668

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

Behind the Intent of Extract Method Refactoring:
A Systematic Literature Review

Eman Abdullah AlOmar
and Ali Ouni

Abstract—Background: Code refactoring is widely recognized
as an essential software engineering practice to improve the
understandability and maintainability of the source code. The Ex-
tract Method refactoring is considered as ‘“Swiss army Kknife”
of refactorings, as developers often apply it to improve their
code quality, e.g., decompose long code fragments, reduce code
complexity, eliminate duplicated code, etc. In recent years, several
studies attempted to recommend Extract Method refactorings
allowing the collection, analysis, and revelation of actionable
data-driven insights about refactoring practices within software
projects. Aim: In this paper, we aim at reviewing the current
body of knowledge on existing Extract Method refactoring
research and explore their limitations and potential improvement
opportunities for future research efforts. That is, Extract Method
is considered one of the most widely-used refactorings, but
difficult to apply in practice as it involves low-level code changes
such as statements, variables, parameters, return types, etc.
Hence, researchers and practitioners begin to be aware of the
state-of-the-art and identify new research opportunities in this
context. Method: We review the body of knowledge related to
Extract Method refactoring in the form of a systematic literature
review (SLR). After compiling an initial pool of 1,367 papers, we
conducted a systematic selection and our final pool included 83
primary studies. We define three sets of research questions and
systematically develop and refine a classification schema based
on several criteria including their methodology, applicability,
and degree of automation. Results: The results construct a
catalog of 83 Extract Method approaches indicating that several
techniques have been proposed in the literature. Our results show
that: (i) 38.6% of Extract Method refactoring studies primarily
focus on addressing code clones; (ii) Several of the Extract
Method tools incorporate the developer’s involvement in the
decision-making process when applying the method extraction,
and (iii) the existing benchmarks are heterogeneous and do not
contain the same type of information, making standardizing
them for the purpose of benchmarking difficult. Conclusions:
Our study serves as an ‘“index” to the body of knowledge in
this area for researchers and practitioners in determining the
Extract Method refactoring approach that is most appropriate

Manuscript received 8 May 2023; revised 15 December 2023; accepted
15 December 2023. Date of publication 4 January 2024; date of current
version 19 April 2024. This work was supported in part by the National
Science Foundation under Grant CNS-2213765. Recommended for acceptance
by F. Ferrucci. (Corresponding author: Eman Abdullah AlOmar.)

Eman Abdullah AlOmar is with the School of Systems and Enter-
prises, Stevens Institute of Technology, Hoboken, NJ 07030 USA (e-mail:
ealomar @stevens.edu).

Mohamed Wiem Mkaouer is with the College of Innovation and Tech-
nology, University of Michigan-Flint, Flint, MI 48502 USA (e-mail:
mmkaouer @umich.edu).

Ali Ouni is with the Department of Software Engineering and IT, ETS
Montreal, University of Quebec, Montreal, QC H3C 3P8, Canada (e-mail:
ali.ouni @etsmtl.ca).

Digital Object Identifier 10.1109/TSE.2023.3345800

, Member, IEEE, Mohamed Wiem Mkaouer

, Member, IEEE,
, Member, IEEE

for their needs. Our findings also empower the community with
information to guide the future development of refactoring tools.

Index Terms—Extract method, refactoring, quality, systematic
literature review.

1. INTRODUCTION

EFACTORING is the art of restructuring code to improve
Rit without changing its external behavior [2]. One of the
basic building blocks of refactoring is Extract Method, i.e., the
process of moving a fragment of code from an existing method
into a new method with a name that explains its behavior.
Method extraction is one of the main refactorings that were
defined when this area was established [3], as it is a common
response to the need of keeping methods concise and modular,
and reducing the spread of shared responsibilities. Furthermore,
Extract Method serves as a bridge to facilitate more complex
refactorings [4]. Extract Method is widely employed by
developers across various systems'. It represents approximately
49.6% of the total refactorings recommended, as shown by
JDeodorant [5], one of popular tools that support Extract
Method refactoring. Moreover, open-source developers [6],
[71,[8],[9], [10], [11], [12], [13] and industry professionals [14]
consider it a critical refactoring operation. The popularity of this
refactoring is inherited from its multifaceted utility that can be
used for a myriad of reasons, such as removal of duplicate code
[15], [16], [17], [18], extraction of reusable methods [6], [19],
[20], wrapping older method signatures [6], decomposition of
long or complex structures [21], [22], [23], [24], [25], [26],
[27], and support of code testability [28], [29]. This wide variety
of usage scenarios shows why method extraction is considered
the Swiss Army knife of refactoring operations [30]. One of
the typical rationales behind method extraction is the removal
of duplicate code instances, which we can extract from a real-
world case. In this case, the committer has documented the
cleaning up of duplicate code. A closer inspection of the code
changes, illustrated in Fig. 1, reveals the elimination of code
duplication in four methods (i.e., getDummy (dataType
byte), getNext (obj Object, dataType byte,
genericGetNext (obj Object, dataType byte),
and accumChild(child List, o Object, data
Type byte), where four duplicates are extracted into one
separate method (i.e., genericGetNext (Object obj,

Based on JDeodorant statistics:

concordia.ca/nikolaos/”

tool usage “https://users.encs.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

ALOMAR et al.: BEHIND THE INTENT OF EXTRACT METHOD REFACTORING: A SYSTEMATIC LITERATURE REVIEW 669

PIG-1755: Clean up duplicated code in PhysicalOperators

Apache / pig git-svn-id: https://svn.apache.org/repos/asf/pig/trunk@le52127 13f79535-47bb-0310-9956-ffad450edef68

1~ public Result getlext(DetaBag db) throws ExecException {

2 List<ExpressionOperator> 1 = new ArraylList<ExpressionOperator>();
3 1.add(cond);

Result r = accumChild(1l, dummyBool);

» |if (r != null) {
7~ if (r.returnStatus != POStatus.STATUS_BATCH_OK) {
return rj

}

1.clear();
1.add(1hs);
1.add{rhs);

r = accumChild(1, db);
return r;

¥

Result res = cond.getNext(dummyBool);
if (res.result == null || res.returnStatus != POStatus.STATUS_OK)

return res; 1~ public Result getliext{DataBag db) throws ExecException {
20 Result result = 2 return fenericGetNext(db, DataType.BAG);
¥

2 ((Boolean) res.result) == true ? lhs.getNext(db) : rhs.getNext(db); 3

- 11iU5trat°rTz’:kUF("“11: result.result, ((Boolean) res.result) ? 2 : 1); S~ public Result getNext(DataByteArray ba) throws ExecException {
3 return result; 6 return EenericGetNext(ba, DataType.BYTEARRAY);

a8 ¥
°6~ public Besulf seiliext(Datadviearcay pa) throys Sxschxcsotion v public Result getlext(Double d) throws ExecException {
List<ExpressionCperator> list = new ArraylList<ExpressionOperator>(); @ return fgenericGetNext(d, Datalype.DOUBLE);
2 list.add(cond); i b

Result r = accumChild(list, dummyBool);

. , 13~ public Result getNext(Float f) throws ExecException {
lf.(" = null) { . 1 return fenericGetNext(f, Datalype.FLOAT);
if (r.returnStatus != POStatus.STATUS_BATCH_OK) { SN }

return r;
%ist.clear’()' ~ public Result genericGetNext(Object obj, byte dataTy; throws ExecException
1ist.add(1ns$' g List<ExpressionOperator> list = new ArrayList<ExpressionOperator>();
1ist.add(rhs); list.add(cond); . .
r = accumChild(list, ba); Result r = accumChild(list, dummyBool);
return r;

= Jif (r != null) {
- if (r.returnStatus != POStatus.STATUS_BATCH_OK) {
return r;

A1 Result res = cond.getNext(dummyBool);
if (res.result == null || res.returnStatus != POStatus.STATUS_OK) A
return res; =
Result result = r
((Boolean) res.result) == true ? lhs.getMext(ba) : rhs.getNext(ba);

illustratorMarkup(null, result.result, ((Boolean) res.result) 2 @ : 1); 1ist.add(r'n§); . i
return result; r = accumChild(list, obj, dataType);

return genericGetNext(ba, DataType.BYTEARRAY); 22) return r;
¥ Result res = cond.getNext(dummyBool);
~ |if (res.result == null || res.returnStatus != POStatus.STATUS_OK) {
return res;

¥
list.clear();
list.add(1lhs);

= Son
List<ExpressionOperator> list = new ArraylList<ExpressionOperator>();
list.add(cond);

Result r = accumChild(list, dummyBool);

¥

Result result = ((Boolean) res.result) == true ? lhs.getNext(obj, dataType)
: rhs.getNext(obj, dataType);

illustratorMarkup(null, result.result, ((Boolean) res.result) ? @ : 1);

return result;

6« | if (r 1= nu1) ¢
54 if (r.returnStatus != POStatus.STATUS_BATCH_OK) {
return r;

o

list.clear();
list.add(1lhs);
list.add(rhs);

r = gccumChild(list, d);
return r;

¥
6 Result res = cond.getNext(dummyBool);
7 if (res.result == null || res.returnStatus != POStatus.STATUS_OK)
6 return res;
Result result =

((Boolean) res.result) == true ? lhs.getNext(d) : rhs.getlNext(d); | | (7T ey
illustratorMarkup(null, result.result, ((Boolean) res.result) 2 @ : 1);

return result; Project: Apache/pig

= Commit ID: 7a516060213f5ac1fd559c124d2da0c0287757¢c7
~ gublic Besulf geiliext(Floal) throus Exectxception [

List<ExpressionOperator> list = new ArraylList<ExpressionOperator>();
list.add(cond);
Result r = accumChild(list, dummyBool);

Refactoring Type: Extract Method Refactoring

7o if (r != null) { | Extracted Methods: :
8@ r if (r.returnStatus != POStatus.STATUS_BATCH_OK) { i E
return rj : public getDummy(dataType byte) ;
. ' public getNext(obj Object, dataType byte) '
list.clear(); | protected genericGetlNext(obj Object, dataType byte) !
list.add(1lhs); | protected accumChild(child List, o Object, dataType byte) :
list.add(rhs); H H
r = accumChild(list,); : :
return r; ! |

8 ¥
89 Result res = cond.getNext(dummyBool);
if (res.result == null || res.returnStatus != POStatus.STATUS_OK)
91 return res;
Result result =
((Boolean) res.result) == true ? lhs.getlext(f) : rhs.getNext(f);
9 illustratorMarkup(null, result.result, ((Boolean) res.result) 2 @ : 1);
95 return result;

Legend

Call to the Extracted Method

D Extracted Code

Fig. 1. Sample example of Extract Method refactoring [1].

670 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

byte dataType) and then replaced with calls to the newly
extracted method.

Given its popularity and the diversity of its usage scenarios,
modern Integrated Development Environments (IDEs), such
as IntelliJ] IDEA, PyCharm, Eclipse, and Visual Studio offer
the Extract Method refactoring as a built-in feature, to sup-
port the correctness of code transformation and its behavior
preservation. However, the built-in feature only supports the
automation of the refactoring and not the recommendation of
opportunities to apply it. Therefore, various research projects
focused on recommending method extraction, by identifying
refactoring opportunities, such as making code more reusable
[6], [19], [20], removing duplicate code [15], [16], [17], [18],
improving testability through smaller test methods [28], [29],
and segregating multiple functionalities [21], [22], [23], [24],
[25], [26], [27]. Some of these studies have also implemented
their solutions in tools and plugins.

Despite the existence of built-in IDE features, and tools,
several surveys report a general reluctance of developers to
adopt them [6], [31], [32], [33], [34]. In fact, surveys show
that developers tend to manually extract methods despite the
associated effort and error-proneness [32].Existing research as-
sumes that practitioners have a clear and common understand-
ing of the intent behind method extraction, since it focuses
on improving the accuracy of identifying refactoring oppor-
tunities. Yet, a recent investigation of Stack Overflow posts,
related to Extract Method, outlines how developers are ask-
ing how to perform refactoring, whether there is tool sup-
port, and how to avoid any side effects [30]. Bridging the
gap between the state-of-the-art and the state-of-the-practice
starts with understanding the intent that drives primary stud-
ies (PSs) to identify refactoring opportunities and the extent
to which they support its execution. In fact, cataloging these
studies can facilitate their adoption by developers. Therefore,
this paper systematically maps existing research in the rec-
ommendation of Extract Method refactoring from six main
dimensions:

* Intent: refers to the motivation behind the need for a

method to be extracted, e.g., duplicate code removal.

* Code Analysis: refers to the type of source code analysis,
e.g., lexical and semantic code analysis.

* Code Representation: refers to the underlying code rep-
resentation being used during the extraction, e.g., source
code and AST.

¢ Detection: refers to the automation degree to which
a refactoring opportunity is detected, e.g., manual and
fully-automated.

e Execution: refers to the automation degree to which
a refactoring opportunity is executed, e.g., manual and
fully-automated

¢ Validation Method: refers to the approaches that have
been suggested for evaluation method extraction, e.g., case
study, and experiment.

Another interesting investigation relates to the existing
toolset implemented by researchers. We further classify them
based on various characteristics, including their target language,
availability, types of validation, etc.

Since little is known about the existing literature on Extract
Method refactoring, this SLR serves as a comprehensive re-
view of the body of knowledge on this topic to analyze exist-
ing techniques, and their associated programming languages.
The analysis of such a wide variety of methods leads to the
development of categorization and reveals areas of potential im-
provements. Therefore, when defining our research questions,
we follow established guidelines in systematic literature review
studies [35], [36], [37]. The motivation behind each question is
as follows.

* RQ: What approaches were considered by the PSs to

recommend Extract Method refactoring? We pose this
RQ to study current approaches for Extract Method, and
to get an overview of the existing approaches and their
characteristics. Accordingly, for each surveyed study, we
collect information about six main dimensions, together
with any associated tools.

* RQ,: What are the main characteristics of Extract
Method recommendation tools? This RQ dives deeper
into the characteristics of the tools. It outlines how they
were implemented, maintained, and validated.

* RQj3: What are the datasets, and benchmarks used for
evaluating and validating Extract Method recommenda-
tion approaches? This RQ investigates the datasets, and
benchmarks, which refers to systems and system artifacts,
that are chosen and used for evaluating and validating the
extraction of methods, and its results.

The main contributions of this paper are summarized

as follows:

* We conduct the first SLR to review Extract Method refac-
toring, and classifying its corresponding studies from var-
ious dimensions.

* We explore the existing toolset and benchmarks generated
by these studies. We provide a one-stop-shop website that
links to all the tools and datasets that we were able to
recover from the studies?.

e We provide practical implications of our findings for re-
searchers, developers, tool builders, and educators.

The remainder of this paper is organized as follows: Sec-
tion II reviews existing studies related to systematic reviews of
refactoring. Section III outlines our empirical setup in terms of
search strategy, study selection, and data extraction. Section IV
discusses our findings, while the research implications are dis-
cussed in Section V. Section VI captures threats to the validity
of our work before concluding with Section VII.

II. RELATED WORK

Zhang et al. [38] conducted a systematic literature review
(SLR) on 39 studies on bad code smells. They discussed these
studies based on various aspects including the goals of the
studies, the type of code smells, the approaches to detect code
smells, and finally, their refactoring opportunities. Their main
finding shows that Duplicated Code and Long Method are

Zhttps://refactorings.github.io/em-slt/

ALOMAR et al.: BEHIND THE INTENT OF EXTRACT METHOD REFACTORING: A SYSTEMATIC LITERATURE REVIEW 671

among the most studied code smells. Furthermore, they found
that nearly 49% of the primary studies aim to improve tools
to detect code smells, while only 15% focus on enhancing the
current knowledge of refactoring code smells. Later, Abebe and
Yoo [39] conducted another systematic review of 58 studies
to reveal software refactoring trends, opportunities, and chal-
lenges. Their classification helped guide researchers to address
the crucial issues in software refactoring. The authors pointed
out that one of the gaps in refactoring research is the lack
of a refactoring tool that provides custom refactoring for all
specific user needs. After that, AlDallal [40] conducted an
SLR of 47 PSs published on identifying refactoring opportu-
nities in object-oriented code. AlDallal’s review classified PSs
based on the considered refactoring scenarios, the approaches
to determine refactoring candidates, and the datasets used in
the existing empirical studies. In their study, Extract Method
refactoring is used in refactoring identification approaches,
i.e., quality metrics-oriented, precondition-oriented, clustering-
oriented, graph-oriented, and code-slicing-oriented approaches.
In the following SLR work by AlDallal and Abdin [42], they
discussed 76 PSs and classified them based on refactoring
quality attributes of object-oriented code. Their finding shows
that the authors of the PSs studied the impact of the Extract
Method refactoring on quality much more frequently, and was
considered by 11.8% or more of the PSs. Thereafter, Singh
and Kaur [41] performed an SLR as an extension of AlDallal’s
SLR [40] where they analyzed 238 research items in code smell
detection and its refactoring opportunities to address some re-
search questions left open in AlDallal’s SLR. Their finding re-
veals that Extract Method refactoring was used in metric-based
detection techniques. Baqais and Alshayeb [44] conducted a
systematic literature review on automated software refactoring.
In their review, they analyzed 41 studies that propose or develop
different automatic refactoring approaches, finding that Extract
Method used in precondition-based approaches.

Other studies focus on search-based refactoring where search
techniques are used to identify refactoring recommendations.
Mariani and Vergilio [43] systematically reviewed 71 studies
and classified them based on the main elements of search-
based refactoring, including artifacts used, encoding and al-
gorithms used, search technique, metrics addressed, available
tools, and conducted evaluation. Mariani and Vergilio classified
the selected PSs into five general categories related to behavior
preservation methods. These categories involved (1) Opdyke’s
function [48], (2) Cinnéide’s function [49], (3) domain-specific,
(4) no evidence of behavior preservation, and (5) do not men-
tion the method. One of their main takeaways is the need for
search-based approaches to explore the need to achieve fully
automated approaches for refactoring. Lacerda et al. [45] per-
formed a tertiary systematic literature review of 40 secondary
studies to identify the main observations and challenges on code
smell and refactoring. Their finding shows that code smells and
refactoring strongly correlate with quality attributes. They con-
cluded that few refactoring tools exist, and some are obsolete.
There is an opportunity to propose and improve Extract Method
refactoring tools, especially tools to predict and evaluate the
effects of refactoring. Abid et al. [46] analyzed the results of

TABLE I
REFACTORING-RELATED SLRS IN RELATED WORK

Study Year Focus No of PSs
Zhang et al. [38] 2011 Bad smells and refactoring 39
Abebe and Yoo [39] 2014 Refactoring trends and challenges 58
AlDallal [40] 2015 Refactoring identification 47
Singh and Kaur [41] 2017 Refactoring identification 238
AlDallal and Abdin [42] 2017 Impact of refactoring on quality 76
Mariani and Vergilio [43] 2017 Search-based refactoring 71
Bagqais and Alshayeb [44] 2020 Automatic refactoring 41
Lacerda et al. [45] 2020 Code smells and refactoring 40
Abid et al. [46] 2020 Refactoring research efforts 3183
AlOmar et al. [47] 2021 Refactoring behavior preservation 28
This work Extract Method refactoring 83

3,183 primary studies on refactoring covering the last three
decades to offer a comprehensive literature review of existing
refactoring research studies. The authors derived a taxonomy
focused on five key aspects of refactoring including refactoring
lifecycle, artifacts affected by refactoring, refactoring objec-
tives, refactoring techniques, and refactoring evaluation. They
highlight the need to validate refactoring techniques and tools
using industrial systems to bridge the gap between academic
research and industry’s research needs.

AlOmar et al. [47] conducted a systematic literature map-
ping to identify behavior preservation approaches in software
refactoring. Their key finding reveals the variety of formalisms
and techniques such as developing automatic refactoring safety
tools and performing a manual source code analysis. However,
researchers are biased toward using precondition-based and
testing-based approaches although there are other techniques
(e.g., graph-based) that have some potential and perhaps they
are effective for specific problems that have not yet been well
explored. Further, the authors found that Extract Method refac-
toring is one of the most widely used refactoring operations in
PSs to demonstrate behavior preservation.

Table I summarizes existing SLRs on software refactoring.
Overall, we observe that all the above-mentioned studies focus
on either (1) detecting refactoring opportunities through the
optimization of structural metrics or the identification of design
and code defects, (2) automating the generation and recommen-
dation of the most optimal set of refactorings to improve the
system’s design while minimizing the refactoring effort, so that
developers still can recognize their own design, or (3) demon-
strating comprehensive literature review of existing refactoring
research studies and the concept of behavior preservation. Our
work differs from these studies, as our SLR focuses primarily on
collecting and summarizing specifically Extract Method refac-
toring techniques, the “Swiss army knife of refactorings” [6],
[7] with an in-depth analysis. To the best of our knowledge, no
previous work has conducted a comprehensive SLR pertaining
to Extract Method techniques in software refactoring.

