superstructures in variational autoencoders for deep multidimensional
clustering,” 2018, arXiv:1803.05206.

[81] M. Willetts, S. Roberts, and C. Holmes, “Disentangling to
cluster: Gaussian mixture variational ladder autoencoders,” 2019,
arXiv:1909.11501.

[82] V. Prasad, D. Das, and B. Bhowmick, “Variational clustering:
Leveraging variational autoencoders for image clustering,” 2020,
arXiv:2005.04613.

[83] L. Cao, S. Asadi, W. Zhu, C. Schmidli, and M. Sjöberg, “Simple, scal-
able, and stable variational deep clustering,” 2020, arXiv:2005.08047.

[84] L. Yang, W. Fan, and N. Bouguila, “Deep clustering analysis via dual
variational autoencoder with spherical latent embeddings,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 34, no. 9, pp. 6303–6312, Sep. 2023.

[85] H. Ma, “Achieving deep clustering through the use of variational
autoencoders and similarity-based loss,” Math. Biosci. Eng., vol. 19,
no. 10, pp. 10344–10360, 2022.

[86] J. T. Springenberg, “Unsupervised and semi-supervised learning with
categorical generative adversarial networks,” 2015, arXiv:1511.06390.

[87] W. Harchaoui, P.-A. Mattei, and C. Bouveyron, “Deep adversarial
Gaussian mixture auto-encoder for clustering,” in Proc. ICLR, 2017,
pp. 1–5.

[88] P. Zhou, Y. Hou, and J. Feng, “Deep adversarial subspace clustering,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 1596–1604.

[89] K. Ghasedi, X. Wang, C. Deng, and H. Huang, “Balanced self-
paced learning for generative adversarial clustering network,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 4386–4395.

[90] S. Mukherjee, H. Asnani, E. Lin, and S. Kannan, “ClusterGAN: Latent
space clustering in generative adversarial networks,” in Proc. AAAI
Conf. Artif. Intell., vol. 33, 2019, pp. 4610–4617.

[91] N. Mrabah, M. Bouguessa, and R. Ksantini, “Adversarial deep embed-
ded clustering: On a better trade-off between feature randomness and
feature drift,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 4, pp. 1603–
1617, Apr. 2022.

[92] X. Yang, J. Yan, Y. Cheng, and Y. Zhang, “Learning deep generative
clustering via mutual information maximization,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 34, no. 9, pp. 6263–6275, Sep. 2023.

[93] X. Zhang, H. Liu, Q. Li, and X.-M. Wu, “Attributed graph clustering
via adaptive graph convolution,” 2019, arXiv:1906.01210.

[94] Z. Tao, H. Liu, J. Li, Z. Wang, and Y. Fu, “Adversarial graph
embedding for ensemble clustering,” in Proc. 28th Int. Joint Conf. Artif.
Intell., Aug. 2019, pp. 3562–3568.

[95] D. Zhu, S. Chen, X. Ma, and R. Du, “Adaptive graph convolution using
heat kernel for attributed graph clustering,” Appl. Sci., vol. 10, no. 4,
p. 1473, Feb. 2020.

[96] D. Bo, X. Wang, C. Shi, M. Zhu, E. Lu, and P. Cui, “Structural deep
clustering network,” in Proc. Web Conf., Apr. 2020, pp. 1400–1410.

[97] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
Jul. 2006.

[98] A. Rodriguez and A. Laio, “Clustering by fast search and find of
density peaks,” Science, vol. 344, no. 6191, pp. 1492–1496, Jun. 2014.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on October 01,2024 at 03:48:21 UTC from IEEE Xplore.  Restrictions apply. 



18 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[99] L. Van Der Maaten, “Learning a parametric embedding by preserving
local structure,” Artif. Intell. Statist., vol. 5, pp. 384–391, Apr. 2009.

[100] M. P. Kumar, B. Packer, and D. Koller, “Self-paced learning for latent
variable models,” in Proc. Conf. Neural Inf. Process. Syst., 2010,
pp. 1189–1197.

[101] R. Souvenir and R. Pless, “Manifold clustering,” in Proc. 10th IEEE
Int. Conf. Comput. Vis. (ICCV), vol. 1, Sep. 2005, pp. 648–653.

[102] E. Elhamifar and R. Vidal, “Sparse manifold clustering and embed-
ding,” in Proc. NeurIPS, 2011, pp. 55–63.

