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A B S T R A C T

Recently, federated multi-view clustering (FedMVC) has emerged as a powerful tool to uncover complementary
cluster structures across distributed clients, gaining significant attention in the realm of data fusion. While
FedMVC methods have adeptly addressed the challenges of feature heterogeneity among various clients,
achieving notable success in controlled environments. Their applicability often hinges on the assumptions
of strict alignment and data completeness across multi-view clients. These assumptions, unfortunately, are not
always consistent with real-world conditions. Specifically, practical applications often come with (1) unaligned
multi-view data and (2) missing data. Current FedMVC methods struggle to effectively address these challenges.
To bridge this gap, this paper presents FCUIF, a novel method that eliminates the need for data alignment
and completeness assumptions. To tackle unaligned data, FCUIF leverages both sample commonality and view
versatility to adaptively generate alignment matrices, ensuring effective cross-view alignment. For the challenge
of missing data, FCUIF uses an unsupervised technique to evaluate and refine imputation quality, efficiently
handling various scenarios of incomplete multi-view data. Our extensive experiments using four public datasets
demonstrate FCUIF’s superior performance when dealing with unaligned and incomplete multi-view data. The
code is available at https://github.com/5Martina5/FCUIF.
1. Introduction

Federated learning (FL), is a widely adopted paradigm in distributed
machine learning, enabling multiple clients to collaboratively train
models without compromising privacy [1–4]. Most existing FL methods
usually assume that each client’s private data belong to the same modal-
ity or view, while exploring the problems of non-iid data, privacy,
and communication cost issues [5–7]. However, with the advancement
of sensing technology and the dramatic increase of multi-view/modal
data in recent years, the study of multi-source and heterogeneous
data fusion has become an emerging trend in FL [8–11]. Federated
ulti-view learning addresses the issue of feature heterogeneity across
ifferent views while guaranteeing privacy. It facilitates knowledge
haring among multiple clients and is useful in various fields, in-
luding recommendation [12], medical prediction [13], and clustering
nalysis [14].
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Clustering analysis with federated multi-view learning, also referred
to as federated multi-view clustering (FedMVC), addresses feature het-
erogeneity and uncovers complementary cluster structures across multi-
ple clients. On the one hand, it tackles the issue of feature heterogeneity
in multi-view data across multiple clients by proposing distinct data
fusion strategies on the server; on the other hand, it leverages collabo-
rative training among multiple clients and their data interactions with
the server to mine the private and common information across multiple
views, thereby identifying complementary clustering structures.

While some FedMVC methods have shown promising results, they
overlook two critical issues. Firstly, the success of existing FedMVC
methods [14,15] heavily relies on the assumption that multi-view
data must be strictly aligned across clients. However, in real-world
scenarios, it is unlikely that different clients collect samples in the same
order. Note that when using FedMVC methods under such situations,
it would be necessary to expose sample IDs for cross-client alignment,
which compromises privacy in the FL scenario. Secondly, there is
limited research addressing incomplete multi-view data in distributed
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environments. Although there has been significant progress in handling
incomplete multi-view clustering (IMVC) in centralized settings using
imputation or fusion techniques [16–18], there is a lack of discussions
about strategies for such data. Additionally, the challenge of imbal-
anced incomplete data across clients in the FL context needs further
exploration.

To address the aforementioned two issues, we introduce a novel
FedMVC method, named FCUIF (Federated multi-view Clustering
method for Unaligned and Incomplete data Fusion). FCUIF is designed
to address the challenges of unaligned and incomplete data in multi-
view datasets across distributed clients. For example, medical tests
distributed across different healthcare institutions can be considered
as different views. Most patients do not select healthcare institutions
in the same order, leading to unaligned data. Additionally, patients do
not select all institutions to undergo tests, resulting in incomplete data.
FCUIF can enable collaboration and clustering for unaligned and incom-
plete data while preserving privacy. Specifically, to tackle unaligned
data, FCUIF designs an adaptive alignment module, which achieves
cross-client view adaptation without exposing additional information
like sample IDs. This module utilizes extracted sample commonality
features to capture data similarity across clients, thus adaptively com-
puting alignment matrices and assisting in obtaining aligned global
features. For the issue of missing data, FCUIF proposes an adap-
tive imputation module to effectively assess imputation quality in an
unsupervised manner, achieving adaptive imputation on the server
to address the issue of incomplete multi-view data across clients.
This module leverages sample commonality and view versatility to
adaptively impute unavailable parts across clients, effectively han-
dling various incomplete data scenarios in distributed environments,
including point, block, and imbalanced incomplete data situations.

In summary, the proposed method facilitates the fusion of different
view data and mines complementary clustering structures within the
FL scenario. The general framework of FCUIF is shown in Fig. 1. In
the client environment, multiple clients extract view-specific embedded
features and cluster assignments from local private data using deep
autoencoders and global self-supervised information, which are then
uploaded to the server. In the server environment, the server extracts
sample commonality and view versatility from the data uploaded by
each client, and utilizes the adaptive alignment module and adaptive
imputation module to reconstruct the cross-view relationship between
samples. Additionally, the server yields global self-supervised informa-
tion that assists local training at each client and facilitates the mining
of high-quality global clustering structures.

This paper presents substantial enhancements and expansions over
our prior work, FedDMVC [14], addressing several crucial dimen-
sions. Firstly, in FedDMVC, our focus was limited to surmounting
two principal challenges of FedMVC: feature heterogeneity and in-
complete multi-view data in distributed contexts. However, our cur-
rent work, FCUIF, delves deeper by additionally addressing alignment
challenges present in multi-view datasets dispersed across distributed
clients. Secondly, FedDMVC employed global prototypes and view-
specific patterns to address the issue of incomplete multi-view data in
distributed environments. Notably, this approach largely depended on
imputation, which had its limitations. Mainly, it could not evaluate
the quality of imputed data, leaving it vulnerable to the detriments
of low-quality imputed features. FCUIF, on the other hand, introduces
an unsupervised methodology, effectively gauging imputation qual-
ity and employing adaptive imputation strategies for data expansion.
Lastly, FedDMVC was designed to handle point-wise incomplete data
in multi-view datasets within distributed settings. In contrast, FCUIF
exhibits greater flexibility by managing various forms of incomplete
data scenarios, encompassing point-wise, block-wise, and imbalanced
incomplete data. Overall, the main contributions of this work are
2

summarized as follows:
• We propose a novel FedMVC method that can address the issues
of unaligned and incomplete data in multi-view datasets across
distributed clients. Additionally, it designs a data fusion strategy
on the server to mine high-quality global clustering structures.