III. STUDY DESIGN

This SLR aims to explore the landscape of approaches and
tools that recommend the Extract Method refactoring. Based on
established guidelines [35], [36], [50], [51], [52], we performed

672 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

the SLR in three main phases: planning, reviewing, and report-
ing the review. Creating a protocol is a major step when con-
ducting an SLR [35]. The planning phase involves identifying
the need for a review and the development of a review protocol
(described in Section III-A). The review phase encompasses the
selection of primary studies, the assessment of the study, data
extraction, and data synthesis (described in Sections III-B and
III-D). Finally, the reporting phase emphasizes recording the
review, which involves observing documents, and presenting
the obtained results (described in Section IV).

A. Survey Planning

The planning phase highlights the research motivation that
leads to the development of research questions.

1) Identifying the Need for a Systematic Literature Review:
The absence of comprehensive and current secondary research
that delves into the Extract Method underscores the need for
a comprehensive Systematic Literature Review (SLR). While
there have been SLRs in the field of refactoring, their focus
remains confined to the automation of refactoring, the impact of
refactoring on quality, detection of code smells and trends, chal-
lenges, and application of refactoring, which none specializes
in Extract Method. Thus, the core motivation behind carrying
out this SLR is to:

e Collect the body of knowledge of Extract Method refac-

toring approaches in the research literature.

e Combine and analyze the reported findings regarding

Extract Method approaches.

* Identify open issues in existing research.

2) Specifying the Research Questions: During the process
of conducting an SLR, it is of paramount importance to pinpoint
pertinent research questions that have the potential to provide
clear answers. We identified three such research questions:

* RQ;: What approaches were considered by the PSs to

recommend Extract Method refactoring?
* RQ,: What are the main characteristics of Extract
Method recommendation tools?

¢ RQj: What are the datasets, and benchmarks used for
evaluating and validating Extract Method recommen-
dation approaches?

B. Primary Studies Selection

In alignment with the research questions, we extracted the
initial terms that encapsulated the research topic. Referring to
previous reviews of the literature within the field, we developed
search keywords incorporating synonyms and related terms.

1) Search Strategy: Similar to Fernandes et al. [53], we
performed an automatic search in seven electronic data sources
to find relevant studies, including ScienceDirect’, Scopus®,
Springer Link>, Web of Science®, ACM Digital Library’, IEEE

3https://www.sciencedirect.com/
“https://www.scopus.com
Shttps://link.springer.com/
Shttps://webofknowledge.com/
7https://dl.acm.org/

((extract method OR extract-method OR method extract*®
OR method-extract* OR extract function OR extract-
function OR function extract* OR function-extract* OR split
method OR split-method OR method split* OR method-
split* OR split function OR split-function OR function
split* OR function-split* OR separat* method OR separat*-
method OR method separat* OR method-separat* OR sepa-
rat* function OR separate-function OR function separat* OR
function-separat*) AND (long method OR long function OR
large method OR large function OR duplicat* code OR code
duplicat* OR code clone OR code bad smell OR code smell
OR bad smell OR antipattern OR anti-pattern OR design
defect OR design flaw) AND (refactor®*) AND (approach OR
tool OR technique))

Text Box1: Search string.

Xplore®, and Wiley”. TextBox I shows our search string in these
search engines.

The strategy to construct our search keywords is as follows:

¢ Derive the main terms from research questions and terms
considered in the relevant papers.

* Include alternative spellings for major terms.

e Combine possible synonyms and spellings of the main
terms using Boolean OR operators and then combine the
main terms using the Boolean AND operators.

These search keywords are applied to titles, abstracts, and
keywords. To verify the validity of the search string, we man-
ually double-checked a few articles from each of the seven
digital libraries, similar to Garousi and Mintyld [54]. Also,
during the review of this manuscript, reviewers pointed out a set
of keywords whose incorporation helped with revealing more
studies that were finally included. To get a high-level picture of
the covered topics, we generated a word cloud of paper titles,
as depicted in Fig. 3.

2) Study Selection: To collect the PSs, we adapted the search
process of AlDallal and Abdin [42] and conducted a five-
phased process. Literature publications were eliminated based
on the defined inclusion and exclusion criteria to filter our
irrelevant articles.

Inclusion criteria (IC):

The selected studies must satisfy all the following inclu-
sion criteria:

* The article must be published in peer-reviewed venues

before August 26, 2023.

 The article must report an approach to recommend Extract
Method refactoring.

Exclusion criteria (EC):

Papers are excluded if satisfying any of the exclusion criteria,

as follows:

e The study is a position paper, abstract, blog, editorial,
keynote, tutorial, book, patent, or panel discussion.

* The study is not written in English.

8https://ieeexplore.ieee.org/
9https://onlinelibrary.wiley.com/

ALOMAR et al.: BEHIND THE INTENT OF EXTRACT METHOD REFACTORING: A SYSTEMATIC LITERATURE REVIEW 673

| Digital library selection | """"""""""""""

@,
2

Springer

ScienceDirect Scopus Web of Science

exclude articles
(title & abstract)

identify potentially

) remove duplicates
relevant articles

Fig. 2. Literature search process.

TCS Buss

C(

recommending learning i

réfactor

SUpportrecommendatlon

java

messages
empirical

machine

usm

procedure

|dent|f|cat|on mautomatic

indicators
@ gaph

approach

\ Shalysis
.dent.fy.ngcl one:

opportlnities
gla)tomated

Fig. 3. Word cloud of paper titles of primary studies.

Regarding the second inclusion criteria, we only considered
PSs that reported an approach to recommend Extract Method
refactoring. We excluded any other articles that provided a
broad explanation of the concept of Extract Method refactoring.

Stage 1: Identification of potentially relevant articles.
In this first stage of the selection process, shown in Fig. 2, we
searched seven digital libraries for potentially related articles.
Our criteria included applying our predefined search string to
the title, abstract, and keyword fields. The results of this search
were not limited to specific venues. Searching through the seven
digital libraries resulted in a total of 1,367 publications in the

exclude articles
(full text)

:ﬁ:
Y
S|
Stage 5
snowballin final set of
9 articles

literature. We performed the initial screening of the articles to
reduce the possibility of including irrelevant articles.

Stage 2: Removal of duplicates. By merging the results
obtained from the search platforms, we remove duplicate pub-
lications, books, and reports, which resulted in a total of 943
literature publications.

Stage 3: Exclusion of articles based on title and abstract.
It is important to consider the abstracts at this stage because
the titles of some articles could be misleading. Inclusion and
exclusion rules were applied at this stage to all retrieved stud-
ies. This elimination process reduced our set of results to 114
publications in the literature. When a determination cannot be
reached solely based on the title and abstracts, the studies are
promoted to the next stage.

Stage 4: Exclusion of articles based on full text. To
obtain the relevant PSs, the identified papers in Stage 3 were
reviewed. Literature reviews were eliminated based on defined
exclusion and inclusion rules. This process resulted in a total
of 66 literature publications that were included in this study.

Stage 5: Snowballing. To maximize the search coverage of
all relevant papers, we also performed the snowballing tech-
nique [36] on 66 papers already in the pool. Using snowballing,
we extracted 1,958 references from the reference section of
the studies, and extracted studies citing the 66 selected studies.
We combined the results and filtered out duplicate records,
along with books, and non-peer reviewed studies. Then, we
compare this set with 943 primary studies obtained from Stage
2 to further refine the studies. This step resulted in the addition
of 17 additional papers, where some of them did not explicitly
mention the recommendation of Extract Method in their titles
and abstracts. The updated pool size increased to 83.

674 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

C. Study Quality Assessment

To assess the quality of PSs, we followed the guidelines
proposed in [35], [55], [56]. We chose three quality assessment
questions that could be applicable to all PSs, and each PS
is evaluated against three questions within three dimensions
of study quality (i.e., objective, method, and coverage of the
studies). The corresponding questions are as follows: Q1) Does
the study’s primary objective explicitly focus on the Extract
Method refactoring?; Q2) Does the study include structured
and preferably automatic or semi-automatic Extract Method
approaches?; and Q3) Does the study sufficiently describe
the Extract Method technique, algorithm, and evaluation?.
These questions are implicitly used in the above refinement
stages. If a PS passes these quality criteria, we believe that
a PS has valuable information for SLR. The answer to each
of these questions is either “Yes”, “Partially”, or “No” with
numerical values of 1, 0.5, or 0, respectively. If the questions
did not apply to the context of a PS, they were not evaluated.
The overall quality of each PS is calculated by summing up the
scores of the applicable questions. In general, all the published
articles in the accepted literature scored well on the quality
assessment questions.

D. Data Extraction, Categorization, and Analysis

To determine the attribute(s) of the classification dimension
[57], [58], we screened the full texts of the PSs and identified
the attribute(s) of that dimension. We used attribute(s) general-
ization and refinement to derive the final map, similar to [54].
Specifically, we analyzed the PSs to create a comprehensive
high-level list of themes, extracted from a thematic analysis,
based on guidelines provided by Cruzes et al. [59]. Thematic
analysis is among the most used methods in Software Engi-
neering literature [6], [60], [61], for identifying and recording
patterns (or “themes”) within a collection of descriptive labels,
which we call “codes”. For each PS, we proceeded with the
analysis using the following steps: i) Initial reading of the PSs;
i1) Generating initial codes (i.e., labels) for each PS; iii) Trans-
lating codes into themes, sub-themes, and higher-order themes;
iv) Reviewing the themes to find opportunities for merging;
v) Defining and naming the final themes, and creating a model
of higher-order themes and their underlying evidence.

Inspired by previous studies [62], [63], we initiated our study
by adopting existing taxonomies to categorize PSs. To carry out
the manual coding of PSs, we used a spreadsheet application
equipped with tagging capabilities. This spreadsheet provided
the annotators with the following information: (1) the paper
title and study link, (2) why Extract Method is performed
(i.e., intent), (3) the type of source code analysis (i.e., code
analysis), (4) the underlying code representation used during
the extraction (i.e., representation), (5) the automation degree
of detecting the refactoring opportunity, (6) the automation
degree of executing the recommended refactoring, and (7) the
type of experiments carried out to validate the method. When
creating our customized classification dimensions, annotators
could select from preexisting tags in a drop-down menu or
create a new one if none of the existing tags fits the specific

case (i.e., each annotator had the flexibility to assign one or
more tagging items).

The above-mentioned steps were performed independently
by two authors. One author performed the labeling of PSs inde-
pendently of the other author, who was responsible for review-
ing the currently drafted themes. At the end of each iteration,
the authors met and refined the themes to reach a consensus. It is
important to note that the approach is not a single-step process.
As the codes were analyzed, some of the first cycle codes were
subsumed by other codes, relabeled, or dropped altogether. As
the two authors progressed in translating the themes, there was
some reorganization, refinement, and reclassification of the data
into different or new codes. For example, we aggregated, into
“Intent”, the preliminary categories “duplicated code”, “code
clone”, “long method”, and “separation of concerns”. We used
the thematic analysis technique to address RQ; and RQ;.

E. Final Primary Studies Selection

The research method discussed in Section III resulted in
83 relevant PSs. The main venues for these relevant PSs are
presented in Table II. The PSs were published in 55 differ-
ent sources, including journals, conferences, and workshops.
The list specifically includes 12 journals, 37 conferences, and 8
workshops. The first relevant article was published in a journal
in 1998, whereas the most recent one was published in 2023.
The number of literary papers published in journals, confer-
ences, and workshops combined, is presented in Fig. 4. This
figure illustrates a trend that began in 2017, resulting in a higher
number of studies conducted between 2017 and 2023 compared
to the total of studies published before 2017. This growing
interest in this refactoring incites further research to improve
its adoption in practice.

IV. RESULTS

This section reports and discusses the results of our study.

A. What Approaches Were Considered by the PSs to Recom-
mend Extract Method Refactoring?

A detailed overview of the Extract Method refactoring ap-
proaches reported by the 83 PSs is shown in Table III. Upon
analyzing the PSs, we extract comprehensive high-level cate-
gories grouping the techniques used to implement the Extract
Method refactoring. These PSs are based on three main cate-
gories: (1) Code Clone, Long Method, and Separation of Con-
cerns (SoC). Fig. 6 shows the percentages of Extract Method
studies clustered by the detected intent. The Code Clone cat-
egory had the highest number of PSs, with a ratio of 38.6%.
The Separation of Concerns (SoC) category accounted for
34.9%, with Long Method representing 26.5%. Notably, these
categories show minimal variation within the range of 26.5%
to 38.6%. It should be noted that most of the Extract Method
refactoring tools (49%) are primarily designed for the purpose
of removing code clones. In the rest of this section, we provide
a more in-depth analysis of each of these categories along with
the corresponding PSs.

ALOMAR et al.: BEHIND THE INTENT OF EXTRACT METHOD REFACTORING: A SYSTEMATIC LITERATURE REVIEW 675

TABLE II
PUBLICATION VENUES

Publication Venue PSs
Symposium on Software Reusability [64]
International Conference on Software Engineering [8], [65], [66], [67], [68], [69]
C on Software Mais and i in, [70]
Journal of Systems and Software [711, [721, [73]
Asia-Pacific Software Engineering Conference 211, [74
Workshop on Refactoring Tools [751, [761, [771, [78], [79]
i C on Program C i [801, [81], [82]
Agile Processes in Software Engineering and Extreme Programming [83]
Transactions on Software Engineering [10], [84], [85], [86]
International Conference on Software Quality 871, [88]
International Symposium on Software Reliability Engineering [89]
ional C on Software Mai and Evolution [90], [91]
International Workshop on Refactoring [15]
IEEE Access 921
posium on the of Software Engineerin; (141
Innovations in Software Engineering Conference 23]
i C d Software Engineering [93], 941
and Software Technolog; 1951, [96], [97]
Science of Computer Programming [16]
Conference on Software: Theory and Practice 98]
International Conference on the Art, Science, and Engineering of Programming 199]
Computer Software and Applications Conference [100]
International Journal of Software Engineering and Knowledge Engineering [101]
International Conference on Software Engineering and Knowledge Engineering [102]
Automated Software Engineering Journal [103]
Machine Learning with Applications [104]
Empirical Software Engineering [105]
International Requirements Engineering Conference [106]
Algorithms [107]
International Conference on Software Analysis, Evolution and Reengineering [108], [109], [110]
International ion for ion Processin [111
Conference on Object-oriented programming systems and applications [11], [112], [113]
IEICE Transactions on Information and Systems [114]
International Conference on Computer and Communications [115]
TASTED Conf. on Software Engineering and Applications [116]
ACM SIGSOFT Software Engineering Notes [117]
OOPSLA workshop on Eclipse technology eXchange [118]
International Conference on Product Focused Software Process Improvement [119]
Journal of Software Maintenance and Evolution: Research and Practice [18]
International Conference on Soft Computing Techniques and Engineering Application [120]
International Conference on Electrical Engineering/Electronics, Computer [121]
Telecommunications and Information Technology
International conference on Aspect-oriented software development [122]
Conference on software engineering and advanced applications [9]
Annual Computer Software and Applications Conference [123]
International Conference on Predictive Models and Data Analytics in Software Engineering [124]
Transactions on Software Engineering and Methodology [125]
International Conference on Software Maintenance [126]
Co on Software Mai ineering, and Reverse Engineering (1271
Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing ~ [128]
International Workshop on Software Clones [129], [130]
p on Software Evolution through Ti i [131]
Symposium on Principles of Programming Languages [132]
ACM SIGPLAN workshop on Partial ion and program i [133], [134]
Working Conference on Reverse Engineering [135]
Seminar on Advanced Techniques Tools for Software Evolution [136]

0
Q

PP DL N O &V O D> o O o ¥l
o S PFPFIFIFRS FF I S P \%
ISR ENINENEN N INENENIS NN EN SN NN N RO NENENEN

Fig. 4. Distribution of primary studies by year.

Category #1: Code Clone. This category refers to studies
that are designed to recommend Extract Method refactoring op-
portunities to eliminate Code Clone design defects. Refactoring
Code Clone consists of taking a code fragment and moving it
to create a new method while replacing all instances of that
fragment with a call to this newly created method. It is worth
noting that some PSs [15], [18], [67], [68], [69], [72], [82],
[86], [90], [92], [96], [109], [110], [116], [117], [119], [120],
[123], [126], [127], [128], [129], [130], [131], [132], [133],
[134], [135], [136], [137] utilized the concept of Code Clone

to consider some or all types of clones (i.e., Type 1, Type 2,
Type 3, Type 4), and others [83], [93], [97] utilized Duplicate
Code by considering Type 1 clone.

Komondoor and Horwitz [132] proposed an algorithm to
select statements that are worth extracting while ensuring se-
mantics preservation. The authors identify conditions based on
control and data dependencies, and the algorithm suggests mov-
ing the selected statements when the conditions hold. CloRT
[135] is developed to take into account the shared elements of
cloned methods while utilizing the strategy design pattern to
differentiate them. A dynamic pattern matching algorithm is
used to identify the semantic distinctions between clones and
their translation in terms of programming language entities.
Komondoor and Horwitz [82] propose a semantic preserving
algorithm for extracting difficult sets of statements, including
the detection of duplicated fragments and extracting them into
procedures, to make them extractable, achieving ideal results in
more than 70% of the difficult cases. Aries [18], [116], [117] is
an Extract Method refactoring tool based on code clone analysis
on top of their previous tool CCShaper [119], enabling users
to select which clones to remove by characterizing code clones.
Juillerat and Hirsbrunner [131] propose an algorithm for Extract
Method refactoring to remove code clone. The algorithm first
constructs the abstract syntax tree of Java code, then generates a
list of tokens for clone identification, and finally identify clone
that obeys certain constraints for Extract Method refactoring.
Wrangler [134] is a hybrid approach based on tokens and AST
to detect code clones in Erlang/OTP programs automatically.
The proposed clone detection approach is capable of reporting
code fragments that are syntactically identical and support clone
removal using function extraction. HaRe [133] is designed for
Haskell to detect and eliminate code duplication for function
extraction. Choi et al. [130] extract code clones for refactoring
by combining clone metrics. Their observation is that the com-
binations of these metrics can identify refactorable clone classes
with higher precision. CeDAR [96] is an Eclipse plug-in that
sends the results of clone detection data to Eclipse, and the IDE
receives the information and determines which clones can be
refactored by specifying the clones with specific properties to be
refactored. This tool reportedly detects considerably more clone
groups compared to open-source artifacts. FTMPAT [129] in-
troduces a method that relies on slice-based cohesion metrics to
merge software clones. The method starts by taking two similar
methods as input and first detect syntactic differences between
them using AST differencing. Subsequently, it identifies pairs
of code fragments within these methods, to serve as suitable
candidates for Extract Method. Then, the identified candidates
are then evaluated and prioritized using slice-based cohesion
metrics. SPAPE [72], [120] is a near-miss clone extraction
method applied to ten large-scale open-source software and
reportedly can extract more clones than this software. SPAPE
was initially developed in C programming language to refactor
near-miss clones automatically. The tool utilizes a symbolic
program execution to transform data and identify duplicated
code to ensure cohesiveness for programmers.

