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Abstract—Static analysis tools are frequently used to scan
the source code and detect deviations from the project coding
guidelines. Given their importance, linters are often introduced to
classrooms to educate students on how to detect and potentially
avoid these code anti-patterns. However, little is known about
their effectiveness in raising students’ awareness, given that these
linters tend to generate a large number of false positives. To
increase the awareness of potential coding issues that violate
coding standards, in this paper, we aim to reflect on our
experience with teaching the use of static analysis for the purpose
of evaluating its effectiveness in helping students with respect to
improving software quality. This paper discusses the results of
an experiment in the classroom, over a period of 3 academic
semesters, involving 65 submissions that carried out code review
activity of 690 rules using PMD. The results of the quantitative
and qualitative analysis show that the presence of a set of PMD
quality issues influences the acceptance or rejection of the issues,
design, and best practices-related categories that take longer time
to be resolved, and students acknowledge the potential of using
static analysis tools during code review. Through this experiment,
code review can turn into a vital part of the educational
computing plan. We envision our findings enabling educators
to support students with code review strategies in order to raise
students’ awareness about static analysis tools and scaffold their
coding skills.

Index Terms—static analysis tool, education, quality

I. INTRODUCTION

Linting is the process of using static analysis tools to

scan the source code and detect coding patterns that are

considered bad programming practices. These patterns can be

responsible for future bugs and stylistic anomalies beyond

compiler errors. Given their importance, linters have been

introduced in classrooms to educate students on detecting and

potentially avoiding these code anti-patterns [1]. However,

little is known about their effectiveness in raising students’

awareness with respect to anti-patterns, given that these linters

tend to generate a large number of false positives [2]–[5].

In this paper, we reflect on the experience of using linters to

support students with their task of debugging and improving

the quality of existing systems. In particular, we require

students to use PMD 1, a state-of-the-art static analysis tool, to

detect potential issues in a software system that they did not

implement themselves, and then, for each reported issue, they

reason whether it should be corrected and suggest corrective

action, in the form of a code change, depending on the type

1https://pmd.sourceforge.io

of issue reported. The pedagogical goals of this assignment

are multiple: 1) Develop the skill of enhancing source code

quality through static analysis. Students will be exposed to

various bad programming practices that they need to reason

on how to address them and suggest corresponding fixes. 2)

Train students to review existing code, using the linter, reason

over its warnings, and only propose a solution if they are

convinced. It trains them to contextualize the problem within

the code scope and document the decision of whether it has to

be fixed. 3) Initiate students with reading and comprehending

code that is not theirs. It prepares them for a more realistic

industrial setting, where they will eventually be reading and

updating existing code bases.

This paper contributes to the broader adoption of static

analysis warnings by (i) designing a practical assignment for

improving the quality of software systems, and (ii) reporting

experience of using the PMD tool in a software quality assur-

ance course that has been taken by 65 graduate students. As

part of this paper’s contributions, we provide the assignment

description and the tool documentation for educators to adopt

and extend 2.

The remainder of this paper is organized as follows: Section

II reviews the existing studies related to automated static

analysis tools. Section III outlines our experimental setup in

terms of data analysis and research questions. Section IV

discusses our findings, while the reflection is discussed in

Section V. Section VI captures any threats to the validity of

our work, before concluding with Section VII.

II. RELATED WORK

Research on automated static analysis tools (ASAT) has

been important to practitioners, researchers, and educators.

The research community has spent considerable effort studying

static analysis tools from different domains. This literature

has included the usage of ASATs in the context of bug fixes

[6], [12], [15], quality [7], security [8], [16], code review [9],

[11], [17], defect classification and predication [10], [14], and

technical debt [13]. However, except for [1], [20]–[22], most

of the above studies focus on studying and improving the

effectiveness of using ASAT for open-source communities,

as opposed to our work that focuses on educating students

on locating and fixing software defects. In this section, we

2https://smilevo.github.io/self-affirmed-refactoring/
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TABLE I: Related work in automated static analysis tool (ASAT).

Study Year Context Tool Purpose

Kim & Ernst [6] 2007 Bug fix PMD/FindBugs/JLint Study warning prioritization
Plosch et al. [7] 2008 Quality PMD/FindBugs Study relation between EQA and ASAT
Di Penta et al. [8] 2009 Security Splint/Rats/Pixy Observe evolution and decay of vulnerabilities
Panichella et al. [9] 2015 Code review CheckStyle/PMD Study if ASAT helps with code review
Beller et al. [10] 2016 Defect classification CheckStyle/PMD/FindBugs/JSl Analyse state of ASAT

Eslint/Jscs/Jshint/Pylint/Rubocop
Singh et al. [11] 2017 Code review PMD Study ASAT helps reducing review efforts
Liu et al. [12] 2018 Bug fix FindBugs Mine fix patterns for FindBugs violations
Digkas et al. [13] 2018 Technical debt SonarQube Fix issues & pay back technical debt
Querel & Rigby [14] 2018 Bug prediction FindBugs/JLint Integrate statistical bug models with ASAT
Marcilio et al. [15] 2019 Bug fix SonarQube Study how developers use SonarQube
Aloraini et al. [16] 2019 Security Rats/Flawfinder/Cppcheck Study warnings generated by ASAT

PVS-Studio/Parasoft/Clang
Trautsch et al. [17] 2020 Code review PMD Study the effect of PMD on quality
Romano et al. [18] 2022 Test-driven development SonarLint Study if ASAT affects software quality
Licorish & Wagner [19] 2022 Bug fix PMD Detect performance faults
This work Education PMD Support students in enhancing quality with PMD

are only interested in research related to using ASAT. We

summarize these approaches in Table I.

Kim and Ernst [6] investigated the possibility of leveraging

the removal times for ASAT warning prioritization by utilizing

commit histories of ASAT warnings. Later, Plosch et al. [7]

correlated software quality metrics and defects with warnings

found by various ASATs. The authors utilized three releases

of the eclipse ecosystem and demonstrated correlations for

various aspects, including size, complexity, and object-oriented

software metrics.

In a security-related context, Di Penta et al. [8] performed

an empirical study to extract the history of three open-source

projects and analyze security-related ASAT warnings using

three static code analyzers. In a similar context, Aloraini et
al. [16] analyzed security-related ASAT warnings using 116

open-source projects. Both of these studies concluded that the

warning density of security-related ASAT remains constant

throughout their selected time span.

On the other hand, Beller et al. [10] empirically investigated

the usage of ASAT in open-source projects by focusing on the

prevalence of ASAT and the evolution of the configurations

for different programming languages. In another study, Querel

and Rigby [14] utilized FindBugs and Jlint for bug prediction.

