Check for
Updates

Automating Source Code Refactoring in the Classroom

Eman Abdullah AlOmar
Stevens Institute of Technology
Hoboken, United States
ealomar@stevens.edu

ABSTRACT

Refactoring is the practice of improving software quality without
altering its external behavior. Developers intuitively refactor their
code for multiple purposes, such as improving program comprehen-
sion, reducing code complexity, dealing with technical debt, and
removing code smells. However, no prior studies have exposed the
students to an experience of the process of antipatterns detection
and refactoring correction, and provided students with toolset to
practice it. To understand and increase the awareness of refactor-
ing concepts, in this paper, we aim to reflect on our experience
with teaching refactoring and how it helps students become more
aware of bad programming practices and the importance of cor-
recting them via refactoring. This paper discusses the results of
an experiment in the classroom that involved carrying out various
refactoring activities for the purpose of removing antipatterns using
JDeodorant, an IDE plugin that supports antipatterns detection and
refactoring. The results of the quantitative and qualitative analysis
with 171 students show that students tend to appreciate the idea of
learning refactoring and are satisfied with various aspects of the
JDeodorant plugin’s operation. Through this experiment, refactor-
ing can turn into a vital part of the computing educational plan. We
envision our findings enabling educators to support students with
refactoring tools tuned towards safer and trustworthy refactoring.

CCS CONCEPTS

« Software and its engineering — Software maintenance tools;
Maintaining software.

KEYWORDS

refactoring, antipattern, quality, software engineering, education

ACM Reference Format:

Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. 2024.
Automating Source Code Refactoring in the Classroom. In Proceedings of the
55th ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE
2024), March 20-23, 2024, Portland, OR, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3626252.3630787

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0423-9/24/03...$15.00
https://doi.org/10.1145/3626252.3630787

Mohamed Wiem Mkaouer
University of Michigan-Flint
Michigan, United States
mmkaouer@umich.edu

60

Ali Ouni
ETS Montreal, University of Quebec
Montreal, Quebec, Canada
ali.ouni@etsmtl.ca

1 INTRODUCTION

Design antipatterns are symptoms of poor choices at the software
architecture level. These bad programming practices typically vio-
late object-oriented design principles, such as Single Responsibility
and Law of Demeter. The existence of these design antipatterns
often leads to the degradation of software architectures, making
them difficult to understand, reuse, and evolve. It is important to
note that these antipatterns are different from coding errors, and
do not directly lead to compiler or logical faults, but various studies
have demonstrated how the existence of antipatterns makes the
code significantly more prone to errors [11, 27, 28].

Two popular examples of design antipatterns are God Class and
Feature Envy. The first characterizes classes that are abnormally
large and monopolize most of the system’s behavior by controlling
a significant number of other coupled classes. The decomposition
of such a class is critical to maintaining the modular design of
the system. The second is related to methods that heavily rely on
methods and attributes that are outside of its class more than those
inside it. This is a symptom of a misplaced method that needs to be
moved to a class to make it more cohesive.

To cope with these antipatterns, refactoring has emerged as a
de-facto practice to improve software quality through the removal
of antipatterns [16]. Refactoring is the art of improving source code
internal design, without altering its external behavior [6, 18].

Several studies have proposed methods for teaching code refac-
toring through the identification of duplicate and dead code, and
bad naming conventions [22, 23, 25, 26]. While these techniques
play a role in improving the student’s understanding of refactoring,
it is critical to expose students to deeper design-level antipatterns
that are frequently found even in well-engineered projects [30], and
harder to fix [9]. For instance, early exposure to God Classes and
Feature Envies would help reduce their prevalence in the future.

Therefore, the goal of this paper is to increase awareness of
bad programming practices, i.e., design-level antipatterns, and the
importance of correcting them through the application of appropri-
ate refactoring operations. Hence, we perform a series of assign-
ments where students are asked to reason over how to refactor the
God Class and Feature Envy design antipatterns. We chose these
specific antipatterns on the basis of their frequent refactoring by
developers in various systems?.

We report our experience using JDeodorant [35], an integrated
development environment (IDE) plugin, to support students in
finding suitable refactorings. We chose JDeodorant because it is
widely used by researchers as the state-of-the-art benchmark to
assess the precision of refactoring techniques. JDeodorant is also
widely adopted by practitioners to improve their systems’ design.