Krishnan et al. [126], [127] propose an algorithm for refac-
toring of software clones with two objectives: maximize the

676

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

TABLE III

RELATED WORK IN RECOMMENDING THE EXTRACT METHOD REFACTORING OPPORTUNITIES

Study Year Intent Code Analysis Code Representation Detection Execution Validation Method
Lakhotia and Deprez [95] 1998 Long Method Semantic Graphs Manual Suggest Alternatives Proof of Concept
Balazinska et al. [135] 1999 Code Clone Syntactic AST Fully automated Fully automated Proof of Concept
Komondoor and Horwitz [132] 2000 Code Clone Semantic Graphs Manual Fully automated Proof of Concept
Maruyama [64] 2001 Separation of Concerns Semantic Graphs Manual Choose Candidates Proof of Concept
Komondoor and Horwitz [82] 2003 Code Clone Semantic Graphs Manual Fully automated Proof of Concept
Ettinger and Verbaere [122] 2004 Separation of Concerns Semantic Graphs Manual Fully automated Proof of Concept
Higo et al. [119] 2004 Code Clone Lexical Tokens Fully automated Choose Candidates Case Study

Higo et al. [116] 2004 Code Clone Semantic Graphs Fully automated Fully automated Case Study

Higo et al. [117] 2005 Code Clone Lexical Tokens Fully automated Execute on Approval Case Study

Higo et al. [18] 2008 Code Clone Textual Source Code Fully automated Execute on Approval Case Study
O’Connor et al. [118] 2005 Separation of Concerns Syntactic AST Semi-automated Suggest Alternatives Proof of Concept
Juillerat and Hirsbrunner [131] 2006 Code Clone Syntactic AST Fully automated Fully automated Proof of Concept
Juillerat and Hirsbrunner [78] 2007 Separation of Concerns Syntactic AST Manual Fully automated Proof of Concept
Vittek et al. [111] 2007 Separation of Concerns Syntactic AST Manual User Input Proof of Concept
Corbat et al. [112] 2007 Separation of Concerns Syntactic AST Manual Choose Candidates Proof of Concept
Murphy-Hill and Black [8] 2008 Separation of Concerns Textual Source Code Manual Choose Candidates Experiment
Abadi et al. [79] 2008 Separation of Concerns Textual Source Code Manual Fully automated Case Study
Abadi et al. [77] 2009 Separation of Concerns Textual Source Code Manual Fully automated Case Study
Tsantalis and Chatzigeorgiou [70] 2009 Long Method Textual Source Code Fully automated ~ Suggest Alternatives ~ Experiment
Tsantalis and Chatzigeorgiou [71] 2011 Long Method Textual Source Code Fully automated ~ Suggest Alternatives ~ Experiment
Yang et al. [21] 2009 Long Method Textual Source Code Manual Suggest Alternatives ~ Case Study

Li and Thompson [134] 2009 Code Clone Hybrids AST and Tokens Manual Suggest Alternatives Case Study
Brown and Thompson [133] 2010 Code Clone Hybrids AST and Tokens Manual Suggest Alternatives Case Study
Kanemitsu et al. [75] 2011 Separation of Concerns Semantic Graphs Manual Suggest Alternatives ~ Experiment
Meananeatra et al. [121] 2011 Long Method Syntactic Metrics Manual Suggest Alternatives Proof of Concept
Choi et al. [130] 2011 Code Clone Lexical Tokens Fully automated ~ Manual Case Study
Sharma [76] 2012 Separation of Concerns Semantic Graphs Manual Fully automated Proof of Concept
Cousot et al. [113] 2012 Separation of Concerns Textual Source Code Manual Fully automated Proof of Concept
Tairas and Gray [96] 2012 Code Clone Syntactic AST Fully automated Choose Candidates Experiment
Kaya and Fawcett [102] 2013 Long Method Textual Source Code Fully automated ~ Manual Experiment

Goto et al. [129] 2013 Code Clone Syntactic AST Manual Fully automated Case Study

Bian et al. [72] 2013 Code Clone Hybrids AST and Graphs Manual Fully automated Experiment

Bian et al. [120] 2014 Code Clone Syntactic Metrics Fully automated ~ Manual Experiment
Krishnan and Tsantalis [126] 2013 Code Clone Textual Source Code Fully automated ~ User Input Experiment
Krishnan and Tsantalis [127] 2014 Code Clone Hybrids AST and Graphs Fully automated ~ User Input Experiment
Tsantalis et al. [86] 2015 Code Clone Hybrids AST and Source Code and Tokens Fully automated ~ User Input Experiment
Mazinanian et al. [67] 2016 Code Clone Hybrids AST and Source Code and Tokens Fully automated User Input Experiment
Tsantalis et al. [68] 2017 Code Clone Hybrids AST and Source Code and Tokens Fully automated ~ User Input Experiment

Silva et al. [80] 2014 Separation of Concerns Textual Source Code Fully automated ~ Suggest Alternatives ~ Experiment

Silva et al. [98] 2015 Separation of Concerns Textual Source Code Fully automated ~ Suggest Alternatives Experiment
Fontana et al. [83] 2015 Code Clone Hybrids AST and Source Code Fully automated Suggest Alternatives Experiment
Meng et al. [69] 2015 Code Clone Syntactic AST Fully automated Fully automated Experiment
Charalampidou et al. [124] 2015 Long Method Syntactic Metrics Fully automated Fully automated Case Study
Charalampidou et al. [10] 2016 Long Method Syntactic AST and Metrics Fully automated Fully automated Case Study
Charalampidou et al. [9] 2018 Long Method Syntactic Metrics Fully automated Fully automated Case Study

Haas and Hummel [87] 2016 Long Method Hybrids Source Code and Graphs Manual Suggest Alternatives ~ Experiment

Haas and Hummel [88] 2017 Long Method Hybrids Source Code and Graphs Manual Choose Candidates Experiment

Xu et al. [89] 2017 Separation of Concerns Textual Source Code Fully automated ~ Choose Candidates Experiment
Imazato et al. [100] 2017 Separation of Concerns Textual Source Code Fully automated = Manual Experiment
Kaya and Fawcett [101] 2017 Long Method Semantic Graphs Fully automated Fully automated Experiment
Maruyama and Hayashi [66] 2017 Separation of Concerns Textual Source Code Manual Choose Candidates Proof of Concept
Xu et al. [115] 2017 Long Method Syntactic Metrics Fully automated ~ Manual Experiment
Chen et al. [123] 2017 Code Clone Syntactic AST Manual Fully automated Case Study
Ettinger and Tyszberowicz [110] 2016 Code Clone Textual Source Code Manual Fully automated Proof of Concept
Ettinger et al. [109] 2017 Code Clone Semantic Graphs Manual Fully automated Proof of Concept
Meananeatra et al. [114] 2018 Long Method Hybrids AST and Graphs Manual Execute on Approval Case Study

Choi et al. [74] 2018 Long Method Syntactic Metrics Fully automated Manual Experiment

Yue et al. [90] 2018 Code Clone Syntactic AST Fully automated ~ Manual Experiment
Vidal et al. [125] 2018 Long Method Textual Source Code Fully automated Choose Candidates Case Study
Yoshida et al. [15] 2019 Code Clone Hybrids AST and Tokens Fully automated ~ Choose Candidates Experiment

Shin [128] 2019 Code Clone Syntactic AST Fully automated Fully automated Case Study
Barrs and Oprescu [136] 2019 Code Clone Hybrids AST and Graphs Fully automated ~ Manual Experiment
Antezana [65] 2019 Long Method Textual Source Code Manual Choose Candidates Experiment
Alcocer et al. [16] 2020 Long Method Textual Source Code Manual Choose Candidates Experiment
Nyamawe et al. [106] 2019 Separation of Concerns Textual Text Fully automated ~ Manual Experiment
Nyamawe et al. [105] 2020 Separation of Concerns Textual Text Fully automated ~ Manual Experiment
Krasniqi and Cleland-Huang [108] 2020 Separation of Concerns Textual Text Fully automated Manual Experiment

Abid et al. [85] 2020 Separation of Concerns Textual Source Code Manual User Input Experiment
Sheneamer [92] 2020 Code Clone Hybrids AST and Graphs and Tokens Fully automated ~ Manual Experiment
Aniche et al. [84] 2020 Separation of Concerns Syntactic Metrics Fully automated ~ Manual Experiment

Van der Leij et al. [14] 2021 Separation of Concerns Syntactic Metrics Fully automated =~ Manual Experiment
Sagar et al. [107] 2021 Separation of Concerns Hybrids Text and Metrics Fully automated ~ Manual Experiment
AlOmar et al. [103] 2022 Separation of Concerns Textual Text Fully automated =~ Manual Experiment
Nyamawe [104] 2022 Separation of Concerns Textual Text Fully automated ~ Manual Experiment
Shahidi et al. [73] 2022 Long Method Hybrids Graphs and Metrics Fully automated Fully automated Experiment
Tiwari and Joshi [23] 2022 Long Method Semantic Graphs Fully automated ~ Manual Experiment
Fernandes et al. [94] 2022 Long Method Syntactic Metrics Fully automated ~ Execute on Approval Experiment
Fernandes et al. [99] 2022 Long Method Syntactic Metrics Fully automated Execute on Approval Experiment
AlOmar et al. [93] 2022 Code Clone Syntactic Metrics Fully automated Execute on Approval Experiment
AlOmar et al. [97] 2023 Code Clone Syntactic Metrics Fully automated ~ Execute on Approval Experiment

Cui et al. [81] 2023 Separation of Concerns Semantic Graphs Fully automated ~ Manual Experiment

Thy et al. [11] 2023 Separation of Concerns Textual Source Code Fully automated Fully automated Case Study

Palit et al. [91] 2023 Separation of Concerns Semantic Graphs Fully automated ~ Manual Experiment

ALOMAR et al.: BEHIND THE INTENT OF EXTRACT METHOD REFACTORING: A SYSTEMATIC LITERATURE REVIEW 677

number of mapped statements and, at the same time, minimize
the number of differences between the mapped statements.
The authors compared the proposed technique with CeDAR and
concluded that their approach can find a significantly larger
number of refactorable clones. In other studies [67], [68], [86],
JDeodorant has been extended to identify Extract Method
opportunities for Code Clone extraction. The tool automatically
assesses whether a pair of clones can be safely refactored while
preserving the behavior. The authors were able to increase the
percentage of refactorable clones to 36% on the same clone
dataset used by Tairas and Gray [96]. Duplicated Code Refac-
toring Advisor (DCRA) [83] is released to select and suggest
the best refactorings of duplicated code, aiming to reduce the
human involvement during Duplicated Code refactoring pro-
cedures. The tool used NiCad [138] for clone detection, which
adds information characterizing every clone, e.g., the clone’s
location in the class hierarchy, its size, and type. Next, through
the refactoring advisor, the tool suggests the refactorings to
remove the clones and provide a ranking of their quality. RASE
[69] is a clone removal tool that can apply combinations of six
refactorings. Extract Method is one of these refactroings used
to extract common code guided by systematic edits. PRI [123]
employs refactoring pattern templates and traces cloned code
fragments across revisions. PRI takes as input the results from
a clone detector, and then automatically identifies refactored
regions through refactoring pattern rules in the subsequent re-
visions, and summarizes refactoring changes across revisions.
Ettinger et al. [109], [110] contribute to the automation of type-
3 clone elimination by preparation of non-contiguous code for
extraction in a new method. CREC [90] is a learning-based ap-
proach that proposes specific clones through feature extraction.
The tool initially refactors R-clones (historically refactored) and
NR-clones (typically not refactored). This process is carried
out using 34 features that analyze the characteristics of each
clone to classify them. The implementation of CREC is done in
three stages: preparation of the clone data, training, and testing,
which allows it to provide the programmer with an accurate
refactoring recommendation.

Yoshida et al. [15] released an Extract Method refactoring
tool to be used as a proactive clone recommendation system.
The process is meant to be implemented as an Eclipse plug-in
to keep track of changes in the code. This tool suggests changes
in real-time versus at the end of the project. This routine makes
the code fresh in the programmer’s mind, allowing for more
efficient progress. This is accomplished by actively tracking the
user’s work in Eclipse and suggesting edits. Shin [128] proposes
a refactoring method for finding duplicate code used in branch
statements and refactoring them by extracting common parts.
The results of case studies with unskilled developers yielded an
average of 10% reduction in source code. CloneRefactor
[136] detects code clones that are suitable for refactoring, based
on their context and scope. Their results indicate that about
40% of code duplication can be refactored by method extrac-
tion, while other clones require other refactoring techniques.
Sheneamer [92] automatically extracts features from detected
code clones and trains models to inform programmers of the
type to refactor. Their approach categorizes refactored clones as

distinct classes and develops a model to recognize the various
types of refactored clones and those that are anonymous. Anti-
CopyPaster [93], [97] is an IntelliJ IDEA plugin, implemented
to detect and refactor duplicate code interactively as soon as a
duplicate is created. The plugin only recommends the extraction
of a duplicate only when it is worth it, i.e., the plugin treats
whether a given duplicate code shall be extracted as a binary
classification problem. This classification is performed using a
CNN, trained using a dataset of 9,471 extract method refactor-
ings of duplicate code collected from 13 open-source projects.

Category #2: Long Method. This category refers by studies
that are designed to identify Extract Method refactoring oppor-
tunities to eliminate Long Method design defects. Long Method
is a long and complex method that hinders the readability,
reusability, and maintainability of the code. As a solution, refac-
toring Long Method was proposed by extracting independent
and cohesive fragments from long methods as new, short, and
reusable methods [9], [10], [16], [21], [23], [65], [70], [71],
[73], [74], [87], [88], [94], [95], [99], [101], [102], [114], [115],
[121], [124], [125], [139].

Lakhotia and Deprez [95] proposed a transformation tuck
that restructures code and reorganizes unclear large frag-
ments into small cohesive functions. Tuck [95] deconstructs
large functions into small functions by restructuring programs.
Wedge, split, and fold are the three parts that makeup tuck.
Then, statements of meaningful functions in a wedge are split
and folded into a new function. JDeodorant [70], [71] encom-
passed identifying specific Extract Method refactoring opportu-
nities. This tool automatically identifies Extract Method oppor-
tunities for Long Method to suggest code improvement instead
of requiring a set of statements from the programmer. Yang
et al. identified fragments to be extracted from long methods.
Their approach is implemented as a prototype called AutoMed
[21]. The evaluation results suggested that the approach may
reduce the refactoring cost by 40%. Meananeatra et al. [121]
proposed an approach to select refactorings dependent on data
flow and control flow graphs of software metrics. The method
procedure includes calculating metrics, filter refactorings, com-
puting maintainability for candidate refactorings, then outlining
Extract Method refactorings with the highest maintainability.
The approach has been reported to accurately resolve Long
Method issues by suggesting refactoring techniques for the Ex-
tract Method, replacing temp with the query, and decomposing
condition. Kaya and Fawcett [102] automate selecting program
refactoring fragments to resolve defects with the Long Method.
The paper goes over the identification process of code fragments
based on a placement tree. This procedure outlines each node in
the tree with variable reference counts to implement an effective
process. Charalampidou et al. [9], [124] conduct a case study to
evaluate several cohesion, coupling, and size metrics to serve
as indicators of the existence of Long Method, and integrate
these metrics into a multiple logistic regression model, enabling
the prediction of whether a method should be refactored or
extracted. The tool SEMI [10] ranks refactoring opportuni-
ties based on their extraction ability. This paper outlines Long
Method, to be implemented within a method to identify refactor-
ing opportunities. The SEMI approach determines which parts

678 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

of code are cohesive between statements. This can minimize
the size of each method and create clear resulting methods that
are increasingly single-responsibility principle compliant. This
tool was validated with industrial and comparative case studies.

Hass and Hummel [87], [88] introduce refactoring and or-
ders, each with a scoring function developed to reduce complex-
ity and improve the way users read the code. This open-source
software filters out invalid Extract Method refactorings and
then ranks to obtain different suggestions with the previously
mentioned scoring function. Kaya and Fawcett [101] strive to
implement Extract Method refactoring and urge developers to
utilize understandable implementation and modular structures
so that the source code quality will not decrease throughout the
project development. The goal is to refactor without requiring
the user to select a code section. The approach searches for
opportunities to refactor by declaring variables and regions
of code that are fully extractable. The user can visualize the
available refactoring options and choose which to apply with-
out relying on a foreign code base. LLPM [115] combines
method-level software metrics applying a log-linear probabilis-
tic model for accustomed refactorings. This application was
tested with refactorings of real-world Extract Method appli-
cations allowing the researchers to obtain parameter sets that
capture the reason behind such refactorings. This analysis was
completed by identifying the code to refactor and prioritizing
various method groups to refactor. The proposed model opti-
mizes parameters that maximize the probability of the collected
dataset to refactor Long Method bad smells accurately. LMR
[114] is an Extract Method refactoring approach that utilizes
program analysis and code metrics by implementing refactor-
ing enabling conditions. This approach uses two guidelines
for practical refactoring sets: code analyzability level and the
statement number. Initially, LMR is applied to a Java application
core package, showing that Long Method bad smell can be
eliminated in the code without removing behavior or making
it more challenging to analyze. Choi et al. [74] investigates
change metrics and Extract Method throughout two studies.
The relationship results deduce a clear relationship between
change metrics and Extract Method. Product and change met-
rics must be available to accurately recommend refactorings
for Extract Method. The main contributions highlight metric
change differences between extracted and not-extracted entities.
Vidal et al. [125] proposed Bandago, that is implemented on top
of JSpIRIT, an Eclipse plugin for identifying and prioritizing
code smells in Java. Bandago performs a heuristic search
using a simulated annealing algorithm [139] that repeatedly
applies the Extract Method refactoring. Their findings reveal
that the tool can automatically fix more than 60% of Brain
Methods, and when comparing the performance of Bandago
with JDeodorant, the authors found that other types of
code smells are also fixed after applying the Extract Method
refactoring suggestions.

TOAD [16], [65] searches specific portions of the source
code that include the developer’s original code selection and
meet ideal conditions for the Extract Method. The approach
operates during the workflow of refactorings and chooses
fragments of code with correct syntax and outlined necessities.

The tool explicitly recommends auto-refactoring alternatives
when the user selects a piece of code and requests refactoring
options. Overall, TOAD reduced failed attempts significantly at
a lower cognitive cost for Extract Method refactoring. Shahidi
et al. [73] automatically identified and refactored the Long
Method code smells in Java code using advanced graph analy-
sis techniques. Their proposed approach was evaluated in five
different Java projects. The findings reveal the applicability of
the proposed method in establishing the single responsibility
principle with a 21% improvement. In another study, Tiwari
and Joshi introduced Segmentation [23] that identifies Ex-
tract Method opportunities concentrating on achieving higher
performance with fewer suggestions. Compared with other
tools, Segmentation outperformed F-measure approaches
and suggested that it showed high precision concerning small
methods and Long Method in opportunities with the Extract
Method. Empirical validations were applied to six open-source
code applications to assess beneficial suggestions. Segmen-
tation improves comparable recall and precision while iden-
tifying extract method refactorings. LiveRef [94], [99] is a
tool implemented for live refactoring Java code. It works to
resolve problems with long feedback loops that allow code to be
maintainable and readable. The environment provides efficient
refactoring suggestions by diminishing the time needed to ap-
ply, recommend, and identify the refactoring loop. The plugin
for Java IntelliJ IDEA implemented a live refactoring envi-
ronment that automatically applies Extract Method. The tool
results in improvements in the quality of the code along with
faster programming solutions.

Category #3: Separation of Concerns. The Separation of
Concerns (SoC) category refers to studies segregating methods
into multiple sub-methods based on their behavior so the code
becomes less complex and effectively reused [140]. One of
the main limitations of these studies [8], [11], [14], [64], [66],
(751, [76], [77], [78], [801, [81], [84], [85], [89], [91], [98],
[100], [103], [104], [105], [106], [107], [108], [111], [112],
[113], [118], [122] is the absence of any context related to the
application of refactorings, i.e., it is not clear how developers
would identify the need to apply these refactoring, e.g., im-
proving design metrics or removing design defects. Maruyama
[64] solves the burden of manual refactoring by implementing
automatic support when initiated by the programmer. It can be
used by (1) selecting a fragment of code, (2) choosing a method,
and (3) naming it. A new method is created from the parts of
code from an existing method through block-based slicing. This
mechanism is based on data-flow and control-flow analysis, so
the user will not have to test the refactored fragment. Nate
[122] performs the Extract Method refactoring by extracting
the slice into a new method, replacing it with a method call.
For each extracted statement, the tool determines whether to
remove it from the original method or to keep it there because
it is still relevant. SDAR [118] is an Eclipse plug-in that detects
and applies local and global refactoring through star diagrams.
The tool offers Extract Method refactoring options that im-
prove code and aid development opportunities and allows the
refactoring option for every node in the diagram that passes
the JDT Extract Method conditions. Juillerat and Hirsbrunner

ALOMAR et al.: BEHIND THE INTENT OF EXTRACT METHOD REFACTORING: A SYSTEMATIC LITERATURE REVIEW 679

[78] construct an algorithm to recognize the arguments and
outcomes of an extraction method. The implementation is an
Eclipse plugin and uses the Java Development Tools library
provided by Eclipse.

Xrefactory [111] allows the application of Extract Method
refactoring using a back-mapping preprocessor to perform at
the level of compilers in addition to other refactorings such as
renaming, adding, and moving method parameters. Although
this tool only involves limited refactoring, the quality of the
analysis indicates the quality of the whole refactoring tool.
Corbat et al. [112] developed a plug-in for the Eclipse Ruby
development tools IDE since automated refactorings are not
included in Ruby. Dynamic typing of Ruby makes implement-
ing refactorings very difficult since it can be impossible for an
IDE to determine an object type; therefore, Extract Method
refactoring was applied loosely adapted from JDT. The tool
RefactoringAnnotation [8] for Extract Method refactoring al-
lows the user to find solutions to coding errors. The annotations
depend on what code section the programmer suggests and ap-
plies relevant refactoring recommendations. This is done auto-
matically by implementing an arrow to be drawn on parameters
and return values. The study concluded that speed, accuracy,
and user satisfaction increase with the application of new tools.
Usability recommendations are implemented, and the goal is
to cultivate a new generation of tools that are user-friendly
for programmers. Abadi et al. [79] re-approach the refactoring
Rubicon by providing more general support for method ex-
traction. The authors performed a case study to convert a Java
servlet to use the model-view-controller pattern. Abadi et al.
[77] introduces the foundation of fine slicing, a method that
computes program slices. These slices can be transformed with
the data removal and control dependencies as their surrounding
code is extractable/executable. Cousot et al. [113] highlight the
problem of automatically inferring contracts such as validity,
safety, completeness, and generality with method extraction.
The proposed solution was to create two fast and capable tools
that interact in an environment while maintaining precision.
The practical solution is comprised of forward/backward meth-
ods that are iterative. Silva et al. [80] used a similarity-based
approach to recommend automated Extract Method refactoring
opportunities that hide structural dependencies rarely used by
the remaining statements in the original method. Their evalua-
tion on a sample of 81 Extract Method opportunities achieved
precision and recall rates close to 50% when detecting refac-
toring instances. In another study, Silva et al. [98] extended
their work by designing an Eclipse plugin called JExtract
that automatically identified, ranked, and applied refactorings
upon request. The tool begins by generating all possibilities of
Extract Method for each method and then ranks these methods
between dependencies in the code.