• Our method is based on sample commonality and view versatility,
allowing the server to adaptively calculate alignment matrices for
cross-view alignment, and evaluate imputation quality, resulting
in an adaptive imputation technique that exhibits robustness.

• Our method effectively addresses various unaligned and incom-
plete data scenarios in distributed environments. Extensive exper-
iments on public datasets demonstrate its superior performance in
terms of generality and clustering effectiveness.

2. Related work

2.1. Multi-view clustering

Multi-view clustering (MVC) methods leverage consistency and
complementary information between multiple views to enhance clus-
tering effectiveness. For most MVC methods, their feasibility is based
on the foundation of data integrity, which means multi-view data
must be complete and aligned. From this perspective, existing MVC
methods can be categorized into three classes based on the distribu-
tions or characteristics of multi-view data. (1) Traditional multi-view
clustering [19–26], which uncovers hidden patterns and structures by
leveraging complete multi-view data for clustering. For example, Zhou
et al. [25] proposed a novel multi-view subspace clustering approach
that exploits the underlying correlations from multiple views while
capturing view-specific information from each independent view. Ming
et al. [26] assumed that multi-view data shares a common latent
embedding and proposed a novel MVC method by learning a shared
generative latent representation. Both methods utilize the complete
multi-view information to learn an informative and consistent repre-
sentation of data. (2) Incomplete multi-view clustering [17,27–30],
which leverages the complete views to predict the missing data. Lin
et al. [17] reconstructed missing views by minimizing the conditional
entropy of multiple views using dual prediction. Liu et al. [28] imputed
each incomplete base matrix generated by incomplete views with a
learned consensus clustering matrix. (3) Unaligned multi-view clus-
tering [31,32], in which case the samples of the same instance are
unaligned. Huang et al. [31] attempted to align the data by establishing
the cross-view correspondence at the instance level in an unsupervised
manner. Although Yang et al. [32] addressed unaligned and incomplete
multi-view clustering tasks in a centralized setting, there is no further
exploration of data privacy issues in federated environments, as well as
cross-view relationship mining.

However, the aforementioned MVC methods can only separately
address data unaligned and incomplete data issues in centralized envi-
ronments, these methods also do not translate well to distributed envi-
ronments. Although some distributed MVC methods [33,34] have been
proposed, they cannot effectively address the unique issues introduced
by federated learning, such as feature heterogeneity and cross-client
privacy dilemma. Furthermore, the solutions to incomplete multi-view
data in distributed environments have not been well-researched. In
this paper, we propose a novel FedMVC method that can address the
issues of unaligned and incomplete data in multi-view datasets across
distributed clients, additionally evaluate imputation quality to enhance
adaptability and robustness.

2.2. Federated multi-view learning

Federated multi-view learning (FedMVL) is a decentralized ap-
proach that conducts multi-view learning within a federated setting.
Existing FedMVL methods can be categorized based on the down-
stream tasks they address. One of the primary tasks involves clustering

analysis across multiple clients. For instance, Huang et al. [15] were
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Fig. 1. An overview of the proposed FCUIF framework. It contains 𝑀 clients and a server. (1) Clients: Multiple clients integrate global self-supervised information to extract
view-specific embedded features and cluster assignments from their local private data. (2) Server: The server employs adaptive alignment and imputation modules to reconstruct
cross-view relationships among samples and utilize a data fusion strategy to mine the global clustering structures.
𝐗
w

the first to consider challenges such as high communication costs,
fault tolerance, and issues related to stragglers in distributed multi-
view learning. We introduced an innovative federated deep multi-view
clustering method in our previous work, FedDMVC [14]. This method
effectively mines complementary cluster structures from distributed
multi-view data while addressing challenges such as data privacy and
feature heterogeneity. Another primary application of FedMVL is in
recommendation systems. For example, Flanagan et al. [35] proposed
a matrix-factorization-based federated learning framework for per-
sonalized recommendations. Huang et al. [12] proposed a versatile
content-based federated multi-view framework tailored for recom-
mendation scenarios, effectively mitigating the cold-start problem.
Moreover, FedMVL can also be applied to classification problems in
specific domains. Xu et al. [36] proposed a late fusion approach to
tackle the issue of inconsistent time series in multi-view data for
diagnosing depression. Che et al. [13] introduced a general multi-view
learning framework that leverages the federated learning paradigm to
securely share medical data among institutions while preserving pri-
vacy, leading to improved classification results. Recently, research on
distributed algorithms under large-scale pre-trained models has gained
increasing attention. These methods achieve competitive performance
with minimal learnable parameters, providing further insights into
the development of the FedMVL field. For example, Feng et al. [37]
proposed learning joint visual cues in the null space of globally in-
formed hints reconstructed from magnetic resonance imaging data.
Feng et al. [38] enabled instance-adaptive inference by scale and shift
deep features upon a pre-trained model, to handle intra-client data
heterogeneity.

Currently, many FedMVL methods have achieved excellent results
by designing suitable frameworks tailored to the different distributions
or characteristics of multi-view data. However, these methods exhibit
significant limitations in unsupervised multi-view environments, as
they primarily focus on labeled data. Additionally, nearly all FedMVL
methods operate within the context of complete multi-view informa-
tion, which is not easily obtainable due to data storage constraints
and the involvement of multiple clients. Furthermore, many methods
have failed to consider the unaligned multi-view data, which is also
quite common in real-world scenarios. In contrast to previous meth-
ods, we propose an adaptive alignment model to address the issue
3

of unaligned data. Moreover, we design an adaptive unsupervised
imputation module to handle the problem of incomplete multi-view
data across clients.