Based on tool usage statistics: https://users.encs.concordia.ca/ nikolaos/."

https://doi.org/10.1145/3626252.3630787
https://doi.org/10.1145/3626252.3630787
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626252.3630787&domain=pdf&date_stamp=2024-03-07

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

We adopted the reflective learning strategy when designing the
refactoring assignments [12]. In fact, we follow Ash and Clayton’s
DEAL model [8] as we aim to let students first construct and describe
an initial refactoring solution before examining other candidate
solutions recommended by JDeodorant, to finally articulate on the
difference between their solution and the ones recommended by the
tool. We executed these assignments in undergraduate and graduate
software engineering courses at Stevens Institute of Technology and
Rochester Institute of Technology. We analyzed 171 student refac-
toring submissions in terms of two dimensions. The first dimension
is empirical, as we assess the quality of students’ refactored code
in contrast with JDeodorant’s, to extract any knowledge gap. This
dimension’s outcome reveals how God class antipattern tends
to be harder for students to refactor, compared to Feature Envy,
and how the use of JDeodorant has facilitated the correction of
these hard instances. The second dimension is qualitative, where
we survey students to sense their feedback on the tool’s usefulness,
usability, and functionality. The results of the survey show that the
vast majority of students (87% responses) found the plugin to be
useful, and usable, and were satisfied with its operation. Finally, we
reflect on the importance of reinforcing software design principles
and patterns. Therefore, we foresee students’ usage of JDeodorant
as an opportunity to raise awareness of the detection of antipatterns
and their correction measures.

This paper contributes to the broad adoption of refactoring by (i)
designing practical assignments that first challenge students’ abili-
ties to refactor design-level problems, then second provide them
with candidate solutions to reason over and choose based on their
potential impact on quality, and (ii) reporting the experience of us-
ing the JDeodorant plugin. This experiment enabled instructors to
design personalized, hands-on assignments and support students in
learning how to use refactoring features in the IDE. It also achieves
another learning objective, since a recent study has shown that
developers rarely use the built-in IDE features when refactoring
their code, increasing the error-proneness of their changes [19]. As
part of this paper’s contributions, we provide the assignment de-
scription, the tool documentation, and statistical tests for educators
to replicate and extend [1].

2 JDEODORANT WORKFLOW

JDeodorant [35] stands as one of the popular refactoring tools
that have been provided as an Eclipse and Intelli] IDEA plugins. It
automatically detects antipatterns, including Feature Envy, State
Checking, Type Checking, Long Method, God Class, Duplicate
Code, and Refused Bequest, and for each detected antipattern, it
offers its correction by providing a list of candidate refactorings that
developers have to choose from. Developers, are then responsible
for choosing the most adequate refactoring operations according
to their design choices and preferences.

To illustrate the workflow of JDeodorant, we choose to fix the
Feature Envy antipattern that may exist in the Gantt? project. We
open the Gantt project using the Eclipse IDE, with JDeodorant al-
ready installed as a plugin. Then, we enable the plugin by clicking on
Bad Smells in the menu bar (Step 1), and then we click on Feature
Envy. To identify all instances of this antipattern, the plugin inter-
nally parses all the project methods to generate their corresponding

Zhttps://github.com/bardsoftware/ganttproject

61

Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, & Ali Ouni

Figure 1: JDeodorant workflow.

Abstract Syntax Tree (AST) representations, which in turn allows
the tool to determine whether a method matches the pattern of
a Feature Envy antipattern. Once the detection process is done,
all Feature Envy instances are shown in the plugin view (Step 2),
along with their corresponding refactoring suggestions (Step 3).
For example, as can be seen in Figure 1, the createFrame method,
with 55 lines of code, and located in the class CharHeaderImpl, is
flagged as a Feature Envy. The plugin also proposed a couple of
candidate Move Method refactorings for us to choose from. If we
choose to fix the creatFrame method by selecting the first refac-
toring suggestion, the plugin displays the method being refactored
(Step 4), and internally calls the Move Method built-in feature inside
Eclipse. This feature initiates the refactoring process by opening
a preview window (Step 5). This window shows the original code
of the createFrame method, side by side with a preview of refac-
tored code, which would show the result of moving createFrame
to another class. If we confirm the refactoring, it will automatically
be applied to the source code.

3 EXPERIMENTAL SETUP
3.1 Teaching Context and Participants

The study is performed in undergraduate and graduate courses
taught at Stevens Institute of Technology and Rochester Institute of
Technology. The courses cover various concepts related to software
analysis and testing, along with practical tools, widely used in the
open-source community. Students were also given several hands-
on assignments in topics including software quality metrics, code
refactoring, bug management, unit and mutation testing, and tech-
nical debt. Before conducting the experiment, students acquired the
necessary background by learning the following concepts: (1) code
quality (teaching quality and how to measure it), (2) design antipat-
terns (teaching violations of design principles, and their detections
rules), and (3) code refactoring (teaching refactoring recipes and
operations). The experiment’s assignments constituted 7.5% of the
final grade. It was due 14 days each after the concepts were taught.