[103] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,” in Proc. 27th Int. Conf. Mach. Learn. (ICML),
2010, pp. 807–814.

[104] A. Dundar, J. Jin, and E. Culurciello, “Convolutional clustering for
unsupervised learning,” 2015, arXiv:1511.06241.

[105] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika,
vol. 32, no. 3, pp. 241–254, Sep. 1967.

[106] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu,
“Spatial transformer networks,” in Proc. Adv. Neural Inf. Process.
Syst. Annu. Conf. Neural Inf. Process. Syst., vol. 28, Dec. 2015,
pp. 2017–2025.

[107] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), 2012, pp. 1097–1105.

[108] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60,
no. 6, pp. 84–90, May 2017.

[109] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, arXiv:1409.1556.

[110] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Miami, FL, USA, Aug. 2009,
pp. 248–255.

[111] L. Xu, J. Neufeld, B. Larson, and D. Schuurmans, “Maximum margin
clustering,” in Proc. NeurIPS, vol. 17, 2004, pp. 1537–1544.

[112] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, Sep. 1995.

[113] W. Hu, T. Miyato, S. Tokui, E. Matsumoto, and M. Sugiyama, “Learn-
ing discrete representations via information maximizing self-augmented
training,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 1558–1567.

[114] R. D. Hjelm et al., “Learning deep representations by mutual informa-
tion estimation and maximization,” 2018, arXiv:1808.06670.

[115] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2005,
pp. 539–546.

[116] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified
embedding for face recognition and clustering,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 815–823.

[117] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual rep-
resentation learning by context prediction,” in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Dec. 2015, pp. 1422–1430.

[118] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. A. Efros,
“Context encoders: Feature learning by inpainting,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2536–
2544.

[119] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” in
Proc. Eur. Conf. Comput. Vis. (ECCV), 2016, pp. 649–666.

[120] M. Noroozi and P. Favaro, “Unsupervised learning of visual represen-
tations by solving jigsaw puzzles,” in Proc. Eur. Conf. Comput. Vis.
(ECCV), 2016, pp. 69–84.

[121] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation
learning by predicting image rotations,” 2018, arXiv:1803.07728.

[122] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,”
2013, arXiv:1312.6114.

[123] I. J. Goodfellow et al., “Generative adversarial nets,” in Proc. 27th Int.
Conf. Neural Inf. Process. Syst. (NIPS), vol. 2. Cambridge, MA, USA:
MIT Press, 2014, pp. 2672–2680.

[124] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel
recurrent neural networks,” 2016, arXiv:1601.06759.

[125] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel, “InfoGAN: Interpretable representation learning by informa-
tion maximizing generative adversarial nets,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), Barcelona, Spain, Dec. 2016, pp. 2172–2180.

[126] A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and J. Yosinski, “Plug
& play generative networks: Conditional iterative generation of images
in latent space,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jul. 2017, pp. 3510–3520.

[127] M. E. Abbasnejad, A. Dick, and A. van den Hengel, “Infinite varia-
tional autoencoder for semi-supervised learning,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 781–790.

[128] D. P. Kingma and S. Mohamed, “Semi-supervised learning with deep
generative models,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS),
2014, pp. 3581–3589.

[129] L. Maaløe, C. K. Sønderby, S. K. Sønderby, and O. Winther, “Auxiliary
deep generative models,” 2016, arXiv:1602.05473.

[130] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training GANs,” in Proc. 30th
Int. Conf. Neural Inf. Process. Syst. Red Hook, NY, USA: Curran
Associates 2016, pp. 2234–2242.

[131] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adver-
sarial autoencoders,” 2015, arXiv:1511.05644.

[132] A. Dosovitskiy and T. Brox, “Generating images with perceptual
similarity metrics based on deep networks,” in Proc. Int. Conf. Neural
Inf. Process. Syst., Barcelona, Spain, Dec. 2016, pp. 658–666.

[133] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,”
2015, arXiv:1511.06434.

[134] G. Chen, “Deep learning with nonparametric clustering,” 2015,
arXiv:1501.03084.

[135] M. D. Hoffman and M. J. Johnson, “ELBO surgery: Yet another way
to carve up the variational evidence lower bound,” in Proc. NeurIPS,
2016, pp. 1–4.