3. Methodology

In this study, our objective is to address the challenges posed
by unaligned and incomplete data in multi-view datasets dispersed
across distributed clients, ultimately aiming to mine high-quality global
clustering structures.

3.1. Problem formulation

Building upon previous work [14,15], we consider a multi-view
dataset with 𝑀 views, denoted as

{

𝐗𝑚 ∈ R𝑁𝑚×𝐷𝑚
}𝑀
𝑚=1, distributed

across𝑀 clients. For client 𝑚, its local private data with 𝑚th view have
dimension 𝐷𝑚 and sample size 𝑁𝑚. Note that due to the uncertainty in
data collection, each client exhibits variations in terms of sample order,
sample count, and sample features. Given these characteristics, we
further partition the local private data into 𝐗𝑚 =

[

𝐗𝑚
𝐴;𝐗

𝑚
𝑈 ;𝐗

𝑚
𝐼
]

, where
𝑚
𝐴 represents the part of client 𝑚’s data that can be aligned across views
ith other clients by information such as sample IDs. Meanwhile, 𝐗𝑚

𝑈
comprises the parts of client 𝑚’s data that overlap with other clients’
data but cannot be aligned across views without compromising privacy.
Lastly, 𝐗𝑚

𝐼 denotes the unique samples within client 𝑚’s data, which do
not pose unaligned challenges as they are exclusive to client 𝑚.

3.2. Model architecture

Our model architecture consists of 𝑀 clients and a server. Each
client conducts local view-specific training using its private data, i.e.,
client 𝑚 trains using its local data 𝐗𝑚 ∈ R𝑁𝑚×𝐷𝑚 . Meanwhile, the
server utilizes the embedded features {𝐙𝑚}𝑀𝑚=1 and cluster assignments
{𝐐𝑚}𝑀𝑚=1 obtained from all clients to extract cross-client information

and perform global data fusion training.
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3.2.1. Local view-specific training
We adopt the same approach to construct a local autoencoder and

clustering layer for each client. This allows us to extract view-specific
embedded features and cluster assignments unique to each client,
which are then uploaded to the server. Additionally, we incorporate
a global perspective into local model training by referencing global
prototypes 𝐂, and global pseudo-labels 𝐏, obtained from the server.
Importantly, these embedded features and cluster assignments do not
expose the raw data of individual clients, and privacy is ensured
through the utilization of techniques such as homomorphic encryp-
tion [39] or secure multi-party computation [40] to mitigate model
inversion attacks. We analyze the local training process of client 𝑚 as
follows.

Deep autoencoders have found widespread use in extracting high-
level representations from raw features [41,42]. Therefore, we design a
view-specific encoder 𝑓𝑚

𝜃𝑚 , and its corresponding decoder 𝑔
𝑚
𝜙𝑚 for client

𝑚, where 𝜃𝑚 and 𝜙𝑚 represent the learnable parameters. The local
data 𝐗𝑚 are encoded into 𝐙𝑚 ∈ R𝑁𝑚×𝑑𝑚 using 𝑓𝑚

𝜃𝑚 , and then 𝐙𝑚 are
reconstructed as 𝐗̂𝑚 using 𝑔𝑚𝜙𝑚 , where 𝐗̂𝑚 represents the reconstructed
samples generated by the autoencoder. Client 𝑚 employs a deep autoen-
coder to project its data into a low-dimensional 𝑑𝑚 space. This process
preserves the privacy of the original data while capturing informative
latent features, and it can be achieved by minimizing the following
reconstruction loss:

𝑚
𝑟 = ‖

‖

‖

𝐗𝑚 − 𝑔𝑚𝜙𝑚 (𝐙𝑚)‖‖
‖

2

𝐹
=

𝑁𝑚
∑

𝑖=1

‖

‖

‖

𝐱𝑚𝑖 − 𝑔𝑚𝜙𝑚
(

𝑓𝑚
𝜃𝑚

(

𝐱𝑚𝑖
))

‖

‖

‖

2

2
. (1)

To obtain cluster assignments, we construct a clustering layer 𝑐𝑚𝐮𝑚
with learnable parameters

{

𝐮𝑚𝑗 ∈ R𝑑𝑚
}𝐾

𝑗=1
, based on existing deep em-

edding clustering methods [43,44]. Here, 𝐾 represents the number
f clustering targets. After initializing this clustering layer with global
rototypes 𝐂, we obtain soft cluster assignments 𝐐𝑚 ∈ R𝑁𝑚×𝐾 . Specifi-
cally, the assignment of the 𝑖th embedded feature 𝐳𝑖𝑚 to the 𝑗th cluster
s expressed as:

𝑚
𝑖𝑗 = 𝑐𝑚𝐮𝑚

(

𝐳𝑚𝑖
)

=

(

1 + ‖

‖

‖

𝐳𝑚𝑖 − 𝐮𝑚𝑗
‖

‖

‖

2

2

)−1

∑𝐾
𝑗=1

(

1 + ‖

‖

‖

𝐳𝑚𝑖 − 𝐮𝑚𝑗
‖

‖

‖

2

2

)−1
. (2)

For client 𝑚, we transform the global pseudo-labels 𝐏 into localized
supervised information 𝐏𝑚 through a mapping function 𝑚 (𝐏) ∶ 𝐏 ∈
R𝑁×𝐾 ⟼ 𝐏𝑚 ∈ R𝑁𝑚×𝐾 , where 𝑁 represents the total number of
samples across all clients. Additionally, we optimize the clustering loss
between the pseudo-labels 𝐏𝑚 and its own cluster assignment 𝐐𝑚:

𝑚
𝑐 = 𝐷𝐾𝐿 (𝐏𝑚 ∥ 𝐐𝑚) =

𝑁𝑚
∑

𝑖=1

𝐾
∑

𝑗=1
𝑝𝑚𝑖𝑗 log

𝑝𝑚𝑖𝑗
𝑞𝑚𝑖𝑗

. (3)

Hence, the total loss of client 𝑚 consists of two parts:
𝑚 = 𝑚

𝑟 + 𝛾𝑚
𝑐 , (4)

here 𝛾 is a trade-off coefficient between the clustering and reconstruc-
ion losses. The reconstruction loss 𝑚

𝑟 guarantees that the embedded
eatures adequately represent the client’s original data. The optimiza-
ion of the clustering loss 𝑚

𝑐 involves extracting complementary infor-
ation from other clients by minimizing the 𝐾𝐿 divergence between
𝑚 and 𝐏𝑚.