3.2 Assignments Content and Format

We adopt Ash and Clayton’s reflection model by gathering evidence
(refactored code) that can be examined to identify any gaps in the

Automating Source Code Refactoring in the Classroom

state of refactoring practice (inability to correct certain antipat-
terns), with the intent to improve it (provide alternative correction
mediums).

Initially, students are asked to analyze one version of a Java soft-
ware system of their choice approved by the instructor to ensure
its eligibility based on popularity, besides making sure it correctly
compiles since JDeodorant requires it. The rationale behind giv-
ing students the choice of project, is to let them choose one that
they are comfortable with, and fits into their interests. For students
who do not want to search for a project, they are given a list that
the instructor has already curated. We selected these projects [1]
because they contain the antipatterns that we are interested in.
We conduct our experiments through two assignments: In the first
assignment, students are asked to fix the two antipatterns (i.e., God
Class and Feature Envy) and provide a sequence of refactoring
operations that will fix multiple instances of these antipatterns. The
submissions to this assignment constitute the Manual Refactoring.
In the second assignment, students are asked to set up and run
JDeodorant to analyze the chosen project production code. Upon
running JDeodorant, students are required to choose at least 2 an-
tipatterns instances from 2 different antipatterns types supported
by the tool (4 in total), and then analyze JDeodorant recommen-
dations to choose the potential refactoring operations to fix them.
Since JDeodorant gives many recommendations on how to fix the
same antipatterns instance, based on the students’ understanding
of problems’ symptoms, they would need to reason when choosing
the code changes that remove the smells while fitting properly in
the system’s design. The submissions to this assignment constitute
the Assisted Refactoring. In summary, the students followed these
steps:

(1) Manually fix the detected antipatterns types: (i) God Class,
and (ii) Feature Envy.

(2) Provide a sequence of refactoring operations that will fix
multiple instances of those antipatterns (i.e., Manual Refac-
toring).

(3) Justify the choices regarding refactoring decisions for each
fixed antipattern type.

(4) Install the Eclipse or Intelli] IDEA plug-in for JDeodorant.

(5) Run JDeodorant on a project of students’ choice and select
2 instances of each of the 2 following antipatterns types: (i)
God Class, and (ii) Feature Envy.

(6) Look at the refactoring recommendations by JDeodorant, and
choose which ones to be executed. Students keep refactoring
until processing all their chosen smell instances.

(7) Report the findings: chosen antipattern instances, chosen
refactoring operations and results (i.e., Assisted Refactoring).

(8) Add to the report a concise comment about the experience
with JDeodorant (Optional).

Students were evaluated based on two aspects, (1) concept un-
derstanding: assessment of students’ ability to apply the right refac-
toring to fix antipatterns; and (2) program analysis: assessment
of whether students are able to execute refactoring and verify the
preserved behavior. Students were not evaluated on their percep-
tion of the code, to avoid any cognitive bias that may occur under
the pressure of being graded. Also, we anonymized the feedback,
and made it optional, to only collect information from students

62

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

who were serious about it, which will increase the magnitude of
provided experience. Despite it being not mandatory, the majority
of students (96.07%) chose to complete it.

The assignment was performed over four consecutive semesters.
171 students, primarily from computer science (CS) and software
engineering (SE) majors, were enrolled during these semesters, and
completed assignments.

3.3 Data Analysis

We analyzed the responses to open-ended questions to create a
comprehensive high-level list of themes by adopting a thematic
analysis approach based on guidelines provided by Cruzes et al.
[15]. Thematic analysis is one of the most used methods in Software
Engineering literature [4, 5, 32]. This is a technique for identifying
and recording patterns (or “themes”) within a collection of descrip-
tive labels, which we call “codes”. For each response, we proceeded
with the analysis using the following steps: i) Initial reading of
the survey responses; ii) Generating initial codes (i.e., labels) for
each response; iii) Translating codes into themes, sub-themes, and
higher-order themes; iv) Reviewing the themes to find opportu-
nities for merging; v) Defining and naming the final themes, and
creating a model of higher-order themes and their underlying evi-
dence. The above-mentioned steps were performed independently
by two authors. One author performed the labeling of students’
comments independently from the other author who was responsi-
ble for reviewing the currently drafted themes. At the end of each
iteration, the authors met and refined the themes.

4 RESULTS
4.1 Quantitative Analysis

Table 1: Statistical test.

