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A B S T R A C T

Multi-agent reinforcement learning is promising for real-world applications as it encourages agents to perceive
and interact with their surrounding environment autonomously. However, sample efficiency is still a concern
that prevents the application of multi-agent reinforcement learning in practice. A well-performing agent
typically needs an abundance of interaction data for training, while obtaining numerous interaction data in a
‘trial-and-error’ manner is usually overhead-expensive or even infeasible for real-world tasks. In this paper, we
propose a data-efficient framework, Contrastive-Enhanced Ensemble framework for Multi-Agent Reinforcement
Learning (C2E-MARL), with the aim of training better-performing agents in the multi-agent system with fewer
interaction data. Specifically, the proposed framework deploys an ensemble of centralized critic networks
for action value estimation, i.e., it combines the outputs of multiple critic networks to estimate the action
value. It makes full use of data from various perspectives to reduce the estimation error, which is helpful for
efficient policy updating. Moreover, contrastive learning, a prevailing self-supervised technology, is employed
to enhance the learning efficiency of submodels in C2E-MARL by augmenting the interaction data. Extensive
experimental results compared with the state-of-the-art methods on three multi-agent benchmark scenarios
demonstrate the superiority of C2E-MARL in terms of efficiency and performance.
1. Introduction

Reinforcement learning (RL) has achieved notable success across
various domains over the last few years, including Go (Silver et al.,
017), robotics control (Lillicrap, Hunt, Pritzel, Heess, Erez, Tassa,
ilver, & Wierstra, 2016; Schulman, Levine, Abbeel, Jordan, & Moritz,
2015), financial markets (Shavandi & Khedmati, 2022), and so forth
(Elhaki, Shojaei, & Mehrmohammadi, 2022; Kiran et al., 2021). Its
ain idea is to encourage an agent to interact with the environment
hrough trial and error and maximize the accumulated reward. Since
n agent trained by RL can perceive and interact with its surrounding
nvironment autonomously, employing the RL method to tackle real-
orld stochastic tasks is advocated. However, real-world tasks often
nvolve multiple agents with partial observation, which exacerbates
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the difficulty and complexity of training agents, preventing us from
practically using reinforcement learning in multi-agent systems. There-
fore, there is an urgent need to design well-performing multi-agent
reinforcement learning methods for practical applications.

A considerable literature has studied RL algorithms regarding multi-
agent scenarios. The original algorithms train multiple agents indi-
vidually, subject to their private observation (Tan, 1993), but the
learned policies are unstable due to the partially observed environment.
Fully-centralized methods are proposed to alleviate the non-stationary
problem by incorporating joint information from all agents (Claus &
Boutilier, 1998). However, these methods have poor scalability be-
cause the dimension of the joint action space expands rapidly as
the number of agents grows. Centralized training and decentralized
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execution framework (CTDE), a compromise approach, has attracted
more attention and been used in many state-of-the-art algorithms,
such as QMIX (Rashid et al., 2018), VDN (Sunehag et al., 2018),
MADDPG (Lowe et al., 2017), etc. In CTDE, the agents only incor-
porate joint information during training to broaden their perspectives
and stabilize the training while selecting their actions based on local
observations. In addition, several advanced techniques are used to
enhance model performance. For example, MAAC employs a multi-head
attention mechanism to extract relevant information to improve model
efficiency (Iqbal & Sha, 2019), G2ANet uses a graph neural network
to enhance its performance (Liu, Wang et al., 2020), and VGN (Wei,
Li, Zhang, & Wang, 2022) deploys a graph attention network for value
decomposition in a multi-agent system.

Although most existing studies have significantly improved in terms
of effectiveness, the issue of sample efficiency is still a concern in
MARL. Sample efficiency denotes the amount of data required to attain
a certain level of performance during training (Nguyen, Nguyen, &
Nahavandi, 2020). As pointed out by Duan et al. (2016), it takes several
hours or even days to learn RL models to manipulate a simple game,
e.g., Atari games (Xu, Zhu, Liu, & Zhao, 2021) and Poker (Li, Wang,
Jia, Wu, Zhang, & Qi, 2022), which is more prominent when tack-
ling complicated tasks involving multiple agents (Sukhbaatar, Fergus,
et al., 2016). Generally, the reason for sample inefficiency is two-
fold. First, MARL learns by trial and error, which requires considerable
interaction data. The demand for interaction data increases rapidly
as the number of agents grows. Second, MARL relies heavily on the
representation of deep learning to approximate the policy and value
function, which involves many parameters and requires numerous data
for well-formulated training. In summary, sample inefficiency hinders
the application of MARL to real-world tasks, where the interaction
between agents is usually time-consuming, overhead-expensive, or even
infeasible. Motivated by these limitations, we aim to take one step
further to settle the issue of sample inefficiency in MARL.

In this paper, we propose a Contrastive-Enhanced Ensemble frame-
work for Multi-Agent Reinforcement Learning (C2E-MARL). In this
framework, an ensemble of centralized critic networks is deployed to
estimate the action value, which makes full use of the interaction data
by combining multiple estimators. In this way, it provides various
estimations beneficial to reducing the estimation error. Meanwhile,
contrastive learning, is employed to assist the underlying submodels
in extracting features. It implements interaction data augmentation by
using the dropout, which is conducive to learning efficiency and repre-
sentation learning quality. Besides, we conduct extensive experiments
on benchmark scenarios and make visualizations to demonstrate the
superiority of the proposed C2E-MARL.

The main contributions of this paper are as follows:

• An efficient model called C2E-MARL is proposed to overcome
the problem of poor sample efficiency in MARL. To the best
of our knowledge, it is the first effort to collaboratively utilize
ensemble learning and contrastive learning to improve the sample
efficiency in the setting of MARL.

• C2E-MARL deploys multiple centralized critic networks to provide
a comprehensive Q-value estimation, making full use of data. Be-
sides, contrastive learning is leveraged to improve the underlying
submodels efficiency, further enhancing the overall performance.

• We conduct extensive experiments compared with six state-of-
the-art methods on three multi-agent benchmark scenarios to
validate C2E-MARL. Empirical results demonstrate the superiority
of C2E-MARL in terms of sample efficiency and effectiveness.