.2.2. Global data fusion training
In our architecture, the server receives embedded features and clus-

er assignments uploaded by each client. From the server’s perspective,
ue to inconsistent data collection among clients, we face challenges
ith unaligned and incomplete data across views, rendering direct
usion for clustering impractical. To address these issues, we propose
4

n adaptive alignment and imputation approach across clients (see
ection 3.3). Then, we design a straightforward data fusion strategy on
he processed data to extract global self-supervision information and
nable high-quality global clustering structures.
We denote the information that has undergone adaptive alignment

nd adaptive imputation as
{

𝐙̂𝑚
}𝑀

𝑚=1
and

{

𝐐̂𝑚
}𝑀

𝑚=1
. To extract global

self-supervised information and global clustering structures from multi-
view data across multiple clients, the server initially obtains global
embedded features through the following equation:

𝐙̂ =
[

𝐙̂1, 𝐙̂2,… , 𝐙̂𝑀
]

∈ R𝑁×
∑𝑀

𝑚=1 𝑑𝑚 . (5)

For the global prototypes 𝐂 ∈ R𝐾×
∑𝑀

𝑚=1 𝑑𝑚 , which captures the
common patterns shared among samples within the same cluster, we
define 𝐳̂𝑖 ∈ 𝐙̂ and 𝐜𝑗 =

[

𝐜1𝑗 , 𝐜
2
𝑗 ,… , 𝐜𝑀𝑗

]

∈ 𝐂, and obtain it using the
following objective:

min
{

𝐜𝑗
}𝐾
𝑗=1

𝑁
∑

𝑖=1

𝐾
∑

𝑗=1

‖

‖

‖

𝐳̂𝑖 − 𝐜𝑗
‖

‖

‖

2
. (6)

For the global pseudo-labels 𝐏, which represents a unified target
distribution obtained by the server, fuses information from all clients.
Through self-supervised learning, this approach aligns the local model
training of clients with the global objective. We quantify the similarity
between global embedded features and global prototypes by transform-
ing the Euclidean distance between them into conditional probabilities
by Student’s 𝑡-distribution [45]:

𝑡𝑖𝑗 =

(

1 + ‖

‖

‖

𝐳𝑖 − 𝐜𝑗
‖

‖

‖

2
)−1

∑

𝑗

(

1 + ‖

‖

‖

𝐳𝑖 − 𝐜𝑗
‖

‖

‖

2
)−1

. (7)

To increase the discriminability of the pseudo soft assignments, the
global pseudo-labels 𝐏 are computed by:

𝑝𝑖𝑗 =

(

𝑡𝑖𝑗∕
∑

𝑗 𝑡𝑖𝑗
)2

∑

𝑗

(

𝑡𝑖𝑗∕
∑

𝑗 𝑡𝑖𝑗
)2

∈ 𝐏. (8)

The global prototypes 𝐂 and global pseudo-labels 𝐏 form the global
elf-supervision information, which is distributed to each client. Fur-
hermore, the high-quality global clustering structures are obtained by
using the clustering assignments

{

𝐐̂𝑚
}𝑀

𝑚=1
from all clients. These clus-

ering assignments also undergo adaptive alignment and imputation.
he clustering prediction of the 𝑖th sample is calculated by

𝑖 = argmax
𝑗

(

1
𝑀

𝑀
∑

𝑚=1
𝑞𝑚𝑖𝑗

)

. (9)

3.3. Cross-client adaptive alignment and imputation

In the problem formulation section, we take client 𝑚 as an example
and divide its local private data into 𝐗𝑚 =

[

𝐗𝑚
𝐴;𝐗

𝑚
𝑈 ;𝐗

𝑚
𝐼
]

. Following local
model training and data interaction, the server obtains the correspond-
ing view-specific embedded features 𝐙𝑚 =

[

𝐙𝑚
𝐴;𝐙

𝑚
𝑈 ;𝐙

𝑚
𝐼
]

and clustering
assignments 𝐐𝑚 =

[

𝐐𝑚
𝐴;𝐐

𝑚
𝑈 ;𝐐

𝑚
𝐼
]

. We initially employ the aligned and
complete information

{

𝐙𝑚
𝐴
}𝑀
𝑚=1 to initialize the global prototypes 𝐂 by

Eq. (6), and subsequently update them in the data fusion module. At
this point, if we directly concatenate the embedded features of each
client for clustering, unaligned and incomplete data will significantly
impact the clustering results. These insights aid in training the adaptive
alignment and imputation modules, correcting the original information
based on training results.
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3.3.1. Adaptive alignment
To fix the unaligned information, we design the adaptive align-

ment module. This module conducts network training using the sample
commonality features from the cross-client alignment parts. Simul-
taneously, it computes alignment matrices adaptively to adjust the
unaligned parts across clients.

Since the independent training of local models on each client’s
private data without parameter sharing, there is no guarantee that
the extracted embedded features belong to the same low-dimensional
space. Therefore, the server employs {𝐇𝑚 = 𝐐𝑚𝐂}𝑀𝑚=1 to capture the
sample commonality features from different client perspectives, where
𝐇𝑚 ∈ R𝑁𝑚×

∑𝑀
𝑚=1 𝑑𝑚 represents these features obtained from 𝑚th client.

hen we propose to use the sample commonality features from the
ross-client alignment parts

{

𝐇𝑚
𝐴 = 𝐐𝑚

𝐴𝐂
}𝑀
𝑚=1 to train a neural network

ith the following objective function:

1 =
𝑀
∑

𝑚=1

‖

‖

‖

𝐇𝑎
𝐴𝐖

𝑎
𝐻 − 𝐀𝑚𝐇̃𝑚

𝐴𝐖
𝑚
𝐻
‖

‖

‖

2

𝐹
+ 𝛼

𝑀
∑

𝑚=1
𝑓 (𝐀𝑚 − 𝐀𝑚

𝑔𝑡), (10)

here
{

𝐖𝑚
𝐻
}𝑀
𝑚=1 represents the mined view versatility, {𝐀𝑚}𝑀𝑚=1 are the

lignment matrices computed by this adaptive module, and
{

𝐀𝑚
𝑔𝑡

}𝑀

𝑚=1

re the permutation ground truths derived from
{

𝐇̃𝑚
𝐴
}𝑀
𝑚=1 w.r.t.