Antipattern Approach Impact p-value Cliff’s delta (5)

God Class Manual +ve 0.01 0.05 (Negligible)
Assisted +ve 1.89e-161 0.76 (Large)

Feature Envy Manual +ve 2.22e-06 0.19 (Small)
Assisted +ve 1.46e-161 0.76 (Large)

To show the effectiveness of JDeodorant in educating students
about better-making design decisions, we count the number of God
Class, and Feature Envy antipatterns before and after refactoring,
initially when students refactored the antipatterns manually (re-
ferred to as Manual Refactoring), and then when students refactored
the antipatterns based on JDeodorant recommendations (referred
to as Assisted Refactoring). Figure 2 reports the box plots depicting
the distribution of each group value, clustered by the two above-
mentioned antipatterns. We used the Wilcoxon test [36] to test the
significance of the difference between the group’s values. This non-
parametric test checks continuous or ordinal data for a significant
difference between two dependent groups. Our hypothesis is formu-
lated to test, for each antipattern and for each refactoring (manual
or assisted), whether the number of instances of the antipattern in
the code after the refactoring is significantly lower than the number

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

(a) Impact of Manual Refactoring on God Class

Distribution
o
50 i
2/1 | ‘
J e
< > P> S
e g N

(c) Impact of Manual Refactoring on Feature Envy
Distribution

Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, & Ali Ouni

(b) Impact of Assisted Refactoring on God Class
Distribution

(d) Impact of Assisted Refactoring on Feature Envy

Distribution

Figure 2: Boxplots of God Class, and Feature Envy antipattern instances addressed by students.

rg.apache.logdy.If N rg.ap:

getTitle()

hasFatalRecords()

hasFatalChildren()

getNumberOfContainedRecords() getDisplayedProperties()
getNumberOfRecordsFromChildren()

getTotalNumberOfRecords()

he.loga. I NodeEditor

he.log4. I

E getpispioyedproperties()
[—

Figure 3: Feature Envy example from the Log4] project [2].

NodeEditor|

Sourceltarget accessed members: 0/6

of instances of the antipatterns before the refactoring. The differ-
ence is considered statistically significant if the p-value is less than
0.05. Furthermore, we used Cliff’s delta (5) effect size to estimate
the magnitude of the differences. Regarding its interpretation, we
follow the guidelines reported by [20]: Negligible for | § |< 0.147;
Small for 0.147 <| § |< 0.33; Medium for 0.33 <| § |< 0.474; and
Large for | § |> 0.474.

The count of corrected antipatterns was done manually by the
authors. Since the complete list of students’ submissions is too
large to examine manually, we selected a statistically significant
sample for our analysis and annotated 62 submissions. This quan-
tity roughly equates to a sample size with a confidence level of
95%, with a margin of error of 10%. As can be seen in Figure 2,
antipatterns (i.e., God Class and Feature Envy) before refactor-
ing are larger than the antipatterns after refactoring. While the
difference was statistically significant (0.01 and 2.22e-06 for God
Class and Feature Envy, respectively), the magnitude of the dif-
ference is negligible and small for God Class and Feature Envy,
respectively. We conjecture that although there is quality improve-
ment as the number of antipatterns decreased, there were many
instances where students’ Manual Refactorings could not remove

63

certain antipatterns, particularly the God Classes instances. How-
ever, assisted refactoring also had a positive impact on quality, since
the number of antipatterns (i.e., God Class and Feature Envy)
before refactoring is greater than the antipatterns after refactoring
(1.89e-161 and 1.46e-161 for God Class and Feature Envy, respec-
tively). However, the main difference lies in the magnitude of the
difference (Cliff Delta), which was large for the Assisted Refactoring,
according to Table 1. We conclude that JDeodorant’s assistance
was beneficial in improving students’ design decisions. Figure 3
shows an example of a Feature Envy design antipattern from one
of the student’s submissions. The CategoryNodeEditor class has
a method called getDisplayedProperties that seems overly in-
terested in the properties of the CategoryNode class. The method
getDisplayedProperties calls many methods from CategoryNode
class more than its own class methods (Coupling = 6). This indi-
cates that the method should instead belong to the CategoryNode
class. When the student applied the Move Method refactoring, as
recommended by JDeodorant, the Feature Envy antipattern was
removed, along with a decrease in the system’s overall coupling.
Observation. Not all antipatterns are easily refactorable. It is
important to note that despite students’ efforts to remove antipat-
terns, our analysis of Manual Refactoring code shows how many
instances of antipatterns existed after the refactoring session. In
particular, God Classes are difficult to refactor, as the magnitude of
the difference is negligible in Table 1. Previous research has demon-
strated how God classes tend to be hard to fix in industry [7]. So,
we emphasize the importance of raising students’ awareness, as a
preventive measure, to avoid creating God classes.

