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A B S T R A C T

Reinforcement learning in multi-agent scenarios is essential for real-world applications as it can vividly depict
agents’ collaborative and competitive behaviors from a perspective closer to reality. However, most existing
studies suffer from poor robustness, preventing multi-agent reinforcement learning from practical applications
where robustness is the core indicator of system security and stability. In view of this, we propose a novel
Bayesian Multi-Agent Reinforcement Learning method, named BMARL, which leverages the distributional value
function calculated by Bayesian inference to improve the robustness of the model. Specifically, Bayesian linear
regression is adopted to estimate a posterior distribution concerning value function parameters, rather than
approximating an expectation value for Q-value by point estimation. In this way, the value function is more
generalized than previously obtained by point estimation, which is beneficial to the robustness of our model.
Meanwhile, we utilize the Gaussian prior knowledge to integrate more prior knowledge while estimating the
value function, which improves learning efficiency. Extensive experimental results on three benchmark multi-
agent environments comparing with seven state-of-the-art methods demonstrate the superiority of BMARL in
terms of both robustness and efficiency.
1. Introduction

Reinforcement learning (RL) allows agents to maximize the cumu-
lative reward by interacting with the environment. Recently, it has
become the most promising method to master challenging domains,
e.g., game playing [1], robotic control [2], finance [3], etc [4]. How-
ver, most existing studies are designed for single-agent scenarios,
hich are not suitable for real-world scenarios involving multiple
ooperative or competitive agents. Taking traffic signal control as an
xample, it is an important but challenging real-world problem in our
aily life [5], which objective is to safely direct drivers through the
ntersection. Assuming that each traffic signal light is modeled as an
gent, their policies are cooperated with each other. The robustness of
he model for traffic signal control is of great importance because it
s directly related to the smoothness of traffic conditions and even the
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safety of human lives. However, most of the existing models are lacking
in robustness and become incompetent when encountering unfamiliar
environments. Therefore, enhancing the practicability of multi-agent
reinforcement learning (MARL) by improving robustness have great
potential in real applications.

In the literature, several studies have been proposed for multi-agent
systems. For example, some of the earliest proposed methods tend
to train agents individually using local observations [6,7]. It scarcely
covers the complete view of a multi-agent environment and easily
leads to the problem of instability. To address this problem, the sub-
sequently proposed algorithms advocate integrating observations and
actions of all agents as a joint input [8,9], but they incur the limitation
of scalability [10]. Recently, a centralized training and decentralized
execution (CTDE) framework is proposed [11], in which agents only
vailable online 28 August 2023
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incorporate joint information during training to broaden their per-
spectives. It demonstrates excellent performance in many domains by
deploying value-based or policy-based reinforcement learning methods,
e.g., QMIX [12] and MADDPG [11]. More recently, some emerging
technologies, e.g., attention mechanism and graph neural network, are
incorporated into MARL to enhance its performance [13,14].

Despite the success of existing multi-agent reinforcement learning
methods achieved in many fields, they are still confronted with the
challenge of poor robustness [15]. Robustness is the capability to
be compatible with the data, which can be reflected laterally during
training. Specifically, existing methods approximate the expectation of
Q-value by point estimation, i.e., calculating a specific value as the
parameter of the Q-value function according to samples. It is easily
overfitting to the data generated during interacting with a specific en-
vironment. Especially, scenarios in the real world are always with high
complexity, e.g., traffic signal control [5], which makes the problem
more prominent. Models with poor robustness might lead to wrong
decisions, which poses a severe threat to people’s safety. Therefore, a
more generalized value function is desirable to intensify the robustness
of models. Meanwhile, more attention needs to be paid to method
efficiency. Existing methods require considerable interactions when
training the model to achieve a good performance [16], which is
time-consuming, and even infeasible for tasks with high interaction
overhead and against maximizing income. These deficiencies become
the fatal bottleneck in applying MARL algorithms to complex real-world
scenarios.

To this end, we propose a robust algorithm called Bayesian Multi-
gent Reinforcement Learning (BMARL) to approximate the distribu-
ion for parameters regarding the Q-value function through Bayesian
nference. Specifically, we deploy the distribution value function in
ulti-agent systems and employ Bayesian linear regression to estimate
posterior distribution for the parameter, which provides compre-
ensive statistical information about the Q-value and captures the
ncertainty in the environment. In this way, the distribution estimated
y Bayesian linear regression is a continuous distribution, which is
ore comprehensive than a discrete distribution proposed in existing
orks and not heavily dependent on specific task information. With
he support of the posterior distribution, we can obtain a more gener-
lized value function and an accurate estimation for the Q-value, thus
mproving the robustness to stochastic environments. Furthermore, the
aussian prior is incorporated into the value function parameters,
nabling BMARL model to be partially independent of the interaction
ata so that the learning efficiency can be improved. Experimental
esults on three benchmark scenarios demonstrate the superiority of
ur proposed method comparing with the state-of-the-art methods. The
ain contributions of this paper are summarized as follows:

• A novel algorithm called BMARL is proposed to overcome the
challenges of poor robustness and inefficiency. To the best of
our knowledge, this is the first effort in the literature that uses
Bayesian inference to maintain the posterior distribution regard-
ing the value function of MARL.

• The proposed BMARL model employs the Bayesian linear regres-
sion to improve the robustness by refining the posterior distribu-
tion for value function parameters. Meanwhile, a Gaussian prior
is leveraged to learn the value function, which is conducive to
improving the model efficiency.

• The effectiveness of BMARL is validated by performing compre-
hensive experiments on three cooperative and competitive multi-
agent environments comparing with seven state-of-the-art meth-
ods. Extensive experimental results demonstrate the superiority of
BMARL in terms of both robustness and efficiency.

The remainder of this paper is organized as follows. Section 2 sum-
arizes previous works related to ours. Section 3 presents the notations
sed in our method and simply reviews basic theorems. Section 4
laborates the details of our model design. Section 5 conducts a series
2

f experiments on benchmark scenarios to validate the effectiveness of
MARL and provides the result analysis in detail. Section 6 concludes
his paper and discusses further work.

. Related work

In this section, we briefly discuss the previous works related to
ur proposed method from two aspects, i.e., multi-agent reinforcement
earning and distributional value function, which can distinguish and
ighlight the contributions of our methods.