{

𝐇𝑚
𝐴
}𝑀
𝑚=1. 𝐇

𝑎
𝐴 and 𝐖𝑎

𝐻 are discovered by the anchor client, which is
the client with the best training results from the previous local training
round. Here, 𝑓 (⋅) is a specific regularizer function, and 𝛼 > 0 is a
balancing parameter. As the training of the network progresses, the
alignment matrices evolve dynamically. The alignment matrix for client
𝑚 is computed using the following formula:

𝐀𝑚 = sof tmax

⎛

⎜

⎜

⎜

⎝

(

𝐇𝑎𝐖𝑎
𝐻
) (

𝐇𝑚𝐖𝑚
𝐻
)𝑇

√

∑𝑀
𝑚=1 𝑑𝑚

⎞

⎟

⎟

⎟

⎠

. (11)

The first term of the loss function 1 (in Eq. (10)) measures the
difference in the non-linearly transformed sample commonality fea-
tures between the anchor client and other clients. This term serves
a dual purpose: learning view versatility while quantifying alignment
effectiveness. Additionally, the alignment matrices are used as network
parameters, which are continuously tuned during training. The second
term acts as a constraint, encouraging alignment matrices to close their
corresponding ground truth matrices.

Then the unaligned data are adjusted through this adaptive module.
Taking client 𝑚 as an example, we obtain the adjusted embedded
features, 𝐙̂𝑚 =

[

𝐙𝑚
𝐴;𝐏

𝑚𝐙𝑚
𝑈 ;𝐙

𝑚
𝐼
]

, and clustering assignments, 𝐐̂𝑚 =
𝐐𝑚

𝐴;𝐏
𝑚𝐐𝑚

𝑈 ;𝐐
𝑚
𝐼
]

.

.3.2. Adaptive imputation
For incomplete information across clients, we propose utilizing

ample commonality and view versatility for imputation and adaptive
ata extension based on imputation quality.
To observe the cross-client complete data from the server’s perspec-

ive, we employ an indicator matrix 𝐈 ∈ 0, 1𝑁×𝑀 , where 𝐈𝑖𝑚 = 1 if the
th sample exists in the 𝑚th client; otherwise, 𝐈𝑖𝑚 = 0. For client 𝑚, if
𝑚
𝑖 ∈ 𝐙𝑚 and ∑𝑀

𝑚=1 𝐈𝑖𝑚 = 𝑀 , then 𝐳𝑚𝑖 ∉ 𝐙𝑚
𝐼 ; otherwise, 𝐳

𝑚
𝑖 ∈ 𝐙𝑚

𝐼 . Using
he defined indicator matrix, we obtain the global cluster assignments
to aid us in adaptive imputation by the following formula:

𝑖 =
∑𝑀

𝑚=1 𝐈𝑖𝑚𝑞
𝑚
𝑖

∑𝑀
𝑚=1 𝐈𝑖𝑚

∈ 𝐐. (12)

ased on the acquired sample commonality features 𝐐𝐂, we leverage
he complete and aligned information across clients to learn view-
pecific patterns

{

𝐖𝑚
𝐼
}𝑀
𝑚=1 and uncover view versatility, as outlined

elow:

min
{

𝐖𝑚
}𝑀

∑

𝐳𝑚∈𝐙𝑚

𝑀
∑

𝑚=1

‖

‖

‖

𝐳𝑚𝑖 −𝐖𝑚
𝐼 𝐪𝑖𝐂

𝑚‖
‖

‖

2

2
. (13)
5

𝐼 𝑚=1 𝑖 𝐴 q
Algorithm 1 Federated multi-view Clustering for Unaligned and
Incomplete data Fusion (FCUIF)
Input: Data with 𝑀 views {𝐗𝑚}𝑀𝑚=1 distributed across 𝑀 clients,

number of clusters 𝐾, parameters 𝛾 and 𝛼, communication rounds
𝑅.

Output: Global clustering predictions 𝐘 =
{

𝑦1, 𝑦2,… , 𝑦𝑛
}

.
1: while not reaching 𝑅 rounds do
2: for 𝑚 = 1 to 𝑀 do in parallel
3: if not initialized then
4: Pretrain the autoencoders by optimizing Eq. (1).
5: Initialize u𝑚 by global prototypes 𝐂.
6: else
7: Optimize Eq. (4), update 𝜃𝑚, 𝜙𝑚, and u𝑚.
8: end if
9: Upload 𝐙𝑚 and 𝐐𝑚 to the server.
10: end for
11: Cross-client adaptive alignment by Eqs. (10)-(11).
2: Cross-client adaptive imputation by Eqs. (13)-(14).
3: Obtain global embedded features 𝐙 by Eq. (5).
4: Obtain global prototypes 𝐂 by Eq. (6).
5: Obtain global pseudo-labels 𝐏 by Eqs. (7)-(8).
6: Distribute 𝐂 and 𝐏 to each client.
7: end while
8: Calculate the clustering predictions by Eq. (9).