Observation. Understanding the impact of refactoring on
quality is challenging for students. Although both refactor-
ing sessions aim to improve quality, students realize, when they
compare their manual refactoring with the assisted one, that not
all refactorings can be equally beneficial to design quality. For in-
stance, the process of extracting multiple classes, to remove a God
Class antipattern, will eventually increase the number of classes per
package, which is also considered an increase in system complexity
according to the CK quality metrics [13]. Thus, students should

Automating Source Code Refactoring in the Classroom

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Table 2: Student’s insight about the usefulness, usability and functionality of the tool.

Theme Sub-theme Example (Excerpts from a related student’s comment)
Efficiency “JDeodorant is undoubtedly a very convenient tool for developers, he can easily fix various code smells and improve the
development efficiency of developers.”
Quality “It can help to prioritize refactoring instances by selecting them based on their number of methods and attributes they have. It also
gives more details about classes and have an insight of the impact of refactoring.”
Usefulness Automation “Overall my experience with the plugin was good. It takes most of the refactoring work and basically automates it.”
Awareness “The product seemed to work well. Additionally, its ability to tell what refactoring to do and actually perform it seems super helpful,
and more helpful if I actually knew what I was doing when refactoring.”
5 “My experience with JDeodorant was quite pleasant. It simplified the process of addressing flaws in the code and for someone
Experience S g, . . .)) o]
with limited software engineering experience related to code smells it was very informative.
Graphical design “the very intuitive graphical design of the plugin (for instance, doing things such as highlighting code that it changes in green)
makes such reviews far simpler than alternative approaches may provide.”
Preview “I particularly liked Intelli’s display showing side-by-side diff’s of what changed; it made it clear what was changing, which
Usability in turn made it easier to interpret why the tool was suggesting the change.”
S “The JDeodorant version for eclipse provides the visual context/flow chart containing the breakdown of the bad smells and the
Visualization P »
highlighted code. That proved to be very beneficial during the refactoring process, especially with god class.
Documentation “It is als'o all automated process, which is User friendly and it gives guidelines for the usage and it also pre-evaluates the
refactoring.
Design antipatterns “I found that jDeodorant did a great job at detecting any issues that were found.”
Functionality R “I am happy I picked a smaller project to work on, it is significantly easier to see the effects of the changes. Most of the refactoring
that was suggested were various kinds of extraction, mostly methods.”
Quality “It would have been nicer if the project checked for refactorings again automatically after applying one instead of the user
needing to use it.”
“I am really impressed with how this tool can detect the code smells and suggest refactoring to solve the problems. However, [...], it
Design antipatterns can only detect three types of code smells. Many software has a wide range of other code smells not only (long method, god
Recommendation class, feature envy) which are not possible to detect using this tool. ”
Refactoring “some of it’s suggestion of the refactoring is incompleted, the suggestion name and logic detection has missed some part of the
code. So I feel this tool can only use as an quick reference in the code quality review”
Testing “Its hard to find if refactoring did break any of the feature or functionality remains the same even after refactoring.”

consider these trade-offs as they make their choices. In this context,
quality gate tools, such as UNDERSTAND® and SonarQube* can be
deployed to measure the quality before and after the application
of refactoring. This might strengthen students’ understanding of
writing well-structured code and raise their confidence to perform
the recommended refactoring.

4.2 Qualitative Analysis

In Table 2, we report the main thoughts, comments, and suggestions
about the overall impression of the usefulness, usability, function-
ality, and recommendation of the tool, according to the conducted
labeling. Figure 4 shows the percentages of students’ insight. As
can be seen, the ‘Functionality’ and ‘Usefulness’ categories had the
highest number of responses, with a response ratio of 34.6% and
32.1%, respectively. The category ‘Recommendation’ was the third
most popular category with 21.8%, followed by ‘Usability’, which
had a ratio of 11.5%. This finding indicates what students mainly
care about when using the tool. Table 2 presents samples of the
students’ comments to illustrate their impression of each theme.
Usefulness. Generally, the respondents found the plugin use-
ful in terms of five main aspects: efficiency, quality, automation,
awareness, and experience. 40 out of 171 students commented
that JDeodorant is very intuitive to use and was quite efficient
to find refactoring opportunities, and convenient for developers
who would not have to examine and refactor antipatterns manually.
30 students communicated that eliminating antipatterns assists in
increasing its readability while reducing its coupling and complexity,

3https://scitools.com/
4https://sonarqube.org

64

which helps improve overall code quality. A few students revealed
that the tool’s ability to identify antipatterns within a selected file
allows them to only correct errors in a specific location/file of their
interest, instead of inspecting the entire project. Further, two stu-
dents commented that the tool aids less experienced developers
in identifying the antipatterns when updating a source file that
they are not necessarily familiar with. Additionally, a group of stu-
dents mentioned that the tool helps less experienced and novice
developers in writing well-structured code.