ReAF [75] is a prototype tool that handles all Java language
grammar. Initially, the user inputs source files to form a software
system that the tool will visualize and build a procedural PDG
for every method in the input. The tool can only handle Java
source code but can be developed to handle other languages.
Sharma [76] propose Extract Method candidates based on the
data and the structure dependency graph. Their suggestions

were obtained by eliminating the longest dependency edge
in the graph. GEMS [89] is an Extract Method refactoring
recommender that extracts structural and functional features
related to complexity, cohesion, and coupling. It then uses this
information to identify code fragments from a given source
method that can be extracted. This method was tested compara-
tively with JDeodorant [70], [71], JExtract [80], [98] and
SEMTI [10] to highlight the superiority of this tool. The Eclipse
plug-in was created to support software reliability with method
extraction. GEMS validates potential code for a method and as-
signs a “goodness” score to it and recommends refactoring with
Extract Method. Imazato et al. [100] propose a technique to find
refactoring opportunities in the code using machine learning.
The history of software development was analyzed as the basis
of this tool to automatically suggest Extract Method refactoring
in the latest source code. This technique utilizes machine learn-
ing to identify potential refactoring opportunities. It consists
of two phases: learning and predicting. The learning phase
involves analyzing the characteristics of past cases and criteria,
while the predicting phase involves detecting the location of
possible refactorings. This design has the advantage of reducing
the risk of overlooking refactorings. PostponableRefactoring
[66] tool checks the code’s conditions and reports each defined
error. These normal, fatal, and recoverable errors alert users
when to apply the refactoring. Each error is refactorable since
code may be rewritten altogether, but knowing which segments
need work proves useful to programmers, especially through-
out large projects. Nyamawe et al. [105], [106] recommended
Extract Method refactorings based on the history of previously
requested features, applied refactoring, and information about
code smells. This learning-based approach is evaluated using
a set of open-source projects with an F-measure of 70% to
recommend refactorings. Krasnigi and Cleland-Huang [108]
develop a model first to detect refactoring commit messages
from non-refactoring commits, then differentiate between 12
refactoring types. Their findings showed that SVM has an
F-measure of 15% when predicting Extract Method refactor-
ings. Abid et al. [85] highlights security throughout refactoring
while attempting to improve various quality attributes. The pro-
posed idea emphasizes security metrics and balancing code
qualities through multi-objective refactoring. Compared with
other approaches, this tool performs above existing approaches
to improve the security of systems at a low cost while not
sacrificing the quality of code. The paper determined that de-
velopers must prioritize security and other important qualities
when establishing refactoring systems. Aniche et al. [84] use a
machine learning approach to predict refactorings using code,
process, and ownership metrics. The resulting models predict 20
different refactorings at the class, method, and variable levels.
Their model achieved an accuracy of 84% when predicting
Extract Method refactoring using Random Forest and Neural
Network. Another experiment that predicts refactorings was
conducted using quality metrics.

Van der Leij et al. [14] explore the recommendation of the
Extract Method refactoring at ING. They observed that machine
learning models could recommend Extract Method refactorings
with high accuracy, and the user study reveals that ING experts

680

Hybrids

D Tokens
” / 3 Metrics

Syntactic |

NS en
\%% Graphs

Long Method ¢ I Lexical

7 8\ H) -

mantic |

0 .\ |
Q 1| Source code

Separation of Concems

Code Clone

Manual

Textual

-

Intent Code analysis Representation

Fig. 5.

tend to agree with most of the model’s recommendations. Sagar
et al. [107] compare commit messages and source code metrics
to predict Extract Method refactoring. Their main findings show
that the Random Forest trained with commit messages or code
metrics resulted in the best average accuracy of around 60%.
AlOmar et al. [103] formulate the prediction of refactorings as
a multiclass classification problem, i.e., classifying refactoring
commits into six method-level refactoring operations, applying
nine supervised machine learning algorithms. The prediction
results for Extract Method ranged from 63% to 93% in terms of
F-measure. To predict Extract Method refactorings, Nyamawe
[104] employs a binary classifier and recommends required
refactorings with a multi-label classifier. This is done with
the help of traditional refactoring detectors and commits mes-
sage analysis to detect applied refactorings through machine
learning. REMS [81] recommend Extract Method refactoring
opportunities via mining multi-view representations from code
property graph. The results show that their approach outper-
forms four state-of-the-art refactoring tools, including GEMS
[89], JExtract [80], [98], SEMI [10], and JDeodorant
[70], [71] in effectiveness and usefulness. REM [11] proposed
an automated Extract Method built on top of the IntelliJ IDEA
plugin for Rust. Results reveal that REM can extract a larger
class of feature-rich code fragments into semantically correct
functions, can reproduce method extractions performed manu-
ally by human developers, and is efficient enough to be used
in interactive development. Palit et al. [91] employ a self-
supervised autoencoder to acquire a representation of source
code generated by a pre-trained large language model for Ex-
tract Method refactoring. Their experiments show that their
approach outperforms the state-of-the-art by 30% in terms of
the F1 score.

Next, we elaborate on the code analysis and code representa-
tion techniques as they were mentioned in their primary studies.

Code Analysis. The nature of a code can be represented by
the design properties of its specification. These properties can

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

Experiment |3
Semi-automated

‘ User Input

Fully automated

‘ Choose Candidates

Suggest Alternatives Case study |\

Fully automated

ereiean | -

Proof of concept |2

Detection Execution Validation methg

The relationship among the intent, code analysis, representation, detection, execution, and validation method of the Extract Method refactoring.

be decomposed into: (1) Textual: no transformation or normal-
ization is done to the source code, and generally the raw source
code or textual information is used directly in the detection
process; (2) Structural: changes the source code into a series
of lexical “tokens” using a compiler-style lexical analysis; (3)
Syntactic: employs a parser to transform source programs into
parse trees or abstract syntax trees (ASTs). These can then
be examined using either tree matching or structural metrics
to detect code smells; (4) Semantic: captures the control and
data flow of the program. It utilizes static program analysis
to give more exact data than syntactic similarity. It generates
a Program Dependence Graph (PDG), encompassing Control
Flow Graphs (CFG) and Call Graphs (CG); and (5) Hybrids:
refers to techniques that use a combination of characteristics of
other approaches.

Code Representation. It spotlights the internal representa-
tion of the artifacts to be refactored. We extract comprehensive
categories grouping the representation types used to implement
the Extract Method refactoring. These PSs are based on six
main categories: (1) Source Code, (2) Abstract Syntax Tree
(AST), (3) Graphs, (4) Metrics, (5) Tokens, and (6) Text. Fig. 7
illustrates the percentages of types of internal representation
that the PSs used to make a decision on the extraction of the
method. As can be seen, 31.3% of the PSs use Source Code to
recommend Extract Method refactoring. Furthermore, 22.9%
of the approaches support the execution of the Extract Method
refactoring using AST. The categories Graphs, Metrics, Tokens,
and Text had the least number of PSs, with a ratio of 18.1%,
10.8%, 9.6%, and 7.2%, respectively.

We notice how the 3 Intent clusters have used all categories
of Code Analysis, along with its associated types of Code Rep-
resentation. The Code Clone cluster, despite being the largest
in terms of studies, has the least number of papers that require
developers to manually input the code to be refactored. This
demonstrates how the existence of code clone detection tools
has been supporting the refactoring studies since their early

ALOMAR et al.: BEHIND THE INTENT OF EXTRACT METHOD REFACTORING: A SYSTEMATIC LITERATURE REVIEW 681

Code Clone
38.6%

Fig. 6. Percentage of Extract Method studies, clustered by intent.
Tokens 9.6%
Text 7.2%
Fig. 7. Percentage of Extract Method studies, clustered by code represen-

tation types.

days. With the advancement in IDE support, studies shifted
to automating the identification of refactoring opportunities,
primarily by matching code smell patterns, then by mining
patterns previously executed similar refactorings.

As for automating the recommendation, 53% of the stud-
ies opted to include the developer in the loop. Incorporation
can be in the form of asking for information to complete the
transformation, such as requesting the name of the extracted
method [141], [142]. 61% of the studies provide multiple
candidate solutions, either for the developer to choose from
(e.g., [88], [96]), or to also suggest other similar alternatives
(e.g., [70], [133]).

For the Validation, 16% of mostly earlier studies hand-
crafted their own synthetic examples to assess the correct-
ness of their solutions. The need for a more developer-centric
assessment triggered validation to perform case studies. Eval-
uating the recommendation performance with developers pro-
vides a more grounded basis for judgement, at the expense
of relatively specific setting that does not necessarily gen-
eralize. The rise of information retrieval in general, along
with refactoring mining in particular, allowed studies to ben-
efit from mined refactorings to assess accuracy and conduct
comparative analysis.

Fig. 5 provides detailed mappings between our six dimen-
sions. We can observe that Code Clone is the most popular
intent-driving method extraction with a ratio of 38.6%, followed

up by Separation of Concerns, taking 34.9%, and finally Long
Method represented by 26.5%. Interestingly, this is not matched
in terms of the toolset, as the highest ratio of tools goes to Code
Clone with 49%, then Long Method and Separation of Con-
cerns with 26.5% and 24.5%, respectively. Such observation has
caught our attention particularly as Separation of Concerns is
the only category that relies on all existing detection techniques
and has its own unique one, i.e., Evolutionary-based, and yet,
there is a lack of concretizing this amount of research into
practical tools. As for code representation, it is unsurprising
that Code is the most popular representation to identify need-
to-refactor code fragments. This is being inherited from how re-
search couples refactoring to a natural response to code smells,
e.g., Long Method. So, metric-based detection rules are the
most popular for detecting code smells [143], and so they be-
come a go-to in the context of Extract Method. Finally, existing
studies offer a wide variety of static and dynamic techniques to
execute the refactoring. They mainly rely on variants techniques
of code slicing and graph analysis.

Summary. 38.6% of Extract Method refactoring studies
are primarily addressing code clones. These studies
commonly employ textual and structural code analysis
as their internal representation to decide on method
extraction. This representation is typically based on
source code or Abstract Syntax Trees (AST).

B. What Are the Main Characteristics of Extract Method
Recommendation Tools?

To help select an appropriate Extract Method refactoring
tool, we report in Table IV the following main characteristics
that can be considered to make an informed decision about
tools usage:

e Language: Indicates the programming language the

tool supports.

* Number of Metric: Indicates the number of software met-

rics used by the tool.

e Interface: Indicates what IDE/user interface the tool

supports.

» Usage Guide?: Indicates the availability of instructions on

how to use the tool.

* Tool Link: Points to the online source code repository.

e Last Update: Indicates whether the tool has been consis-

tently updated/maintained since its development.

Among the 83 primary studies, we identified 37 Extract
Method refactoring tools. Table IV provides the results for each
of the 37 tools. We report any of these characteristics as ‘Un-
known’ in the table if we cannot locate the needed information
and ‘N/A’ if the information is not applicable to the study. It is
evident from the table that the majority of Extract Method tools
are intended to recommend refactoring exclusively for Java-
based systems. As for metrics, most studies only mention qual-
ity attributes without the names of the metrics. Next, in terms of
how developers interact with these tools, we found that most of

682 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

TABLE IV
CHARACTERISTICS OF EXTRACT METHOD REFACTORING TOOLS

Tool Language No of Metric Interface Usage Guide? Tool Link Last Update
Tuck [95] Unknown Unknown Unknown No Unknown Unknown
CloRT [135] Java N/A Unknown No Unknown Unknown
Nate [122] Java Unknown Eclipse No Unknown Unknown
CCShaper [119] Java 6 Command line No Unknown Unknown
Aries [18], [116], [117] Java 6 GUI-based No Unknown Unknown
SDAR [118] Java N/A Eclipse No Unknown Unknown
Unnamed [78] Java N/A Eclipse No Unknown Unknown
Xrefactory [111] C++ N/A Unknown Yes [144] 2007
Unnamed [112] Ruby N/A Eclipse Yes [145] 2012
RefactoringAnnotation [8] Java Unknown Eclipse No Unknown Unknown
JDeodorant [67], [68], [70], [71], [86], [126], [127] Java 3 IntelliJ / Eclipse Yes [5] 2019
AutoMed [21] Java 10 Unknown No Unknown Unknown
‘Wrangler [134] Erlang/OTP N/A GUI-based / Command line Yes [146] 2023
HaRe [133] Haskell 98 N/A GUI-based / Command line Yes [147] 2017
ReAF [75] Java Unknown Unknown No Unknown Unknown
Unnamed [113] C# Unknown Visual Studio extension No Unknown Unknown
CeDAR [96] Java 2 Eclipse No Unknown Unknown
FTMPAT [129] Java 3 Eclipse No Unknown Unknown
SPAPE [72] Procedural / Java Unknown Unknown No Unknown Unknown
JExtract [80], [98] Java Unknown Eclipse Yes [148] 2016
DCRA [83] Java 1 Unknown No Unknown Unknown
RASE [69] Java N/A Eclipse Yes [149] 2015
SEMI [10] Java 5 GUI-based / Command line Yes [150] 2016
GEMS [89] Java 48 Eclipse Yes [151] 2017
PostponableRefactoring [66] Java N/A Eclipse Yes [152] 2018
LLPM [115] Java 4 Unknown No Unknown Unknown
PRI [123] Java N/A Eclipse No Unknown Unknown
LMR [114] Java 5 Eclipse No Unknown Unknown
CREC [90] Java N/A Eclipse Yes [153] 2018
Bandago [125] Java 4 Eclipse No Unknown Unknown
Unnamed [15] Java N/A Eclipse No [154] 2019
Unnamed [128] Java N/A Unknown No Unknown Unknown
CloneRefactor [136] Java N/A Command line No [155] 2020
TOAD [16], [65] Pharo N/A Pharo Yes [156] 2019
Segmentation [23] Java 2 Eclipse No [157] 2022
LiveRef [94], [99] Java 20 IntelliJ Yes [158] 2022
AntiCopyPaster [93], [97] Java 78 IntelliJ Yes [159] 2023
REM [11] Rust N/A IntelliJ Yes [160] 2023

the tools are in the form of IDE plugins, i.e., Eclipse or IntelliJ,
and user interface or command line. Regarding tool availability,
we searched for a link to the tool website or binaries. In case
the link is absent or no longer functional, we contacted the
publication’s authors. From these 37 Extract Method tools,
we could only locate 18 tools. Fig. 8 depicts a timeline of
releasing 37 Extract Method refactoring tools, in which 18 tools
are made publicly available online by the research community.
There has been a considerable increase in the number of tools
in the last two decades. The earlier tools were responsive to
the challenge of ensuring the correctness of the transformation
and its behavior preservation, given the lack of IDE support.
The evaluation of these tools was mainly handcrafted, using
fewer examples as a proof of concept. When IDEs started sup-
porting the execution of code extraction, studies shifted toward
automating the identification of refactoring opportunities while
including developers in the tool design and evaluation. The rise
of refactoring mining tools has enabled another dimension for
studies to leverage previously performed extractions as ground
truth for predictive modeling, or for comparison baselines be-
tween existing solutions. Finally, recent techniques have taken
a proactive fashion to immediately recommend refactoring, as
soon as the opportunity is detected, in order to facilitate the
adoption of the proposed change.

Several approaches have different automation support
for detection and correction of Extract Method refactoring

identification. In the rest of this section, we analyze the
following level of automation for the Extract Method
refactoring tools.

Category #1: Manual approach refers to using code in-
spection to detect or correct code smells.

Category #2: Full automated approach refers to pro-
viding explicit full tool support to the users without human
intervention.

Category #3: Semi-automated approach for the semi-
automated approaches, it is broken down into four categories:

* Suggest Alternatives: refers to the tool that is capable of
carrying out the task automatically and proposing options
or alternatives to the user. Nevertheless, the user must still
manually select and implement the suggestion;

* Choose Candidates: refers to the tool that proposes alter-
native tasks to be done and requires the user to confirm
the selection;

» Execute on Approval: refers to the tool that displays the
activity that is about to be carried out and requests the
user’s permission. The user can either accept the activity
in its entirety or cancel it;

e User Input: refers to the tool that asks the user to select
the code fragment as input to the tool.

Regarding the automaticity in the Extract Method refactor-

ing, we observe that most tools perform fully automated or
semi-automatic refactoring tools. For example, the tool suggests

ALOMAR et al.: BEHIND THE INTENT OF EXTRACT METHOD REFACTORING: A SYSTEMATIC LITERATURE REVIEW

683

Logend
@ Ecivsepugn D4 Visualstudio
B oo s G Aviaiconine
PharG Pharo plugin *oul
Conmanaine i Trend -
Code cone
caus
SoC
@
L1eu
Long method
Tuck “iCloRT i ReAF PostponableRefac
Longmethod | Code clone done | SoC SoC
‘ ; "
e @co

O

1998 1999 2004 2005 2007 2008 2009 2011

2010

2018 2019

2014 2017 2022

2012

2013 2015 2016 2023

F T
con

Quantitative Quantitative, Qualitative, Correctness

Fig. 8. Timeline of developing Extract Method refactoring tools.

an Extract Method refactoring for the code clone fragments,
and the developer decides whether to apply or reject that refac-
toring. It is essential to highlight that automated refactoring
alone cannot eliminate the need for manual verification after
applying refactoring or manual refactoring in particular scenar-
ios. That explains why many Extract Method refactoring tools
support semi-automatic refactoring. Furthermore, we observe
that some tools utilize existing code smell detectors, and oth-
ers integrate the detection of code smell and the execution of
refactoring in the same tool. The latter eliminates the need to
set up the dependency on a separate Long Method splitter or
Code Clone detector.

Fig. 9 depicts the software metrics used by the 14 Extract
Method refactoring tools (the white color indicates that the
tool computes the respective metric, while black signifies that
the tool does not). It is worth noting that we only include
metrics that the PSs report. Some PSs indicated the usage
of metrics without specifying the metric names. As can be
seen, 14 of the Extract Method refactoring tools, namely,
Aries, AntiCopyPaster, AutoMed, Bandago, CeDAR,
DCRA, FTMPAT, GEMS, JDeodorant, LLPM, LMR, Liv-
eRef, SEMI, and Segmentation, indicated the metrics.
These metrics relate to cohesion, coupling, complexity, size,
keyword, and clone pairs. We found that ‘TotalLinesOfCode’,
‘CyclomaticComplexity’, ‘LackOfCohesionOfMethod’, ‘Num-
berOfMethods’, ‘NumberOfParameters’, and ‘NumberOfAs-
signedVariables’ are common metrics utilized by most of the
tools. It should be noted that some of these metrics are used to
assess quality improvement in refactoring research [161], [162].

Table V shows the quantitative, qualitative, comparative, and
correctness data analysis of Extract Method refactoring tools.
It is evident from the table that there is a noticeable absence of
validation-related information from both quantitative and qual-
itative perspectives. While the quantitative analysis seems to be
the default experimentation by most of the primary studies, only
34% reported the correctness of their tools through the standard
performance metrics (e.g., precision, recall). On the other hand,
26% of tools were purely evaluated qualitatively. Only 15%

Quantitative, Qualitative, Correctness, Comparative

of the tools undergo both quantitative and qualitative analysis.
Moreover, JDeodorant and JExtract are widely used by
23% of the studies for comparative analysis. To summarize,
most studies rely on quantitative analysis or qualitative analysis
to create oracles for their recommendation. Therefore, they need
to go beyond the correctness and investigate the usefulness of
their recommendations from the developer’s standpoint, which
was done only for 15% of the tools. Additionally, many studies
do not position their recommendations properly with respect to
existing literature reviews through proper comparative analysis.
Regarding correctness, most tools do not indicate details around
their accuracy. From the set of 37 Extract Method tools, only
11 tools provide information about the tool’s accuracy.

1 ——

Summary. A total of 37 Extract Method refactor-
ing tools have been developed, with 49% designed
for refactoring code clones and 24% intended to
break down lengthy methods. Among these tools, ap-
proximately 58% are developed as plugins, 9% are
command-line tools, and 9% feature graphical user
interfaces (GUIs). Several of these tools incorporate the
developer’s involvement in the decision-making process
when applying the method extraction.