.1. Multi-agent reinforcement learning

In the literature, several studies have been proposed for multi-agent
ystems and apply it into games [11], resource management [17], and
o forth [5]. The initial method to learn in multi-agent settings is to
rain agents in decentralized [6] modes. Unfortunately, it does not
orks well since the environment is partially observed and affected
y other agents simultaneously, giving rise to instability in training. It
s nature to combine the joint observations and actions of all agents
nd train in a full-centralized mode [8,9] to alleviate this problem.
owever, the dimensions of the joint value increase exponentially
ith the number of agents, and the scalability is severely limited.
ereafter, centralized training and decentralized execution (CTDE),
compromise, has emerged as the prevailing framework [18], and
ften combines with advanced deep reinforcement learning methods,
.g., value-based [19] or policy-based [11] methods, for multi-agent
raining.
Specifically, VDN [19] and QMIX [12] are typically value-based
ARL, proficient in cooperative tasks. They decompose the team-
eward into agents’ rewards to promote cooperation and employ re-
urrent neural network to solve the instability caused by partial ob-
ervations. In addition to the value-based methods, policy-based MARL
pproaches are appealing likewise. MADDPG [11] incorporates deep
eterministic policy gradient [2] and trains agents with an ensemble
f policies to relieve instability, good at cooperative and competi-
ive tasks. Emerging technologies, e.g. attention mechanism and graph
eural network are employed to enhance MARL further, for instance,
AAC [20] combines multi-head attention to filter irrelevant informa-
ion that may interfere with policy training, but it poses a challenge
f inefficiency due to its complex architecture. However, most prior
orks have studied the various axes of solutions for the challenges in
solation, and few copes with robustness and efficiency simultaneously.

.2. Distributional value function

The challenges of poor robustness also exist in single-agent settings
ince the traditional reinforcement learning methods simply approxi-
ate the expectation of Q-value [1], suffering from the approximation
rrors [21,22], and thus leading to suboptimal policies and instabil-
ty. To address this issue, methods of deploying more independent
stimators are proposed to provide various perspective estimations.
or example, Double DQN [23] uses two independent Q-network to
lleviate the overestimation. Bootstrapped DQN [24] further deploys
ultiple Q-networks, similar to ensemble learning, to obtain more
nformation about Q-value. Another way is to approximate the distri-
ution over the value function to provide comprehensive information
f Q-value, which is first proposed in [25]. Because of its compre-
ensive grasp of Q-value, it is conducive to improving the accuracy
f estimation and policy generalization, which makes it an attractive
pproach. Specifically, the method proposed in [25] approximates the
istribution in a discrete way. QR-DQN [26] is proposed to approxi-
ate the value distribution using quantile regression, which is more
lexible than [25]. In contrast, some methods [27,28] directly learn the
ontinuous distribution. Similarly, some studies combine distributional
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Fig. 1. The overall architecture of BMARL. (a) Decentralized execution: each agent merely uses private observation to make action decisions. (b) Centralized training: joint
information is incorporated into critic networks, which can ease the problem of non-stationary in multi-agent settings. (c) Bayesian parametric modeling for distribution: it is
employed to calculate the Q-function posterior distribution, and then BMARL samples its interest 𝝎𝑎 according to the posterior, i.e., 𝝎𝑎 ∼  (𝜇𝑎 , 𝐶𝑜𝑣𝑎). The process described above
is incorporated into the critic, represented by the symbol ∼⃝.
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perspectives [29] for multi-agent settings, e.g., MAD3PG [30] approx-
imates the discrete distribution to stabilize training. MMD-MIX [31]
implicitly learns the distribution to capture the randomness in the
interaction environments. Distributional MARL has the ability to cap-
ture uncertainty and is successfully applied to games [31] and robotic
control [32].

2.3. Bayesian reinforcement learning

Bayesian methods for reinforcement learning have been widely
investigated in single-agent settings. The primary motivations for incor-
porating Bayesian methods into reinforcement learning are summarized
as follows: (1) it provides a natural description of uncertainty in the
system and facilitates exploration by the agents; and (2) it can provide
a mechanism for incorporating prior knowledge into the model. Unlike
existing work, we have devised Bayesian reinforcement learning meth-
ods applied to multi-agent systems, where more uncertainty exists that
needs to be captured.

In general, inspired by the distributional value function for single-
agent settings, the core idea of our work is to directly approximate the
continuous distribution of Q-value for multi-agent settings by incor-
porating Bayesian inference technology. It improves the generalization
and robustness of the multi-agent reinforcement learning methods by
capturing more uncertainty in the environments. Meanwhile, to reduce
the model’s dependence on interaction data, we inject Gaussian prior
to improve the efficiency of our proposed method. It is the first effort
that enables the MARL method to improve robustness and efficiency
simultaneously.

3. Preliminaries

In this section, we will present the notation used in our proposed
model, and then review traditional reinforcement learning and distri-
butional value function, which provide fundamental theoretical support
for our method.

3.1. Notation

We consider a multi-agent scenario described as Decentralized Par-
tially Observable Markov Decision Process (Dec-POMDP) [33]. A Dec-
POMDP for 𝑁 agents is defined by a tuple 𝐺 = ⟨𝑆,𝐴, 𝑇 , 𝑂,𝑅, 𝛾,𝑁⟩,
where 𝑆 is a set of environment global state, 𝐴1,… , 𝐴𝑁 and 𝑂1,… , 𝑂𝑁
are the set of actions and observations for each agent (Table 1). Assume
𝜌0 is the distribution of the initial state 𝑠0. At each timestep, each agent
uses a stochastic policy 𝜋𝜃𝑖 to choose an action 𝑎𝑖, i.e., 𝜋𝜃𝑖 ∶ 𝑜𝑖 ↦ 𝑎𝑖, 𝑎𝑖 ∈
𝐴𝑖. The joint actions induce a transition to the next state according to
the state transition function: 𝑇 ∶= 𝑆×𝐴 ×⋯×𝐴 ×𝑆 ↦ [0, 1], and agents
3

1 𝑁 𝑦
Table 1
Notations.
Symbol Description

𝑁 The number of agents
𝑆 The set of the global states
𝐴1 ,… , 𝐴𝑁 The set of the actions for each agent
𝑂1 ,… , 𝑂𝑁 The set of the partial observations for each agent
𝜌0 The distribution of the initial state
𝑟𝑖 Reward function for agent 𝑖
𝑜𝑖 Partial observation for agent 𝑖
𝜋𝜃𝑖 Policy parameterized by 𝜃𝑖 for agent 𝑖
𝛾 Discount factor

obtain their partial observation 𝑜𝑖 ∶ 𝑆 ↦ 𝑂𝑖. Reward 𝑟𝑖 for each agent
is defined as 𝑟𝑖 ∶= 𝑆 × 𝐴𝑖 ↦ R. When the episode is terminated, the
flag 𝑑𝑜𝑛𝑒 is set. History transitions 𝐻 are restored into replay buffer
for training, which item is formatted as a tuple of

⟨

𝑜𝑖, 𝑎𝑖, 𝑜′𝑖 , 𝑟𝑖, 𝑑𝑜𝑛𝑒
⟩

.
Discount factor 𝛾 balances immediate reward and long-term gain. The
objective for each agent is to maximize its expectation of discounted
accumulated reward E[𝑅𝑇 ] = E

[

∑𝑇
𝑡=0 𝛾

𝑡𝑟𝑡𝑖
]

.