Their main finding revealed the information provided by

the ASAT warnings could improve statistical bug prediction

models. Liu et al. [12] explored ASAT warning over time

by performing a large-scale study using the tool FindBugs

via SonarQube. Their approach identified fix patterns that are

then applied to unfixed warnings. In another study, Digkas

et al. [13] utilized SonarQube to detect ASAT warnings and

their removal strategies. The authors focused on technical

debt and the resolution time assigned by SonarQube to each

detected ASAT warning. Marcilio et al. [15] concentrated on

developer usage of ASAT through SonarQube. They focused

on the active engagement of developers when fixing different

types of issues reported by ASAT. In a similar context,

Licorish & Wagner [19] combined GIN and PMD for code

improvements by focusing on detecting performance faults

from Stack Overflow code snippets. Their findings show that

static analysis techniques could be combined with program

improvement methods to enhance publicly available code.
Some ASATs are used in the context of code review.

Panichella et al. [9] studies if ASAT warnings are taken care of

during the code review process. Their main finding indicated

that the density of warnings slightly varies after each code

review. Singh et al. [11] evaluated how ASAT can reduce code

review effort. They investigated the overlap between reviewer

comments on GitHub pull requests and warnings from the tool

PMD. Their finding showed that PMD overlapped with around

16% of reviewer comments. Trautsch et al. [17] performed a

longitudinal study of ASAT warning evolution and the effect

of ASAT on quality. The authors analyzed the commit history

of 54 projects, taking into account 193 PMD rules and 61

PMD releases. They found that significant global changes in

ASAT warnings are mostly related to coding style changes.

Another study relevant to our work is by Romano et al. [18].

The authors [18] studied the benefits of leveraging an ASAT

on software quality in the context of test-driven development

(TDD). Their study reveal that the use of a SonarLint helps

the participants to improve software quality, although the

participants found that TDD is more difficult to be performed.
To summarize, the study of static analysis tools has been

extensively studied (e.g., [18][12] [7]). Since we are focusing

on Java, there are a few widely adopted Java-based open-

source static analysis tools such as CheckStyle 3, FindBugs
4, JLint 5, PMD 6 and SonarQube 7. The choice of PMD

is motivated by different factors: its widespread use in the

Java community and its maturity (i.e., it is available since

2002 and therefore has been in use for a long time [17]), and

works on the Java source code to find coding style problems,

which is not the case by FindBugs and JLint that work

on byte code and focus on finding programming errors and

3https://checkstyle.sourceforge.io
4http://findbugs.sourceforge.net
5http://jlint.sourceforge.net/
6https://pmd.sourceforge.io
7https://www.sonarqube.org/
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neglecting programming style issues [7]. CheckStyle focuses

more on readability problems compared to PMD, which tends

to highlight suspicious situations in the source code [9].

Further, although there are recent studies that explored the use

of static analysis tools on open-source communities focusing

on how warnings evolve across the software evolution history

[6], [8], [17], this is the first study investigating how PMD

can support students in improving code quality, and reflecting

on how students are using it in the classroom. To advance

the understanding of the practice of learning how to find

and fix bugs, in this paper, we performed a study in an

educational setting using open-source projects having a large

number of issues. This study complements the existing efforts

that are done in open source systems [6]–[19] and in education

[1], [20]–[22], by complementing the quantitative analysis

with a qualitative one, providing evidence of several kinds of

warnings students pay more attention to, during code analysis.

III. STUDY DESIGN

A. Goal & Research Questions

We formulate the main goal of our study based on the Goal
Question Metric template [23], as follows:

Analyze the use of an automated static analysis tool
(ASAT) for the purpose of familiarizing students with
improving source code, by developing the culture of
reviewing unknown code and patching it with respect
to software quality from the point view of educators in
the context of Master’s students in SE/CS who analyze
Java-based software projects.

According to our goal, we aim to answer the following

research questions:

• RQ1. What problems are typically perceived by students
as true positives versus false positives?
Motivation: This RQ aims at evaluating whether students

can apply analytical skills to identify and fix issues in

existing systems. The findings will shed some light on

the feasibility of this learning activity to educate students

to perform effective code reviews and quality control.

Measurement: We examine (1) the types of issues that can

be identified and (2) the PMD ruleset categories that are

perceived by students as a true positive and false positive.

• RQ2. What category of problems typically takes longer
to be fixed?
Motivation: This RQ investigates which PMD ruleset is

taking longer time to be fixed, with respect to other

rulesets. The finding raises educators’ awareness of issues

types that are hard for students to understand and address.

Measurement: We examine the resolution time taken by

students to fix each ruleset, clustered by category.

• RQ3. What is the perceived usefulness of PMD?
Motivation: This RQ explores the tool’s feedback, and

how students perceive PMD in general. The finding will

Fig. 1: Key phases of our study.

inform educators on the usefulness, usability, and func-

tionality of the tool, and allow them to make decisions

about what ASATs can better support students with code

improvement.

Measurement: We examine students’ feedback. We ex-

tract all their positive and negative comments as they

describe their experience with using PMD.

As part of this paper’s contributions, we provide the as-

signment description, dataset, and tool documentation for

educators to adopt and extend8.

B. Course Overview

Software quality assurance is a graduate course, consisting

of 2 lectures weekly, an hour and 15 minutes each. The

course explores the foundations of software quality and soft-

ware maintenance and introduces several challenges linked

to various aspects of software evolution along with support

tools to approach them. Also, the course covers various

concepts related to software analysis and testing, along with

practical tools, widely used as industry standards. Students

were also given a number of hands-on assignments related

to software quality metrics, code refactoring, bug reporting,

unit and mutation testing, and technical debt management.

The course deliverables consisted of five individual homework

assignments, a research paper reading and presentation, and a

long-term group project.

C. Teaching Context and Participants

The study involves one assignment in the software quality

assurance course. The course was taught at Stevens Institute of

Technology and Rochester Institute of Technology for a period

8https://smilevo.github.io/self-affirmed-refactoring/
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of 3 semesters. Before conducting the assignment, students

have already learned about several code, and design quality

concerns: (1) code quality (teaching quality concepts and how

to measure software quality), (2) code smells (teaching bad

programming practices that violate design principles), (3) code

refactoring (teaching refactoring recipes that help improving

software quality), and (4) bug management (teaching software

bugs and how to locate and fix them). The assignment con-

stituted 7.5% of the final grade. It was due 14 days after the

four corresponding sessions.