The remainder of this manuscript is organized as follows. Section 2
summarizes the previous works related to ours. Section 3 presents the
notations used in our method and simply reviews the basic theorems.
Section 4 elaborates the details of our model design. Section 5 presents
a series of experiments on benchmark scenarios to validate the effec-
tiveness of C2E-MARL and provides the analysis in detail. Section 6
concludes this paper and discusses further work.
2

2. Related work

In this section, we introduce previous works closely related to
our method from three aspects: multi-agent reinforcement learning,
ensemble learning, and contrastive learning in RL.

2.1. Multi-agent reinforcement learning

A substantial literature has been proposed for MARL. The earliest
method (Tan, 1993) is based on a fully-decentralized framework, which
is not feasible due to the partial observation leading to non-stationary.
Incorporating joint information can alleviate the non-stationary prob-
lem (Claus & Boutilier, 1998), but the dimension tends to grow ex-
ponentially with the number of agents and task complexity, which
limits the model’s scalability and decreases efficiency. Besides, some
studies are based on communication, which explicitly assumes the exis-
tence of information interaction among agents (Wang, Wang, Zheng, &
Zhang, 2019). It is beneficial to improve the stationary (Noaeen, Naik,
Goodman, Crebo, Abrar, Abad, Bazzan, & Far, 2022). For example,
RIAL (Foerster, Assael, De Freitas, & Whiteson, 2016) and Comm-
Net (Sukhbaatar et al., 2016) are the first to introduce communication
learning in multi-agent systems, where each agent enhances its per-
ception capabilities by explicitly communicating with other agents.
ATOC (Jiang & Lu, 2018) is proposed to achieve a more flexible
ommunication pattern by the attention mechanism. Unfortunately,
hey all require an additional communication mechanisms, while the
ommunication resource is limited in real-world tasks. Several preva-
ent methods are built on the CTDE framework compromising the above
ethods, such as VDN (Sunehag et al., 2018), QMIX (Rashid et al.,
018), MADDPG (Lowe et al., 2017), MMD-MIX (Xu, Li, Bai and Fan,
021), etc., and achieved stable and excellent performance (Liu & Tan,
022).
However, considerable data are required for training a well-

erforming model, which is time-consuming or even infeasible for
eal-world tasks. To this end, some methods enhance MARL by com-
ining advanced techniques. For example, MAAC incorporates with
n attention mechanism to extract relevant information from high-
imensional input and makes it efficient (Iqbal & Sha, 2019). In this
aper, our method is intended to improve the sample efficiency of
ARL algorithms.

.2. Ensemble learning

Ensemble learning is a classical machine learning technique that
trategically generates decisions to solve problems by combining mul-
iple underlying submodels. In practice, ensemble learning often yields
etter results in comparison metrics compared to any of the underlying
ubmodels. Several studies have been proposed that use ensemble
earning to address the problems in reinforcement learning, such as
pproximation error, exploration, and sample efficiency. Specifically, it
ses an ensemble of policy or critic networks to propose a final output.
ouble DQN (Van Hasselt, Guez, & Silver, 2016) and TD3 (Fujimoto,
oof, & Meger, 2018) simply use two critic networks to alleviate the
pproximation error. An ensemble of Q-value functions is employed
or bootstrapped DQN (Osband, Blundell, Pritzel, & Van Roy, 2016)
nd EBQL (Peer, Tessler, Merlis, & Meir, 2021) to encourage efficient
xploration and reduce estimation error. Maxmin Q-learning (Lan, Pan,
yshe, & White, 2019) employs multiple critic networks to solve the
roblem of overestimation. BEAR (Kumar, Fu, Soh, Tucker, & Levine,
019) utilizes the minimization or average of several estimators to pro-
ide more accuracy estimations for policy improvement. Sunrise (Lee,
askin, Srinivas, & Abbeel, 2021) devises a framework with multiple
olicy and critic networks to stabilize the training process. However,
n multi-agent systems, it is worth noting that there are no multi-agent
einforcement learning methods incorporated with ensemble learning.
n this paper, we fill this gap by incorporating ensemble learning into
ARL.
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2.3. Contrastive learning

Contrastive learning, an advanced self-supervised method, is de-
voted to learning effective representations and has been successfully
applied in computer vision (He, Fan, Wu, Xie, & Girshick, 2020),
natural language processing (Gao, Yao, & Chen, 2021; Liang et al.,
2021), and so forth. Constrative learning can be regarded as an in-
stance discrimination problem, where one instance should be close to
a similar instance while away from dissimilar instances in the em-
bedding space. With its powerful representation learning capabilities,
contrastive learning is employed to boost RL for efficiency (Fu et al.,
2021; Liu, Zhang et al., 2020). For example, CURL (Laskin, Srinivas, &
Abbeel, 2020) and M-CURL (Zhu et al., 2022) accelerate the learning
speed of pixel-based RL by incorporating a contrastive learning task,
and achieve remarkable performance. As for MARL, it requires global
joint information to stabilize training, i.e., even if it is not dealing
with a pixel-based task, MARL still needs to deal with high-dimensional
inputs, which results in low efficiency. Therefore, we propose employ-
ing contrastive learning to enhance the representation learning of joint
information in multi-agent systems to improve sampling efficiency.

In general, the core idea behind our work is to deploy an ensemble
of Q-value functions, which enables diverse feature extraction. It also
provides multiple action value estimation to alleviate the approxi-
mation error. Meanwhile, inspired by the ‘‘Cannikin Law’’, we set
contrastive learning as an auxiliary task for the underlying models in
the ensemble modules to improve their efficiency.

3. Preliminaries

In this section, we detail the notation and review some existing
reinforcement learning and contrastive learning studies to provide
theoretical support for our method.