.2. Policy gradient and actor-critic methods

Policy Gradient (PG) [34] and Actor-Critic (AC) [35] provide the
asic theory for training our model. Specifically, PG directly updates
he parameter 𝜃 of the policy 𝜋𝜃 to maximize its objective, formulated
s follows:

(𝜃) = E𝑠∼𝑝𝜋 ,𝑎∼𝜋𝜃 [𝑅] = E𝑠∼𝑝𝜋 ,𝑎∼𝜋𝜃

[ ∞
∑

𝑡=0
𝛾 𝑡 ⋅ 𝑟𝑡

]

, (1)

here 𝜃 is updated toward the direction of ∇𝜃𝐽 (𝜃).
In practice, calculating the expected return suffers from large vari-

nce, so AC replaces it with approximated value function and modifies
𝜃𝐽 (𝜃) as:

𝜃𝐽 (𝜃) = E𝑠∼𝑝𝜋 ,𝑎∼𝜋𝜃

[

∇𝜃 log(𝜋𝜃(𝑎|𝑠))𝑄𝜋
𝜔(𝑠, 𝑎)

]

, (2)

here 𝜔 is the parameter of the value function. Recently, Haarnoja
t al. [36] considers the entropy-augmented objective function to en-
ourage exploration of more space to search for the optimal policy,
hich augments ∇𝜃𝐽 (𝜃) with a policy entropy term as:

𝜃𝐽 (𝜃) =E𝑠∼𝑝𝜋 ,𝑎∼𝜋𝜃 [∇𝜃 log(𝜋𝜃(𝑎|𝑠))

(−𝛼 log(𝜋𝜃(𝑎|𝑠)) +𝑄𝜔(𝑠, 𝑎) − 𝑉 (𝑠))],
(3)

here 𝛼 balances the significance of entropy against reward, and 𝑉 (𝑠)
s used as baseline. Accordingly, the target Q-value function is modified
s:

(𝑠′, 𝑎′) − 𝛼 log(𝜋 (𝑎′|𝑠′)). (4)
= 𝑟(𝑠, 𝑎) + 𝛾𝑄𝜔 𝜃
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Notably, the Q-target function is augmented accordingly.

3.3. Distributional value function

The traditional RL learns the expected value to model cumulative
returns, expressed as the action value function 𝑄(𝑠, 𝑎) [1], which is
formulated as:

𝑄𝜔(𝑠, 𝑎) = E[𝑟(𝑠, 𝑎)] + 𝛾E[𝑄𝜔(𝑠′, 𝑎′)], (5)

where value function is parameterized by 𝜔, which is a specific value
obtained by point estimation. By contrast, the distributional value
function focuses on the entire distribution of the Q-value [25], which
is defined similarly, but one of a distribution nature:

𝑄𝜔(𝑠, 𝑎)

= 𝑟(𝑠, 𝑎) + 𝛾𝑄𝜔(𝑠′, 𝑎′), (6)

where 
= indicates that the equation is to describe the distribution, and

𝜔 obeys a distribution. It provides information contained in Eq. (5), also
implicates other more information beneficial to model improvement.
Thus, we maintain the posterior distribution over value function param-
eters for multi-agent systems, which captures environment uncertainty
inherently and is more competitive.

4. Methodology

In this section, we will detail our proposed method, Bayesian Multi-
Agent Reinforcement Learning (BMARL). BMARL is devised to ame-
liorate the robustness and efficiency for multi-agent reinforcement
learning, and the overall architecture of BMARL is illustrated in Fig. 1.
It consists of three main components: (1) decentralized execution, (2)
centralized distributional value function, and (3) Bayesian paramet-
ric modeling for distribution, which are introduced in the following
subsection.

4.1. A CTDE framework for BMARL

To overcome the inherent non-stationary of the multi-agent en-
vironment, we devise our method based on centralized training and
decentralized execution (CTDE) framework (Fig. 1a and b). Specifically,
the training process of the proposed method incorporates extra joint
information to broaden the agent’s perspective, whereas, during policy
execution, it merely uses agent’s partial observations. Considering an
environment with 𝑁 agents, BMARL unites information by designing
Integrator 𝑓𝜙

𝑖 (𝒐,𝒂
(−𝑖)), which output is used as the input of Q-value

function. It is a global information representation function integrating
all agents’ observations 𝑜𝑖 and actions 𝑎𝑖, where 𝒐 = (𝑜1,… , 𝑜𝑁 ) and
𝒂 = (𝑎1,… , 𝑎𝑁 ), and the subscripts correspond to each agent indexed
by 𝑖 ∈ {1,… , 𝑁}. 𝒂(−𝑖) is defined as the joint action vector excluding
𝑖𝑡ℎ element 𝑎𝑖. The global information representation is defined as:

𝑓𝜙𝑖 (𝒐,𝒂
(−𝑖)) = 1

𝑁
(

𝑟𝑒𝑝𝑠(𝑜𝑖) +
𝑁
∑

𝑗=1, 𝑗≠𝑖
𝑟𝑒𝑝𝑠𝑎(𝑜𝑗 , 𝑎𝑗 )

)

, (7)

where + denotes the concatenation operation. 𝑟𝑒𝑝𝑠 and 𝑟𝑒𝑝𝑠𝑎 are rep-
resentation functions which transform state and state–action pair into
the same dimensions, respectively. Given an observation vector 𝒐 =
(𝑜1,… , 𝑜𝑁 ) and an action vector 𝒂 = (𝑎1,… , 𝑎𝑁 ), the global information
representation function 𝑓𝜙𝑖 outputs a joint information in compact
form.