We can utilize the extracted sample commonality features 𝐐𝐂 and
view-specific patterns

{

𝐖𝑚
𝐼
}𝑀
𝑚=1 to guide the imputation of incomplete

embedded features
{

𝐙𝑚
𝐼
}𝑀
𝑚=1. In this case, when 𝐈𝑖𝑚 = 0, the incomplete

embedded feature 𝐳𝑚𝑖 can be imputed as follows:

𝐳𝑚𝑖 = 𝐖𝑚
𝐼 𝐪𝑖𝐂

𝑚 ∈ 𝐙𝑚
𝐼 . (14)

As the imputation process progresses, the data expand, providing
access to more information. Higher-quality imputed values can lead to
more comprehensive and accurate global embedded features during the
data fusion process. However, a higher missing rate can limit clients’
representation of view characteristics, leading to imprecise imputation.
Additionally, the imbalanced distribution of data across clients can bias
the view information for certain clients. To address these limitations,
we evaluate the global embedded features obtained after imputation.
If the clustering results of the imputed global embedded features are
inferior to those without imputation, we abandon imputation and
proceed with training using the non-imputed global embedded features.

The information, which has undergone adaptive alignment and
adaptive imputation, including embedded features

{

𝐙̂𝑚
}𝑀

𝑚=1
and clus-

tering assignments
{

𝐐̂𝑚
}𝑀

𝑚=1
, is passed into the data fusion module.

This facilitates the discovery of more accurate global self-supervision
information, making it easier to achieve high-quality global clustering.

3.4. Optimization

The optimization of FCUIF is outlined in Algorithm 1, consisting
of two main parts: the clients and the server. Clients are responsible
for parallel training local models. In the initial round, they pretrain au-
toencoder 𝑓𝑚

𝜃𝑚 and 𝑔𝑚𝜙𝑚 by Eq. (1). In subsequent rounds, they utilize the
global self-supervision information provided by the server to conduct
view-specific local training in Eq. (4). The server receives embedded
features and cluster assignments uploaded by each client and extracts
sample commonality and view versatility. For unaligned information
across clients, adaptive alignment is performed by Eqs. (10) and (11).
or incomplete information across clients, adaptive data extension is
erformed based on imputation quality by Eqs. (13) and (14). Subse-

uently, the server leverages the information post-adaptive alignment
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and imputation to construct global embedded features and discover
global self-supervision information, which includes global prototypes
and global pseudo-labels. Finally, we fuse the clustering assignments
from all clients to generate the global clustering predictions by Eq. (9).

4. Experiments

4.1. Experimental settings

4.1.1. Datasets
We conduct the experiments on four commonly-used datasets. Con-

cretely, BDGP [46] contains 2500 samples in five categories, each sam-
ple with two views, including texture and visual features. Reuters [47]
includes 1200 articles across six categories, each article available in five
languages as five text views. Scene [48] consists of 4485 scene images
categorized into 15 classes, each represented by three views. Hand-
ritten Numerals (HW)1 comprises 2000 samples in ten numeral
ategories, each with six visual views derived from binary images.
Note that in our federated setting, multiple views of these datasets

re distributed among different clients and are isolated from each other.
e primarily simulate three scenarios. (1) Only unaligned data are
resent. To simulate unaligned multi-view data, each client internally
huffles its data randomly, following [31]. (2) Only incomplete data
re present. For simulating incomplete multi-view data, we randomly
emove samples from various views, ensuring that each sample retains
ne view, as outlined in [49]. (3) Unaligned and incomplete data
oexist. To simulate unaligned and incomplete multi-view data, we
ntentionally omit data and then randomly shuffle the complete parts
f the incomplete multi-view data within each client. Additionally,
e define two important parameters: the unaligned rate 𝛿1 = 𝑚1∕𝑛𝑐 ,

where 𝑚1 is the count of shuffled samples, and the missing rate 𝛿2 =
𝑚2∕𝑛, where 𝑚2 represents the number of samples with incomplete
information across all clients. Here, 𝑛𝑐 is the count of samples with
complete data across all clients, expressed as 𝑛(1 − 𝛿2), with 𝑛 denoting
he overall size of datasets.

.1.2. Comparing methods
We select several relevant centralized algorithms and our previous

ork as comparison methods. For the issue of unaligned data across
lients, akin to the partially view-aligned problem in MVC, we compare
ur method against five additional state-of-the-art methods:

• PVC (2020) [31] establishes category-level correspondences for
handling unaligned multi-view data in the latent space learned.

• MvCLN (2021) [50] learns aligned data at the category level
using a noise-resistant contrastive loss for handling unaligned
multi-view data.

• GWMAC (2022) [51] utilizes the Gromov-Wasserstein barycenter
to achieve data alignment and clustering for multi-view data.

• SURE (2022) [32] addresses partially view-unaligned and par-
tially sample-missing problems within a unified framework.

• SMILE (2023) [52] learns consensus semantics for realigning/
imputing defective instances and forming clusters.

he issue of incomplete data across clients parallels the problem tackled
y incomplete multi-view clustering. We compare our method against
ight state-of-the-art methods in the field:

• GIMC-FLSD (2020) [53] considers the local geometric informa-
tion and the unbalanced discriminating powers of IMVC.

• DCP (2021) [17] is a deep IMVC method that leverages a con-
trastive prediction module to recover the missing data.

• HCP-IMSC (2022) [54] is an IMVC method that preserves sample
and views high-order correlations.

1 https://archive.ics.uci.edu/ml/datasets.php.
6

• IMVC-CBG (2022) [55] leverages anchor learning and consensus
bipartite graph for handling large-scale IMVC.

• DSIMVC (2022) [56] reduces the risk of clustering performance
degradation caused by the semantic inconsistency in estimated
views in IMVC, both theoretically and experimentally.

• LSIMVC (2022) [57] learns a sparse and structured consensus
latent representation from incomplete multi-view data by opti-
mizing a graph-embedded multi-view matrix factorization model.

• PGP (2023) [58] is a graph based IMVC method where the asso-
ciated missing entries can be inferred through graph propagation.

• FedDMVC (2023) [14] is a federated multi-view clustering method
that simultaneously addresses feature heterogeneity and IMVC.