3.1. Notation

We model a multi-agent scenario with 𝑁 agents as Decentralized
artially Observable Markov Decision Process (Dec-POMDP) (Oliehoek
Amato, 2016). It is described by a tuple 𝐺 = ⟨𝑆,𝐴, 𝑇 , 𝑂,𝑅, 𝛾,𝑁⟩,
here 𝑆 is a global state set. The action set 𝐴 and observation set 𝑂 can

be split as {𝐴1,… , 𝐴𝑁} and {𝑂1,… , 𝑂𝑁} for each agent, respectively.
During interaction, agent uses a stochastic policy to choose an action,
i.e., 𝜋𝜙𝑖 ∶ 𝑜𝑖 ↦ 𝑎𝑖, 𝑎𝑖 ∈ 𝐴𝑖. The joint actions induce a transition to the
next state according to state transition function: 𝑇 ∶= 𝑆 × 𝐴1 × ⋯ ×
𝐴𝑁 × 𝑆 ↦ [0, 1], and then each agent can observe partial environment
𝑜𝑖 ∶ 𝑆 ↦ 𝑂𝑖 and obtain the reward 𝑟𝑖 ∶= 𝑆 × 𝐴𝑖 ↦ R. Replay buffer
is employed to restore history transitions 𝐻 =

⟨

𝑜𝑖, 𝑎𝑖, 𝑜′𝑖 , 𝑟𝑖, 𝑑𝑜𝑛𝑒
⟩

for
training. The objective for each agent is to maximize its accumulated
reward:

𝐽 (𝜋𝜙𝑖 ) = E[𝑅𝑇 ] = E𝑎𝑖∼𝜋𝜙𝑖 (⋅|𝑜𝑖)

[ 𝑇
∑

𝑡=0
𝛾 𝑡𝑟𝑡𝑖(𝑜𝑖, 𝑎𝑖)

]

(1)

where 𝛾 denotes discount factor to balance immediate reward and
long-term gain.

3.2. Soft actor critic

Soft actor–critic (SAC) is an off-policy deep RL algorithm based on
maximum entropy (Haarnoja, Zhou, Abbeel, & Levine, 2018), which
prevents the agent from overoptimizing the action-value function and
encourages exploration. In this work, we adapt SAC to model each
agent in multi-agent settings. Specifically, SAC tries to maximize the
cumulative return and the entropy of policy 𝜋𝜙:

𝐽 (𝜙) = E𝑜𝑖∼𝑝𝜋𝑖
[

𝑄(𝑠, 𝑎) + 𝛼(𝜋𝜙(⋅|𝑠))
]

, (2)

where 𝛼 is a temperature parameter to balance the significance of
entropy and the reward. (𝜋𝜙(⋅|𝑠)) is the entropy of the policy 𝜋
3

parameterized by 𝜙, which is defined as (𝜋𝜙(⋅|𝑠)) = − log𝜋𝜙(𝑎|𝑠). F
3.3. Contrastive learning

Contrastive learning can be described as looking up a dictionary,
where positive sample 𝑥+ and negative sample 𝑥− are used as the
keys in the dictionary with respect to the anchor 𝑥 regarding a query.
Given a sample 𝑥, the common setup of contrast learning is as follows:
(1) Constructing a ‘‘dictionary’’ or sample pair (𝑥, 𝑥+) (or (𝑥, 𝑥−)). The
simplest method is to take the random transformation of the same data;
(2) Defining the loss function, such as the widely used Triplet (Schroff,
Kalenichenko, & Philbin, 2015) and InfoNCE (Oord, Li, & Vinyals,
2018):

𝑇 𝑟𝑖𝑝𝑙𝑒𝑡(𝑥, 𝑥+, 𝑥−) =
∑

𝑥∈
max

(

0, ‖
‖

𝑓 (𝑥) − 𝑓 (𝑥+)‖
‖

2
2

− ‖𝑓 (𝑥) − 𝑓 (𝑥−)‖22 + 𝜖
)

,
(3)

𝐼𝑛𝑓𝑜𝑁𝐶𝐸 = − log
exp(𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑥+))

∑

𝑥′∈ exp(𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑥′))
, (4)

here 𝑓 (𝑥) is an encoder function,  denotes the set of samples,
nd 𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑥′) is used to measure the correlations. Note that 𝑇 𝑟𝑖𝑝𝑙𝑒𝑡
eavily relies on the choice of negative samples, easily leading to non-
onvergence. 𝐼𝑛𝑓𝑜𝑁𝐶𝐸 is to distinguish the positive sample from the
nrelated sample. In this paper, our proposed method uses InfoNCE as
he loss function.

. Methodology

In this section, we elaborate the proposed C2E-MARL, which de-
loys an ensemble of Q-value functions and combines an unsuper-
ised contrastive representation technique. The overall architecture
s illustrated in Fig. 1, which consists of (1) the basic framework
f C2E-MARL; (2) ensemble centralized critic networks; and (3) a
ontrastive-enhanced module.

.1. The basic framework of C2E-MARL

The proposed C2E-MARL is based on the CTDE framework, as
llustrated in Fig. 1a. It integrates the joint action-observation as extra
nformation during training to broaden the agent’s horizon of the en-
ironment, which could alleviate the non-stationary problem common
n MARL. During interaction with the environment, agents merely use
heir private observation to avoid communication overhead and poor
calability.
Considering an environment with 𝑁 agents, the agents interact

ith the environment using the parameterized policy 𝜋𝜙𝑖 , a multilayer
erceptron (MLP), to make the action decision 𝑎𝑖 only based its own
bservation 𝑜𝑖. Its objective function with maximum-entropy is defined
s:

(𝜙𝑖) = E𝑜𝑖∼𝑝𝜋𝑖
[

𝑄𝑖(𝑜𝑜𝑜,𝑎𝑎𝑎) + 𝛼(𝜋𝜙𝑖 (⋅|𝑜𝑖))
]

, (5)

here 𝛼 denotes the temperature parameter that balance the impor-
ance of the entropy term versus the cumulative reward. 𝑜𝑜𝑜 = (𝑜1,… , 𝑜𝑁 )
nd 𝑎𝑎𝑎 = (𝑎1,… , 𝑎𝑁 ) are the joint observation vector and action vector
espectively. During the training phase, C2E-MARL incorporates the in-
ormation from other agents to provide action estimation 𝑄𝑖(𝑜𝑜𝑜, (𝑎𝑎𝑎−𝑖, 𝑎𝑖))
or policy updating, where 𝑎𝑎𝑎−𝑖 denotes the joint vector excluding 𝑖th
lement 𝑎𝑖.