When the agents interact with environment, they use the parame-
terized policy 𝜋𝜃𝑖 , a two-layer MLP with 128 units for the hidden layer,
to make the action decisions 𝑎𝑖 only based on the private observations
𝑜𝑖. Its objective function is:

𝐽 (𝜃𝑖)=E𝑜𝑖∼𝑝𝜋 [𝛼 log(𝜋𝜃𝑖 (𝑎𝑖|𝑜𝑖))−(𝑄(𝑜, 𝑎)−𝑏(𝑜))], (8)

where 𝛼 balances the significance of entropy against reward, 𝑄 is
the action-value function which is detailed later, and 𝑏(𝑜) is used as
baseline. In general, the CTDE framework effectively alleviates the
instability of the multi-agent system and avoids the problem of limited
scalability in the fully-centralized framework.
4

t

4.2. Centralized distributional value function

As we discussed in the previous section, the existing MARL algo-
rithms have poor robustness, which mainly depends on the quality
of the Q-value estimation. The Q-value can reflect the quality of the
action under a specific state, assisting in policy improvement. The
existing MARL methods approximate expected values to model cu-
mulative returns, expressed as the action value function 𝑄(𝑠, 𝑎). In
this modeling process, considerable distribution information is lost,
leading to a vulnerable model that is easily affected by spiky values.
Meanwhile, the value function employs the temporal difference method
to update the Q-value estimation with its sub-sequential estimation,
which exacerbates the problem of approximation error. Further, it will
affect the updated direction of policies, leading to suboptimal policy.

In view of this, we approximate the distribution over the Q-value,
which describes the real and complete situation of Q-value. Specifically,
we formulate the Q-value function as a linear function of the global
information representation 𝑓𝜙

𝑖 (𝒐,𝒂
(−𝑖)) for each agent and define it as:

𝑄𝑾 𝑖
(𝒐,𝒂(−𝑖)) = 𝑓𝑇

𝜙𝑖
(𝒐,𝒂(−𝑖)) ⋅𝑾 𝑖, (9)

where 𝑾 𝑖 ∈ R|𝐴𝑖|×ℎ𝑑 is the parameter metric of the linear function for
action 𝑎𝑖,∀𝑎𝑖 ∈ 𝐴𝑖, and ℎ𝑑 denotes the hidden layer size of the value
function network. We assume that the parameter matrix 𝑾 𝑖 is subject
to Gaussian distribution. In this way, BMARL realizes the modeling of
the centralized distributional value function.

Meanwhile, the centralized distributional value function satisfies
the variant of the Bellman equation in the maximum entropy frame-
work:

𝑄𝑾 𝑖
(𝒐,𝒂)


= 𝑟𝑡 + 𝛾𝑄𝑾 𝑖

(𝒐′,𝒂′) − 𝛼 log(𝜋𝜃𝑖 (𝑎
′
𝑖|𝑜

′
𝑖)), (10)

where 
= indicates that both sides describe the distribution, 𝑾 𝑖 and 𝜃𝑖

denote parameters of target critic network and target policy network,
respectively.

Temporal difference is used to learn the Q-value function by mini-
mizing the joint loss function:

(𝑄,𝑄𝑡𝑎𝑟𝑔𝑒𝑡) =
𝑁
∑

𝑖=1
(𝑄𝑾 𝑖

(𝒐,𝒂) − 𝑦𝑖)2,

where 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄𝑾 𝑖
(𝒐′,𝒂′) − 𝛼 log(𝜋𝜃𝑖 (𝑎

′
𝑖|𝑜

′
𝑖)),

𝑎′𝑖 ∼ 𝜋𝜃𝑖 ( ⋅ |𝑜
′
𝑖),

(11)

here 𝑄𝑾 𝑖
and 𝜋𝜃𝑖 denotes the target critic and the target policy for

gent 𝑖. The next action 𝑎′𝑖 is determined by target policy 𝜋𝜃𝑖 . As the
parameters of critic network are updated frequently, which impacts the
gradients of both critic networks and policy networks, we introduce
target networks 𝑄𝑾 𝑖

and 𝜋𝜃𝑖 to stabilize the training process. They have
he same structure as the 𝑄 and 𝜋𝜃𝑖 , and their parameters are updated
oftly as follows:

𝜃𝑖 ← 𝜏𝜃𝑖 + (1 − 𝜏)𝜃𝑖,

𝜙𝑖 ← 𝜏𝜙𝑖 + (1 − 𝜏)𝜙𝑖.
(12)

By substituting Eq. (9) into Eq. (10), the expanded form of the target
-value 𝑦𝑖 of agent 𝑖 can be formulated as:

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑓𝜙𝑖 (𝒐
′,𝒂′(−𝑖))𝑇 ⋅𝑾 𝑖 − 𝛼 log(𝜋𝜃𝑖 (𝑎

′
𝑖|𝑜

′
𝑖)), (13)

here 𝜙𝑖 is the parameter of Integrator used in the target critic. 𝑾 𝑖 ∈
R|𝐴𝑖|×ℎ𝑑 denotes the parameter of the target critic linear-layer for action
𝑎′𝑖 , ∀𝑎

′
𝑖 ∈ 𝐴𝑖.

.3. Bayesian parametric modeling for distributional value estimation

Instead of learning the expectation of cumulative returns by point
stimation, BMARL models the entire distribution over cumulative re-
urns, expressed as action value function 𝑄. Compared with estimating
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the statistical value of data (e.g., mean or median), the distribution can
better depict the overall nature of data and assist in mining contained
information in-depth. Meanwhile, unlike existing works obtaining dis-
crete distributions, it maintains a continuous distribution and does not
require additional task information for setting the distribution range.

More specifically, unlike traditional multi-agent reinforcement
learning methods, BMARL approximates the distribution over value
function by combining with Bayesian inference. Bayesian inference is
one of the most important techniques in statistics and it calculates
the posterior distribution based on samples. Inspired by the Bayesian
inference, BMARL employs the Bayesian linear regression for Q-value
function approximation, as shown in Fig. 1c. In this way, BMARL
obtains an approximated posterior distribution over parameter metric
𝑾 and Q-value function, called Bayesian Distributional Value Function,
which offers a natural way to unfold experimental distributions to
get the best estimates of the true ones. Each agent injects the prior
knowledge into the parameter metric 𝑾 𝑖, and when initializing, it is
assumed that𝑾 𝑖 is subject to Gaussian distribution with mean zero and
variance 𝜎2, i.e., 𝑾 𝑖 ∼  (0, 𝜎2), ∀𝑎 ∈ 𝐴𝑖. Meanwhile, the distribution
ver the Q-value function is determined by 𝑾 𝑖. Furthermore, noise
erturbation is taken into consideration, and we assume that the noise
s i.i.d and satisfies Gaussian distribution: 𝑝(𝜖) =  (0, 𝜎𝜖). Thus, the
actual observed value of the Q-value is as follows:

𝑦𝑎 = 𝑄𝑾 𝑖

(

𝒐, (𝑎,𝒂(−𝑖))
)

+𝜖 = 𝑓𝑇
𝜙𝑖
(𝒐,𝒂(−𝑖)) ⋅𝑾 𝑖 + 𝜖,

where 𝜖 ∼  (0, 𝜎2𝜖 ).
(14)

Algorithm 1: Bayesian Multi-Agent Reinforcement Learning (BMARL)
Input: The number of the agent 𝑁
Output: Parameters for policy 𝜋𝑖 and critic 𝑄𝑖