C. What are the Datasets, and Benchmarks Used for
Evaluating and Validating Extract Method Recommendation
Approaches?

We investigate the datasets, and benchmarks that are used
to evaluate and validate Extract Method refactoring stud-
ies. We follow the same extraction procedure as described in
Abgaz et al. [163]. A summary of the findings is illustrated in
Tables VI, VII, and VIII.

Codebases. The evaluation of proposed Extract Method
studies depends on the availability of datasets and benchmark-
ing data, which is a relatively unexplored area. We identified
that most of the studies used a dataset created by the paper’s
authors, corresponding to 86.74%. Only 13.25% reused datasets

684

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

TABLE V

QUANTITATIVE, QUALITATIVE, AND COMPARATIVE ANALYSIS OF EXTRACT METHOD REFACTORING TOOLS

Tool Quantitative Qualitative Comparative Correctness
Tuck [95] Unknown No No Unknown
CloRT [135] Unknown Unknown Unknown Unknown
Nate [122] Unknown No No Unknown
CCShaper [119] 1 project No No Unknown
Aries [18], [116], [117] 1 project No No Unknown
SDAR [118] Unknown No No Unknown
Xrefactory [111] Unknown No No Unknown
Unnamed [112] Unknown No No Unknown
RefactoringAnnotation [8] 5 projects w/ 16 developers No Unknown
JDeodorant [70], [71] 1 project w/ 1 developer No Precision: 33.3% - 100%
Recall: 25% - 100 %
Precision (AVG): 51%
Recall (AVG): 69%
JDeodorant [67], [68], [86] 9 projects No w/ CeDAR Accuracy: increase to 36%
JDeodorant [126], [127] 7 projects No w/ CeDAR Accuracy: increase to 83%
AutoMed [21] 1 project No No Accuracy: 3.57% - 92.86%
Wrangler [134] 3 projects No No Unknown
HaRe [133] 13 programs No No Unknown
ReAF [75] 1 project w/ 14 developers w/ JDeodorant Unknown
Unnamed [113] Unknown w/ 4 authors No Unknown
CeDAR [96] 9 projects No w/ Aries and Supremo* Unknown
FTMPAT [129] 1 project No No Unknown
SPAPE [72] 10 projects No No Unknown
JExtract [80], [98] 12 projects No w/ JDeodorant Precision: 38% - 48%
Recall: 38% - 48%
DCRA [83] 50 projects No No Unknown
RASE [69] 2 projects w/ experts w/ RASE entire methods Accuracy: 58%
SEMI [10] 5 projects w/ 3 developers w/ JDeodorant Precision: 13.8% - 22.4%
w/ JExtract Recall: 57.1% - 92.8%
F-measure: 22.23% - 36.09%
GEMS [89] 5 projects w/ 4 authors w/ JDeodorant Precision: 13.3% - 25.3%
w/ JExtract Recall: 31.9% - 49.2%
w/ SEMI F-measure: 18.8% - 32.7%
PostponableRefactoring [66] Unknown No No Unknown
LLPM [115] 5 projects No w/ JDeodorant Precision: 18.5% - 30.3%
w/ JExtract Recall: 52.6% - 62.1%
F-measure: 27.4% - 40.7%
PRI [123] 6 projects No No Accuracy: 94.1%
LMR [114] 1 project No No Unknown
CREC [90] 6 projects No No F-measure: 76% - 83%
Bandago [125] 10 projects w/ 35 developers w/ JDeodorant Unknown
Unnamed [128] Unknown w/ 6 teams No Unknown
Unnamed [15] 2 projects w/ 8 developers No Unknown
CloneRefactor [136] 1,343 projects No No Unknown
TOAD [16], [65] 9 projects w/ 10 developers No Unknown
Segmentation [23] 6 projects No w/ JExtract Precision: 22.81% - 38.75%
w/ SEMI Recall: 24.58% - 41.75%
F-measure: 23.66% - 40.19%
LiveRef [94], [99] 3 projects w/ 42 developers No Unknown
AntiCopyPaster [93], [97] 13 projects w/ 72 developers No Precision: 82%

REM [11]

5 projects

w/ IntelliJ’s Rust

Recall: 82%
F-measure: 82%
PR-AUC: 86%
Unknown

w/ Visual Studio Rust Analyzer

“x” indicates the tool is not peer-reviewed

from previous studies. The selection of applications for exper-
imentation is based on the availability of the source code, and
the Extract Method tools. Due to the absence of agreed-upon
evaluation benchmarks, studies have generally used custom
evaluations. Generally, PSs have mostly employed relatively
small- or medium-scale open-source applications, typically
containing less than 225,000 lines of code. Examples of open-
source systems utilized by some PSs with the intent of Long

Method and Separation of Concerns include JHotDraw and

JUnit. Ant and JFreeChart are becoming popular Java systems

for Extract Method evaluation when extracting code clone'”.
Validation Methods. Various structured evaluation ap-

proaches have been suggested, such as proof of concepts, case

19Due to space constraints, we report project names if the number of
projects considered is less than or equal to 15.

ALOMAR et al.: BEHIND THE INTENT OF EXTRACT METHOD REFACTORING: A SYSTEMATIC LITERATURE REVIEW 685

TABLE VI
BENCHMARKS AND DATASETS USED IN EXTRACT METHOD REFACTORING STUDIES FOR LONG METHOD DECOMPOSITION

Study Intent Language No of Metric No of Project Project Other Properties Dataset Link Validation Method
Tuck [95] Long Method Unknown Unknown Unknown Unknown Unknown Unknown Proof of Concept
JDeodorant [70], [71] Long Method Java 3 1 Violet 0.16 LOC: 4,100/ 61 classes/ 144 methods Unknown Experiment
AutoMed [21] Long Method Java 10 1 houtReader 1.8.0 LOC: 20,000 / 269 classes Unknown Caee Study
Meananeatra et al. [121] Long Method Java 3 Unknown Unknown Unknown Unknown Experiment
Kaya & Fawcett [102] Long Method C++ N/A Unknown Unknown Unknown Unknown Experiment
Charalampidou et al. [124] Long Method Java 5 1 jFlex Unknown Unknown Caee Study
Charalampidou et al. [9] Long Method Java 8 1 jFlex Unknown Unknown Caee Study
SEMI [10] Long Method Java 5 5 Wikidev Unknown [165] Caee Study

MyPlanner

MyWebMarket

JUnit

JHotDraw
Haas & Hummel [87] Long Method Java 2 3 Agilefant LOC: 36,116/ 2,841 methods Unknown Experiment

JabRef LOC: 128,145 / 5,665 methods

JChart2D LOC: 50,728 / 1,849 methods
Haas & Hummel [88] Long Method Java 9 13 Unknown Unknown Unknown Experiment
Kaya & Fawcett [101] Long Method C++ N/A Unknown Unknown Unknown Unknown Experiment
LLPM [115] Separation of Concerns Java 4 5 Wikidev 130 total methods Unknown Experiment

SelfPlanner

MyWebMarket

JUnit

JHotDraw
LMR [114] Long Method Java 5 1 JFreeChart 1.0.17 LOC: 5,665 / 20 classes / 552 methods Unknown Caee Study
Choi et al. [74] Long Method Java 6 1 JEdit LOC: 97,116 - 313,706 Unknown Experiment
Bandago [125] Long Method Java 4 10 Columba 1.4 LOC: 26,600/ 436 classes [166] Caee Study

JGraphT 0.9.0 LOC: 14,180 / 218 classes

SportTracker 5.7 LOC: 5,200 / 40 classes

Cayanne 4.0 LOC: 45,000 / 533 classes

CheckStyle 6.4.1 LOC: 60,000 / 399 classes

Jena 2.12.1 LOC: 54,410 / 697 classes

JGroups 3.4.8 LOC: 76,570 / 644 classes

Quartz 2.1.7 LOC: 26,810 / 176 classes

Roller 5.1.2 LOC: 47,460 / 452 classes

Squirrel 3.6.0 LOC: 79,070 / 879 classes
TOAD [65], [16] Long Method Pharo N/A 9 GitMultipileMatrix Unknown [167] Experiment

TestDeviator

DrTest

Regis

SmallSuiteGenerator

Roassal

Live Robot Programming

KerasBridge

GToolkit Documenter
Shahidi et al. [73] Long Method Java Unknown 5 JEdit 4.5.1 LOC: 107,212 / 1,141 classes / 6,663 methods Unknown Experiment

FreeMind 0.9.0 LOC: 40,933 / 696 classes / 4,583 methods

ArgoUML 0.34 LOC: 249,538 / 2,539 classes / 17,485 methods

JFreeChart 1.0.14 LOC: 222,814 / 8,630 classes / 619 methods

JjVLT 1.3.2 LOC: 29,161 / 420 classes / 2,036 methods
Segmentation [23] Long Method Java 2 6 JUnit Unknown [157] Experiment

JHotDraw

MyWebMarket

EventBus

Mockito

XData
LiveRef [94], [99] Long Method Java 20 3 Space Invaders Unknown [158] Experiment

JHotDraw
Movie rental system

studies, and experiments. Proof of concept involves demon-
strating how the identification process works with the help of
examples. Case studies examine the migration process in depth
by looking at relevant cases, using one or multiple projects
as a target. Experiments involve selecting the chosen code-
bases and then experimentally evaluating them using metrics
such as coupling, cohesion, complexity, and code size, or com-
paring them with other tools. It should be noted that vali-
dation methods are reported as they were mentioned in their
primary studies.

Previous studies have classified validation methods into proof
of concepts, case studies, and experiments [163], [164]. In our
study, experiment-based validation is the most widely used
method, with 59.03% of the studies that use it [8], [10], [14],
[15], [16], [23], [65], [67], [68], [69], [70], [71], [72], [73],
[74], [75], [801], [81], [83], [84], [85], [86], [87], [88], [89],
[90], [91], [92], [93], [94], [96], [97], [98], [99], [100], [101],
[103], [104], [105], [106], [107], [108], [115], [121], [126],
[127], [134]. Some of these studies even combined a survey
or user study with their experiment (e.g., [93], [94], [97], [99],
[125]). The case study is the second most dominant method,

with 21.68% of the papers applying it to evaluate their meth-
ods [9], [11], [18], [21], [77], [79], [114], [116], [117], [123],
[124], [125], [128], [129], [130], [133], [137]. Proof of concept
method was also adopted by 19.27% [64], [76], [78], [82],
[95], [109], [110], [111], [112], [113], [118], [122], [131],
[132], [135]. It is evident that experiment-based validation is
becoming more popular. This is likely due to recent advances in
metrics and benchmarks that make it easier to compare different
Extract Method techniques.

Programming Languages. The majority of studies
(81.92%) centralize on Java-based applications [8], [9], [10],
[14], [15], [18], [21], [23], [64], [66], [67], [68], [69], [70],
(711, (721, [731, [741, [75], (771, [78], [79], [80], [81], [83],
[84], [85], [86], [87], [88], [89], [90], [91], [92], [93], [94],
[96], [97], [98], [99], [100], [103], [104], [105], [106], [107],
[108], [109], [110], [114], [115], [116], [117], [118], [121],
[122], [123], [124], [125], [126], [127], [128], [129], [130],
[131], [135], while C++ [72], [111], [120], Ruby [112], C#
[113], Pharo [16], [65], Haskell [137], Erlang/OTP [134] and
Rust [11], Java and Procedural in combination [72], accounts
for 18.07%. It is evident that Extract Method studies tend to

686

TABLE VII
BENCHMARKS AND DATASETS USED IN EXTRACT METHOD REFACTORING STUDIES FOR CODE CLONE EXTRACTION

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

Study Intent Language No of Metric No of Project Project Other Properties Dataset Link Validation Method
CIoRT [135] Code Clone Java N/A Unknown Unknown Unknown Unknown Proof of Concept
Komondoor & Horwitz [132] Code Clone Procedural N/A Unknown Unknown Unknown Unknown Proof of Concept
Komondoor & Horwitz [82] Code Clone Procedural N/A Unknown Unknown Unknown Unknown Proof of Concept
CCShaper [119] Code Clone Java 6 1 Ant 1.6.0 LOC: 180,000 / 627 files Unknown Caee Study
Aries [18], [116], [117] Code Clone Java 6 1 Ant 1.6.0 LOC: 180,000 / 627 files Unknown Caee Study
Juillerat & Hirsbrunner [131] Code Clone Java N/A Unknown Unknown Unknown Unknown Proof of Concept
Wrangler [134] Code Clone Erlang/OTP N/A 3 Wrangler LOC: 30,872 Unknown Experiment

Mnesia LOC: 28,152

Yaws LOC: 29,603
HaRe [133] Code Clone Haskell 98 N/A 13 Previous work [137] Unknown Unknown Caee Study
Choi et al. [130] Code Clone Java 3 1 Unknown KLOC: 110 / 296 files Unknown Caee Study
CeDAR [96] Code Clone Java 2 9 Ant 1.7.0 KLOC: 67 Unknown Experiment

Columba 1.4 KLOC: 75

EMF 2.4.1 KLOC: 118

Hibernate 3.3.2 KLOC: 209

Jakarta-JMeter 2.3.2 KLOC: 54

JEdit 4.2 KLOC: 51

JFreeChart 1.0.10 KLOC: 76

JRuby 1.4.0 KLOC: 101

Squirrel-SQL 3.0.3 KLOC: 141
FTMPAT [129] Code Clone Java 3 1 Ant 1.7.0 Unknown Unknown Caee Study
SPAPE [72] Code Clone Java Unknown 10 Linux 2.6.6/kernel LOC: 30,629 Unknown Experiment

Procedural Unix/make 3.82 LOC: 33,864

httpd 2.2.2/server LOC: 36,926

devecot 2.0.8/src/auth LOC: 18,243

gstreamer 0.10.31/gst LOC: 66,637

gtk 2.91.5/gdk/x11 LOC: 30,118

iptables 1.4.10/extensions LOC: 19,668

nginx-0.8.15/src/core LOC: 17,126

proftpd 1.3.3c/src LOC: 34,404

PostgreSQL 9.0.2/src/backend/access LOC: 65,046
Bian er al. [120] Code Clone Java Unknown 5 Linux 2.6.6/arch Unknown Unknown Experiment

Linux 2.6.6/net Unknown

Linux 2.6.6/sound/drivers Unknown

Unix/make 3.82 Unknown

http2.2.2/server Unknown
JDeodorant [67], [68], [86], [126], [127] Code Clone Java N/A 9 Ant 1.7.0 / Ant 1.9 KLOC: 67 Unknown Experiment

Columba 1.4 KLOC: 75

EMF 2.4.1 KLOC: 118

JMeter 2.3.2 / JMeter 2.9 KLOC: 54

JEdit 4.2 KLOC: 51

JFreeChart 1.0.10 / JFreeChart 1.0.14 ~ KLOC: 76

JRuby 1.4.0 / JRuby 1.7.3 KLOC: 101

Hibernate 3.3.2 KLOC: 209

SQuirreL. SQL 3.0.3 KLOC: 141
DCRA [83] Code Clone Java 1 50 Qualitas Corpus [168] (v. 20120401) Unknnown Unknown Experiment
RASE [69] Code Clone Java N/A 2 Previous works [169], [170] Unknown [171] Experiment
CREC [90] Code Clone Java N/A 6 Axis2 8,723 commits [153] Experiment

Eclipse.jdt.core 22,358 commits

Elastic Search 14,766 commits

JFreeChart 3,603 commits

JRuby 24,434 commits

Lucene 22,061 commits
PRI [123] Code Clone Java N/A 6 AlgoUML LOC: 127,145 / 1,559 files ~ Unknown Caee Study

Tomcat LOC: 215,584 / 1,537 files

Log4j LOC: 59,499 / 817 files

Eclipse Aspect] LOC: 326,563 / 4,758 files

JEdit LOC: 107,368 / 561 files

JRuby LOC: 186,514 / 1,256 files
Ettinger et al. [109], [110] Code Clone Java N/A Unknown Previous work [172] 59 clone pairs Unknown Proof of Concept
Unnamed [15] Code Clone Java N/A JFreeChart KLOC: 260 / 990 classes Unknown Experiment

JUnit KLOC: 43 / 449 classes
Unnamed [128] Code Clone Java N/A Unknown Unknown Unknown Unknown Caee Study
CloneRefactor [136] Code Clone Java N/A 1.343 Previous work [173] LOC (AVG): 980 Unknown Experiment
Sheneamer [92] Code Clone Java N/A 6 Previous work [90] [153] Dataset of [153] Experiment

6 netbeans 200 paired clones Unknown

eclipse-jdtcore 400 paired clones

EITC 426 paired clones

J2sdk1.4.0-javax 482 paired clones

eclipse-ant 522 paired clones

cocoon 655 paired clones
AntiCopyPaster [93], [97] Code Clone Java 78 13 arthas 73,884 total commits [174] Experiment

easyexcel

camel-quarkus
commons-lang
flink

iceberg

jena

pulsar

storm

apollo
JavaGuide

incorporate Java codebases. This could be because many tools
Extract Method are designed for Java.

Dataset Availability. Dataset availability is one of the es-
sential factors that allow the reproducibility and extension of
studies. We collect all artifacts associated with the PSs, which
encompasses studies providing raw datasets that require pro-
cessing by researchers, as well as those that offer solely user sur-
vey responses from developers. It is observed from Tables VI,
VII, and VIII that 78.31% of Extract Method datasets are not

publicly available. This observation highlights the need for
public datasets to enable replication and extension of studies
and mitigate benchmark bias when comparing the proposed
approach with existing studies.

We conjecture that the ground truth used to compare with
existing studies might be biased. Also, the comparison against
the state-of-the-art may not be appropriate unless these tools are
called in the same context or intent as in the original paper. For
instance, JDeodorant applies the Extract Method refactoring

ALOMAR et al.: BEHIND THE INTENT OF EXTRACT METHOD REFACTORING: A SYSTEMATIC LITERATURE REVIEW

TABLE VIII
BENCHMARKS AND DATASETS USED IN EXTRACT METHOD REFACTORING STUDIES FOR SEPARATION OF CONCERNS

687

Study Intent Language No of Metric No of Project Project Other Properties Dataset Link Validation Method
Maruyama [64] Separation of Concerns ~ Java N/A Unknown Unknown Unknown Unknown Proof of Concept
Nate [122] Separation of Concerns Java N/A Unknown Unknown Unknown Unknown Proof of Concept
SDAR [118] Separation of Concerns Java N/A Unknown Unknown Unknown Unknown Proof of Concept
Juillerat & Hirsbrunner [78] Code Clone Java N/A Unknown Unknown Unknown Unknown Proof of Concept
Xrefactory [111] Separation of Concerns ~ C++ N/A Unknown Unknown Unknown Unknown Proof of Concept
Unnamed [112] Separation of Concerns ~ Ruby N/A Unknown Unknown Unknown Unknown Proof of Concept
RefactoringAnnotation [8] Separation of Concerns Java Unknown Azureus Unknown Unknown Experiment

GanttProject

JasperReports

Java 1.4.2 libraries
Abadi et al. [79] Separation of Concerns Java N/A Unknown Unknown Unknown Unknown Caee Study
Abadi et al. [77] Separation of Concerns ~ Java N/A Unknown Unknown Unknown Unknown Caee Study
ReAF [75] Separation of Concerns ~ Java Unknown 1 Ant 1.8.1 Unknown Unknown Experiment
Sharma [76] Separation of Concerns ~ C/C++ N/A 1 CppCheck Unknown Unknown Proof of Concept
Unnamed [113] Separation of Concerns ~ C# Unknown Unknown Unknown Unknown Unknown Proof of Concept
JExtract [80], [98] Separation of Concerns ~ Java Unknown 12 MyWebMarket Unknown [148] Experiment

JUnit 3.8 / 4.10

JHotDraw 5.2

Ant 1.8.2

ArgoUML 0.34

Checkstyle 5.6

FindBugs 1.3.9

FreeMind 0.9.0

JFreeChart 1.0.13

Quartz 1.8.3

SQuirreL SQL 3.1.2

Tomcat 7.0.2
GEMS [89] Separation of Concerns ~ Java 48 5 Wikidev 56 methods Unknown Experiment

SelfPlanner 25 methods

MyWebMarket 23 methods

JUnit 12 methods

JHotDraw 14 methods
Imazato et al. [100] Separation of Concerns ~ Java 5 Ant LOC: 260,624 / 1,532 methods ~ Unknown Experiment

ArgoUML LOC: 370,750 / 1,470 methods

JEdit LOC: 187,166 / 1,066 methods

jFreeChart LOC: 327,865 / 180 methods

Mylyn LOC: 166,149 / 980 methods
PostponableRefactoring [66] Separation of Concerns Java N/A Unknown Unknown Unknown Unknown Proof of Concept
Nyamawe et al. [105], [106] Separation of Concerns ~ Java N/A 55 [175] ‘Unknown [175] Experiment
Krasniqi & Cleland-Huang [108] Separation of Concerns Java N/A 4 Derby KLOC: 170/ 2,382 commits [176] Experiment

Drools KLOC: 371 / 840 commits

Groovy KLOC: 141 / 4,892 commits

Infinispan KLOC: 299 / 2,349 commits
Abid et al. [85] Separation of Concerns ~ Java 8 30 [177] Unknown [177] Experiment
Aniche et al. [84] Separation of Concerns ~ Java 61 11,149 [178] 8.8 million commits [178] Experiment
Van der Leij et al. [14] Separation of Concerns ~ Java 7 11,149 Previous work [84] 8.8 million commits Dataset of [84] Experiment
Sagar et al. [107] Separation of Concerns ~ Java 60 800 Previous work [179] 748,001 commits Dataset of [103] Experiment
AlOmar et al. [103] Separation of Concerns ~ Java N/A 800 Previous work [179] 748,001 commits [180] Experiment
Nyamawe [104] Separation of Concerns Java N/A 65 Previous works [105], [108], [181] 7,520 commits Datasets of [105], [108], [181] Experiment
Cui et al. [81] Separation of Concerns Java N/A Unknown Previous works [6], [89] Unknown [182] Experiment
REM [11] Separation of Concerns ~ Rust N/A petgraph LOC: 20,157 [160] Caee Study

gitoxide LOC: 20,211

kickof LOC: 1,502

sniffnet LOC: 7,304

beerus LOC: 302
Palit et al. [91] Separation of Concerns ~ Java 61 410 Previous work [84] 55,268 commits [183] Experiment

to deal with long methods. If this tool is being tested against an
Extract Method performed to remove duplicates, it is expected
not to recommend any code changes. Therefore, performing ex-
perimentation with techniques that address different intents may
not be adequate. In a similar context, building a universal model
that extracts methods based on the history of code changes
without understanding the intent must be human-verified to see
whether it is useful.