Usability. Based on the feedback provided by the students, the
key areas of usability related to the graphical design, preview, vi-
sualization and documentation. Five students pointed out that the
graphical design of the plugin is intuitive, especially the IDE’s
display feature showing side-by-side diffs of what changed. This
preview feature makes it clear what was changing and why the
tool was suggesting the change. Other comments also stated the
importance of the preview feature, which allows users to foresee the
impact of the change without actually performing it. Two students
reported the useful feature of antipattern visualization as a flow
chart, as it allows locating the hot areas in code that encapsulate
a large set of smells. Lastly, the documentation of the plugin is
written and easy to follow.

Functionality. According to the students’ feedback about the
tool’s functional features, 34.6% of the students’ comments show a
couple of appreciation for the supported antipatterns by the tool,
and how this feature helps in better understanding the concepts
in a real-world scenario. Additionally, the students commented on
their ability to practice a variety type of refactoring operations
according to their removal of the antipatterns.

https://scitools.com/

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Usefulness

32.1%

Figure 4: Students’ perception about the refactoring tool.

Recommendation. From the students’ feedback, we have also
extracted suggestions to improve the tool’s features. 21.8% of the
students’ comments show a couple of suggested changes as a rec-
ommendation or refactoring support to be made to the tool’s op-
eration or UL We found that the students pointed out some of the
recommendations related to quality, antipatterns, refactoring, and
testing. Students recommend the tool to perform a validation after
performing the refactoring application, support more antipatterns,
perform the complete application of refactoring, and perform test-
ing to check the behavior preservation of code transformation after
refactoring.

5 REFLECTIONS

X Reflection #1: Raising the awareness of antipatterns and
their refactoring strategies. Previous studies [3, 24, 29, 33, 34]
have proposed different methods to teach refactoring, but did not
provide students with toolset to practice it. It is still a manual
process that might contribute in a limited way in the long run.
However, if students learn how to automate refactoring, it helps
them to better refactor the code while preserving the behavior and
making the code less prone to error. Further, in education, there are
many concepts related to design principles that are taught in the
classroom, such as SOLID and GRASP. However, the responses that
we received from students, have shown the importance of covering
design anti-patterns, and bad programming practices avoidance in
curricula, as these topics are generally less popular, compared to
design patterns. In many CS and SE curricula, instructors highlight
software quality when teaching good programming practices and
design patterns. This assignment complements it by revealing how
deviation from best practices can lead to poor design choices that
negatively impact the source code. Similarly to teaching blueprints
of design patterns, students should also be exposed early to quality
concerns and encouraged to improve the design of their own code.
Moreover, one of the noteworthy points is that using the tool in
the assignment helps less experienced and novice coders to write
well-structured code. To further raise awareness, educators can
include empirical evidence to enhance students’ understanding of
refactoring and antipatterns concepts and so students providing
low-quality code can be convinced that these concepts help improve
the quality of software systems.

65

Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, & Ali Ouni

X Reflection #2: Reinforcing software engineering princi-
ples and good development practices. Studies have shown how
group-based project artifacts tend to be purposely over-engineered
complex models as a means to showcase the ability to design com-
plex systems [10, 14]. Through this assignment, students would
realize that over-engineered systems tend to contain more design
anti-patterns, and therefore simplifying them is necessary for their
code to become easier to maintain in the future. According to the
students’ insights, we believe that instructors need to highlight the
desirable properties of refactoring tools (e.g., quality improvement,
developer perception, automated testing, etc.). Future educators and
researchers are encouraged to revisit existing refactoring tools so
that students can gain more confidence in using them. Furthermore,
since the classical definition of refactoring focuses on preserving
the behavior of the applied transformation, instructors may con-
sider pointing out some behavior preservation strategies (e.g., [6])
and explore their potential in assessing the correctness of the refac-
tored code (e.g., in the context of JDeodorant, students can run
unit tests to verify that the applied refactoring was behaviorally
preserved).