1 Initialize network parameters 𝜃𝑖, 𝜃𝑖, 𝜙𝑖, 𝜙𝑖,𝑾 𝑖,𝑾 𝑖 for each agent 𝑖
2 ∀𝑎 ∈ 𝐴𝑖, initialize 𝜇𝑎, 𝐶𝑜𝑣𝑎 for each agent 𝑖
3 Create replay buffer 𝑅𝐵 ← {}
4 for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1, 2,⋯ , 𝑚𝑎𝑥_𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 do
5 𝑠0 ∼ 𝜌0, get the initial 𝑜𝑖 for each agent 𝑖
6 if 𝑅𝐵! = 𝐸𝑚𝑝𝑡𝑦 then
7 Sample a minibatch of 𝐵 samples from 𝑅𝐵
8 For each agent 𝑖, update the posterior distribution 𝜇𝑎, 𝐶𝑜𝑣𝑎,

∀𝑎, by using Equation (16)
9 Update target parameter 𝑾 𝑖: ∀𝝎𝑎 ∈ 𝑾 𝑖, 𝝎𝑎 ← 𝜇𝑎

10 Sample 𝑾 𝑖 for each agent 𝑖, where ∀𝝎𝑎 ∈ 𝑾 𝑖,
𝝎𝑎 ∼  (𝜇𝑎, 𝐶𝑜𝑣𝑎), 𝑎 ∈ 𝐴𝑖

11 for 𝑡 = 1, 2,⋯ , 𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ do
12 Select actions 𝑎𝑖 ∼ 𝜋𝑖(⋅|𝑜𝑖)
13 Execute actions 𝒂, receive 𝒐′ and 𝒓
14 Store transitions in 𝑅𝐵, and set 𝒐 ← 𝒐′

15 if 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
16 Sample a 𝐾-minibatch from 𝑅𝐵
17 Compute the target value 𝑦 by Equation (13)
18 Update critic parameter:

𝜙𝑖 ← 𝜙𝑖 − 𝛼∇𝜙𝑖
(𝑦 −𝑾 𝑇

𝑖 ⋅ 𝑓𝜙𝑖
(𝒐,𝒂(−𝑖)))2

19 Update policy parameter: 𝜃𝑖 ← 𝜃𝑖 − 𝛼∇𝜃𝑖𝐽 (𝜃𝑖)

20 Update target network parameters:
21 𝜃𝑖 ← 𝜏𝜃𝑖 + (1 − 𝜏)𝜃𝑖
22 𝜙𝑖 ← 𝜏𝜙𝑖 + (1 − 𝜏)𝜙𝑖

According to Bayes’ theorem, we know that posterior 𝑃 (𝑾 |𝐻) is
proportional to 𝑃 (𝐻|𝑾 ) times 𝑃 (𝑾 ), where 𝑃 (𝑾 ), 𝑃 (𝐻|𝑾 ) denote
he prior and the likelihood, respectively. 𝐻 is the interaction data.
e assume the 𝑃 (𝑾 ) satisfies Gaussian distribution. Since the Q-value
unction is modeled as a linear function of the global information rep-
esentation 𝑓𝜙

𝑖 (𝒐,𝒂
(−𝑖)), the likelihood 𝑃 (𝐻|𝑾 ) also obeys a Gaussian

istribution. Through iterative using Bayes’ theorem, the understanding
f 𝑾 is refined, and finally the posterior distribution over the param-
5

ter metric 𝑾 is trustworthy. Specifically, BMARL deploys Bayesian l
inear regression to update the 𝑾 𝑖 posterior distribution for each agent
. The parameter metric 𝑾 𝑖 is formulated as:

𝑖 =
[

𝝎𝑎1 ,𝝎𝑎2 ,… ,𝝎𝑎
|𝐴𝑖|

]𝑇 , (15)

where 𝝎𝑎𝑘 ∈ R1×ℎ𝑑 is a parameter vector for action ∀𝑎 ∈ 𝐴𝑖, and
action index 𝑘 ∈ {1,… , |𝐴𝑖|}. For brevity, it is abbreviated as 𝝎𝑎 some-
times. The Gaussian distribution is self-conjugate with the Gaussian
likelihood, which can directly give the closed form of the posterior
distribution. Thus, given a batch of interaction data 𝐻 = ⟨𝑜, 𝑎, 𝑟, 𝑜′⟩,
the distribution of 𝝎𝑎 ∈ 𝑾 𝑖, ∀𝑎 ∈ 𝐴𝑖, is empirically approximated as
follows:

𝑃 (𝝎𝑎|𝐻) ∼  (𝜇𝑎, 𝐶𝑜𝑣𝑎),

where 𝜇𝑎 =
1
𝜎2𝜖

𝐶𝑜𝑣𝑎𝑎𝑎,

𝐶𝑜𝑣𝑎 = ( 1
𝜎2𝜖

𝑎𝑇
𝑎 + 1

𝜎2
𝐼)−1,

(16)

where 𝑎 is the integration of 𝑓
𝜙
𝑎 in the batch, and 𝑓𝜙

𝑎 = 𝑓𝜙(𝒐, (𝑎,𝒂(−𝑖)))
s the representation of global information and the agent 𝑖 selects action
𝑖 = 𝑎 to execute. 𝑇

𝑎 is the transpose of 𝑎. 𝑎 is the vector of
arget value in batch. Accordingly, the computational complexity is
valuated as 𝑂(𝑛ℎ2𝑑 + ℎ3𝑑 ), where 𝑛 is the number of samples, and ℎ𝑑
s the dimension of input embedding features.
As shown in Fig. 1c, BMARL gets the statistical information of

𝑎,∀𝑎 ∈ 𝐴𝑖, from the empirical data and then searches for interest
oint 𝝎∗ in the potential area to form 𝑾 ∗

𝑖 as the value function
arameter: 𝑄𝑾 ∗

𝑖
(𝒐,𝒂). When given the same input, the value function

𝑾 ∗
𝑖
may output a slightly different estimation according to the current

istribution, which will cover as many values as possible.
Algorithm 1 summarizes the whole process of BMARL in pseudo-

ode. At the beginning of episodes, BMARL samples 𝑾 𝑖, for each
gent 𝑖, according to its distribution (Line 10) and implements Q-value
unction correspondingly, which is beneficial to provide comprehen-
ive information for policies and further improves the generalization
f BMARL. Periodically, Lines 6–9 play back the replay buffer and
pdate the posterior distribution 𝑾 𝑖, gradually approaching the true
istribution.
In general, through Bayesian inference to approximate a distri-

utional value function, BMARL naturally captures the uncertainty,
hich is conducive to generalization enhancement. The estimation
rror of Q-value can also be greatly reduced, which enables assist policy
mprovement efficiently. Furthermore, BMARL incorporates the prior
nto the value function, bringing more information than the data itself,
nd improving efficiency. In a nutshell, BMARL is more competitive in
omplex and stochastic MARL tasks.