Summary. Out of the 83 primary studies analyzed,
almost 78% of the datasets are not publicly available.
There is a lack of sharing datasets, which is detri-
mental to reproducing research. Primary studies have
mostly employed small or medium-scale open-source
applications, often developed using Java, typically con-
taining less than 225,000 lines of code. These datasets
are heterogeneous and do not contain the same type
of information, making their standardization, for the
purpose of benchmarking, difficult.

V. DISCUSSION AND OPEN ISSUES

To ensure that the Extract Method refactoring is properly
identified/applied, we recommend retrofitting these tools with
the following dimensions:

X Provide context to guide developers on how to use
Extract Method refactoring tools. Based on the findings from
RQ; and RQ,, it becomes apparent that certain tools offer
the context in which the Extract Method refactoring is being
performed (e.g., JDeodorant, SEMI, AntiCopyPaster).
The opportunities of applying this refactoring might be related
to Duplicate Code removal, Long Method extraction, etc. How-
ever, other tools (e.g., ReAF, SDAR) lack the context in which
the Extract Method is being performed. It is worth noting that
without properly considering the context, the ground truth used
to compare against existing studies might be biased. Also, the
comparison against the state-of-the-art may not be appropri-
ate unless these tools are called in the same context or intent
as their original papers. For instance, JDeodorant applies
the Extract Method refactoring to deal with long methods. If
this tool is being tested against an Extract Method performed
to remove duplicates, it is expected not to recommend any
code changes. Therefore, performing experimentation against

688 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

‘BtalLinesofCode -Jill
Ttalsymbols -l
SymbolsPerLine

Area

AreaPertine
‘talConnectivity
talConnectivityPerLine
FieldConnectivity
FieldConnectivityPerLine
MethodConnectivity |
MethodConnectivityPerLine |
MethodDeclarationLines -

MethodDeclarationSymbols -l
MethodDeclarationSymbolsPerLine -
MethodDeclarationArea -Jili
MethodDeclarationDepthPerLine -Jiij
KeywordContinueTotalCount
KeywordContinueCountPerLine
KeywordForTotalCount
KeywordForCountPerLine
KeywordNewTotalCount
KeywiordNewCountPerLine
KeywordSwitchTotalCount -
KeywordSwitchCountPertine -Jiij
KeywordAssertTotalCount
KeywordAssertCountPerLine -
KeywordSynchronizedTotalCount
KeywordSynchronizedCountPerLine |
KeywordBooleanTotalCount
KeywordBooleanCountPerLine -
KeywordDoTotalCount
KeywordDoCountPerLine -
KeywordifTotalCount
KeywordifCountPerLine |
KeywordThisTotalCount -Jiili]
KeywordThisCountPerLine -
KeywiordBreakTotalCount -
KeywordBreakCountPerLine -
KeywordDoubleTotalCount -
KeywordDoubleCountPerLine -
KeywordThrowTotalCount -
KeywordThrowCountPerLine
KeywordByteTotalCount
KeywordByteCountPerLine
KeywordElseTotalCount -
KeywordElseCountPerLine -JJll
KeywiordCaseTotalCount -
KeywordCaseCountPerLine
KeywordinstanceofTotalCount
KeywordinstanceofCountPerLine -
KeywordReturnTotalCount -
KeywordRetumCountPerLine
KeywordTransientTotalCount -|
KeywordTransientCountPerLine
KeywordCatchTotalCount -
KeywordCatchCountPerLine
KeywordintTotalCount -Jill
KeywordintCountPerLine -|
KeywiordShortTotalCount
KeywordShortCountPertine -Jill
KeywiordTryTotalCount
KeywordTryCountPerLine -
KeywordCharTotalCount
KeywordCharCountPerLine
KeywordFinalTotalCount -
KeywordFinalCountPerLine -
KeywordFinallyTotalCount -Jill
KeywordFinallyCountPerLine
KeywordLongTotalCount
KeywordLongCountPerLine -
KeywordStrictfpTotalCount
KeywordStrictfpCountPerLine |
KeywordFloatTotalCount
KeywordFloatCountPerLine |
KeywordSuperTotalCount -
KeywordSuperCountPerLine -
KeywordWhileTotalCount -
KeywordWhileCountPerLine -
NumberOfMethods -
NumberOfStaticMethod
MethodLinesOfCodePerMethod |
LackOfCohesionOfMethod -
WeightedMethodPerClass -
McCabePerMethod
NestedBlockDepth -
AferentCoupling -
NumberOfParameters -
EfferentCoupling -
TightClassCohesion -
LooseClassCohesion
DegreeOfCohesion-Direct -
DegreeOfCohesion-Indirect
LackOfComputationalStrength -
ParentAffinity
CyclomaticComplexity
NumberOfComments
NumberOfClasses -
NumberOfFields |
NumberOfPublicFields -
NumberOfStatements |
NumberOfLongMethods
HalsteadLength
HalsteadVocabulary
HalsteadVolume |
HalsteadDifficulty |
HalsteadEffort

HalsteadLevel

HalsteadTime |
HalsteadBugsBeliverd
HalsteadMaintainability
DefinitionUseOfVariable
ComputationUseOfVariable
PredicateUseOfVariable
ComputationUseOfParameters
PredicateUseOfGroupOfParameters |
DispersioninClassHierarchy
NumberOfAssignedVariables -
Overlap

Tightness -}

Coverage
NumberOfReferredVariables -
DispersionOfClassHierarchy -
LEN -

POP -

Metric

DFL -
MaxNesting -
NumberOfAccessedVariables -l

8 52 2E35LEEE 2z 8
EEREREEEERE T
£EE3°E° ¢ R
238 g g
g a g
g &

Extract Method Refactoring Tool

Fig. 9. Software metrics considered in the Extract Method refactoring tool.

techniques tackling different intents may not be adequate. In a
similar context, building a universal model that extracts meth-
ods based on the history of code changes without understanding
the intent must be human-verified to see whether it is useful.

X Recommend appropriate naming for the method after
the extraction. Since the main purpose of the tools listed in
Table IV is the recommendation of Extract Method refactoring,
developers will ultimately need to provide a clear name for
the extracted method, which is considered one of the most
influential factors in the developer’s decision on whether to per-
form Extract Method or not [141], [142]. The appropriate name
assists in expressing its role and meaning to the extracted code.
The existing approaches can complement their recommendation
of the Extract Method with the naming recommendation of the
extracted method.

X Lack of clarity of how the approaches leverage
metrics and decide the associated threshold to make the
decision. From Fig. 9, we observe different software quality
metrics related to various quality attributes used by the tools.
For instance, AntiCopyPaster has used 78 metrics related
to size, complexity, coupling, and keywords to extract dupli-
cate code. In contrast, LiveRef utilized around 20 metrics
related to complexity, cohesion, and maintainability to identify
the extraction targets of Long Method code smell. However,
the implementation of these metrics may vary between these
tools based on the context. In addition, there may be cases
where different metric names are used to improve some quality
attributes. This phenomenon might impact the interpretation of
the correctness of the recommended tools.

X Adapt Extract Method refactoring operations for
multiple programming languages. As reported in RQ,, there
are an existence of multiple Extract Method refactoring tools;
however, RQ; and RQ); findings show that most of these tools
are limited to supporting Java systems which narrow Extract
Method-related research to Java systems. Hence, restricting re-
search to a single language will not accurately reflect real-world
scenarios [184]; there are opportunities for researchers to evolve
the field further and increase the diversity of their research.
The developers of non-Java systems gain no benefit without a
tool to use in their development workflow. Furthermore, recent
trends have shown a rise in the popularity of dynamically typed
programming languages (e.g., Python), giving more urgency
for the research community to construct tools that support non-
traditional research languages.

X Lack of benchmarks. With the rise of refactoring mining
tools [184], [185], [186], such tools were used to create datasets
that already performed Extract Method refactorings from open-
source software repositories. The collected refactorings became
one of the main sources of already quantitative analysis for
refactoring recommendation studies. For instance, the mined
Extract Method refactorings were used either as an oracle to
validate the correctness of recommendations [80], [98], [187],
[188], or as training and testing sets for machine learning mod-
els and deep learning models [93], [97], [104]. While these tools
have demonstrated high detection accuracy [189], they solely
parse source code changes to identify refactoring patterns. So,
there is no association between the performed refactoring and

ALOMAR et al.: BEHIND THE INTENT OF EXTRACT METHOD REFACTORING: A SYSTEMATIC LITERATURE REVIEW 689

the developer’s rationale behind it. Even the reliance on the
developer’s documentation of the code change may not nec-
essarily reveal the needed details behind the refactoring intent.
Without such information, it becomes difficult to guess whether
a mined Extract Method was performed to split a long method,
segregate concerns from a complex method, or remove a clone.
Therefore, studies using these data sets make assumptions con-
cerning their intent, which may or may not hold. Any refactor-
ing being performed outside of the paper’s presumed context is
noise that may hinder the data quality for training or validation.
That is why it is essential to curate any collected refactorings
by associating them with their proper context. Yet, the task of
labeling refactorings’ contexts may not be trivial.

X Lack of clarity on potential Extract Method draw-
backs. All reviewed studies primarily focus on motivating the
need for method extaction to improve readability, maintain-
ability, and reusability. However, it is critical to raise the de-
veloper’s awareness of the potential limitations inherited from
the solutions’ design or execution. One of the main design-
level limitations of these approaches is the potential increase in
the code’s cognitive complexity. In fact, when a new method
is extracted, it may introduce additional local variables and
parameters. Such addition can adversarially hinder program
comprehension and add a maintenance burden. Additionally,
adding new method calls comes with additional overhead, such
as method dispatch and return, which may reduce the program’s
performance, especially when the extracted code breaks tight
loops [190]. Finally, depending on where the extracted method
lives, it can change the scope or visibility of its variables or
objects, leading to a violation of the behavior preservation
property. While the benefits of the proposed refactorings may
outweigh the drawbacks, studies should warn developers to
avoid introducing regressions in their systems.

X Integration of Extract Method tools into the developer
workflow. While our finding from RQ, shows that researchers
proposed an approach to recommend Extract Method refactor-
ing opportunities, not all approaches can be used in practice.
Hence, the community needs to better collaborate with estab-
lished tool/IDEs vendors in integrating their contributions with
popular tools and IDEs to promote the usage of their artifacts.
As for the existing tools, in addition to providing extensive and
innovative refactoring functionality, researchers must ensure
that their products exhibit an optimal user experience. Usability
and trustworthiness are essential to refactoring tool adoption
and are among the reasons for the limited usage [12], [191],
[192], [193].

X Extract Method refactoring support using Large Lan-
guage Models (LLMs). While Extract Method is considered
as one of the most popular refactoring operations and represents
approximately 49.6% of the total refactorings recommended
[5], it is recognized as one of the most difficult and error-prone
refactorings [6], [12], [32]. Even though we have shown in this
systematic review multiple studies on Extract Method in the
literature using multiple artificial intelligence (AI) techniques,
its adoption is still challenging for developers [6], [12]. More
recently, Large Language Models (LLMs) have made rapid
advancements that have brought Al to a new level, enabling

and empowering even more diverse software engineering ap-
plications and industrial domains with intelligence [194], [195],
[196], [197], [198]. Such LLMs are pre-trained on large corpora
of data which enclose numerous commonsense knowledge and
support Transformer architecture with millions, even billions of
parameters. We believe that the Extract Method can benefit sig-
nificantly from LLM advances. For instance, dedicated LLMs
can be used to identify code fragments that need to be extracted
and to recommend appropriate names for the extracted methods.
LLMs can also automatically generate the documentation of
Extract Method refactoring changes, e.g., generate the commit
message or pull request description along with the intent behind
the refactoring. It can also help with code review by explaining
the intent of the Extract Method refactoring and providing a
summary of the code change before and after the refactoring.
We thus believe that LLMs represent a unique technique to
empower Extract Method refactoring and open up various re-
search venues in the field of Extract Method in particular and
refactoring in general.

VI. THREATS TO VALIDITY

In this section, threats are discussed in the context of three
types of threats of validity: internal validity, construct validity,
and external validity.

Internal threats to validity: Obtaining a representative
set of literature publications for this SLR can be considered
a validity threat due to the search process. To minimize this
threat, we followed the SLR guidelines [35], [36], [50], [51],
[52]. In particular, we have carefully established search engines,
search terms, and inclusion/exclusion criteria to ensure that the
review of the literature is comprehensive. Additionally, we con-
sidered related search terms and the main terms of the research
questions to construct the search string and select relevant ar-
ticles. Furthermore, we followed a five-stage study selection
process and applied each stage’s inclusion and exclusion criteria
described in Section III. Moreover, the analysis involved snow-
balling to expand the paper collection. These study design steps
reduce the possibility that papers are missed. Another threat
is the limitation of search terms and search engines, which
might lead to incomplete literature publications. To limit this
threat, we used carefully defined keywords and comprehensive
academic search engines (i.e., ScienceDirect, Scopus, Springer,
Web of Science, ACM, IEEE, and Wiley) that cover the main
publishers’ venues. We observed that when using search en-
gines, particularly IEEE, some papers containing our keywords
were not being found despite being indexed in their libraries.
This issue has been reported in previous studies when using
the IEEE search engine [199], [200]. However, we found these
missed papers during the snowballing process. Regarding the
quality of the selected PSs, only the studies that underwent peer
review by leading academic publishers were included. Further-
more, selected studies that were within the search timeline were
included. To our knowledge, all PSs relevant to our research
goal and within the search window have been included.

Construct threats to validity: Concerning the subjectivity
of the assessment of the PSs, the primary studies were reviewed

690 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

independently by two authors. The first author performed data
analysis and extraction from the second author, who reviewed
the currently selected PSs. At the end of each iteration, the
authors met and performed any necessary refinements. In the
event of disagreements, the researchers discussed these cases
to reach a consensus. Furthermore, to avoid personal bias dur-
ing manual analysis, two authors conducted each step in the
manual analysis, and the results were always cross-validated.
Moreover, some PSs do not make a clear distinction between
how refactoring opportunities are detected, and how the refac-
toring is actually performed. Therefore, for these studies, we
consider detection to refactoring opportunities to be part of the
correction if the end goal of the PSs is Extract Method refactor-
ing identification.

External threats to validity: The collected papers contain a
significant proportion of academic works, forming an adequate
basis for concluding findings that could be useful for academia.
However, we cannot claim that the same Extract Method detec-
tion and execution is used in industry. Additionally, our findings
are mainly within the field of software refactoring. We cannot
generalize our results beyond this subject.

VII. CONCLUSION

In this paper, we map and review the body of knowledge
on Extract Method refactoring opportunities. We systematically
reviewed 83 papers and classified them. This research aims
to aggregate, summarize and discuss the practical approaches
that recommend Extract Method refactoring. Our main findings
show that (i) 38.6% of Extract Method refactoring studies
primarily focus on addressing code clones; (ii) Several of the
Extract Method tools involve the developer in the decision-
making process when applying the method extraction, and (iii)
the existing benchmarks vary widely and lack uniform informa-
tion, posing challenges in standardizing them for benchmarking
purposes. This existing research empowers the community with
information to guide future Extract Method tool development.
Future work includes evaluation of each tool to determine the
extent to which tools recommend Extract Method refactoring
given the same context.

ACKNOWLEDGMENTS

The authors sincerely thank the anonymous reviewers for
their invaluable feedback and constructive comments, which
enhanced the quality and rigor of this work. Their thoughtful
insights and suggestions have been instrumental in shaping the
final version of this paper.

REFERENCES

[1] GitHub. Accessed: Dec. 15, 2023. [Online]. Available: https://
github.com/apache/pig/commit/7a516060213f5ac1fd559¢c124d2da0c02
87757c7

[2] M. Fowler, Refactoring: Improving the Design of Existing Code.
Reading, MA, USA: Addison-Wesley, 2018.

[3] W. G. Griswold and D. Notkin, “Automated assistance for program
restructuring,” ACM Trans. Softw. Eng. Methodol. (TOSEM), vol. 2,
no. 3, pp. 228-269, 1993.

[4] A. V. Zarras, T. Vartziotis, and P. Vassiliadis, “Navigating through the
archipelago of refactorings,” in Proc. 10th Joint Meeting Found. Softw.
Eng., 2015, pp. 922-925.

[5]
[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

“JDeodorant,” GitHub, 2011. Accessed: Dec. 15, 2023. [Online].
Available: https://github.com/tsantalis/jdeodorant

D. Silva, N. Tsantalis, and M. T. Valente, “Why we refactor? Con-
fessions of GitHub contributors,” in Proc. 24th ACM SIGSOFT Int.
Symp. Found. Softw. Eng. (FSE), New York, NY, USA: ACM, 2016,
pp. 858-870.

N. Tsantalis, V. Guana, E. Stroulia, and A. Hindle, “A multidimensional
empirical study on refactoring activity,” in Proc. Conf. Center Adv.
Stud. Collab. Res. (CASCON), 2013, pp. 132-146.

E. Murphy-Hill and A. P. Black, “Breaking the barriers to successful
refactoring: Observations and tools for extract method,” in Proc. 30th
Int. Conf. Softw. Eng., 2008, pp. 421-430.

S. Charalampidou, E.-M. Arvanitou, A. Ampatzoglou, P. Avgeriou,
A. Chatzigeorgiou, and I. Stamelos, “Structural quality metrics as
indicators of the long method bad smell: An empirical study,” in Proc.
44th Euromicro Conf. Softw. Eng. Adv. Appl. (SEAA), Piscataway, NJ,
USA: IEEE Press, 2018, pp. 234-238.

S. Charalampidou, A. Ampatzoglou, A. Chatzigeorgiou, A. Gkortzis,
and P. Avgeriou, “Identifying extract method refactoring opportunities
based on functional relevance,” IEEE Trans. Softw. Eng., vol. 43, no. 10,
pp. 954-974, Oct. 2017.

S. Thy, A. Costea, K. Gopinathan, and I. Sergey, “Adventure of a
lifetime: Extract method refactoring for rust,” Proc. ACM Program.
Lang., vol. 7, no. OOPSLA2, pp. 658-685.

E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and
how we know it,” IEEE Trans. Softw. Eng., vol. 38, no. 1, pp. 5-18,
Jan./Feb. 2012.

E. AlOmar, M. W. Mkaouer, and A. Ouni, “Can refactoring be self-
affirmed? An exploratory study on how developers document their
refactoring activities in commit messages,” in Proc. IEEE/ACM 3rd
Int. Workshop Refactoring (IWoR), Piscataway, NJ, USA: IEEE Press,
2019, pp. 51-58.

D. van der Leij, J. Binda, R. van Dalen, P. Vallen, Y. Luo, and M.
Aniche, “Data-driven extract method recommendations: A study at
ING,” in Proc. 29th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp.
Found. Softw. Eng., 2021, pp. 1337-1347.

N. Yoshida, S. Numata, E. Choiz, and K. Inoue, “Proactive clone
recommendation system for extract method refactoring,” in Proc.
IEEE/ACM 3rd Int. Workshop Refactoring (IWoR), Piscataway, NJ,
USA: IEEE Press, 2019, pp. 67-70.