.2. Ensemble centralized critic networks

The traditional reinforcement learning methods for multi-agent sys-
ems have been successful in some challenging domains, but their
erformance and learning efficiency heavily rely on the estimation
ccuracy of the action value. C2E-MARL employs an ensemble of Q-
alue functions to make action value estimations together, as shown in

ig. 1b, which is effective in settling the problem mentioned above.
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Fig. 1. The overall architecture of C2E-MARL. (a) Basic framework of C2E-MARL: it contains decentralized execution and centralized training. Agents use partial observation
to make decisions during interaction with the environment, and the joint information is only incorporated during training to estimate the Q-value. (b) Ensemble centralized
critic networks: an ensemble of critic networks is deployed to provide various estimations. (c) Contrastive-enhanced module: it is employed as an auxiliary task to improve the
representation learning quality of each encoder in (b).
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Formally, we consider an ensemble of 𝐾 critic networks with the
ame structure but different parameters, i.e., {𝑄𝜃𝑖𝑗 , 𝑄𝜃𝑖𝑗 }

𝐾
𝑗=1, where 𝜃𝑖𝑗

and 𝜃𝑖𝑗 denote the parameters of the 𝑗th Q-function and target Q-
function for each agent 𝑖. Based on this paradigm, C2E-MARL employs
the average voting mechanism for the outputs of all critic networks to
give a final Q-value estimation, which is used to calculate the policy’s
objective function:

𝐽 (𝜙𝑖) = E𝑜𝑖∼𝑝𝜋𝑖
[ 1
𝐾

𝐾
∑

𝑗=1
𝑄𝜃𝑖𝑗 (𝑜𝑜𝑜,𝑎𝑎𝑎) + 𝛼(𝜋𝜙𝑖 (⋅|𝑜𝑖))

]

. (6)

The temporal-difference is used to update the value function, which
is based on the Bellman backup equation by establishing the connection
between the current Q-value and the value in one-step lookahead. The
C2E-MARL utilizes a variant of the Bellman equation, which is defined
as:

𝑄 =
𝐾
∑

𝑗=1

𝑁
∑

𝑖=1

(

𝑄𝜃𝑖𝑗 (𝑜𝑜𝑜𝑡, 𝑎𝑎𝑎𝑡) − 𝑦𝑖
)2,

𝑦𝑖 = 𝑟𝑡 + 𝛾
(

𝑄𝜃𝑖𝑗 (𝑜𝑜𝑜𝑡+1, 𝑎𝑎𝑎𝑡+1) − 𝛼 log 𝜋𝜙𝑖 (𝑎
𝑖
𝑡+1|𝑜

𝑖
𝑡+1)

)

,

(7)

here 𝜃𝑖𝑗 and 𝜙𝑖 are parameters of target critic and policy networks;
𝑖 is the target Q-value augmented by the entropy term. However, it
egularly suffers from error propagation, i.e., the estimation error of the
ubsequent state affects the update direction of the current Q-value.
To alleviate this problem, we resort to an ensemble-based paradigm,

here each submodel scatters in the solution space and estimates Q-
alue from multiple perspectives, which is visualized in Section 5.
n practice, an ensemble framework usually yields better results in
omparison metrics compared to any of the single models in its compo-
ent. These are several reasons why this model works well. First, each
ndividual model jointly covers the solution space as much as possible
o mitigate convergence to the local optimum. Second, each model
oes not extract the same features from the interaction data and gives
ction value estimations with differences. It can effectively alleviate
he problem of inaccurate estimation compared to only a single critic
etwork setting.
We apply the following tips to guarantee the diversity among sub-
odels: (1) random initialization, where each submodel has different
nitialization parameter values; (2) bootstrapping, which samples data
rom the replay buffer with replacement for submodels training. Addi-
4

ionally, we use the idea of random minimization and modify the loss
function of the critic network as follows:

𝑄 =
𝐾
∑

𝑗=1

𝑁
∑

𝑖=1

(

𝑄𝜃𝑖𝑗 (𝑜𝑜𝑜𝑡, 𝑎𝑎𝑎𝑡) − 𝑦𝑖
)2,

𝑦𝑖 = 𝑟𝑡 + 𝛾
(

min
𝑐∈𝑖

𝑄𝜃𝑖𝑐 (𝑜𝑜𝑜𝑡+1, 𝑎𝑎𝑎𝑡+1) − 𝛼 log 𝜋𝜙𝑖 (𝑎
𝑖
𝑡+1|𝑜

𝑖
𝑡+1)

)

,

where 𝑎𝑖𝑡+1 ∼ 𝜋𝜙𝑖 (⋅|𝑜
𝑖
𝑡+1),

(8)

where 𝑖 is the candidate set of the ensemble critic networks for agent
𝑖, which is randomly selected from the ensemble 𝐾, and (|| ≤ 𝐾).
Its minimization is used to calculate the loss of the critic networks.
In addition, we devise an auxiliary task for C2E-MARL to improve
the performance of submodels and detail its implementation in the
following subsection.

4.3. Contrastive-enhanced module

MARL confronts the challenge of insufficient learning capability
for high-dimensional state representations, even though the states of
some multi-agent tasks are represented as vectors (rather than pixel-
based states). It is due to the fact that as the number of agents or
task complexity increases, the dimension of the joint state informa-
tion grows accordingly. Considering that joint state information is
crucial for stable training, how to effectively learn features from high-
dimensional state inputs becomes an urgent problem, which will affect
the accuracy of action value estimation by critic networks. Besides, as
the famous ‘‘Cannikin Law’’ states, the overall performance of an en-
semble model depends on the performance of each submodel. Thus, we
attempt to refine the submodels underlying C2E-MARL with advanced
techniques contrastive learning, a self-supervised approach for learning
a general-purpose representation.

To this end, C2E-MARL splits joint information encoders 𝑓𝜓𝑖𝑗 (𝑜𝑜𝑜,𝑎𝑎𝑎
−𝑖)

rom the underlying critic networks 𝑄𝑖𝑗 and devises contrastive learning
or encoders to extract features, which enhances the overall training
fficiency. Specifically, C2E-MARL must address two key questions:

• How to construct the data augmentation dataset to generate
positive/negative sample pairs?

• How to measure the similarity between samples and define the
loss function for training?