D. Assignment Content and Format

Initially, students are asked to analyze one version of a JAVA

software of their choice approved by the instructor to ensure its

eligibility based on popularity, besides making sure it correctly

compiles, since PMD requires it. The rationale behind giving

students the choice of project is to let them choose one that

they are comfortable with and that fits into their interests. For

students who do not want to search for a project, they have

given a list that the instructor has already curated (see Table

II). We selected these projects as we already know they contain

a variety of software defects. Then, students are requested to

set up and run PMD to analyze the chosen project production

code. Students are also given the choice of running either the

stand-alone version of the tool, or one of its plugins associated

with popular IDEs (Eclipse, IntelliJ), as we want the students

to be familiar with the coding environment, and reduce the

setup overhead. Upon running PMD, students are required to

choose a minimum of 10 warnings, and at least one from

each category, if applicable. We enforce the diversification of

warnings, to ensure a wider exposure to different types of

potential issues, varying from design to multithreading, and

documentation. It also increases students’ learning curve as

they cannot reuse their fix to address multiple instances of

the same exact warning. Yet, we allow students to choose the

instances they want to address. It implicitly makes students

read many warnings, from all categories, which increases the

likelihood of incidental learning. Furthermore, letting students

choose the code fragments to review, increases their confidence

in the decision they will make with respect to the given

warning, i.e., either consider it as a true positive, and provide

a code fix, or consider it as a false positive, and provide a

justification. In a nutshell, students followed these steps:

1) Install the PMD.

2) Run PMD on a project of students’ choice and select 10

issues of different types.

3) Report the findings for each issue: (1) the type of issue,

(2) whether it is a true or a false positive, (3) if it is a

true positive, what are the necessary steps to fix it, (4)

how long it took to check it / fix it, and (5) the code

snippet.

4) Add to the report a concise comment about the experi-

ence with PMD (optional).

Submissions artifacts’ evaluation was based on 1) assess-

ment of students’ ability to understand the type of issues

(concept understanding (RQ1)); 2) assessment of whether

students have provided acceptable fixes, or proper justification

in both cases or accepting or rejecting PMD’s recommendation

(program analysis and evolution (RQ2)). Students’ perception

of the code was excluded from the evaluation process, as it can

bias the experiment, as students would be filling out the survey

arbitrarily, under the pressure of being graded. Also, providing

feedback was anonymous and not mandatory, to increase the

magnitude of PMD usage experience (RQ3). Although feed-

back was optional, many students have completed it (92.3%).

Figure 1 depicts an overview of our experiment setup and

execution.

E. Assignment Execution

The assignment was performed over three consecutive

semesters. 65 students, primarily from computer science (CS)

and software engineering (SE) majors, were enrolled during

these semesters and completed the assignment.

F. Data Analysis

We analyzed the responses to the open-ended question to

create a comprehensive high-level list of themes by adopting

a thematic analysis approach based on guidelines provided

by Cruzes et al. [24]. Thematic analysis is one of the most

used methods in Software Engineering literature [25]–[27].

This is a technique for identifying and recording patterns

(or “themes”) within a collection of descriptive labels, which

we call “codes”. For each response, we proceeded with the

analysis using the following steps: i) Initial reading of the

survey responses; ii) Generating initial codes (i.e., labels)

for each response; iii) Translating codes into themes, sub-

themes, and higher-order themes; iv) Reviewing the themes

to find opportunities for merging; v) Defining and naming the

final themes, and creating a model of higher-order themes

and their underlying evidence. The above-mentioned steps

were performed independently by two authors. One author

performed the labeling of students’ comments independently

from the other author who was responsible for reviewing the

currently drafted themes. By the end of each iteration, the

authors met and refined the themes to reach a consensus. It is

important to note that the approach is not a single-step process.

As the codes were analyzed, some of the first cycle codes were

subsumed by other codes, relabeled, or dropped altogether. As

the two authors progressed in the translation to themes, there

was some rearrangement, refinement, and reclassification of

data into different or new codes. We used the thematic analysis

technique to address RQ3.

IV. RESULTS

A. What problems are typically perceived by students as true
positives versus false positives?

In Tables III and IV, we illustrate PMD rules that are

perceived by students as True Positive (TP) and False Pos-

itive (FP). It is worth noting the diversity of these warn-

ings/violations, i.e., they spread from warnings regarding style,

code practice, and documentation, to warnings dealing with

182

Authorized licensed use limited to: University of Michigan-Flint. Downloaded on October 01,2024 at 03:14:27 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II: The list of open-source projects used in the

assignment.

Project # commits # contributors Domain

Ant 14,887 64 Java builder
GanttProject 4,361 38 Project management
Hutool 4,074 191 Code design
JCommander 1,009 64 Command line parsing
JFreeChart 4,218 24 Data visualization
JHotDraw 804 3 Data visualization
Log4J 12,211 137 Logging
Nutch 3,293 46 Web crawler
Rihno 4,119 80 Script builder
RxJava 6,004 289 Java VM
Xerces 6,463 5 XML parser

design and performance. Thus, upon analyzing students’ as-

signment solutions, we cluster the issues according to the PMD

ruleset categories listed in the PMD official documentation 9,

namely, ‘Best Practices’, ‘Code Style’, ‘Design’, ‘Documen-

tation’, ‘Error Prone’, ‘Multithreading’, ‘Performance’, and

‘Security’. These categories were captured at different levels

of granularity (e.g., package, class, method, and attributes). In

the rest of this subsection, we provide a more in-depth analysis

of these categories and the associated PMD rulesets.

Category #1: Best Practices. This category refers to

the rules which enforce generally accepted best practices

that are vital in an overall assessment of software quality.

This category assists students in uncovering code that

might violate main design and coding strategies, or indicate

areas that might consider unnecessarily inefficient or

difficult to maintain. Examples of the rules perceived by

students as true positives include LooseCoupling,

SwitchStmtsShouldHaveDefault, and

JUnitAssertionsShouldIncludeMessage.

Category #2: Code Style. This category refers to the

rules which enforce a specific coding style. Most prominently,

brace and naming rules, consist of good coding practices

regarding code blocks and naming conventions. This can be

illustrated briefly by rules IfStmtsMustUseBraces and

ClassNamingConventions, which shows that it should

be followed by braces even if it is followed only by a single

instruction and class names should be in camel case naming

conventions to improve naming quality in the code and reflect

the actual purpose of the parameters and variables.

Category #3: Design. This category refers to the

rules which help discover design issues. Students

captured design rules that contain best practices

concerning overall code structure. By way of illustration,

AvoidDeeplyNestedIfStmts rule indicates avoiding

deeply nested if statements and GodClass shows the

violation of single responsibility principles that increases the

complexity of the code (e.g., CyclomaticComplexity).

Category #4: Documentation. This category refers to

the rules which are related to code documentation. Doc-

umentation is the description, in natural language, of the

code-level changes and such description is crucial as it re-

9https://pmd.sourceforge.io

veals the developer’s rationale behind their coding decisions.

CommentRequired rule is a good illustration of this group

and shows that students seem to pay attention to the quality

of the code comments.

Category #5: Error Prone. This category refers to

the rules which detect constructs that are either broken,

extremely confusing, or prone to run time errors. One

of the key aspects to avoid these issues is readability.