6 RELATED WORK

Smith et al. and Stoecklin et al. [33, 34] introduced an incremental
approach by focusing on lessons from an innovative pedagogical
approach to teaching refactoring, such as self-documenting code
and better recognizing code. The authors conclude that refactor-
ing can become an integral component of the computer science
curriculum by reinforcing software engineering principles. Rabb
[31] introduced CodeSmellExplorer to familiarize users with good
coding practices by visualizing an interactive graph network of
antipatterns and connected refactorings. Lobez et al. [29] described
e-activities for teaching refactoring by following Bloom’s taxon-
omy (i.e., proposing activities to help with understanding a concept,
applying refactorings in the context of and synthesizing of the
use of refactorings in open source projects). Elezi et al. [17] pro-
posed a gamification system that tracks and rewards refactorings
during development. Haendler and Neumann [21] explored the
challenges of designing serious games for refactoring on real-world
code artifacts. Specifically, they proposed a game design where
students can compete either against a predefined benchmark (tech-
nical debt) or against each other. In a follow-up work, Haendler et
al. [22, 23] developed an interactive tutoring system for training
software refactoring. Keuning et al. [25, 26] to teach students to
refactor functionally correct code. More recently, Izu et al. [24]
proposed a lab-based resource to help novices identify and refactor
antipatterns when writing conditional statements.

7 CONCLUSION AND FUTURE WORK

In this study, we demonstrate the use of the JDeodorant tool to
support students with refactoring antipatterns. Overall, the par-
ticipants rated various aspects of the plugin highly, while also
providing valuable ideas for future development. We envision our
findings enabling educators to support students with refactoring
tools tuned towards safer refactoring. Future work in this area in-
cludes investigating students’ understanding of refactoring using
various real-world applications in a semester-long course project.

Automating Source Code Refactoring in the Classroom

REFERENCES

(1]
[2
(3]

—
—

[12]

[13

[14

[15

[16]

=
=

(18]

[19

[n.d.]. https://refactorings.github.io/education/.

[n.d.]. https://github.com/apache/logging-log4j2.

Shamsa Abid, Hamid Abdul Basit, and Naveed Arshad. 2015. Reflections on
teaching refactoring: A tale of two projects. In Proceedings of the 2015 ACM
Conference on Innovation and Technology in Computer Science Education. 225-
230.

Eman Abdullah AlOmar, Salma Abdullah AlOmar, and Mohamed Wiem Mkaouer.
2023. On the use of static analysis to engage students with software quality
improvement: An experience with pmd. arXiv preprint arXiv:2302.05554 (2023).
Eman Abdullah AlOmar, Moataz Chouchen, Mohamed Wiem Mkaouer, and Ali
Ouni. 2022. Code Review Practices for Refactoring Changes: An Empirical Study
on OpenStack. (2022), 1-13.

Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, Christian Newman, and Ali
Ouni. 2021. On preserving the behavior in software refactoring: A systematic
mapping study. Information and Software Technology (2021), 106675.

Nicolas Anquetil, Anne Etien, Gaelle Andreo, and Stéphane Ducasse. 2019. De-
composing god classes at siemens. In 2019 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 169-180.

Sarah L Ash and Patti H Clayton. 2009. Generating, deepening, and documenting
learning: The power of critical reflection in applied learning. (2009).

Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, and
Fabio Palomba. 2015. An experimental investigation on the innate relationship
between quality and refactoring. Journal of Systems and Software 107 (2015),
1-14.

Leema K Berland, Taylor H Martin, Pat Ko, Stephanie Baker Peacock, Jennifer J
Rudolph, and Chris Golubski. 2013. Student learning in challenge-based engi-
neering curricula. Journal of Pre-College Engineering Education Research (J-PEER)
3,1(2013), 5.

Narjes Bessghaier, Ali Ouni, and Mohamed Wiem Mkaouer. 2021. A longitudinal
exploratory study on code smells in server side web applications. Software Quality
Journal 29, 4 (2021), 901-941.

Anne Brockbank and Ian McGill. 2007. Facilitating reflective learning in higher
education. McGraw-Hill Education (UK).

Shyam R Chidamber and Chris F Kemerer. 1994. A metrics suite for object
oriented design. IEEE Transactions on software engineering 20, 6 (1994), 476-493.
Carol L Colbeck, Susan E Campbell, and Stefani A Bjorklund. 2000. Grouping in
the dark: What college students learn from group projects. The Journal of Higher
Education 71, 1 (2000), 60-83.

Daniela S Cruzes and Tore Dyba. 2011. Recommended steps for thematic synthesis
in software engineering. In 2011 international symposium on empirical software
engineering and measurement. IEEE, 275-284.

Ward Cunningham. 1992. The WyCash portfolio management system. ACM
SIGPLAN OOPS Messenger 4, 2 (1992), 29-30.