Contrastive learning is regarded as a dynamic dictionary look-up
rocess, where how to construct a dictionary is decisive for the overall
erformance. A common way to construct a dictionary is by applying
ata augmentation to create noise versions of original samples, such
s random cropping, noise injection, shuffle, and so forth. However,
he abovementioned data augmentation methods are usually used in
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computer vision, i.e., the pixel-based state, which are unsuitable for
vector-based state since the joint information (or state vector) contains
semantic information. In other words, the modified joint information
is likely to be extremely different from its original. In view of this, we
make some adjustments to apply it to MARL with vector-based states.
Algorithm 1: Contrastive-Enhanced Ensemble Framework for
ulti-Agent Reinforcement Learning (C2E-MARL)
Input: The number of the agents 𝑁 ;

The ensemble size of the critic networks 𝐾.
Output: Parameters for policy 𝜋𝑖 and critic 𝑄𝑖𝑗 .

1 Initialize 𝜙𝑖, 𝜙𝑖, {𝜃𝑖𝑗 , 𝜃𝑖𝑗 , 𝜓𝑖𝑗 , 𝜓 𝑖𝑗}𝐾𝑗=1 for agent 𝑖;
2 Create replay buffer 𝑅𝐵 ← {};
3 for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1, 2,⋯ , 𝑚𝑎𝑥_𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 do
4 𝑠0 ∼ 𝜌0, get the initial 𝑜𝑖 for each agent 𝑖;
5 for 𝑡 = 1, 2,⋯ , 𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ do
6 Select actions 𝑎𝑖 ∼ 𝜋𝑖(⋅|𝑜𝑖);
7 Execute actions 𝑎𝑎𝑎, receive 𝑜′𝑜′𝑜′ and 𝑟𝑟𝑟;
8 Store transitions in 𝑅𝐵, and set 𝑜𝑜𝑜← 𝑜′𝑜′𝑜′;
9 if 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
10 Sample a minibatch 𝐵 from 𝑅𝐵;
11 Randomly sample the candidate set 𝑖 from

{1, 2,⋯ , 𝐾} for each agent 𝑖;
12 Compute the target value 𝑦𝑖: 𝑦𝑖 =

𝑟𝑡 + 𝛾
(

min𝑐∈𝑖 𝑄𝜃𝑖𝑐 (𝑜𝑜𝑜𝑡+1, 𝑎𝑎𝑎𝑡+1) − 𝛼 log 𝜋𝜙𝑖 (𝑎
𝑖
𝑡+1|𝑜

𝑖
𝑡+1)

)

;
13 for 𝑗 = 1, 2,⋯ , 𝐾 do
14 Sample Bootstrap masks for training:

𝑚𝑖𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛽);
15 Update ensemble critic parameters:

𝜃𝑖𝑗 ← 𝜃𝑖𝑗 − 𝛼∇𝜃𝑖𝑗 (𝑄𝜃𝑖𝑗 (𝑜𝑜𝑜,𝑎𝑎𝑎
−𝑖) − 𝑦𝑖)2;

16 Update policy parameters by Eq. (6):
𝜙𝑖 ← 𝜙𝑖 − 𝛼∇𝜙𝑖𝐽 (𝜙𝑖);

17 Update encoder parameters by Algorithm 2;
18 Update target network parameters:

𝜃𝑖𝑗 ← 𝜏𝜃𝑖𝑗 + (1 − 𝜏)𝜃𝑖𝑗 ,∀𝑗 ∈ 𝐾; 𝜙𝑖 ← 𝜏𝜙𝑖 + (1 − 𝜏)𝜙𝑖.

Algorithm 2: Contrastive-Enhanced Module
Input: A batch of the transition samples.
Output: Parameters for encoders 𝜓𝑖𝑗 .

1 for 𝑗 = 1, 2,⋯ , 𝐾 do
2 Collect the anchor sample:
3 𝑒𝑎𝑛𝑐ℎ𝑜𝑟 = 𝑓𝜓𝑖𝑗 (𝑜𝑜𝑜,𝑎𝑎𝑎

−𝑖);
4 Generate the positive sample:
5 𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = 𝑓𝜓𝑖𝑗 (𝑜𝑜𝑜,𝑎𝑎𝑎

−𝑖);
6 Update encoder parameters 𝜓𝑖𝑗 and 𝑊 in contrastive

learning by minimizing Eq. (9).

Overall, C2E-MARL formulates the auxiliary task as instance-level
iscrimination. Inspired by the data augmentation technique used
n Gao et al. (2021), the proposed C2E-MARL propagates the joint
information twice through the encoder networks with the dropout layer,
as shown in Fig. 1c. It naturally produces the anchor sample 𝑒𝑖 and its
positive sample 𝑒+𝑖 , and other data in the batch are used as negative
samples 𝑒𝑗 . In this way, C2E-MARL answers the first question.

In terms of the second question, C2E-MARL employs InfoNCE as the
loss function, which is defined as follows:

𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 = − log
exp(𝑠𝑖𝑚(𝑒𝑖, 𝑒+𝑖 )∕𝜏)

∑𝐵
𝑗=0 exp(𝑠𝑖𝑚(𝑒𝑖, 𝑒𝑗 )∕𝜏)

, (9)

where 𝑒𝑖 = 𝑓𝜓 (𝑥𝑖), which denotes that the joint information 𝑥𝑖 is
apped into vector 𝑒 through the encoder 𝑓 . And 𝑠𝑖𝑚(𝑒 , 𝑒 ) = 𝑒𝑇𝑊 𝑒 ,
5

𝑖 𝜓 𝑖 𝑗 𝑖 𝑗
hich is a bi-linear inner-product proposed in CURL (Laskin et al.,
020) to measure the similarity of 𝑒𝑖 and 𝑒𝑗 . 𝑊 is a learned parameter
atrix, and 𝜏 and 𝐵 denote the temperature hyperparameter and batch
ize, respectively.
Algorithm 1 summarizes the whole process of C2E-MARL in pseudo-

ode. Besides, the auxiliary task used to update the encoder is sum-
arized in Algorithm 2. In general, C2E-MARL ensembles multiple
entralized critic networks scattered in the solution space, which pro-
ides more comprehensive action value estimation from various per-
pectives and facilitates policy updates. Secondly, contrastive repre-
entation learning is deployed as an auxiliary task for the underlying
odels to improve the representation learning capability, thus enhanc-
ng the overall performance. In summary, C2E-MARL is an efficient and
traightforward approach that is competitive in complex MARL tasks.