4.1.3. Implementation details
Our method is implemented using PyTorch and the Flower feder-

ated learning framework [59]. We use the same fully connected (Fc)
autoencoder structure for all four datasets, following [44]. The encoder
structure for each client is Input- Fc500 − Fc500 − Fc2000 − Fc10, and the
decoder is symmetric with the encoder. All the autoencoders are pre-
trained for 500 epochs and the dimensionality of all clients’ embedded
features is reduced to 10. Also, we set the trade-off coefficient 𝛾 = 0.1
and 𝛼 = 0.1, use the batch size of 256, and set the number of local
epochs to 300. Additionally, two three-layer MLPs with architectures
𝑑𝑚−32−64−𝑑𝑚 are employed on the server to extract view versatility,
auxiliary adaptive alignment, and adaptive imputation, respectively.
ReLU is the activation function of all hidden layers and Adam (default
learning rate is 0.001) is chosen as the optimizer. We set communi-
cation rounds 𝑅 to 3, which means that the server and each client
communicate for 3 rounds.

4.1.4. Evaluation measures
We evaluate the clustering performance using three widely recog-

nized metrics: accuracy (ACC), normalized mutual information (NMI),
and adjusted rand index (ARI). Higher values for these metrics indicate
improved clustering results.

4.2. Clustering results

4.2.1. Cross-client partially unaligned
In this scenario, we examine the impact of unaligned rates ranging

from 0.1 to 0.7 with an interval of 0.2 on the clustering performance of
four datasets, as shown in Fig. 2. Compared to existing MVC methods
for partially view-aligned problems, FCUIF consistently outperforms
them across all four datasets, affirming the effectiveness of our adap-
tive alignment module. This module adaptively computes alignment
matrices, facilitating high-quality cross-client alignment.

4.2.2. Cross-client partially missing
In this scenario, we investigate how missing rates ranging from

0.1 to 0.7 with an interval of 0.2 affect the clustering performance of
four datasets, as shown in Fig. 3. Compared with other IMVC methods,
even with a relatively high missing rate, FCUIF can learn a consensus
representation that guides the imputation of missing samples from each
client, thus avoiding the negative impact of low-quality samples.

4.2.3. Cross-client partially unaligned and partially missing
We conduct comparative analyses for three scenarios: partially un-

aligned (𝛿1 = 0.5), partially missing (𝛿2 = 0.5), and both partially
unaligned and missing (𝛿1 = 0.5 and 𝛿2 = 0.5). Experimental results are
presented in Table 1. These three scenarios are denoted as types (a),
(b), and (c). Given the limited availability of MVC methods capable
of simultaneously addressing unaligned and missing data, we only
compare FCUIF with the SURE method in type (c). The results demon-
strate FCUIF’s adaptability to various scenarios involving unaligned
and missing data. This adaptability can be attributed to the excellent
performance of our adaptive alignment and imputation modules, which

https://archive.ics.uci.edu/ml/datasets.php
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Fig. 2. Performance analysis on four datasets with different unaligned rates.
Fig. 3. Performance analysis on four datasets with different missing rates.
Table 1
Experiments results on BDGP and Reuters. The best result in each column is shown in bold. Here, (a) denotes partially unaligned, (b) denotes
partially missing, and (c) denotes partially unaligned and partially missing.
Type Methods BDGP Reuters Scene HW

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

PVC [31] 0.843 0.630 0.647 0.227 0.093 0.023 0.219 0.191 0.073 0.456 0.470 0.311
MvCLN [50] 0.621 0.437 0.373 0.312 0.113 0.051 0.337 0.308 0.175 0.753 0.659 0.515
GWMAC [51] 0.836 0.627 0.671 0.347 0.135 0.128 0.378 0.322 0.227 0.579 0.580 0.428
SURE [32] 0.750 0.502 0.461 0.293 0.091 0.046 0.357 0.307 0.186 0.353 0.300 0.175
SMILE [52] 0.875 0.698 0.714 0.373 0.165 0.123 0.406 0.367 0.234 0.748 0.645 0.579

(a)

FCUIF (ours) 0.878 0.703 0.726 0.433 0.232 0.198 0.413 0.377 0.240 0.773 0.666 0.586

GIMC-FLSD [53] 0.772 0.532 0.534 0.473 0.275 0.202 0.300 0.264 0.135 0.408 0.431 0.229
DCP [17] 0.424 0.305 0.054 0.232 0.137 0.013 0.328 0.346 0.214 0.738 0.734 0.626
HCP-IMSC [54] 0.901 0.769 0.759 0.407 0.219 0.136 0.325 0.273 0.143 0.775 0.710 0.651
IMVC-CBG [55] 0.363 0.176 0.056 0.364 0.213 0.088 0.268 0.270 0.144 0.471 0.473 0.237
DSIMVC [56] 0.921 0.829 0.834 0.421 0.256 0.187 0.278 0.304 0.145 0.762 0.736 0.650
LSIMVC [57] 0.490 0.388 0.303 0.152 0.062 0.199 0.212 0.218 0.092 0.874 0.828 0.845
PGP [58] 0.496 0.310 0.398 0.245 0.088 0.285 0.237 0.268 0.139 0.854 0.843 0.842
FedDMVC [14] 0.915 0.774 0.803 0.566 0.299 0.249 0.393 0.343 0.225 0.893 0.824 0.790

(b)

FCUIF (ours) 0.933 0.862 0.859 0.609 0.407 0.357 0.410 0.376 0.229 0.926 0.844 0.856

PVC [31] 0.468 0.267 0.073 0.249 0.113 0.013 0.248 0.278 0.071 0.393 0.352 0.294
MvCLN [50] 0.572 0.380 0.365 0.253 0.136 0.144 0.266 0.185 0.134 0.475 0.366 0.239
GWMAC [51] 0.751 0.592 0.560 0.301 0.078 0.083 0.326 0.313 0.173 0.482 0.453 0.361
SURE [32] 0.734 0.497 0.462 0.286 0.066 0.038 0.342 0.262 0.165 0.309 0.209 0.111
SMILE [52] 0.826 0.622 0.615 0.397 0.172 0.126 0.348 0.347 0.209 0.773 0.732 0.665

(c)

FCUIF (ours) 0.835 0.630 0.639 0.508 0.258 0.194 0.354 0.355 0.214 0.785 0.738 0.688
c

effectively avoid the adverse effects of unaligned and incomplete parts
of the data on clustering.