If the students refactor the code to be easily read and

understood, there is less chance for misunderstandings

and coding mistakes, and so students spend less time

comprehending code. This is exemplified by error-prone-

related rules such as AvoidDuplicateLiterals and

MissingStaticMethodInNonInstantiatableClass.

Category #6: Multithreading. This category refers to

the rules that flag issues when dealing with multiple

threads of execution. For example, PMD recommends

AvoidUsingVolatile to be avoided as the keyword

‘volatile’ is used to fine-tune a Java application and requires

the expertise of the Java Memory Model.

Category #7: Performance. This category refers to the

rules that flag sub-optimal code. Since performance plays

a vital role, students are encouraged to follow best cod-

ing standard practices such as AvoidArrayLoops and

AvoidInstantiatingObjectsInLoops rules to avoid

degrading the performance of the code.

For our study, we analyzed a total of 690 rules of students’

selected issues violating 155 distinct PMD rules. We found that

89 (57.41%) issues had 100% acceptance rate, while 9 (5.80%)

issues had 100% rejection rate. The remaining had a mix of

acceptance and rejection (36.79%). As can be seen from Tables

III and IV, the majority of the violated rules are accepted

and perceived by students as true positives, a few of these

violated rules are rejected and perceived by students as false

positives, and the remaining ones are distributed among both

groups. While our results are not intended to be generalized,

as it requires further experiments with larger sample sizes, our

experience shows the success of PMD in triggering students’

critical thinking about the problems outlined in the issues.

Since students are given a choice to either accept or reject to

address the issue, they can take the easy route of rejecting the

majority of recommendations, as it is easier than accepting

them and performing the necessary fixes. Fortunately, PMD

has successfully attracted them to explore the various types

of problems and provided sufficient documentation for them

not only to comprehend it but also to code the needed fix

for the problem. Moreover, it achieves another goal of our

maintenance class, as it trains students to comprehend and act

on code that they do not own.

Looking at the PMD rules that could play a role in ac-

ceptance and rejection, Figure 2 depicts the percentages of

issues perceived by students as both TP and FP. As can be

seen, the most common PMD ruleset category perceived as

TP and FP concerns ‘Code Style’, representing 43.2% of the

issues. This observation is in line with the findings of previous

studies describing that most code reviewers look for style
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TABLE III: PMD rules that were perceived by students as true positive and false positive, broken down by category, as well

as the percentages of responses for which students accepted/rejected the issues. Cells with 100% acceptance are highlighted

in blue, while cells with 100% rejection are highlighted in red.