. Experiments

To empirically evaluate C2E-MARL, we conduct extensive experi-
ents on three multi-agent scenarios compared with several state-of-
he-art methods. Specifically, we investigate the following four ques-
ions.

Q1. How does C2E-MARL perform against baselines in terms of sam-
ple efficiency and effectiveness?

Q2. Has the ensemble module learned different characteristics? Does
the way of combination in the ensemble module affect the per-
formance?

Q3. How does the auxiliary task, i.e., unsupervised contrastive learn-
ing, work for C2E-MARL?

Q4. What influence do the various settings of the ensemble module
have on C2E-MARL?

Q5. What impacts do the ensemble size, the learning rate, and the
dropout probability have on the performance of C2E-MARL?

.1. Environment

We perform the experiments on three benchmark environments,
.e., Rover Tower, Cooperative Communication and Cooperative Trea-
ure Collection. All environments are composed of agents and land-
arks.

• Rover Tower (Iqbal & Sha, 2019): It consists of landmarks,
rovers, and towers, in which the agents are randomly paired,
e.g., the red circle in Fig. 2(a). Specifically, the tower guides the
rover to navigate to its destination, i.e., a specific landmark. When
an agent reaches the goal, the environment will give agents a
‘+10’ reward.

• Cooperative Communication (Co-Comm) (Mordatch & Abbeel,
2018): It consists of landmarks and two cooperative agents,
i.e., the listener and the speaker in Fig. 2(b). The speaker delivers
landmark information to assist listener in navigating to destina-
tion. The reward is related to the distance between listener and
landmark.

• Cooperative Treasure Collection (Co-TC) (Iqbal & Sha, 2019): It
consists of collectors, treasures, and banks, as shown in Fig. 2(c).
The collector first looks for treasures and then deposits them in
the corresponding colored banks.

.2. Baselines

To make a comparison, we consider the following six state-of-the-art
ethods as baselines:

• MAAC (Iqbal & Sha, 2019): Based on the CTDE framework, it
incorporates a multi-head attention mechanism for extracting rel-
evant information for action value estimation, which can reduce
the interference of irrelevant information and further stabilize the

training.



Expert Systems With Applications 245 (2024) 123158X. Du et al.
Fig. 2. Three multi-agent benchmark scenarios.

• MAD3PG (Li, Wang, Tian, Jia, & Zheng, 2020): It sets up the
discrete distributional value function for MARL. In this way, it can
reduce the Q-value estimation error, which is essential to guide
efficient policy search.

• MADDPG (Lowe et al., 2017): It deploys DDPG, a single-agent
RL method, upon the CTDE framework for multi-agent systems.
The performance is further improved when using an ensemble of
policies.

• MMD-MIX (Xu, Li et al., 2021): It combines distributional rein-
forcement learning for MARL by modifying the mixing network
proposed in QMIX. Additionally, it utilizes the random ensemble
mixture to approximate the Q-value.

• QMIX (Rashid et al., 2018): It serves the same purpose as VDN
to decompose the team reward but provides an end-to-end joint
action-value decomposition. Meanwhile, QMIX uses the LSTM to
approximate the value function.

• VDN (Sunehag et al., 2018): It decomposes the team reward into
the sum of individual rewards. To solve the challenge caused by
partial observation, it uses the recurrent neural network to refer
to historical information.

• IQL (Tan, 1993): It is the most straightforward method used for
multi-agent systems, i.e., each agent is trained individually using
advanced RL approaches.

5.3. Setup details

We conduct a variety of experiments on these scenarios to verify the
validity of our method. Table 1 presents the detailed parameter settings
of C2E-MARL, which are consistent in different experiments.

Evaluation Metrics. We mainly use three metrics for comparing
the sample efficiency and overall performance of the proposed method,
which are: (1) Convergence steps (#𝐸𝑝): It is used to assess the sample
efficiency of the model. With comparable model performance, fewer
steps during training indicate higher sample efficiency. (2) Average
reward 𝑟𝑎𝑣𝑔 : This metric evaluates the overall performance of the
model, with larger values indicating better performance. (3) Standard
deviation of average reward 𝑟𝑠𝑡𝑑 : It primarily measures the stability
during model training; smaller values suggest less fluctuation during
training.

5.4. Results and analysis (Q1,Q2)

To investigate Q1, we conduct the experiments in three multi-agent
scenarios compared with the state-of-the-art approaches. We make the
comparison in terms of sample efficiency and model effectiveness.
In particular, model performance is measured by the online per-step
average reward (𝑟𝑎𝑣𝑔) achieved by the agents. Sample efficiency is
measured by how many episodes (#𝐸𝑝) it takes to achieve a particular
level of performance (or how much reward can be obtained through
a certain number of interactions). For a fair comparison, we set the
model with the same hyperparameter for all methods. We perform
6

experiments with five random seeds, whose learning curves are shown
Table 1
The hyper-parameter settings of C2E-MARL.
Category Hyper-parameter Setting

Actor
Hidden units of actor network [128, 128]
Learning rate of actor 0.001
The optimizer of actor network Adam

Critic

Hidden units of encoder [128]
Learning rate of critic 0.001
The optimizer of critic network Adam
The size of linear layer in critic network 128

Others

Ensemble size 𝐾 of critic network 5
Dropout probability 𝑑𝑝 0.01
Discount factor 𝛾 0.99
Soft update factor 𝜏 0.995

in Fig. 3 for intuitive comparison. The detailed results with the standard
deviation are plotted individually in Fig. 4 for clarity.

Fig. 3a shows a salient efficiency gain when the agents are trained
by C2E-MARL. This is what we expected: the contrastive-enhanced en-
semble framework is beneficial for improving efficiency. Additionally,
it is obvious that other baselines perform less well, and the possible
reasons are as follows: (1) MAD3PG uses a distributional value function
for efficient policy update, which relies on the setting of the distribution
and is difficult to converge; (2) MADDPG suffers approximation error,
which slows down the training and even fails in complex tasks; (3)
MMD-MIX, QMIX and VDN may not be able to perform in tasks without
global team reward and, therefore, perform poorly in Rover-Tower; and
(4) IQL lacks information to make accurate estimates and therefore
obstructs training.