Leonard Elezi, Sara Sali, Serge Demeyer, Alessandro Murgia, and Javier Pérez.
2016. A game of refactoring: Studying the impact of gamification in software
refactoring. In Proceedings of the Scientific Workshop Proceedings of XP2016. 1-6.
Martin Fowler, Kent Beck, John Brant, William Opdyke, and don Roberts. 1999.
Refactoring: Improving the Design of Existing Code. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA. http://dl.acm.org/citation.cfm?id=311424
Yaroslav Golubev, Zarina Kurbatova, Eman Abdullah AlOmar, Timofey Bryksin,
and Mohamed Wiem Mkaouer. 2021. One thousand and one stories: a large-scale
survey of software refactoring. In Proceedings of the 29th ACM Joint Meeting on

66

[20

[21

[22

[23

S
=}

[25

[26]

[27

[28

[29

@
=

[31

[32

[33

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 1303-1313.

Robert J Grissom and John J Kim. 2005. Effect sizes for research : a broad practical
approach. Mahwah, N.J. ; London : Lawrence Erlbaum Associates. Formerly CIP.
Thorsten Haendler and Gustaf Neumann. 2019. Serious refactoring games. In
Proceedings of the 52nd Hawaii International Conference on System Sciences.
Thorsten Haendler, Gustaf Neumann, and Fiodor Smirnov. 2019. An interactive
tutoring system for training software refactoring. Instructor 1(2019), 4.
Thorsten Haendler, Gustaf Neumann, and Fiodor Smirnov. 2019. RefacTutor: an
interactive tutoring system for software refactoring. In International Conference
on Computer Supported Education. Springer, 236-261.

Cruz Izu, Paul Denny, and Sayoni Roy. 2022. A Resource to Support Novices
Refactoring Conditional Statements. In Proceedings of the 27th ACM Conference
on on Innovation and Technology in Computer Science Education Vol. 1. 344-350.
Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2020. Student refactoring
behaviour in a programming tutor. In Koli Calling’20: Proceedings of the 20th Koli
Calling International Conference on Computing Education Research. 1-10.

Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2021. A tutoring system to
learn code refactoring. In Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education. 562—-568.

Foutse Khomh, Massimiliano Di Penta, and Yann-Gael Gueheneuc. 2009. An
exploratory study of the impact of code smells on software change-proneness. In

2009 16th Working Conference on Reverse Engineerinﬁ IEEE, 75-84.
Foutse Khomh, Massimiliano Di Penta, Yann-Gaél Guéhéneuc, and Giuliano

Antoniol. 2012. An exploratory study of the impact of antipatterns on class
change-and fault-proneness. Empirical Software Engineering 17, 3 (2012), 243—
275.

Carlos Lopez, Jestis M Alonso, Raul Marticorena, and Jesis M Maudes. 2014. De-
sign of e-activities for the learning of code refactoring tasks. In 2014 International
Symposium on Computers in Education (SIIE). IEEE, 35-40.

Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco
Oliveto, and Andrea De Lucia. 2018. On the diffuseness and the impact on
maintainability of code smells: a large scale empirical investigation. Empirical
Software Engineering 23, 3 (2018), 1188-1221.

Felix Raab. 2012. CodeSmellExplorer: Tangible exploration of code smells and
refactorings. In 2012 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 261-262.

Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. 2016. Why We
Refactor? Confessions of GitHub Contributors. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing (Seattle, WA, USA) (FSE 2016). ACM, New York, NY, USA, 858-870. https:
//doi.org/10.1145/2950290.2950305

Suzanne Smith, Sara Stoecklin, and Catharina Serino. 2006. An innovative
approach to teaching refactoring. In Proceedings of the 37th SIGCSE technical
symposium on Computer science education. 349-353.

Sara Stoecklin, Suzanne Smith, and Catharina Serino. 2007. Teaching students to
build well formed object-oriented methods through refactoring. ACM SIGCSE
Bulletin 39, 1 (2007), 145-149.

Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzigeorgiou. 2018.
Ten years of JDeodorant: Lessons learned from the hunt for smells. In 2018 IEEE
25th international conference on software analysis, evolution and reengineering
(SANER). IEEE, 4-14.

Frank Wilcoxon. 1945. Individual comparisons by ranking methods. Biometrics
bulletin 1, 6 (1945), 80-83.

https://refactorings.github.io/education/
https://github.com/apache/logging-log4j2
http://dl.acm.org/citation.cfm?id=311424
https://doi.org/10.1145/2950290.2950305
https://doi.org/10.1145/2950290.2950305

	Abstract
	1 Introduction
	2 JDeodorant Workflow
	3 Experimental Setup
	3.1 Teaching Context and Participants
	3.2 Assignments Content and Format
	3.3 Data Analysis

	4 Results
	4.1 Quantitative Analysis
	4.2 Qualitative Analysis

	5 Reflections
	6 Related Work
	7 Conclusion and Future Work
	References