Category Rule Metric Ratio Category Rule Metric Ratio

B
es

t
Pr

ac
tic

es

AbstractClassWithoutAbstractMethod
True Positive 100%

D
es

ig
n

AvoidCatchingGenericException
True Positive 100%

False Positive 0% False Positive 0%

ArrayIsStoredDirectly
True Positive 80%

AvoidDeeplyNestedIfStmts
True Positive 100%

False Positive 20% False Positive 0%

AvoidGlobalModifier
True Positive 100%

AvoidRethrowingException
True Positive 100%

False Positive 0 False Positive 0%

AvoidMessageDigestField
True Positive 100%

AvoidThrowingNullPointerException
True Positive 100%

False Positive 0 False Positive 0%

AvoidPrintStackTrace
True Positive 80%

AvoidThrowingRawExceptionTypes
True Positive 83.33%

False Positive 20% False Positive 16.66%

AvoidReassigningParameters
True Positive 46.15%

ClassWithOnlyPrivateConstructorsShouldBeFinal
True Positive 50%

False Positive 53.84% False Positive 50%

AvoidUsingHardCodedIP
True Positive 100%

CognitiveComplexity
True Positive 100%

False Positive 0 False Positive 0%

ForLoopCanBeForEach
True Positive 100%

CollapsibleIfStatements
True Positive 100%

False Positive 0 False Positive 0%

JUnit4TestShouldUseBeforeAnnotation
True Positive 0

CyclomaticComplexity
True Positive 100%

False Positive 100% False Positive 0%

JUnitAssertionsShouldIncludeMessage
True Positive 100%

DataClass
True Positive 100%

False Positive 0 False Positive 0%

JUnitTestContainsTooManyAsserts
True Positive 100%

DoNotExtendJavaLangError
True Positive 100%

False Positive 0 False Positive 0%

JUnitTestsShouldIncludeAssert
True Positive 0

ExcessiveImports
True Positive 33.33%

False Positive 100% False Positive 66.66%

LiteralsFirstInComparisons
True Positive 100%

ExcessiveMethodLength
True Positive 100%

False Positive 0 False Positive 0%

LooseCoupling
True Positive 100%

ExcessivePublicCount
True Positive 100%

False Positive 0 False Positive 0%

MethodReturnsInternalArray
True Positive 50%

FinalFieldCouldBeStatic
True Positive 80%

False Positive 50% False Positive 20%

MissingOverride
True Positive 0

GodClass
True Positive 100%

False Positive 100% False Positive 0%

OneDeclarationPerLine
True Positive 60%

ImmutableField
True Positive 83.33%

False Positive 40% False Positive 16.66%

PreserveStackTrace
True Positive 80%

LawOfDemeter
True Positive 83.33%

False Positive 20% False Positive 16.66%

ReplaceEnumerationWithIterator
True Positive 100%

NPathComplexity
True Positive 100%

False Positive 0 False Positive 0%

ReplaceHashtableWithMap
True Positive 100%

SignatureDeclareThrowsException
True Positive 100%

False Positive 0 False Positive 0%

ReplaceVectorWithList
True Positive 50%

SimplifyBooleanExpressions
True Positive 100%

False Positive 50% False Positive 0%

SwitchStmtsShouldHaveDefault
True Positive 75%

SimplifyBooleanReturns
True Positive 100%

False Positive 25% False Positive 0%

SystemPrintln
True Positive 50%

SingularField
True Positive 100%

False Positive 50% False Positive 0%

UnusedAssignment
True Positive 71.42%

TooManyFields
True Positive 66.66%

False Positive 28.57 False Positive 33.33%

UnusedFormalParameter
True Positive 100%

TooManyMethods
True Positive 75%

False Positive 0 False Positive 25%

UnusedImports
True Positive 58.33%

UselessOverridingMethod
True Positive 80%

False Positive 41.66% False Positive 20%

UnusedLocalVariable
True Positive 90%

UseObjectForClearerAPI
True Positive 100%

False Positive 10% False Positive 0%

UnusedPrivateField
True Positive 100%

UseUtilityClass
True Positive 100%

False Positive 0 False Positive 0%

UnusedPrivateMethod
True Positive 80%
False Positive 20%

UseAssertNullInsteadOfAssertTrue
True Positive 100%
False Positive 0

UseTryWithResources
True Positive 100%
False Positive 0

C
od

e
St

yl
e

AbstractNaming
True Positive 100%

E
rr

or
Pr

on
e

AssignmentInOperand
True Positive 50%

False Positive 0% False Positive 50%

AtLeastOneConstructor
True Positive 70%

AvoidFieldNameMatchingMethodName
True Positive 66.66%

False Positive 30% False Positive 33.33%

AvoidFinalLocalVariable
True Positive 100%

AvoidLiteralsInIfCondition
True Positive 80%

False Positive 0% False Positive 20%

AvoidPrefixingMethodParameters
True Positive 0%

CompareObjectsWithEquals
True Positive 90.90%

False Positive 100% False Positive 9.09%

BooleanGetMethodName
True Positive 100%

ConstructorCallsOverridableMethod
True Positive 50%

False Positive 0% False Positive 50%

CallSuperInConstructor
True Positive 100%

CloseResource
True Positive 83.33%

False Positive 0% False Positive 16.66

ClassNamingConventions
True Positive 66.66%

EmptyWhileStmt
True Positive 75%

False Positive 33.33% False Positive 25%

CommentDefaultAccessModifier
True Positive 100%

LoggerIsNotStaticFinal
True Positive 50%

False Positive 0% False Positive 50%

ControlStatementBraces
True Positive 100%

SuspiciousEqualsMethodName
True Positive 50%

False Positive 0% False Positive 50%

DefaultPackage
True Positive 50%

UnnecessaryCaseChange
True Positive 75%

False Positive 50% False Positive 25%

DontImportJavaLang
True Positive 100%

EmptyCatchBlock
True Positive 71.42%

False Positive 0% False Positive 28.57%

EmptyMethodInAbstractClassShouldBeAbstract
True Positive 60%

AvoidCatchingThrowable
True Positive 100%

False Positive 40% False Positive 0%

FieldNamingConvention
True Positive 0%

AvoidInstanceofChecksInCatchClause
True Positive 100%

False Positive 100% False Positive 0%

FinalParameterInAbstractMethod
True Positive 50%

CloneThrowsCloneNotSupportedException
True Positive 100%

False Positive 50% False Positive 0%

ForLoopsMustUseBraces
True Positive 87.5%

EqualsNull
True Positive 100%

False Positive 12.5% False Positive 0%

GenericsNaming
True Positive 100%

EmptyFinallyBlock
True Positive 100%

False Positive 0% False Positive 0%

IfElseStmtsMustUseBraces
True Positive 90%

EmptyIfStmt
True Positive 100%

False Positive 10% False Positive 0%

IfStmtsMustUseBraces
True Positive 100%

MissingBreakInSwitch
True Positive 100%

False Positive 0% False Positive 0%

LocalVariableCouldBeFinal
True Positive 66.66%

MissingStaticMethodInNonInstantiatableClass
True Positive 100%

False Positive 33.33% False Positive 0%

LocalVariableNamingConventions
True Positive 100%

NonStaticInitializer
True Positive 100%

False Positive 0% False Positive 0%

LongVariable
True Positive 33.33%

NullAssignment
True Positive 100%

False Positive 66.66% False Positive 0%
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TABLE IV: PMD rules that were perceived by students as true positive and false positive, broken down by category, as well

as the percentages of responses for which students accepted/rejected the issues. Cells with 100% acceptance are highlighted

in blue, while cells with 100% rejection are highlighted in red (Cont’d).

Category Rule Metric Ratio Category Rule Metric Ratio

C
od

e
St

yl
e

(C
on

t’d
)

MethodArgumentCouldBeFinal
True Positive 81.81%

ProperLogger
True Positive 100%

False Positive 18.18% False Positive 0%

MethodNamingConventions
True Positive 60%

E
rr

or
Pr

on
e

(C
on

t’d
)

OverrideBothEqualsAndHashcode
True Positive 100%

False Positive 40% False Positive 0%

OnlyOneReturn
True Positive 60%

ReturnEmptyArrayRatherThanNull
True Positive 100%

False Positive 40% False Positive 0%

ShortClassName
True Positive 0%

ReturnEmptyCollectionRatherThanNull
True Positive 100%

False Positive 100% False Positive 0%

ShortMethodName
True Positive 0%

UnconditionalIfStatement
True Positive 100%

False Positive 100% False Positive 0%

ShortVariable
True Positive 80.95%

UseEqualsToCompareStrings
True Positive 100%

False Positive 19.04% False Positive 0%

SuspiciousConstantFieldName
True Positive 100%

AvoidMultipleUnaryOperators
True Positive 50%

False Positive 0% False Positive 50%

TooManyStaticImport
True Positive 100%

DataflowAnomalyAnalysis
True Positive 0%

False Positive 0% False Positive 100%

UnnecessaryConstructor
True Positive 100%

Pe
rf

or
m

an
ce

AddEmptyString
True Positive 75%

False Positive 0% False Positive 25%

UnnecessaryFullyQualifiedName
True Positive 100%

AvoidArrayLoops
True Positive 75%

False Positive 0% False Positive 25%

UnnecessaryImport
True Positive 100%

AvoidFileStream
True Positive 100%

False Positive 0% False Positive 0%

UnnecessaryLocalBeforeReturn
True Positive 100%

AvoidInstantiatingObjectsInLoops
True Positive 83.33

False Positive 0% False Positive 16.66

UnnecessaryModifier
True Positive 80%

AvoidUsingShortType
True Positive 100%

False Positive 20% False Positive 0%

UnnecessaryReturn
True Positive 100%

BooleanInstantiation
True Positive 100%

False Positive 0% False Positive 0%

UseDiamondOperator
True Positive 100%

ConsecutiveAppendsShouldReuse
True Positive 100%

False Positive 0% False Positive 0%

UselessParentheses
True Positive 70%

InefficientEmptyStringCheck
True Positive 100%

False Positive 30% False Positive 0%

UseShortArrayInitializer
True Positive 0%

InefficientStringBuffering
True Positive 100%

False Positive 100% False Positive 0%

VariableNamingConventions
True Positive 75%

InsufficientStringBufferDeclaration
True Positive 100%

False Positive 25% False Positive 0%

D
oc

um
en

ta
tio

n CommentRequired
True Positive 90%

IntegerInstantiation
True Positive 100%

False Positive 10% False Positive 0%

CommentSize
True Positive 27.77%

LongInstantiation
True Positive 100%

False Positive 72.22% False Positive 0%

UncommentedEmptyConstructor
True Positive 100%

OptimizableToArrayCall
True Positive 100%

False Positive 0% False Positive 0%

UncommentedEmptyMethodBody
True Positive 100%

RedundantFieldInitializer
True Positive 100%

False Positive 0% False Positive 0%

M
ul

tit
hr

ea
di

ng

AvoidUsingVolatile
True Positive 50%

SimplifyStartsWith
True Positive 100%

False Positive 50% False Positive 0%

StringInstantiation
True Positive 100%
False Positive 0%

TooFewBranchesForASwitchStatement
True Positive 100%
False Positive 0%

UnnecessaryWrapperObjectCreation
True Positive 100%
False Positive 0%

UseArrayListInsteadOfVector
True Positive 75%
False Positive 25%

UseIndexofChar
True Positive 100%
False Positive 0%

UselessStringValueOf
True Positive 100%
False Positive 0%

UseStringBufferForStringAppends
True Positive 100%
False Positive 0%

conformance when evaluating the quality of code [11], [28].