Fig. 3b shows the overall performance in Cooperative Communica-
tion. Overall, C2E-MARL outperforms the existing methods in terms
of sample efficiency and model performance. Specifically, the per-
formance of MAAC and MADDPG is comparable to ours. MMD-MIX
performs better and more efficient than QMIX and VDN because of the
distribution and random ensemble mixture. The IQL performs instabil-
ity due to the restricted observation. Besides, we zoom in the local of
Fig. 3b and find that the sample efficiency of C2E-MARL (converge
at 3𝐾) is nearly twice that of MAAC and MADDPG. The possible
reason is that: C2E-MARL makes full use of data and provides multiple
Q-value estimations which is conducive to reducing the estimation
error. Moreover, data augmentation used in the contrastive learning
auxiliary task is also beneficial to its efficiency. For the Cooperative
Treasure Collection, C2E-MARL is still efficient, and its performance is
comparable to that of the state-of-the-art methods. To summarize, C2E-
MARL has consistently outperformed other methods in terms of sample
efficiency and performance, which proves its effectiveness in tackling
various tasks. Table 2 presents the statistical experiment results of C2E-
MARL and its variants, i.e., C2E-MARL w/o En, C2E-MARL w/o CL, and
C2E-MARL w/o En&CL (detailed in Section 5.5), compared with the
baseline. We report their average reward 𝑟𝑎𝑣𝑔 , the standard deviation
of reward 𝑟𝑠𝑡𝑑 , and the convergence steps #𝐸𝑝 for a fair comparison. It is
obvious that C2E-MARL is trained with the smaller number of episodes
#𝐸𝑝 and obtains a higher reward 𝑟𝑎𝑣𝑔 with lower 𝑟𝑠𝑡𝑑 in all scenarios,
which demonstrates the superiority of C2E-MARL in terms of sample
efficiency and effectiveness.

To answer Q2, we make a visualization on the ensemble critic
network. Specifically, for a given state in the environment, e.g., Rover
Tower, Fig. 5(a) visualizes the heat map of action value estimated by
an ensemble of Q-value functions (𝐾 = 5), where the color corresponds
to the Q-value. Note that the estimation of the same state–action pair
is different. Besides, the correlation between each Q-value estimator
is visualized in Fig. 5(b), where it can be observed that 𝑄𝑖1 has a
stronger correlation with 𝑄𝑖2 and is largely irrelevant to 𝑄𝑖4. It indicates
that these underlying models scatter in the solution space and can
approximate the true Q-value function from multiple perspectives.
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Table 2
Each performance value are the average of 5 runs with random seeds, respectively. The statistic of reward 𝑟𝑎𝑣𝑔 , 𝑟𝑠𝑡𝑑 and
the number of the convergence steps #𝐸𝑝 are employed for quantitative comparison in terms of performance and sample
efficiency. The best results are highlighted in boldface.
Method Rover tower Co-Comm Co-TC

𝑟𝑎𝑣𝑔 ↑ 𝑟𝑠𝑡𝑑 ↓ #𝐸𝑝 ↓ 𝑟𝑎𝑣𝑔 ↑ 𝑟𝑠𝑡𝑑 ↓ #𝐸𝑝 ↓ 𝑟𝑎𝑣𝑔 ↑ 𝑟𝑠𝑡𝑑 ↓ #𝐸𝑝 ↓

C2E-MARL 𝟒.𝟖𝟗 0.84 ≈ 𝟗.𝟖K −𝟎.𝟐𝟔 𝟎.𝟎𝟓 ≈ 3K 𝟎.𝟗𝟗 𝟎.𝟎𝟒 ≈ 𝟏𝟖K
MAAC 4.56 1.25 ≈ 20K −0.30 0.14 ≈ 6K 0.96 0.05 ≈ 18K
MAD3PG −0.06 1.21 – −2.48 0.40 ≈ 6.5K 0.16 0.14 –
MADDPG 0.19 0.91 – −0.39 0.15 ≈ 6K −0.11 0.02 –
MMD-MIX −0.28 0.95 – −0.85 0.14 ≈ 4.5K −1.36 0.16 –
QMIX 0.22 1.07 ≈ 12.5K −1.50 0.34 ≈ 10K −1.04 0.23 –
VDN −0.03 0.88 – −1.87 0.47 ≈ 3K 0.05 0.07 –
IQL −1.68 𝟎.𝟔𝟓 – −1.50 0.20 ≈ 𝟐K 0.06 0.07 –

C2E-MARL w/o En 4.33 1.12 ≈ 15K −0.42 0.10 ≈ 2K 0.94 0.06 ≈ 18K
C2E-MARL w/o CL 3.93 1.14 ≈ 10K −0.35 0.09 ≈ 4K 0.96 0.05 ≈ 18K
C2E-MARL w/o En&CL 3.71 1.15 ≈ 10K −0.45 0.09 ≈ 2K 0.89 0.07 ≈ 22.5K
Fig. 3. The overall results on three multi-agent scenarios. The 𝑋-axis denotes the episode number and 𝑌 -axis denotes the per-step average reward (online). The partial magnifications
are set up to present the differences more clearly.
Fig. 4. The overall results on three multi-agent scenarios, i.e., Rover Tower (top panel), Cooperative Communication (middle panel) and Cooperative Treasure Collection (bottom
panel). The 𝑋-axis denotes the episode number and 𝑌 -axis denotes the per-step average reward (online).
Fig. 5. The left panel is the heat map of the action value (given a state) estimating
y multiple Q-value functions. The right panel is the correlation between an ensemble
f critic networks. The color denotes correlation value, and the size of circle denotes
he degree of correlation/irrelevance.

Besides, we investigate whether the way of calculating the target
-value in the ensemble module impacts the performance. Specifically,
he variants of C2E-MARL used in the investigation are presented as
7

ollows:
• C2E-MARL w/ Maxmin: It minimizes over the ensemble critic
networks as the target Q-value.

• C2E-MARL w/ Average: It takes the average of the ensemble
critic networks as the target Q-value.

Both the average reward 𝑟𝑎𝑣𝑔 and the deviation 𝑟𝑠𝑡𝑑 are listed in
Table 3. We find that our methods, i.e., selecting the candidate module
randomly from the ensemble critic network to calculate the target Q-
value, can obtain the highest 𝑟𝑎𝑣𝑔 , i.e., achieve the best performance.
C2E-MARL w/ Maxmin and C2E-MARL w/ Average are easily influ-
enced by the ‘‘weak’’ critic network and further degrade the overall
performance.