[136] G. J. McLachlan, S. X. Lee, and S. I. Rathnayake, “Finite mixture
models,” Annu. Rev. Statist. Appl., vol. 6, pp. 355–378, Jan. 2000.

[137] M. J. Beal, “Variational algorithms for approximate Bayesian infer-
ence,” Ph.D. thesis, Dept. Gatsby Comput. Neurosci. Unit, UCL Univ.
College London, London, U.K., 2003.

[138] N. L. Zhang, “Hierarchical latent class models for cluster analysis,” J.
Mach. Learn. Res., vol. 5, no. 6, pp. 697–723, 2004.

[139] Daphne Koller and Nir Friedman,” Probabilistic Graphical Models:
Principles and Techniques. Cambridge, MA, USA: MIT Press, 2009.

[140] L. Yang, N.-M. Cheung, J. Li, and J. Fang, “Deep clustering by Gaus-
sian mixture variational autoencoders with graph embedding,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 6440–6449.

[141] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” 2016, arXiv:1611.01144.

[142] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribu-
tion: A continuous relaxation of discrete random variables,” 2016,
arXiv:1611.00712.

[143] S. Zhao, J. Song, and S. Ermon, “Learning hierarchical features from
generative models,” 2017, arXiv:1702.08396.

[144] A. Krause, P. Perona, and R. Gomes, “Discriminative clustering by
regularized information maximization,” in Proc. NIPS, vol. 23, 2010,
pp. 775–783.

[145] Y. Grandvalet and Y. Bengio, “Semi-supervised learning by entropy
minimization,” in Proc. NeurIPS, 2005, pp. 529–536.

[146] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” J. Mach. Learn. Res.,
vol. 11, pp. 3371–3408, Mar. 2010.

[147] D. Berthelot, C. Raffel, A. Roy, and I. Goodfellow, “Understanding and
improving interpolation in autoencoders via an adversarial regularizer,”
2018, arXiv:1807.07543.

[148] U. Shaham, K. Stanton, H. Li, B. Nadler, R. Basri, and Y. Kluger,
“SpectralNet: Spectral clustering using deep neural networks,” 2018,
arXiv:1801.01587.

[149] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction
by learning an invariant mapping,” in Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit. (CVPR), vol. 2, Jun. 2006,
pp. 1735–1742.

[150] U. Shaham and R. R. Lederman, “Learning by coincidence: Siamese
networks and common variable learning,” Pattern Recognit., vol. 74,
pp. 52–63, Feb. 2018.

[151] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, Jan. 2008.

[152] D. Duvenaud et al., “Convolutional networks on graphs for learning
molecular fingerprints,” 2015, arXiv:1509.09292.

[153] M. A. Khamsi and W. A. Kirk, An Introduction to Metric Spaces and
Fixed Point Theory, vol. 53. Hoboken, NJ, USA: Wiley, 2011.

[154] J. Zhou et al., “Graph neural networks: A review of methods and
applications,” AI Open, vol. 1, pp. 57–81, Jan. 2020.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on October 01,2024 at 03:48:21 UTC from IEEE Xplore.  Restrictions apply. 



REN et al.: DEEP CLUSTERING: A COMPREHENSIVE SURVEY 19

[155] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

[156] F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu, “Learning deep
representations for graph clustering,” in Proc. 28th AAAI Conf. Artif.
Intell., 2014, pp. 1293–1299.

[157] M. Shao, S. Li, Z. Ding, and Y. Fu, “Deep linear coding for fast graph
clustering,” in Proc. IJCAI, 2015, pp. 3798–3804.

[158] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network embedding,”
IEEE Trans. Knowl. Data Eng., vol. 31, no. 5, pp. 833–852, May 2018.

[159] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Network representation
learning: A survey,” IEEE Trans. Big Data, vol. 6, no. 1, pp. 3–28,
Mar. 2018.

[160] H. Cai, V. W. Zheng, and K. C. Chang, “A comprehensive survey
of graph embedding: Problems, techniques, and applications,” IEEE
Trans. Knowl. Data Eng., vol. 30, no. 9, pp. 1616–1637, Sep. 2018.

[161] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A compre-
hensive survey on graph neural networks,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 1, pp. 4–24, Mar. 2020.