The next most common categories are ‘Documentation’, ‘Best

Practices’, and ‘Error Prone’, representing 15.8%, 14.2%, and

13.1% of the issues, respectively. This might indicate that stu-

dents have different perspectives on whether developers follow

the best practices, write descriptive enough code comments, or

make code less susceptible to errors. The category ‘Design’,

‘Performance’, and ‘Multithreading’ had the least number of

issues perceived as TP and FP, which had a ratio of 9.9%,

2.8%, and 1.1%, respectively.

Among the 690 analyzed issues, representing 155
distinct PMD rules. Nearly 75% of the rules had 100%
acceptance rate, and only 6% had 100% rejection rate.

B. What category of problems typically takes longer to be
fixed?

By looking at Figure 3, we found issues belonging to

the ‘Design’ and ‘Best Practices’ categories (μ = 7.11

and μ = 3.20, respectively) take more time to be fixed,

compared to the other categories. We speculate that these

185

Authorized licensed use limited to: University of Michigan-Flint. Downloaded on October 01,2024 at 03:14:27 UTC from IEEE Xplore.  Restrictions apply. 



two categories take time to fix as students need to apply

techniques to resolve quality flaws or design issues, including

code smells (e.g., GodClass), and quality attributes (e.g.,
CyclomaticComplexity). This is exemplified in the

assignments undertaken by students to resolve the issues.

Students refactor the code and optimize the design by

performing repackaging, i.e., extracting packages and moving

the classes between these packages, and merging packages

that have classes strongly related to each other. The present

observations are significant in at least two major respects: (1)

improving the quality of packages structure when optimizing

cohesion, coupling, and complexity and (2) avoiding

increasing the size of the large packages and/or merging

packages into larger ones which might have an impact on the

following design rules, namely, CognitiveComplexity,

CyclomaticComplexity, and NPathComplexity.

Further, students might find fixing PMD issues violating best

coding practices to be a challenge when trying to balance

the trade-offs when maintaining efficient code with minimal

errors. The other categories take less time to fix when

comparing the mean (‘Code Style’ = 2.0, ‘Documentation’

= 1.63, ‘Error Prone’ = 2.79, ‘Performance’ = 2.90), which

might possibly hint at an easy resolution of the reported

issues or warnings.

The fact that design issues take significantly longer to be

resolved, reflects a deeper challenge for the students. These

antipatterns are symptoms of poor design or architectural

decisions, requiring students to comprehend the anticipated

design first, in order to scope the symptoms of the antipattern.

Unlike other issues, this requires going beyond one or few

instructions, into reasoning over methods and classes, and how

they are architected. While there is empirical evidence of how

these antipatterns significantly increase the code’s proneness

to errors [29], and hinder program comprehension [30], there

is no consensus on how to detect [31] and correct them [32].

Yet, students are not trained to handle the subjective nature

of the problem, and therefore, it can potentially cause longer

reflection before reaching a refactoring decision.

Similarly to design patterns, being widely adopted in mod-

eling classes [33]–[35], students should also be exposed to

antipatterns. When design patterns are being taught, students

are engaged in identifying key aspects of common design

structure that make it reusable, while adhering to Object-

Oriented design principles. Yet, existing large and complex

systems are known to exhibit the existence of antipatterns

[36]. Therefore, students shall be able to identify symptoms of

bad design and programming practices, i.e., problem-based
learning. This learning paradigm leverages complex real-

world problems (e.g., antipatterns) to vehicle the learning of

concepts (e.g., design principles) [37]. One success criterion of

this paradigm is the ability of problems in motivating students

to propose multiple solutions for their resolution. Antipatterns

challenge students’ design thinking as they reason over their

correction. Since there are multiple refactoring opportunities

associated with each antipattern, students would need to justify

their choices. This can be achieved by measuring design

Best Practices
14.2%

Code Style

43.2%

Design

9.8%

Documentation
15.8%

Error Prone
13.1%

Performance 2.7%
Multithreading 1.1%

Fig. 2: Percentage of issues perceived as true positives and

false positives, clustered by PMD categories.

Fig. 3: Boxplots of time taken to fix issues, clustered by

PMD ruleset categories.

quality, in terms of structural metrics, before and after the

refactoring is implemented. Design evaluation is another as-

pect that students need to develop. Unlike error fixes, where

students can systematically test their code for correctness,

there is no trivial approach to validate the adequacy of a design

change, without proactively measuring its impact on quality.

The existence of multiple potential solutions, to address a

given antipattern, can be leveraged by educators to establish

a cooperative learning assignment. This paradigm allows

students to compare their solutions through the assessment of

refactorings’ impact on antipattern resolution, along with its

impact on software quality.

Design’ and ‘Best Practices’ PMD ruleset categories
take longer time to be resolved.

C. What is the perceived usefulness of PMD?

In Table V, we report the main thoughts, comments, and

suggestions about the overall impression of the usefulness,

usability, functionality, and recommendation of the tool, in ac-
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TABLE V: Student’s insight about the usefulness, usability and functionality of the tool.

Category Sub-category Example (Excerpts from a related student’s comment)

Usefulness

Automation
“The PMD code plugin allows us to automatically run the PMD code analysis tool on our project’s source code and generate a site report
with its results.”

Awareness “It generates several defects with Id, and description which will be helpful for developers to detect any bugs in source code.”

Debugging
“The software is really powerful since it can find and categorize errors throughout the project very comprehensively and systematically in
categories, making the debugging process efficient and effective.”

Efficiency “Bug detection and source code analysis are completed in a matter of seconds.”
Quality “it is great tool for keeping the code clean and maintainable.”

Usability

Documentation
“PMD plugin provides a very detailed explanation about each and every bug listed. It describes how it can be fixed along with an explanation
why it was classified as an issue.”

Ease of use
“The PMD is easy to use and covers a wider range code defects as compared to eclipse IDE. I have found it easy to use and the issue
type are easy to understand.”

Configurability
“I appreciated the custom violations overview window - it clearly gives the PMD plugin moer flexibility over what information is shown
(and how the hierarchy is organized).”