J. P. S. Alcocer, A. S. Antezana, G. Santos, and A. Bergel, “Improving
the success rate of applying the extract method refactoring,” Sci.
Comput. Program., vol. 195, 2020, Art. no. 102475.

K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto, “Is duplicate code more
frequently modified than non-duplicate code in software evolution? An
empirical study on open source software,” in Proc. Joint ERCIM Work-
shop Softw. Evolution (EVOL) Int. Workshop Princ. Softw. Evolution
(IWPSE), 2010, pp. 73-82.

Y. Higo, S. Kusumoto, and K. Inoue, “A metric-based approach to
identifying refactoring opportunities for merging code clones in a Java
software system,” J. Softw. Maintenance Evolution: Res. Pract., vol. 20,
no. 6, pp. 435461, 2008.

E. A. AlOmar, T. Wang, V. Raut, M. W. Mkaouer, C. Newman, and
A. Ouni, “Refactoring for reuse: An empirical study,” Innov. Syst.
Softw. Eng., vol. 18, pp. 1-31, Mar. 2022.

E. A. AlOmar et al., “How do developers refactor code to improve
code reusability?” in Proc. Reuse Emerg. Softw. Eng. Practices: 19th
Int. Conf. Softw. Syst. Reuse ICSR 2020, Hammamet, Tunisia. New
York, NY, USA: Springer-Verlag, Dec. 2020, pp. 261-276.

L. Yang, H. Liu, and Z. Niu, “Identifying fragments to be extracted
from long methods,” in Proc. 16th Asia-Pacific Softw. Eng. Conf.,
Piscataway, NJ, USA: IEEE Press, 2009, pp. 43-49.

R. Morales, Z. Soh, F. Khomh, G. Antoniol, and F. Chicano, “On the
use of developers’ context for automatic refactoring of software anti-
patterns,” J. Syst. Softw., vol. 128, pp. 236251, Jun. 2017.

O. Tiwari and R. Joshi, “Identifying extract method refactorings,” in
Proc. 15th Innov. Softw. Eng. Conf., 2022, pp. 1-11.

F. Khomh, M. D. Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An
exploratory study of the impact of antipatterns on class change- and
fault-proneness,” Empirical Softw. Eng., vol. 17, no. 3, pp. 243-
275, 2012.

F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and A. De Lucia,
“Do they really smell bad? A study on developers’ perception of bad
code smells,” in Proc. IEEE Int. Conf. Softw. Maintenance Evolution,
Piscataway, NJ, USA: IEEE Press, 2014, pp. 101-110.

ALOMAR et al.: BEHIND THE INTENT OF EXTRACT METHOD REFACTORING: A SYSTEMATIC LITERATURE REVIEW

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

F. Palomba, G. Bavota, M. D. Penta, F. Fasano, R. Oliveto, and A. D.
Lucia, “On the diffuseness and the impact on maintainability of code
smells: A large scale empirical investigation,” Empirical Softw. Eng.,
vol. 23, no. 3, pp. 1188-1221, 2018.

W. Oizumi et al., “Recommending composite refactorings for smell
removal: Heuristics and evaluation,” in Proc. XXXIV Brazilian Symp.
Softw. Eng., 2020, pp. 72-81.

M. O. Cinnéide, D. Boyle, and I. H. Moghadam, “Automated refac-
toring for testability,” in Proc. IEEE 4th Int. Conf. Softw. Testing,
Verification Validation Workshops, Piscataway, NJ, USA: IEEE Press,
2011, pp. 437-443.

M. Harman, “Refactoring as testability transformation,” in Proc. IEEE
4th Int. Conf. Softw. Testing, Verification Validation Workshops, Piscat-
away, NJ, USA: IEEE Press, 2011, pp. 414-421.

A. Hora and R. Robbes, “Characteristics of method extractions in Java:
A large scale empirical study,” Empirical Softw. Eng., vol. 25, no. 3,
pp. 1798-1833, May 2020.

M. Kim, T. Zimmermann, and N. Nagappan, “An empirical study of
refactoringchallenges and benefits at Microsoft,” IEEE Trans. Softw.
Eng., vol. 40, no. 7, pp. 633-649, Jul. 2014.

Y. Golubev, Z. Kurbatova, E. A. AlOmar, T. Bryksin, and M. W.
Mkaouer, “One thousand and one stories: A large-scale survey of
software refactoring,” in Proc. 29th ACM Joint Meeting Eur. Softw.
Eng. Conf. Symp. Found. Softw. Eng., 2021, pp. 1303-1313.

J. Ivers, R. L. Nord, I. Ozkaya, C. Seifried, C. S. Timperley, and M.
Kessentini, “Industry experiences with large-scale refactoring,” in Proc.
30th ACM Joint Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2022,
pp. 1544-1554.

E. L. Alves, M. Song, T. Massoni, P. D. Machado, and M. Kim,
“Refactoring inspection support for manual refactoring edits,” IEEE
Trans. Softw. Eng., vol. 44, no. 4, pp. 365-383, Apr. 2018.

B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” Technical Report EBSE-
2007-01, 2007.

C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proc. 18th Int. Conf.
Eval. Assessment Softw. Eng., 2014, pp. 1-10.

K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic
mapping studies in software engineering,” in Proc. 12th Int. Conf. Eval.
Assessment Softw. Eng. (EASE), 2008, pp. 1-10.

M. Zhang, T. Hall, and N. Baddoo, “Code Bad Smells: A review of
current knowledge,” J. Softw. Maintenance Evolution, vol. 23, pp. 179—
202, Apr. 2011.

M. Abebe and C.-J. Yoo, “Trends, opportunities and challenges of
software refactoring: A systematic literature review,” vol. 8, pp. 299—
318, Jan. 2014.

J. A. Dallal, “Identifying refactoring opportunities in object-oriented
code: A systematic literature review,” Inf. Softw. Technol., vol. 58,
pp. 231-249, 2015.

S. Singh and S. Kaur, “A systematic literature review: Refactoring for
disclosing code smells in object oriented software,” Ain Shams Eng.
J., vol. 9, no. 4, pp. 2129-2151, 2017.

J. A. Dallal and A. Abdin, “Empirical evaluation of the impact of
object-oriented code refactoring on quality attributes: A systematic
literature review,” IEEE Trans. Softw. Eng., vol. 44, no. 1, pp. 44-69,
Jan. 2018.

T. Mariani and S. R. Vergilio, “A systematic review on search-based
refactoring,” Inf. Softw. Technol., vol. 83, pp. 14-34, Mar. 2017.

A. A. B. Baqais and M. Alshayeb, “Automatic software refactoring:
A systematic literature review,” Softw. Qual. J., vol. 28, no. 2, pp. 459—
502, 2020.

G. Lacerda, F. Petrillo, M. Pimenta, and Y. G. Guéhéneuc, “Code
smells and refactoring: A tertiary systematic review of challenges and
observations,” J. Syst. Softw., vol. 167, 2020, Art. no. 110610.

C. Abid, V. Alizadeh, M. Kessentini, T. d. N. Ferreira, and D. Dig, “30
years of software refactoring research: A systematic literature review,”
2020, arXiv:2007.02194.

E. A. AlOmar, M. W. Mkaouer, C. Newman, and A. Ouni, “On
preserving the behavior in software refactoring: A systematic mapping
study,” Inf. Softw. Technol., vol. 140, 2021, Art. no. 106675.

W. E. Opdyke, “Refactoring object-oriented frameworks,” Ph.D. thesis,
Univ. Illinois at Urbana-Champaign, Champaign, IL, USA, 1992. UMI
Order No. GAX93-05645.

M. O. Cinnéide, Automated Application of Design Patterns: A Refac-
toring Approach. Dublin, Ireland: Trinity College, 2001.

[50]

(511

[52]

[53]

[54]

[55]

[56]

[571

[58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

691

B. Kitchenham, “Procedures for performing systematic reviews,” Keele
Univ., Keele, U.K., Tech. Rep. TR/SE-0401, 2004.

P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
“Lessons from applying the systematic literature review process within
the software engineering domain,” J. Syst. Softw., vol. 80, no. 4,
pp. 571-583, 2007.

B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, “Systematic literature reviews in software engineering—
A systematic literature review,” Inf. Softw. Technol., vol. 51, no. 1,
pp. 7-15, 2009.

E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo,
“A review-based comparative study of bad smell detection tools,” in
Proc. 20th Int. Conf. Eval. Assessment Softw. Eng., 2016, pp. 1-12.
V. Garousi and M. V. Mintyld, “A systematic literature review of
literature reviews in software testing,” Inf. Softw. Technol., vol. 80,
pp. 195-216, Dec. 2016.

S. Li et al., “Understanding and addressing quality attributes of
microservices architecture: A systematic literature review,” Inf. Softw.
Technol., vol. 131, 2021, Art. no. 106449.

T. Dyba and T. Dingsgyr, “Empirical studies of agile software devel-
opment: A systematic review,” Inf. Softw. Technol., vol. 50, nos. 9-10,
pp. 833-859, 2008.

B. Kitchenham and P. Brereton, “A systematic review of systematic
review process research in software engineering,” Inf. Softw. Technol.,
vol. 55, no. 12, pp. 2049-2075, 2013.

V. Lenarduzzi, T. Besker, D. Taibi, A. Martini, and F. A. Fontana,
“A systematic literature review on technical debt prioritization: Strate-
gies, processes, factors, and tools,” J. Syst. Softw., vol. 171, 2021,
Art. no. 110827.

D. S. Cruzes and T. Dyba, “Recommended steps for thematic synthesis
in software engineering,” in Proc. Int. Symp. Empirical Softw. Eng.
Meas., Piscataway, NJ, USA: IEEE Press, 2011, pp. 275-284.

E. A. AlOmar, M. Chouchen, M. W. Mkaouer, and A. Ouni, “Code
review practices for refactoring changes: An empirical study on Open-
Stack,” in Proc. 19th Int. Conf. Mining Softw. Repositories, 2022,
pp. 689-701.

E. A. AlOmar, H. AlRubaye, M. W. Mkaouer, A. Ouni, and M.
Kessentini, “Refactoring practices in the context of modern code
review: An industrial case study at Xerox,” in Proc. IEEE/ACM 43rd
Int. Conf. Softw. Eng.: Softw. Eng. Pract. (ICSE-SEIP), Piscataway, NJ,
USA: IEEE Press, 2021, pp. 348-357.

C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Sci. Comput. Program., vol. 74, no. 7, pp. 470-495, 2009.

J. Pérez, C. Lépez, N. Moha, and T. Mens, “A classification framework
and survey for design smell management,” 2011 [Online]. Available:
https://www.semanticscholar.org/paper/A-Classification-Framework-
and-Survey-for-Design-Pérez-L6pez/250b17¢498a9262d208a6b749¢
6057cal667claat#citing-papers

K. Maruyama, “Automated method-extraction refactoring by using
block-based slicing,” in Proc. Symp. Softw. Reusability: Putting Softw.
Reuse Context, 2001, pp. 31-40.

A. S. Antezana, “TOAD: A tool for recommending auto-refactoring
alternatives,” in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng.: Com-
panion Proc. (ICSE-Companion), Piscataway, NJ, USA: IEEE Press,
2019, pp. 174-176.

K. Maruyama and S. Hayashi, “A tool supporting postponable refac-
toring,” in Proc. IEEE/ACM 39th Int. Conf. Softw. Eng. Companion
(ICSE-C), Piscataway, NJ, USA: IEEE Press, 2017, pp. 133-135.

D. Mazinanian, N. Tsantalis, R. Stein, and Z. Valenta, “JDeodorant:
clone refactoring,” in Proc. 38th Int. Conf. Softw. Eng. Companion,
2016, pp. 613-616.

N. Tsantalis, D. Mazinanian, and S. Rostami, “Clone refactoring with
lambda expressions,” in Proc. IEEE/ACM 39th Int. Conf. Softw. Eng.
(ICSE), Piscataway, NJ, USA: IEEE Press, 2017, pp. 60-70.

N. Meng, L. Hua, M. Kim, and K. S. McKinley, “Does automated
refactoring obviate systematic editing?” in Proc. IEEE/ACM 37th IEEE
Int. Conf. Softw. Eng., vol. 1, Piscataway, NJ, USA: IEEE Press, 2015,
pp. 392-402.

N. Tsantalis and A. Chatzigeorgiou, “Identification of extract method
refactoring opportunities,” in Proc. 13th Eur. Conf. Softw. Maintenance
Reengineering, Piscataway, NJ, USA: IEEE Press, 2009, pp. 119-128.
N. Tsantalis and A. Chatzigeorgiou, “Identification of extract method
refactoring opportunities for the decomposition of methods,” J. Syst.
Softw., vol. 84, no. 10, pp. 1757-1782, 2011.

692

[72]

[73]

(74

[75]

[76]

(771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

Y. Bian, G. Koru, X. Su, and P. Ma, “SPAPE: A semantic-preserving
amorphous procedure extraction method for near-miss clones,” J. Syst.
Softw., vol. 86, no. 8, pp. 2077-2093, 2013.

M. Shahidi, M. Ashtiani, and M. Zakeri-Nasrabadi, “An automated
extract method refactoring approach to correct the long method code
smell,” J. Syst. Softw., vol. 187, 2022, Art. no. 111221.

E. Choi, D. Tanaka, N. Yoshida, K. Fujiwara, D. Port, and H. Iida, “An
investigation of the relationship between extract method and change
metrics: A case study of JEdit,” in Proc. 25th Asia-Pacific Softw. Eng.
Conf. (APSEC), Piscataway, NJ, USA: IEEE Press, 2018, pp. 653-657.
T. Kanemitsu, Y. Higo, and S. Kusumoto, “A visualization method of
program dependency graph for identifying extract method opportunity,”
in Proc. 4th Workshop Refactoring Tools, 2011, pp. 8-14.

T. Sharma, “Identifying extract-method refactoring candidates automat-
ically,” in Proc. 5th Workshop Refactoring Tools, 2012, pp. 50-53.
A. Abadi, R. Ettinger, and Y. Feldman, “Fine slicing for ad-
vanced method extraction,” in Proc. 3rd Workshop Refactoring Tools,
vol. 21, pp. 1-14, 2009.

N. Juillerat and B. Hirsbrunner, “Improving method extraction: A novel
approach to data flow analysis using Boolean flags and expressions,”
in Proc.1st Workshop Refactoring Tools (WRT), 2007, pp. 48—49.

A. Abadi, R. Ettinger, and Y. A. Feldman, “Re-approaching the
refactoring rubicon,” in Proc. 2nd Workshop Refactoring Tools, 2008,
pp. 1-4.

D. Silva, R. Terra, and M. T. Valente, “Recommending automated
extract method refactorings,” in Proc. 22nd Int. Conf. Program Com-
prehension, 2014, pp. 146-156.

D. Cui, Q. Wang, J. Wang, Chi, J. Li, L. Wang, and Q. Li, “REMS:
Recommending extract method refactoring opportunities via multi-view
representation of code property graph,” in Proc. 31st Int. Conf. Program
Comprehension, 2023, pp. 191-202.

R. Komondoor and S. Horwitz, “Effective, automatic procedure ex-
traction,” in Proc. 11th IEEE Int. Workshop Program Comprehension,
Piscataway, NJ, USA: IEEE Press, 2003, pp. 33-42.

F. Arcelli Fontana, M. Zanoni, and F. Zanoni, “A duplicated code
refactoring advisor,” in Proc. 16th Int. Conf. Agile Processes Softw.
Eng. Extreme Program. (XP), Helsinki, Finland, in Proceedings 16,
New York, NY, USA: Springer-Verlag, 2015, pp. 3-14.

M. Aniche, E. Maziero, R. Durelli, and V. H. Durelli, “The ef-
fectiveness of supervised machine learning algorithms in predicting
software refactoring,” IEEE Trans. Softw. Eng., vol. 48, no. 4, pp. 1432—
1450, 2020.

C. Abid, M. Kessentini, V. Alizadeh, M. Dhaouadi, and R. Kazman,
“How does refactoring impact security when improving quality? a
security-aware refactoring approach,” IEEE Trans. Softw. Eng., vol. 48,
no. 3, pp. 864-878, 2020.

N. Tsantalis, D. Mazinanian, and G. P. Krishnan, “Assessing the
refactorability of software clones,” IEEE Trans. Softw. Eng., vol. 41,
no. 11, pp. 1055-1090, 2015.

R. Haas and B. Hummel, “Deriving extract method refactoring sugges-
tions for long methods,” in Proc. Int. Conf. Softw. Qual., New York,
NY, USA: Springer-Verlag, 2016, pp. 144-155.

R. Haas and B. Hummel, “Learning to rank extract method refactoring
suggestions for long methods,” in Proc. 9th Int. Conf. Softw. Qual.
Complexity Challenges Softw. Eng. Emerg. Technol. (SWQD), Vienna,
Austria, in Proceedings 9, New York, NY, USA: Springer-Verlag, 2017,
pp. 45-56.

S. Xu, A. Sivaraman, S.-C. Khoo, and J. Xu, “GEMS: An extract
method refactoring recommender,” in Proc. IEEE 28th Int. Symp. Softw.
Rel. Eng. (ISSRE), Piscataway, NJ, USA: IEEE Press, 2017, pp. 24-34.
R. Yue, Z. Gao, N. Meng, Y. Xiong, X. Wang, and J. D. Morgenthaler,
“Automatic clone recommendation for refactoring based on the present
and the past,” in Proc. IEEE Int. Conf. Softw. Maintenance Evolution
(ICSME), Piscataway, NJ, USA: IEEE Press, 2018, pp. 115-126.

I. Palit, G. Shetty, H. Arif, and T. Sharma, “Automatic refactoring
candidate identification leveraging effective code representation,” in
2023 IEEE Int. Conf. Softw. Maintenance Evolution (ICSME), 1EEE,
2023, pp. 369-374. 2023.

A. M. Sheneamer, “An automatic advisor for refactoring software
clones based on machine learning,” IEEE Access, vol. 8, pp. 124978—
124988, 2020.

E. A. AlOmar et al., “Anticopypaster: Extracting code duplicates as
soon as they are introduced in the IDE,” in Proc. 37th IEEE/ACM Int.
Conf. Automated Softw. Eng., 2022, pp. 1-4.

[94]

[95]

[96]

[971

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

S. Fernandes, A. Aguiar, and A. Restivo, “LiveRef: A tool for live
refactoring Java code,” in Proc. 37th IEEE/ACM Int. Conf. Automated
Softw. Eng., 2022, pp. 1-4.

A. Lakhotia and J.-C. Deprez, “Restructuring programs by tucking
statements into functions,” Inf. Softw. Technol., vol. 40, nos. 11-12,
pp. 677-689, 1998.

R. Tairas and J. Gray, “Increasing clone maintenance support by
unifying clone detection and refactoring activities,” Inf. Softw. Technol.,
vol. 54, no. 12, pp. 1297-1307, 2012.

E. A. AlOmar et al., “Just-in-time code duplicates extraction,” Inf.
Softw. Technol., vol. 18-58, 2023, Art. no. 107169.

D. Silva, R. Terra, and M. T. Valente, “JExtract: An eclipse plug-
in for recommending automated extract method refactorings,” inProc.
Brazilian Conf. Softw.: Theory Pract., 2015, pp. 1-8.

S. Fernandes, A. Aguiar, and A. Restivo, “A live environment to
improve the refactoring experience,” in Companion Proc. 6th Int. Conf.
Art, Sci., Eng. Program., 2022, pp. 30-37.

A. Imazato, Y. Higo, K. Hotta, and S. Kusumoto, “Finding extract
method refactoring opportunities by analyzing development history,”
in Proc. IEEE 41st Annu. Comput. Softw. Appl. Conf. (COMPSAC),
vol. 1, Piscataway, NJ, USA: IEEE Press, 2017, pp. 190-195.

M. Kaya and J. W. Fawcett, “Identification of extract method refactor-
ing opportunities through analysis of variable declarations and uses,”
Int. J. Softw. Eng. Knowl. Eng., vol. 27, no. 1, pp. 49-69, 2017.

M. Kaya and J. W. Fawcett, “Identifying extract method opportunities
based on variable references (s),” in Proc. 25th Int. Conf. Softw. Eng.
Knowl. Eng. (SEKE), 2013, pp. 153-158.

E. A. AlOmaret al., “On the documentation of refactoring types,”
Automated Softw. Eng., vol. 29, no. 1, pp. 1-40, 2022.

A. S. Nyamawe, “Mining commit messages to enhance software
refactorings recommendation: A machine learning approach,” Mach.
Learn. Appl., vol. 9, 2022, Art. no. 100316.

A. S. Nyamawe, H. Liu, N. Niu, Q. Umer, and Z. Niu, “Feature
requests-based recommendation of software refactorings,” Empirical
Softw. Eng., vol. 25, pp. 4315-4347, Sep. 2020.