In our experimental setup, unaligned exists only for complete parts.
Therefore, even though types (a) and (c) run under the same unaligned
rate, (c) has fewer unaligned samples than (a) due to the presence of
missing samples. It is worth noting that on Reuters and HW datasets,
our method yields better clustering results for (c) compared to (a) under
the same unaligned rate. These results reflect that these two datasets
are more affected by unaligned data compared to missing data due to
the higher number of views.

Moreover, we conduct experiments on four datasets by varying both
the unaligned rate and missing rate from 0.1 to 0.9 with intervals of
0.2, as shown in Fig. 4. With increasing unaligned and incomplete rates,
CUIF’s performance declines. However, on the Scene and HW datasets,
he decrease is relatively small, indicating strong robustness. On the
7

DGP and Reuters datasets, ACC shows minimal variation within a t
certain range (𝛿1 ⩽ 0.5 and 𝛿2 ⩽ 0.5), demonstrating a degree of
robustness. Experimental results show that FCUIF effectively adapts to
varying levels of unaligned and incomplete data, enabling high-quality
data fusion and cluster structure discovery.

4.3. Model analysis

4.3.1. Ablation study
Components A and B respectively represent the constraint terms

in the adaptive alignment module and the view-specific patterns 𝐖𝐻
mined during its training. Components C and D respectively represent
the view-specific patterns 𝐖𝐼 discovered during the training of the
adaptive imputation module and the utilization of adaptive imputation
strategies. As shown in Table 2, it is found that the performance of
lustering is significantly influenced by component D. We can also find
hat combining components B and D yields better results than using
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Fig. 4. ACC on four datasets with different unaligned rates and missing rates.
Table 2
Ablation studies on four datasets when 𝛿1 = 0.5 and 𝛿2 = 0.5.

Components BDGP Reuters Scene HW

A B C D ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

Item-1 ✓ ✓ ✓ 0.800 0.582 0.509 0.502 0.221 0.160 0.343 0.323 0.205 0.754 0.708 0.650
Item-2 ✓ ✓ ✓ 0.821 0.614 0.617 0.466 0.246 0.147 0.325 0.292 0.157 0.701 0.657 0.576
Item-3 ✓ ✓ ✓ 0.791 0.559 0.561 0.432 0.235 0.154 0.328 0.308 0.162 0.741 0.734 0.655
Item-4 ✓ ✓ ✓ 0.756 0.525 0.513 0.452 0.235 0.149 0.317 0.285 0.169 0.729 0.708 0.632
Item-5 ✓ ✓ ✓ ✓ 0.835 0.630 0.639 0.508 0.258 0.194 0.354 0.355 0.214 0.785 0.738 0.688
Fig. 5. ACC w.r.t. different parameter settings when 𝛿1 = 0.5 and 𝛿2 = 0.5.
either B or D alone, which illustrates that view-specific patterns mined
and adaptive imputation strategies play a crucial role in the overall
performance of the model. With the high confidence imputation, com-
ponent A is also indispensable, which can improve consistency between
different views that is beneficial for clustering.

4.3.2. Parameter analysis
In our study, the FCUIF has two primary hyper-parameters, namely

𝛼 and 𝛾. To showcase the stability of the FCUIF method, we conduct
experiments with various parameter settings and evaluate the resulting
clustering performance, as depicted in Fig. 5. We observe that higher
values of 𝛾 promote disentanglement but introduce a trade-off between
the fidelity of reconstructions and the disentanglement of latent fea-
tures. Moreover, excessively large or small values of 𝛾 adversely affect
clustering performance by creating an imbalance between reducing
redundant information and obtaining consistent information. The effect
of parameter 𝛼 is relatively weak, so we choose the middle value to
ensure the quality of the alignment matrices. Based on our experimen-
tal findings, we recommend setting both 𝛼 and 𝛾 to 0.1 for optimal
performance.

4.3.3. Missing strategies
We investigate the performance of FCUIF under various missing

strategies on four datasets when 𝛿1 = 0.5 and 𝛿2 = 0.5, as shown in
Fig. 6. Point-wise missing refers to scattered data missing, commonly
employed in many IMVC methods. Block-wise missing occurs when
data are missing in the form of blocks, such as when monitoring devices
8

may fail over several hours, leading to continuous data missing. For
block-wise missing, some IMVC methods that merge adjacent informa-
tion may result in unavailability. In this experiment, we define missing
involving more than five consecutive samples as block-wise missing.
Imbalanced missing, a unique challenge introduced by federated learn-
ing, implies potential imbalances in the number of samples across
clients. We utilize the Dirichlet distribution to simulate cross-client
imbalanced missing.

The results demonstrate FCUIF’s adaptability to various missing
strategies. Furthermore, performance tends to degrade with block-wise
missing compared to point-wise missing, underscoring the importance
of addressing block-wise missing. Imbalanced missing has a positive
impact on BDGP but yields adverse effects on the other three datasets.
This arises from BDGP having only two views with significant quality
disparities. Imbalanced missing prompts FCUIF to focus more on the
higher-quality view, resulting in improved performance. Conversely,
for the other three datasets where view quality differences are less
pronounced, imbalanced missing leads to information loss and negative
effects.

5. Conclusion

In this paper, we present FCUIF, a novel federated multi-view
clustering method designed to address the challenges of unaligned
and incomplete data across distributed clients in multi-view datasets,
thereby facilitating effective data fusion. For unaligned data, FCUIF
adaptively computes alignment matrices based on sample common-
ality and view versatility, achieving cross-client alignment. For in-
complete data, FCUIF assesses imputation quality in an unsupervised
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Fig. 6. Performance analysis on four datasets with different missing strategies.
R
manner, enabling adaptive imputation. Furthermore, FCUIF effectively
addresses various scenarios of incomplete multi-view data, including
point, block, and imbalanced missing strategies. To enhance clustering,
FCUIF also designs a data fusion strategy on the server to extract
high-quality global clustering structures. Extensive experiments on four
public datasets demonstrate FCUIF’s superior performance in handling
unaligned and incomplete multi-view data.
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