Visualization
“I liked the fact that it had its own view within Eclipse to make it really easy what I’m looking at and to organize all the different issues
that were found. The labels and colors also made it simple to determine the severity of anything that was found by the program so I knew
what I could look at and handle for this assignment reasonably.”

Functionality

Design
“PMD provide a better introduction to the common programming flaws. It also provides possibilities for recognize the complex problems
which insist many flaws.”

Rules
“I also appreciated the violations having very specific, detailed names presented in a clearly standardized fashion. I do like the violation
categories (eg., Urgent, Important, Critical, Blockers, and Warnings), but the color scheme and order of priority significance is not
immediately apparent in the current design.”

Warning severities “A good feature is that they have filter for severity filter for these violations which help to focus on the critical ones.”

Recommendation

Automation “It is very simple and convenient to use. But there are still some shortcomings need manual analysis, but in general very good.”

Correctness

“the reported bugs have two problems: First, the bugs sometimes repeat in reports,[...] maybe they are different at some detail in rules,
but the performed result are identical. Another Problem is too much bugs about conventions in reported bugs. It’s quite excellent to make
standardized name for variables, but in actual developments, especially informatization project, the name of variables should conform
to the meaning, not to the conventions. Both of these two problems could be fixed with rules option, but for real use PMD needs more
improvement.”

Customization
“PMD provides a clear list of issues per file, although there is no straightforward method to group the issues by categories across the
entire project. It is relatively sound and works well for what it is.”

Resolution “Need to provide more fixes as to how developers can proceed in fixing the bug. Found that to be lacking using this tool.”

cordance with the conducted labeling. The table also presents

samples of the students’ comments to illustrate their impres-

sions of each theme.

Usefulness. Generally, the respondents found the tool to

be useful in regard to five main aspects: automation, aware-

ness, debugging, efficiency, and quality. A group of students

commented that the tool’s ability to automatically perform

code analysis on a project’s source code and generate a report

containing information about bugs is useful. Nearly 75% of

the students commented that PMD is intuitive to use and

was efficient to locate software defects, and convenient for

developers to use. Further, 6.42% of students commented that

the tool’s ability to find and categorize errors throughout the

project makes the debugging process efficient and effective.

A few students (12.84%) revealed that the PMD was fast in

terms of analyzing huge and complex software, and identifying

GodClass, and DataClass was one of the perks. 5.5%

of students communicated that detecting the issues assists in

increasing its readability, which helps improve overall code

quality.

Usability. Based on the feedback provided by the students,

the key areas in usability related to documentation, ease of

use, configurability, and visualization. 70% of the students

pointed out the tool is user-friendly and provides meaningful

documentation with examples. Other comments also stated

the tool’s compatibility with various Java build tools, such

as Maven, Ant, and Gradle, etc.

Functionality. According to the students’ feedback about

the tool’s functional features, 60% of the students’ comments

appreciate the idea of the approach and are satisfied with

various aspects of the tool’s operation, and how this feature

helps in better understanding of bad programming practices

in real-world scenarios. Additionally, the students commented

on their ability to practice a variety of strategies to remove

issues. 20.18% of students mentioned that they liked the rule

violation categories, indicated by the tool, and the detailed

descriptions of these violations as they helped them decide

whether or not the code should be fixed or if the detected

issues were acceptable.

Recommendation. From the students’ feedback, we have

also extracted suggestions to improve the tool. 28.3% of

the students’ comments show a couple of suggested changes

as a recommendation to be made to the tool’s operation.

We found out the students pointed out some of the rec-

ommendations related to automation, correctness, customiza-

tion, and resolution. Students recommend the static analy-

sis tool to be integrated with refactoring IDE instead of

manually making those changes, as this feature will provide

will allows developers to leverage built-in, safe refactor-

ing features, instead of performing them manually. Other

students felt that some issues are duplicates (e.g., a stu-

dent reported that LiteralsFirstInComparisons and

PositionLiteralsFirstInComparisons are almost

the same bug issues), and can be clustered, to reduce the

number of suggested fixes. Students also recommended group-

ing the issues by categories across the entire project when

outputting the analysis results, and generating informative

messages and fixes (e.g., enable access to refactoring tools

to resolve static analysis warnings) since some of the flaws

were observed with inexplicable fixes or suggestions. This

observation is in line with previous studies [2], [4] finding

that bad warning messages and no suggested fixes are one

of the pain points reported by industrial software developers

when using program analyzers.
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Overall, the students were satisfied with the PMD and
rated its various aspects positively.

V. REFLECTION

This section provides the lessons learned from both stu-

dents’ and educators’ perspectives. Below, we first discuss

our thoughts as to what went well, and what our plans are

for Spring 2023. Then, we share the main reactions of the

students.

A. Student Perspective

Lesson #1: Learning the best coding practices for software
quality improvement. Running a static analysis tool as an

assignment allows students to learn best coding practices

to improve code quality and make the code less vulnerable

to errors. For example, upon analyzing students’ comments

about the tool, students learn and use refactoring strategies

for code smell resolution and quality improvement. Therefore,

adopting the best practices and sharpening students’ coding

skills further improve development skills as a professional

programmers, and support the characteristics of good code

base health (e.g., maintainability, readability, and understand-

ability).

Lesson #2: Using the static analysis tool as a quick reference
during the code review process. It is fundamentally vital to

expose students to work on open-source projects to provide

them with training to use the code that they did not write

since upon their graduation, they are most likely to work on

existing projects. That is why, this assignment challenges and

trains them to perform code review, which is becoming a

standard practice in the industry [5], [38]–[41]. For instance,

Google [5] and Facebook [41] found that providing developers

with an extensive list of warnings rarely motivates them to

fix them, but reporting warnings during code review improves

the adoption and removal of static analysis warnings. More

specifically, students practice the review of different kinds

of code changes (i.e., functional and non-functional) as it

helps a student to grow as a quality-aware developer. From a

pedagogical perspective, code review is considered an active

learning technique in SE education as it is a team-based ac-

tivity and requires technical knowledge to review and analyze

code [42], [43]. Our first and third research questions show

how students are being challenged in code comprehending

and fixing the issues. To cope with this challenge and develop

students’ critical and analytical skills, educators can consider

applying active learning approach by following activities: (1)

teach best practices for quality improvement, using metrics,

and performing refactorings, (2) provide students with comple-

mentary tools for issues detection and correction, (3) instruct

how to provide constructive criticism to others during code

review, and (4) spread instructions of how to leave useful

descriptive comments. Furthermore, it is necessary to teach

the next generation of software engineering students the best

practices for reviewing code that can result in higher quality

code since, so far, these skills are generally acquired through

experience or training.