. Experiments

In this section, we investigate our methods on several multi-agent
cenarios. We first describes the experimental setup, and then we con-
uct extensive experiments to evaluate the performance and superiority
f the proposed BMARL. Finally, we perform the ablation study and
ensitivity analysis.

.1. Experimental setup

nvironments Three benchmark multi-agent environments, including
ooperative and competitive agents [11,20], are selected to evaluate
ur method. As shown in Fig. 2, environments are composed of agents
nd landmarks, where rewards are related to the distance between the
gent and the target entity.
Cooperative Communication (Co-Comm) [11]: It consists of land-
arks and two cooperative agents, i.e., listener and speaker in Fig. 2(a).
he speaker delivers information about the target landmark to assist

istener in navigating to destination.
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Fig. 2. Three multi-agent benchmark scenarios. (a) Co-Comm: the speaker (gray) assists the listener in navigating to the correct landmark. (b) Rover Tower: agents match randomly
in pairs and collaborate to finish the task like Co-Comm. (c) Predator Prey: the prey (green) tries to escape from the predators (red). Obstacles (black) help the prey to block the
way of predators. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Overall performance comparison on Cooperative Communication (a) and
Rover Tower (b) in terms of reward. Red dotted line marks the model convergence
information.

Rover Tower [20]: It is a variant of Cooperative Communication
with more entities, in which the agents are randomly paired, e.g., in
the red circle in Fig. 2(b), and cooperate to complete the task. A ‘+10’
reward will be given when an agent reaches the goal.

Predator Prey [11]: It is a competitive scenario, where the preda-
tors (red) aim to catch the prey (green), while the obstacles (black) help
the prey to block the ways of predators (Fig. 2(c)). It will be rewarded
if the prey escapes; otherwise, it will be punished.

Baselines Seven state-of-the-art MARL comparisons are selected to
demonstrate the superiority of our proposed method, which are de-
tailed as follows:

MAAC [20]: It is based on CTDE. A multi-head attention mechanism
s incorporated to get more relevant information and stabilize the
raining.
MADDPG [11]: It combines DDPG with CTDE. Besides, agents learn

pproximate models of other agents to improve their stability during
raining.
MMD-MIX [31]: It implicitly learns the value distribution for MARL

y modifying the mixing net in QMIX with a set of particles and
mploys maximum mean discrepancy for value function update.
MAD3PG [30]: It extends MADDPG by maintaining a discrete dis-

ributional value function with fixed atoms to mitigate that the policies
re fragile.
VDN [19]: It decomposes the team-reward into the sum of individ-

al rewards. To solve the challenge caused by partial observation, it
ses recurrent neural network to refer to historical information.
QMIX [12]: It serves the same purpose as VDN to decompose the

eam reward. Note that QMIX estimates joint action values as a non-
inear combination of per-agent values and promises the monotonic.
IQL [6]: It takes advantage of the successful RL to enable multi-

gent tasks. Then, it merely applies RL methods to train the agents
ndividually.

yper-parameter Settings We conduct a variety of experiments on
hese scenarios to verify the validity of our method. And the de-
ailed parameter settings of BMARL are shown in Table 2, which are
onsistent in different experiments.
6

Table 2
The hyper-parameter settings of the BMARL.

Hyper-parameter Value

Actor
Hidden layers of actor networks [128, 128]
Learning rate of actor 0.0005
The optimizer of actor networks Adam

Critic

Hidden layers of Integrator networks [128]
Learning rate of critic 0.0005
The optimizer of critic networks Adam
The size of the linear layer in critic networks 128
The Gaussian variance 𝜎 of the prior 0.001

Others
Buffer length 106

Discount factor 𝛾 0.99
Soft update factor 𝜏 0.005

5.2. Results and analysis

To validate the BMARL in terms of robustness and effectiveness, we
conduct a series of experiments on both cooperative and competitive
scenarios, comparing it with state-of-the-art MARL approaches. Espe-
cially, model performance is measured by the online per-step average
reward achieved by the agents; and robustness is measured by the
degree of fluctuation in rewards during training. The detailed analysis
is as follows.

5.2.1. Results in cooperative scenarios
To verify the effectiveness of BMARL in collaborative tasks, we

randomly select five seeds to train each model on Cooperative Com-
munication and Rover Tower. Fig. 3 presents the overall performance
for all methods, and it is obvious that BMARL achieves the same level of
performance or even better than state-of-the-art methods in most cases.

Specifically, in Cooperative Communication, BMARL shows the
same strength as MAAC and MADDPG in convergence rate and accu-
mulative reward (Fig. 3a). In Rover Tower, BMARL can converge to the
maximum reward faster than all these comparisons (Fig. 3b). Notably,
MADDPG, MMD-MIX, MAD3PG, VDN, QMIX, and IQL are obviously
weak compared with BMARL and MAAC, especially in Rover Tower.
The possible reasons are: (1) Rover Tower is more complicated than
Co-Comm; (2) MADDPG suffers from value function approximation
errors; (3) IQL fails to capture the inter-relation among agents; (4)
MMD-MIX, VDN, and QMIX only apply to tasks with global rewards,
but MMD-MIX with the distributional value function performs better
than VDN and QMIX; (5) MAD3PG is hard to train and converge while
approximating the distribution of value function; and (6) MAAC with a
complex architecture entirely relies on data information, which slows
down its training. In summary, BMARL considers the distribution of
value function and prior information when designing the model, which
is more competitive in effectiveness and efficiency, especially in dealing
with complex tasks.