5.5. Ablation study (Q3, Q4)

Our proposed C2E-MARL has two key components: ensemble critic
networks and contrastive-enhanced modules. In this section, we will
validate their impacts on the performance via ablation experiments. We
detail the variants of C2E-MARL as follows:

• C2E-MARL w/o En: We replace an ensemble of critic networks
with only one, and still deploy a contrast learning auxiliary task

at the upstream network.
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Table 3
The performance comparisons with C2E-MARL’s variants, which are different in the way of calculating the Q-target. Each
performance value are the average of 5 runs with different random seeds, respectively. It is expressed in the form of mean
± standard deviation, i.e., 𝑟𝑎𝑣𝑔 (↑) ± 𝑟𝑠𝑡𝑑 (↓). The best results are highlighted in boldface.

Method

𝑟𝑎𝑣𝑔 ± 𝑟𝑠𝑡𝑑 Environment
Rover Tower Co-Comm Co-TC

C2E-MARL w/ Maxmin 4.61 ± 1.14 −0.32 ± 0.10 −0.03 ± 0.02
C2E-MARL w/ Average 4.59 ± 1.22 −0.31 ± 0.10 0.86 ± 0.06
C2E-MARL (Ours) 𝟒.𝟖𝟗 ± 𝟎.𝟖𝟒 −𝟎.𝟐𝟔 ± 𝟎.𝟎𝟓 𝟎.𝟗𝟗 ± 𝟎.𝟎𝟒
Fig. 6. The impact of different variants of C2E-MARL on three multi-agent scenarios. The 𝑋-axis denotes the episode number, and 𝑌 -axis denotes the per-step average reward
(online). For clarity, we appropriately adjust the range of the 𝑋-axis.
p
u
s
F

• C2E-MARL w/o CL: We remove the auxiliary task for the under-
lying model of an ensemble of critic networks.

• C2E-MARL w/o En&CL: It is a version of the MARL algorithm
that does not integrate ensemble learning and contrastive learn-
ing.

As shown in Fig. 6, C2E-MARL outperforms the other variants
throughout these multi-agent scenarios. Table 2 presents the statistical
experiment results of these variants. Specifically, contrastive learn-
ing can improve the efficiency (C2E-MARL w/o En), but the dropout
layer used to generate positive samples may lose some features and
degrade performance. The problem becomes more prominent, partic-
ularly as the task complexity increases. The ensemble learning frame-
work (C2E-MARL w/o CL) is empirically beneficial for improving sam-
ple efficiency, and the improvement will be more salient enhanced
by the contrastive representation learning auxiliary task. In general,
the results imply that both the ensemble paradigm and contrastive
learning auxiliary tasks are conducive to sample efficiency and model
performance.

5.6. Parameter sensitivity study (Q5)

In this subsection, we will conduct parameter sensitivity experi-
ents and analyze the impacts of three primary parameters, i.e., ensem-
le size 𝐾, learning rate 𝑙𝑟 and dropout probability 𝑑𝑝, on C2E-MARL.
Specifically, the ensemble size 𝐾 influences the complexity of the
network structure and further influences the model’s performance, the
learning rate 𝑙𝑟 determines the step size for iteration update, and
the dropout probability 𝑑𝑝 impacts the data augmentation in con-
trastive learning. To investigate the effect of the parameters, we employ
single-parameter sensitivity analysis by varying one parameter while
fixing the others each time. Fig. 7 shows the variation in the model
performance over different hyperparameter settings.

Figs. 7(a) and 7(b) show the performance of the model for different
ensemble sizes and learning rates on Rover Tower and Co-Comm.
There is a tendency for the model performance to improve and then
degrade as the ensemble size increases, and the optimal ensemble size
is approximately 4 to 6 for all scenarios. This suggests that the increase
in ensemble size 𝐾 makes the network structure more complex. When
the complexity of the network structure is too great, it will affect
the overall performance of the model, so we set the ensemble size
8

of the model to 𝐾 = 5. For learning rate, C2E-MARL achieves the
best performance when 𝑙𝑟 = 0.001, and the optimal learning rate is
approximately 0.0005 to 0.001 for all scenarios. Fig. 7(c) shows the
erformance with different dropout probabilities. The dropout layer is
sed to generate positive samples for contrastive learning by discarding
ome features, and its improper settings may degrade performance.
ig. 7(c) demonstrates that C2E-MARL performs better when 𝑑𝑝 =

0.1, ensuring that it generates good positive instances for contrastive
learning.

5.7. Further discussion

In this subsection, we analyze C2E-MARL in terms of sample effi-
ciency and effectiveness. The proposed framework takes advantage of
both ensemble learning and contrastive learning. It deploys multiple
critic networks and forms an ensemble model for action value estima-
tion, which can reduce the estimation error and provide trustworthy
action value estimation. In this way, it is helpful to update the policy
in the right direction efficiently and obtain a well-performing agent.
In addition, contrastive learning is employed as an auxiliary task for
the ensemble critic networks to learn the representation of the joint
information. Compared with taking the raw embedding as the input for
the critic network, C2E-MARL uses the dropout operation to augment
the data to learn the joint information representation with contrastive
learning, which helps improve the ensemble critic networks. Empirical
results demonstrate that C2E-MARL achieves superior performance on
benchmark scenarios with high sample efficiency.

6. Conclusion

In this paper, we explore the problem of sample efficiency in MARL
and propose an efficient algorithm called C2E-MARL. It employs an
ensemble of centralized critic networks for Q-value estimation, which
reduces the estimation error by extracting features from multiple per-
spectives. Inspired by the ‘‘Cannikin Law’’, we deploy the contrastive
learning auxiliary task to speed up the learning efficiency of underlying
submodels by generating data and improving representation quality,
which in turn improves the overall performance. Finally, we conduct
substantial experiments and analyses to demonstrate that the proposed
method outperforms state-of-the-art MARL methods in terms of both
sample efficiency and effectiveness. For future work, we will explore
more details of the optimizing process of C2E-MARL and apply it to

more complex scenarios.
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Fig. 7. Effect of ensemble size, learning rate and dropout probability to performance.
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