[162] S. Yan et al., “Graph embedding and extensions: A general framework
for dimensionality reduction,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 29, no. 1, pp. 40–51, Jan. 2006.

[163] A. L. N. Fred and A. K. Jain, “Combining multiple clusterings using
evidence accumulation,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 27, no. 6, pp. 835–850, Jun. 2005.

[164] C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, and C. Zhang, “Attributed
graph clustering: A deep attentional embedding approach,” 2019,
arXiv:1906.06532.

[165] Y. Ren, K. Hu, X. Dai, L. Pan, S. C. H. Hoi, and Z. Xu, “Semi-
supervised deep embedded clustering,” Neurocomputing, vol. 325,
pp. 121–130, Jan. 2019.

[166] J. Enguehard, P. O’Halloran, and A. Gholipour, “Semi-supervised
learning with deep embedded clustering for image classification and
segmentation,” IEEE Access, vol. 7, pp. 11093–11104, 2019.

[167] H. Zhang, S. Basu, and I. Davidson, “A framework for deep constrained
clustering-algorithms and advances,” in Proc. ECML-PKDD, 2019,
pp. 57–72.

[168] A. Shukla, G. S. Cheema, and S. Anand, “Semi-supervised clustering
with neural networks,” in Proc. IEEE 6th Int. Conf. Multimedia Big
Data (BigMM), Sep. 2020, pp. 152–161.

[169] A. A. Baffour, Z. Qin, J. Geng, Y. Ding, F. Deng, and Z. Qin, “Generic
network for domain adaptation based on self-supervised learning and
deep clustering,” Neurocomputing, vol. 476, pp. 126–136, Mar. 2022.

[170] O. Chapelle and A. Zien, “Semi-supervised classification by low
density separation,” in Proc. Int. Workshop Artif. Intell. Statist., 2005,
pp. 57–64.

[171] K. Huang, Z. Xu, I. King, and M. R. Lyu, “Semi-supervised learning
from general unlabeled data,” in Proc. 8th IEEE Int. Conf. Data Mining,
Dec. 2008, pp. 273–282.

[172] Z. Xu, I. King, M. R. Lyu, and R. Jin, “Discriminative semi-supervised
feature selection via manifold regularization,” IEEE Trans. Neural
Netw., vol. 21, no. 7, pp. 1033–1047, Jul. 2010.

[173] Y. Huang, D. Xu, and F. Nie, “Semi-supervised dimension reduction
using trace ratio criterion,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 23, no. 3, pp. 519–526, Mar. 2012.

[174] E. Bair, “Semi-supervised clustering methods,” Wiley Interdiscipl. Rev.,
Comput. Statist., vol. 5, no. 5, pp. 349–361, 2013.

[175] N. Grira, M. Crucianu, and N. Boujemaa, “Unsupervised and semi-
supervised clustering: A brief survey,” Rev. Mach. Learn. Techn.
Process. Multimedia Content, vol. 1, pp. 9–16, Jul. 2004.

[176] K. Chaudhuri, S. M. Kakade, K. Livescu, and K. Sridharan, “Multi-
view clustering via canonical correlation analysis,” in Proc. ICML,
2009, pp. 129–136.

[177] Y. Li, F. Nie, H. Huang, and J. Huang, “Large-scale multi-view spectral
clustering via bipartite graph,” in Proc. 29th AAAI Conf. Artif. Intell.,
2015, pp. 2750–2756.

[178] X. Cao, C. Zhang, H. Fu, S. Liu, and H. Zhang, “Diversity-induced
multi-view subspace clustering,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., May 2015, pp. 586–594.

[179] F. Nie, J. Li, and X. Li, “Self-weighted multiview clustering with
multiple graphs,” in Proc. 26th Int. Joint Conf. Artif. Intell., Aug. 2017,
pp. 2564–2570.

[180] C. Zhang, Q. Hu, H. Fu, P. Zhu, and X. Cao, “Latent multi-view sub-
space clustering,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jul. 2017, pp. 4279–4287.

[181] Z. Zhang, L. Liu, F. Shen, H. T. Shen, and L. Shao, “Binary multi-
view clustering,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 7,
pp. 1774–1782, Jul. 2018.

[182] H. Zhao, Z. Ding, and Y. Fu, “Multi-view clustering via deep matrix
factorization,” in Proc. AAAI, 2017, pp. 2921–2927.
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