Based on the above comparable results, we present more in-depth
analyses to verify the model’s superiority in terms of robustness and ef-

ficiency. As shown in Figs. 4 and 5, the shaded region indicates the real
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Fig. 4. Learning curves comparison on Cooperative Communication for all methods. The 𝑋-axis denotes the episode number and 𝑌 -axis denotes the per-step average reward
(online). The solid line and shaded region represent the mean and standard deviation, respectively, across five runs. Red dotted line marks convergence information. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Learning curves comparison on Rover Tower for all methods. The 𝑋-axis denotes the episode number and 𝑌 -axis denotes the per-step average reward (online). The
solid line and shaded region represent the mean and standard deviation, respectively, across five runs. Red dotted line marks convergence information. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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reward achieved during training, where a small area indicates strong
robustness. The solid line denotes the average reward indicating the
overall convergence trend, and the red dotted line marks the point that
a model converged. Specifically, BMARL converges smoothly during
training, and the light-colored area is smaller than all the comparisons
(Figs. 4(a) and 5(a)), which intuitively reflects the advantage of BMARL
in robustness. Meanwhile, MAAC and MADDPG with high rewards con-
verge slightly faster than BMARL in a simple scenario, e.g., Co-Comm.
However, the fluctuation of convergence trends increases, and the con-
vergence speed decreases when encountering a complicated scenario,
e.g., Rover Tower. To make the matter worse, MADDPG, MMD-MIX,
MAD3PG, VDN, QMIX, and IQL are almost invalid. Although MMD-
MIX and MAD3PG are also distribution MARL, they perform not as
well as BMARL because their discrete distributions are not comprehen-
sive enough as the continuous distribution approximated by BMARL.
Overall, our method maintains high robustness and efficiency in most
cases, especially in confronting complicated challenges. In summary,
the advantages of BMARL are: (1) the distributional value function
estimated by Bayesian inference is beneficial to the robustness; and
(2) prior information introduced into the model improves the training
efficiency.

More specifically, Tables 3 and 4 show the average reward 𝜇 and
tandard deviation 𝜎 to quantitatively demonstrate the advantage of
MARL in terms of robustness. Particularly, we use the coefficient of
7

w

ariation 𝑐𝑣 to denote the fluctuation degree of the algorithm, which
s defined as 𝑐𝑣 = 𝜎

|𝜇| × 100%, i.e., method with strong robustness will
obtain a small 𝑐𝑣 [37]. For example, in Rover-Tower, the 𝜇 and 𝜎 for
BMARL are 4.61 and 0.87 and for MAAC are 4.29 and 1.04, respec-
tively. The corresponding coefficient of variation 𝑐𝑣 for BMARL and
MAAC are 18.87% and 24.24%, respectively. Similarly, in Co-Comm,
the 𝑐𝑣 for BMARL and MAAC are 33.33% and 46.66%, respectively. It
indicates that BMARL is more stable than MAAC.

Besides, as shown in Fig. 6, we plot the max–min normaliza-
ion of the reward deviation in different cooperative scenarios. The
ower value of max–min normalization indicates that the corresponding
ethod is more stable. Obviously, BMARL has relatively small max–
in normalization compared with MAAC and MADDPG, i.e., BMARL
s relatively robust, which is according to our prior findings. Although
QL has the lowest value on Rover Tower, it cannot achieve excellent
erformance.
To sum up, whether in simple or complicated scenarios, the overall

erformance of BMARL demonstrates its superiority in robustness and
fficiency in handling cooperative tasks.

.2.2. Results in competitive scenarios
To validate the competitiveness of the proposed model, we conduct

nother experiment on competitive scenario, Predator Prey, compared
ith four baselines, i.e., MAAC, MADDPG, MAD3PG, and IQL. QMIX,
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Table 3
The statistics of reward on benchmark scenarios, Co-Comm. Each performance value is the average of 5 runs with
different random seeds, respectively. It is expressed in the form of mean ± standard deviation. The best results are
highlighted in boldface.
Environment Method 3K-Episode 6K-Episode 9K-Episode 12K-Episode 15K-Episode

Co-Comm

BMARL −0.6 ± 0.11 −0.43 ± 0.09 −0.33 ± 0.09 −𝟎.𝟐𝟗 ± 𝟎.𝟎𝟖 −𝟎.𝟐𝟒 ± 𝟎.𝟎𝟖
MAAC −0.42 ± 0.22 −𝟎.𝟑𝟑 ± 𝟎.𝟏𝟖 −𝟎.𝟐𝟗 ± 𝟎.𝟏𝟕 −0.29 ± 0.16 −0.30 ± 0.14
MADDPG −𝟎.𝟑𝟕 ± 𝟎.𝟏𝟒 −0.35 ± 0.12 −0.40 ± 0.14 −0.33 ± 0.13 −0.39 ± 0.15
MMD-MIX −1.23 ± 0.49 −0.97 ± 0.19 −0.96 ± 0.23 −0.93 ± 0.21 −2.43 ± 1.21
MAD3PG −6.21 ± 1.50 −2.92 ± 0.48 −2.55 ± 0.47 −2.36 ± 0.52 −2.48 ± 0.40
VDN −2.19 ± 0.51 −1.96 ± 0.41 −1.99 ± 0.53 −1.75 ± 0.38 −1.87 ± 0.47
QMIX −2.78 ± 0.58 −2.05 ± 0.38 −1.78 ± 0.37 −1.46 ± 0.25 −1.50 ± 0.34
IQL −1.27 ± 0.23 −1.57 ± 0.56 −1.29 ± 0.29 −3.85 ± 1.97 −1.50 ± 0.20
Table 4
The statistics of reward on benchmark scenarios, Rover Tower. Each performance value is the average of 5 runs with
different random seeds, respectively. It is expressed in the form of mean ± standard deviation. The best results are
highlighted in boldface.
Environment Method 5K-Episode 10K-Episode 15K-Episode 20K-Episode 25K-Episode

Rover Tower

BMARL 0.48 ± 0.78 𝟐.𝟑𝟏 ± 𝟎.𝟗𝟕 𝟑.𝟗𝟕 ± 𝟏.𝟏𝟐 𝟒.𝟒𝟗 ± 𝟎.𝟖𝟖 𝟒.𝟔𝟏 ± 𝟎.𝟖𝟕
MAAC 𝟎.𝟖𝟎 ± 𝟏.𝟎𝟑 1.59 ± 1.27 2.73 ± 1.22 3.65 ± 1.26 4.29 ± 1.04
MADDPG −0.24 ± 0.88 −0.26 ± 0.98 −0.07 ± 0.98 0.03 ± 1.11 0.19 ± 0.91
MMD-MIX −0.79 ± 0.89 −0.63 ± 0.76 −0.09 ± 0.84 −0.10 ± 1.17 −0.33 ± 1.02
MAD3PG −0.10 ± 0.99 −0.25 ± 0.99 0.04 ± 1.19 −0.44 ± 1.08 −0.06 ± 1.21
VDN −0.25 ± 0.92 −0.01 ± 0.77 −0.15 ± 1.04 −0.16 ± 0.72 −0.03 ± 0.88
QMIX −0.41 ± 0.96 0.17 ± 0.93 0.01 ± 0.92 −0.10 ± 0.71 0.22 ± 1.07
IQL −0.73 ± 0.91 −1.46 ± 0.56 −1.34 ± 0.70 −1.63 ± 0.89 −1.68 ± 0.65
d

Fig. 6. Overall robustness comparison among methods on cooperative scenarios. The
-axis represents the max–min normalization of reward deviation.