A. S. Nyamawe, H. Liu, N. Niu, Q. Umer, and Z. Niu, “Automated
recommendation of software refactorings based on feature requests,” in
Proc. IEEE 27th Int. Requirements Eng. Conf. (RE), Piscataway, NJ,
USA: IEEE Press, 2019, pp. 187-198.

P. S. Sagar, E. A. AlOmar, M. W. Mkaouer, A. Ouni, and C. D.
Newman, “Comparing commit messages and source code metrics for
the prediction refactoring activities,” Algorithms, vol. 14, no. 10, 2021,
Art. no. 289.

R. Krasniqi and J. Cleland-Huang, “Enhancing source code refactoring
detection with explanations from commit messages,” in Proc. IEEE
27th Int. Conf. Softw. Anal., Evolution Reengineering (SANER), Pis-
cataway, NJ, USA: IEEE Press, 2020, pp. 512-516.

R. Ettinger, S. Tyszberowicz, and S. Menaia, “Efficient method extrac-
tion for automatic elimination of type-3 clones,” in Proc. IEEE 24th
Int. Conf. Softw. Anal., Evolution Reengineering (SANER), Piscataway,
NJ, USA: IEEE Press, 2017, pp. 327-337.

R. Ettinger and S. Tyszberowicz, “Duplication for the removal of
duplication,” in Proc. IEEE 23rd Int. Conf. Softw. Anal., Evolution,
Reengineering (SANER), vol. 3, pp. 53-59, Piscataway, NJ, USA: IEEE
Press, 2016.

M. Vittek, P. Borovansky, and P-E. Moreau, “A C++ refactoring
browser and method extraction,” in Software Engineering Techniques:
Design for Quality. New York, NY, USA: Springer-Verlag, 2007,
pp- 325-336.

T. Corbat, L. Felber, M. Stocker, and P. Sommerlad, “Ruby refactoring
plug-in for eclipse,” in Proc. Companion 22nd ACM SIGPLAN Conf.
Object-Oriented Program. Syst. Appl. Companion, 2007, pp. 779-780.
P. M. Cousot, R. Cousot, F. Logozzo, and M. Barnett, “An abstract
interpretation framework for refactoring with application to extract
methods with contracts,” in Proc. ACM Int. Conf. Object Oriented
Program. Syst. Lang. Appl., 2012, pp. 213-232.

P. Meananeatra, S. Rongviriyapanish, and T. Apiwattanapong, ‘“Refac-
toring opportunity identification methodology for removing long
method smells and improving code analyzability,” IEICE Trans. Inf.
Syst., vol. 101, no. 7, pp. 1766-1779, 2018.

S. Xu, C. Guo, L. Liu, and J. Xu, “A log-linear probabilistic model for
prioritizing extract method refactorings,” in Proc. 3rd IEEE Int. Conf.
Comput. Commun. (ICCC), Piscataway, NJ, USA: IEEE Press, 2017,
pp. 2503-2507.

ALOMAR et al.: BEHIND THE INTENT OF EXTRACT METHOD REFACTORING: A SYSTEMATIC LITERATURE REVIEW

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, and K. Words,
“ARIES: Refactoring support environment based on code clone anal-
ysis,” in Proc. IASTED Conf. Softw. Eng. Appl., 2004, pp. 222-229.
Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, “ARIES: Refactoring
support tool for code clone,” ACM SIGSOFT Softw. Eng. Notes, vol. 30,
no. 4, pp. 1-4, 2005.

A. O’Connor, M. Shonle, and W. Griswold, “Star diagram with auto-
mated refactorings for eclipse,” in Proc. OOPSLA Workshop Eclipse
Technol. eXchange, 2005, pp. 16-20.

Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, “Refactoring support
based on code clone analysis,” in Proc. Product Focused Softw. Process
Improvement: 5th Int. Conf. (PROFES), Kansai Science City, in Pro-
ceedings 5. New York, NY, USA: Springer-Verlag, 2004, pp. 220-233.
Y. Bian, X. Su, and P. Ma, “Identifying accurate refactoring opportuni-
ties using metrics,” in Proc. Int. Conf. Soft Comput. Techn. Eng. Appl.:
(ICSCTEA), Kunming, China. New York, NY, USA: Springer-Verlag,
2014, pp. 141-14e.

P. Meananeatra, S. Rongyviriyapanish, and T. Apiwattanapong, “Using
software metrics to select refactoring for long method bad smell,”
in 8th Elect. Eng./Electronics, Comput., Telecommun. Inf. Technol.
(ECTI) Assoc. Thailand-Conf., Piscataway, NJ, USA: IEEE Press, 2011,
pp. 492-495.

R. Ettinger and M. Verbaere, “Untangling: A slice extraction refactor-
ing,” in Proc. 3rd Int. Conf. Aspect-Oriented Softw. Develop., 2004,
pp. 93-101.

Z. Chen, M. Mohanavilasam, Y.-W. Kwon, and M. Song, “Tool
support for managing clone refactorings to facilitate code review in
evolving software,” in Proc. IEEE 41st Annu. Comput. Softw. Appl.
Conf. (COMPSAC), vol. 1, Piscataway, NJ, USA: IEEE Press, 2017,
pp. 288-297.

S. Charalampidou, A. Ampatzoglou, and P. Avgeriou, “Size and cohe-
sion metrics as indicators of the long method bad smell: An empirical
study,” in Proc. 11th Int. Conf. Predictive Models Data Analytics Softw.
Eng., 2015, pp. 1-10.

S. Vidal, I. Berra, S. Zulliani, C. Marcos, and J. A. D. Pace, “Assessing
the refactoring of brain methods,” ACM Trans. Softw. Eng. Methodol.
(TOSEM), vol. 27, no. 1, pp. 1-43, 2018.

G. P. Krishnan and N. Tsantalis, “Refactoring clones: An optimization
problem,” in 2013 IEEE Int. Conf. Softw. Maintenance, Piscataway, NJ,
USA: IEEE Press, 2013, pp. 360-363.

G. P. Krishnan and N. Tsantalis, “Unification and refactoring of
clones,” in Proc. Softw. Evolution Week-IEEE Conf. Softw. Mainte-
nance, Reengineering, Reverse Eng. (CSMR-WCRE), Piscataway, NJ,
USA: IEEE Press, 2014, pp. 104-113.

W. Shin, “A study on the method of removing code duplication
using code template,” Softw. Eng., Artif. Intell., Netw. Parallel/Distrib.
Comput., pp. 27-41, 2019.

A. Goto, N. Yoshida, M. Ioka, E. Choi, and K. Inoue, “How to extract
differences from similar programs? A cohesion metric approach,” in
Proc. 7th Int. Workshop Softw. Clones (IWSC), Piscataway, NJ, USA:
IEEE Press, 2013, pp. 23-29.

E. Choi, N. Yoshida, T. Ishio, K. Inoue, and T. Sano, “Extracting code
clones for refactoring using combinations of clone metrics,” in Proc.
5th Int. Workshop Softw. Clones, 2011, pp. 7-13.

N. Juillerat and B. Hirsbrunner, “An algorithm for detecting and
removing clones in java code,” in Proc. 3rd Workshop Softw. Evo-
lution Transformations: Embracing Change, SeTra, vol. 2006, 2006,
pp. 63-74.

R. Komondoor and S. Horwitz, “Semantics-preserving procedure ex-
traction,” in Proc. 27th ACM SIGPLAN-SIGACT Symp. Princ. Program.
Lang., 2000, pp. 155-169.

C. Brown and S. Thompson, “Clone detection and elimination for
Haskell,” in Proc. ACM SIGPLAN Workshop Partial Eval. Program
Manipulation, 2010, pp. 111-120.

H. Li and S. Thompson, “Clone detection and removal for Erlang/OTP
within a refactoring environment,” in Proc. ACM SIGPLAN Workshop
Partial Eval. Program Manipulation, 2009, pp. 169-178.

M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis,
“Partial redesign of Java software systems based on clone analysis,” in
Proc. 6th Work. Conf. Reverse Eng. (Cat. No. PR0O0303), Piscataway,
NJ, USA: IEEE Press, 1999, pp. 326-336.

S. Baars and A. Oprescu, “Towards automated refactoring of code
clones in object-oriented programming languages,” in /2th Seminar
Adv. Tech. Tools Softw. Evol. (SATToSE 2019). [Online]. Available:
http://sattose.org/2019

[137]

[138]

[139]

[140]

[141]

[142]

[143]
[144]
[145]
[146]
[147]
[148]

[149]

[150]

[151]

[152]

[153]
[154]
[155]
[156]

[157]

[158]
[159]
[160]

[161]

[162]

[163]

[164]

[165]

693

S. Thompson, Haskell: The Craft of Functional Programming. Reading,
MA, USA: Addison-Wesley, 1999.

C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-miss in-
tentional clones using flexible pretty-printing and code normalization,”
in Proc. 16th IEEE Int. Conf. Program Comprehension, Piscataway,
NJ, USA: IEEE Press, 2008, pp. 172-181.

S. S. Skiena, The Algorithm Design Manual, vol. 2. New York, NY,
USA: Springer-Verlag, 1998.

A. Daga, S. de Cesare, and M. Lycett, “Separation of concerns:
Techniques, issues and implications,” J. Intell. Syst., vol. 15, nos. 1-4,
pp. 153-176, 2006.

J. Yamanaka, Y. Hayase, and T. Amagasa, “Recommending extract
method refactoring based on confidence of predicted method name,”
2021, arXiv:2108.11011.

G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Recommending
refactoring operations in large software systems,” in Recommenda-
tion System Software Engineering, Berlin, Germany: Springer, 2014,
pp. 387-419.

T. Sharma and D. Spinellis, “A survey on software smells,” J. Syst.
Softw., vol. 138, pp. 158-173, Apr. 2018.

“Xrefactory,” xref-tech.com, 2007. Accessed: Dec. 15, 2023. [Online].
Available: http://www.xref-tech.com/sitemap/

“Unnamed,” GitHub, 2012. Accessed: Dec. 15, 2023. [Online]. Avail-
able: https://github.com/misto/Ruby-Refactoring

“Wrangler,” GitHub, 2023. Accessed: Dec. 15, 2023. [Online]. Avail-
able: https://github.com/RefactoringTools/wrangler

“HaRe,” GitHub, 2017. Accessed: Dec. 15, 2023. [Online]. Available:
https://github.com/RefactoringTools/HaRe

“JExtract,” GitHub, 2015. Accessed: Dec. 15, 2023. [Online]. Avail-
able: http://aserg-ufmg.github.io/jextract/

“RASE,” Virginia Tech, Blacksburg, VA, USA, 2015. Accessed:
Dec. 15, 2023. [Online]. Available: https://people.cs.vt.edu/nm8247/
research.html

“SEMI,” Rijksuniversiteit Groningen, Groningen, The Netherlands,
2016. Accessed: Dec. 15, 2023. [Online]. Available: http://www.cs.rug.
nl/search/uploads/Resources/

“GEMS,” NUS Computing, 2017. Accessed: Dec. 15, 2023. [Online].
Available: https://www.comp.nus.edu.sg/specmine/gems/
“PostponableRefactoring,” GitHub, 2017. Accessed: Dec. 15,
2023. [Online]. Available: https://github.com/katsuhisamaruyama/
PostponableRefactoring

“CREC,” GitHub, 2018. Accessed: Dec. 15, 2023. [Online]. Available:
https://github.com/soniapku/CREC

“Unnamed,” GitHub, 2019. Accessed: Dec. 15, 2023. [Online]. Avail-
able: https://github.com/noyosida/ProactiveCloneRecommendation
“Clonerefactor,” GitHub. Accessed: Dec. 15, 2023. [Online]. Available:
https://github.com/simonbaars/clonerefactor

“TOAD,” GitHub, 2020. Accessed: Dec. 15, 2023. [Online]. Available:
https://github.com/Aleli03/TOAD

“Segmentation,” Indian Institute of Technology Bombay, Mumbai,
India, 2022. Accessed: Dec. 15, 2023. [Online]. Available: https://www.
cse.iitb.ac.in/omkarendra

“LiveRef,” GitHub, 2022. Accessed: Dec. 15, 2023. [Online]. Avail-
able: https://github.com/saracouto1318/LiveRef

“AntiCopyPaster,” GitHub, 2023. Accessed: Dec. 15, 2023. [Online].
Available: https://github.com/JetBrains-Research/anti-copy-paster
“REM,” Zenodo.org, 2023. Accessed: Dec. 15, 2023. [Online]. Avail-
able: https://zenodo.org/record/8124395

M. Mohan and D. Greer, “Multirefactor: Automated refactoring to im-
prove software quality,” in Proc. 18th Int. Conf. Product-Focused Softw.
Process Improvement (PROFES), Innsbruck, Austria, in Proceedings
18, New York, NY, USA: Springer-Verlag, 2017, pp. 556-572.

E. A. AlOmar, M. W. Mkaouer, A. Ouni, and M. Kessentini, “On the
impact of refactoring on the relationship between quality attributes and
design metrics,” in Proc. ACM/IEEE Int. Symp. Empirical Softw. Eng.
Meas. (ESEM), Piscataway, NJ, USA: IEEE Press, 2019, pp. 1-11.
Y. Abgaz et al., “Decomposition of monolith applications into microser-
vices architectures: A systematic review,” IEEE Trans. Softw. Eng.,
vol. 49, no. 8, pp. 42134242, Aug. 2023.

J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann, “Microservices
migration in industry: Intentions, strategies, and challenges,” in Proc.
IEEE Int. Conf. Softw. Maintenance Evolution (ICSME), Piscataway,
NJ, USA: IEEE Press, 2019, pp. 481-490.

Rijksuniversiteit Groningen, 2016. Accessed: Dec. 15, 2023. [Online].
Available: http://www.cs.rug.nl/search/uploads/Resources/TSEdataset

694

[166]
[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]
[175]
[176]

[177]
[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

Google, 2018. Accessed: Dec. 15, 2023. [Online]. Available: https:/
goo.gl/SHi2UB

GitHub, 2020. Accessed: Dec. 15, 2023. [Online]. Available: https:/
github.com/Aleli03/LinksToMethods

E. Temperoet al., “The qualitas corpus: A curated collection of Java
code for empirical studies,” in Proc. Asia pacific Softw. Eng. Conf.,
Piscataway, NJ, USA: IEEE Press 2010, pp. 336-345.

N. Meng, M. Kim, and K. S. McKinley, “LASE: Locating and
applying systematic edits by learning from examples,” in Proc. 35th
Int. Conf. Softw. Eng. (ICSE), Piscataway, NJ, USA: IEEE Press, 2013,
pp. 502-511.

N. Meng, M. Kim, and K. S. McKinley, “Systematic editing: Gen-
erating program transformations from an example,” ACM SIGPLAN
Notices, vol. 46, no. 6, pp. 329-342, 2011.

“RASE-dataset,” Virginia Tech, 2015. [Online]. Available: https:/
people.cs.vt.edu/nm8247/projects/projectGroup-Rase.xml

R. Tiarks, R. Koschke, and R. Falke, “An extended assessment of type-
3 clones as detected by state-of-the-art tools,” Softw. Qual. J., vol. 19,
pp. 295-331, 2011.

M. Allamanis and C. Sutton, “Mining source code repositories at
massive scale using language modeling,” in Proc. 10th Work. Conf.
Mining Softw. Repositories (MSR), Piscataway, NJ, USA: IEEE Press,
2013, pp. 207-216.

“AntiCopyPaster,” zenodo.org, 2023. Accessed: Dec.
[Online]. Available: https://zenodo.org/record/7428835
“Nyamawe,” GitHub, 2020. Accessed: Dec. 15, 2023. [Online]. Avail-
able: https://github.com/nyamawe/FR-Refactor

“Krasniqi,” zenodo.org, 2020. Accessed: Dec. 15, 2023. [Online].
Available: https://zenodo.org/record/3596397

“Chima,” 2022, [Online]. Available: https://doi.org/10.7302/0bgn-vt27
“Aniche,” zenodo.org, 2022. Accessed: Dec. 15, 2023. [Online]. Avail-
able: https://zenodo.org/record/3547639

E. A. AlOmar, A. Peruma, M. W. Mkaouer, C. Newman, A. Ouni, and
M. Kessentini, “How we refactor and how we document it? On the
use of supervised machine learning algorithms to classify refactoring
documentation,” Expert Syst. Appl., vol. 167, 2021, Art. no. 114176.
Accessed: Dec. 15, 2023. [Online]. Available: self-affirmed-refactoring,
https:/smilevo.github.io/self-affirmed-refactoring/

S. Rebai, M. Kessentini, V. Alizadeh, O. B. Sghaier, and R. Kazman,
“Recommending refactorings via commit message analysis,” Inf. Softw.
Technol., vol. 126, 2020, Art. no. 106332.

“REMS,” Anonymous GitHub, 2023. Accessed: Dec. 15, 2023.
[Online]. Available: https://anonymous.4open.science/t/REMS-A23C/
README.md

GitHub, 2023. Accessed: Dec. 15, 2023. [Online]. Available: https:/
github.com/SMART-Dal/extract-method-identification

D. Silva, J. P. da Silva, G. Santos, R. Terra, and M. T. Valente, “RefDiff
2.0: A multi-language refactoring detection tool,” IEEE Trans. Softw.
Eng., vol. 47, no. 12, pp. 27862802, Dec. 2021.

K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim, “Template-based
reconstruction of complex refactorings,” in Proc. IEEE Int. Conf. Softw.
Maintenance, Piscataway, NJ, USA: IEEE Press, 2010, pp. 1-10.

15, 2023.

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

N. Tsantalis, M. Mansouri, L. Eshkevari, D. Mazinanian, and D. Dig,
“Accurate and efficient refactoring detection in commit history,” in
Proc. IEEE/ACM 40th Int. Conf. Softw. Eng. (ICSE), Piscataway, NJ,
USA: IEEE Press, 2018, pp. 483-494.

M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and
M. O Cinnéide, “Recommendation system for software refactor-
ing using innovization and interactive dynamic optimization,” in
Proc. 29th ACM/IEEE Int. Conf. Automated Softw. Eng., 2014,
pp. 331-336.

W. Mkaouer et al., “Many-objective software remodularization using
NSGA-III,” ACM Trans. Softw. Eng. Methodol. (TOSEM), vol. 24,
no. 3, pp. 145, 2015.

N. Tsantalis, A. Ketkar, and D. Dig, “RefactoringMiner 2.0,” IEEE
Trans. Softw. Eng., vol. 48, no. 3, pp. 930-950, Mar. 2022.

P. Huang, X. Ma, D. Shen, and Y. Zhou, “Performance regression
testing target prioritization via performance risk analysis,” in Proc. 36th
Int. Conf. Softw. Eng., 2014, pp. 60-71.

A. M. Eilertsen and G. C. Murphy, “The usability (or not) of
refactoring tools,” in Proc. IEEE Int. Conf. Softw. Anal., Evolution
Reengineering (SANER), Piscataway, NJ, USA: IEEE Press, 2021,
pp. 237-248.

M. Vakilian and R. E. Johnson, “Alternate refactoring paths reveal
usability problems,” in Proc. 36th Int. Conf. Softw. Eng., 2014,
pp. 1106-1116.

M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and
R. E. Johnson, “Use, disuse, and misuse of automated refactorings,” in
Proc. 34th Int. Conf. Softw. Eng. (ICSE), Piscataway, NJ, USA: IEEE
Press, 2012, pp. 233-243.

A. Fan et al., “Large language models for software engineering: Survey
and open problems,” 2023, arXiv:2310.03533.

P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation vs.
experience: Evaluating the usability of code generation tools powered
by large language models,” in Proc. Chi Conf. Human Factors Comput.
Syst. Extended Abstr., 2022, pp. 1-7.

C. S. Xia, Y. Wei, and L. Zhang, “Automated program repair in the era
of large pre-trained language models,” in Proc. 45th Int. Conf. Softw.
Eng. (ICSE), New York, NY, USA: ACM, 2023.

W. Zhang, Y. Deng, B. Liu, S. J. Pan, and L. Bing, “Sentiment
analysis in the era of large language models: A reality check,” 2023,
arXiv:2305.15005.

J. White, S. Hays, Q. Fu, J. Spencer-Smith, and D. C. Schmidt,
“ChatGPT prompt patterns for improving code quality, refactor-
ing, requirements elicitation, and software design,” 2023, arXiv:
2303.07839.

D. Landman, A. Serebrenik, and J. J. Vinju, “Challenges for static
analysis of Java reflection-literature review and empirical study,” in
Proc. IEEE/ACM 39th Int. Conf. Softw. Eng. (ICSE), Piscataway, NJ,
USA: IEEE Press, 2017, pp. 507-518.

M. Zakeri-Nasrabadi, S. Parsa, E. Esmaili, and F. Palomba, “A sys-
tematic literature review on the code smells datasets and validation
mechanisms,” ACM J. Comput. Cult. Heritage, vol. 55, no. 13S,
pp. 1-48, 2023.