Fig. 7. The impact of different variants of BMARL, namely Bayesian parametric
odeling for distribution and entropy-augmented objective function, in terms of policy
ntropy on Rover Tower. Higher entropy means that the method captures more
ncertainty.

DN, and MMD-MIX are not compared in this experiment since they
re designed for collaborative scenarios.
Table 5 shows the average reward 𝑅𝜇 and standard deviation 𝑅𝜎

indicating the competitiveness and robustness, respectively. The com-
petitive ability of IQL, MADDPG, and MAD3PG is inadequate because:
(1) IQL cannot capture relational information among agents, which will
disrupt their policies execution; (2) MADDPG cannot provide accurate
action-value estimation and reliable guidance for policy training; and
8

Table 5
Average reward for prey on Predator Prey. Each performance value is the average of
5 runs with different random seeds. 𝑅𝜇 and 𝑅𝜎 denote the mean and the standard
eviation, respectively. The best results are highlighted in boldface.

BMARL MAAC MADDPG MAD3PG IQL

𝑅𝜇 −0.69 −𝟎.𝟔𝟓 −3.41 −0.95 −4.45
𝑅𝜎 ±𝟎.𝟐𝟎 ±0.38 ±1.91 ±0.41 ±0.41

(3) MAD3PG cannot provide comprehensive information due to it uses
fixed atoms to approximate the distribution discretely and MAAC is
competitive to achieve a relatively high accumulative reward, which is
close to ours, but its standard deviation is almost twice that of ours.
Generally speaking, BMARL achieves relatively high average reward
and the lowest standard deviation, demonstrating the effectiveness and
robustness in handling competitive tasks.

5.3. Ablation study

In this subsection, we first conduct an ablation study on Rover
Tower to verify the necessity of each component designed in the model,
namely Bayesian parametric modeling for distributional value function
and entropy-augmented objective function. To better demonstrate its
superiority, we devise the three variants of BMARL as follows: (1)
BMARL-E: It removes the entropy term in the objective function.
(2) BMARL-B: It approximates the value function, using determined
parameter values learned by point estimation, not distributions. (3)
BMARL-BE: It is the simplest method and does not add either of the
above mechanisms.

Fig. 7 shows the policy entropy changes during 15 thousand
episodes, reflecting the degree of uncertainty about the current pol-
icy. BMARL-BE obtains the lowest entropy since only part of the
uncertainty is considered, which fails to explore the entire space
and likely converges to suboptimal policies. BMARL-B and BMARL-E,
considering either distributional value function or entropy, are capable
of capturing uncertainty and perform better than BMARL-BE. BMARL
achieves the best policy entropy against all these variants, indicating
that the Bayesian distributional value function and entropy considered
are crucial and beneficial to the model.

Besides, we investigate whether the way of maintaining the dis-

tributions over the Q-value function impacts the model performance.
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Fig. 8. The impact of different variants of BMARL on Cooperative Communication (a)–(c) and Rover Tower (d)–(f). The 𝑋-axis denotes the episode number and 𝑌 -axis denotes
the per-step average reward (online).
Fig. 9. Parameter sensitivity study on the learning rate and Gaussian variance. The 𝑋-
axis denotes the setting of the learning rate (or Gaussian variance). The 𝑌 -axis denotes
the per-step average reward (online).

We detail the variants of BMARL in terms of distributional value
function module as follows: (1) BMARL: It is our proposed model
which employs Bayesian Linear Regression to calculate the distribution
over the Q-value function. It approximates the continuous distribu-
tion without additional knowledge. (2) BMARL-B+Ensemble: It makes
combinations of multiple Q-value estimators to approximate the dis-
crete distribution and has no demand for prior knowledge about tasks.
(3) BMARL-B+C51: It adopts the idea of C51 method [25] to main-
tain the distributional value function. Specifically, it approximates
the discrete distribution by deploying 51 atoms within the range of
distribution and updating the probability for each atom.

Fig. 8 presents the learning curve on cooperative scenarios. We find
that (1) BMARL-B+C51 does not perform well, mainly because it needs
additional information to tune the distribution range manually, which
is closely related to its performance; (2) BMARL-B+Ensemble performs
better than BMARL-B+C51 but is less robust than BMARL, which is
reflected by the area of the shaded region; and (3) BMARL performs
best against all these variants with robustness, owing to the continuous
distribution maintained by Bayesian linear regression. The primary
reason is that the distribution obtained by Bayesian linear regression
captures more uncertainty, which is beneficial to model performance
and robustness.

5.4. Sensitivity analysis

In this subsection, we mainly investigate the impact of two pri-
mary parameters, i.e., learning rate 𝑙𝑟 and Gaussian variance 𝜎, on
the proposed model. To ensure the uniqueness of the effect from the
parameters, we employ single-parameter sensitivity analysis by varying
9

one parameter while fixing the others each time. The results of the
experiment are shown in Fig. 9, and it is not difficult to see that BMARL
can always maintain stable and high-level performance under different
parameter settings on Cooperative Communication and Rover Tower.

First, we analyze the sensitivity of the learning rate 𝑙𝑟, which
determines the step size at each iteration. As illustrated in Fig. 9(a),
BMARL achieves the highest reward on both scenarios when 𝑙𝑟 =
5 × 10−4, and the performance varies little with the change of the
learning rate settings, which demonstrates that BMARL is not sensitive
to the learning rate. In terms of the Gaussian variance 𝜎, which controls
the distribution information, BMARL also maintains a relatively stable
working state in most of the cases with different 𝜎 (Fig. 9(b)). It verifies
the effectiveness and robustness of the proposed BMARL model.

6. Conclusion

This paper presents a novel algorithm called BMARL to settle the
challenge of poor robustness in MARL. We adopt Bayesian linear re-
gression to refine the posterior distribution over the value function
parameters. In this way, it obtains comprehensive Q-value information
and innately captures the uncertainty of the environments, enabling
BMARL to be robust to various scenarios. Meanwhile, we incorporate
the Gaussian prior into BMARL, reducing the dependency of interac-
tion data and thus, speeding up the learning efficiency of BMARL.
Empirically, validations across cooperative and adversarial scenarios
demonstrate the superiority of BMARL compared with state-of-the-
art methods. Furthermore, we conduct ablation study and sensitivity
analysis for BMARL to make it more convincing.

In terms of limitations, BMARL makes an assumption of using
Gaussian prior as a prior for the value function. Besides, we validate
BMARL on multi-agent benchmark environments but have not applied
it to a real-world scenario. In the future, the proposed BMARL will
be readily investigated by replacing the Gaussian prior with a general
form. Meanwhile, exploring more details of the optimizing process of
BMARL and applying it to more complex scenarios will also be new
directions in the future.
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