B. Educator Perspective

Lesson #1: Creating custom PMD rules to enforce software
engineering principles and good development practices.
Using PMD was beneficial to students as it offers insights

into various optimization possibilities and possible flaws in

the code. According to the student’s comments about the tool,

students are interested in defining their own specific rules

that would benefit their organization or future long-term class

project. Thus, in the next course iteration, we plan to add

scenarios where students are requested to design their own

ruleset and use them to identify what they consider to be

bad coding practices. Also, teachers can support students with

crowd-sourced further PMD rules by mining repositories and

detecting a range of faults in code provided on question-

answering sites like Stack Overflow [19]. Further, since re-

search in code smells mentioned that existing approaches

can be subjectively perceived by developers [44]–[48], it is

essential to translate that to students early enough so they

learn how to customize static analysis tools, and know how to

make their decision about their correction measure.

Lesson #2: Developing complementary assignments. Finding

that reviewing design-related code changes takes longer than

other changes reaffirms the necessity of integrating existing

tools and techniques that can assist students in the code review

process. For this to be successful and not troublesome to the

students, the static analysis assignments can be augmented

with refactoring recommendations (e.g., JDEODORANT 10) and

software metrics (e.g., UNDERSTAND 11) to help students with

creating a pipeline of detecting issues, correcting them, and

measuring the impact of their change in code quality. Since

one of our primary goals is to enhance students’ problem-

solving abilities, we rely on ASAT as a medium for interactive
learning. When students analyze code, ASAT provides po-

tential coding issues that violate coding standards. Therefore,

students are being exposed to violations through examples,

which facilitate their understanding. As students attempt their

fix, they will interactively run the tool to verify the impact

of their changes and close the feedback loop. Moreover, we

noticed that poorly naming the code elements is one of the

main bad naming conventions practices, typically caught by

students when reviewing code changes. Integrating chapters

about naming convention, in the class, would support students

with refactoring bad names.

Lesson #3: Training students for real-world setting. Students

are typically given assignments where specific guidelines are

given about how their work should address the outlined

problems. Our assignment spins off by providing students with

an open-ended problem, where they are given the freedom

to select issues, and the responsibility to properly address

them. It trains students to approach existing systems, and

10https://github.com/tsantalis/JDeodorant
11https://scitools.com/
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carefully choose their changes. Also, students learn how to

justify their choices, either when accepting or denying a given

issue. Furthermore, we observe from Figure 3 that ‘Design’

and ‘Best Practices’ take longer to be resolved due to the fact

that resolving quality issues might require effective correction

measures. To facilitate the resolution time, increase students’

engagement, and improve the team’s code review culture, we

recommend educators implement cooperative learning strat-

egy in the classroom in which students work in small groups to

assist one another in learning the content. This can be achieved

by applying the following tasks: (1) advocate for students to

contribute to an open source project to fix issues as it has

been shown that this helps with improving students’ technical

skills and self-confidence [49], (2) experience students with

coming to a consensus during code review in cases opinions

differ, and (3) engage students in early computing courses in

the peer code review process.

VI. THREATS TO VALIDITY

In this section, we describe potential threats to the validity

of our research method, and the actions we took to mitigate

them.

External Validity. Concerning the generalizability of our

results, our study is limited to 65 submissions. Although

we obtained valuable information and performed accurate

analysis, the results may not represent the larger population of

students that use static analysis tools. However, our participant

pool is of a similar size (56) to the study that analyzed

how industrial and open-source developers engaged with static

analysis tools [3]. Further, our analysis was performed on

mature open-source Java projects that varied in size, contrib-

utors, and number of commits. However, we cannot claim

the generality of our observations to projects written in other

programming languages or belonging to different ecosystems.

Further investigation of even more projects is needed to

mitigate this threat.

Internal and Construct Validity. As for the complete-

ness and correctness of our interpretation of the open-ended

comments about the tool, we did not extensively discuss all

comments because some of them are open to various inter-

pretations, and we need further follow-up interviews to clarify

them. Additionally, to avoid personal bias during the manual

analysis, each step in the manual analysis was conducted by

two authors until reaching a consensus. The choice of PMD,

as a static analysis tool, may introduce some bias to the way

these issues are detected, especially since the detection of

bad programming practices and code smells is known to be

subjective [44]–[48]. Also, students may have had a different

experience, if another tool was selected in this assignment. We

chose PMD as it is one of the popular state-of-the-art tools, but

in future work, we plan on trying other static analysis tools,

to see if they can also reach this level of satisfaction.

Since students are choosing what to fix, they may skip fixing

relevant warnings for other non-technical reasons (e.g., late

assignment submission). However, since the rejection ratio is

low, we believe that students did their best to take the issues

seriously.

VII. CONCLUSION

Understanding the practice of reviewing code to improve

the quality is of paramount importance to education. Although

modern code review is widely adopted in open-source and in-

dustrial projects, the relationship between the usage of ASATs

such as PMD and how students perceive it during code analysis

remains unexplored. In this study, we performed a quantitative

and qualitative study to explore the effectiveness of PMD

in familiarizing students with improving source code, by i)

detecting code issues and antipatterns, and ii) implementing

fixes for their correction. The paper develops the culture of

reviewing and patching unknown code.

Our results reveal that several kinds of ASAT warnings that

students pay more attention to during code review, reviewing

design and best practices related changes take longer to be

completed compared to other changes, and students rated vari-

ous aspects of the tool positively, while also providing valuable

ideas for future development. For future work, we plan on

using other ASATs which will complement and validate our

current study to provide the software engineering community

with a more comprehensive view of the use of ASATs in

order to engage students with software quality improvement

from educator and student perspectives. Moreover, we plan

to investigate students’ understanding of code review practice

using various real-world applications in a semester-long course

project.
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[39] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern code review: a case study at google,” in Proceedings of
the 40th International Conference on Software Engineering: Software
Engineering in Practice, pp. 181–190, 2018.

[40] C. Raibulet, F. A. Fontana, and I. Pigazzini, “Teaching software en-
gineering tools to undergraduate students,” in Proceedings of the 2019
11th International Conference on Education Technology and Computers,
pp. 262–267, 2019.

[41] D. Distefano, M. Fähndrich, F. Logozzo, and P. W. O’Hearn, “Scaling
static analyses at facebook,” Communications of the ACM, vol. 62, no. 8,
pp. 62–70, 2019.

[42] T. B. Hilburn, M. Towhidnejad, and S. Salamah, “Read before you
write,” in 2011 24th IEEE-CS Conference on Software Engineering
Education and Training (CSEE&T), pp. 371–380, IEEE, 2011.

[43] C. Y. Chong, P. Thongtanunam, and C. Tantithamthavorn, “Assessing the
students’ understanding and their mistakes in code review checklists:
an experience report of 1,791 code review checklist questions from
394 students,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering Education and Training
(ICSE-SEET), pp. 20–29, IEEE, 2021.

[44] S. Bryton, F. B. e Abreu, and M. Monteiro, “Reducing subjectivity in
code smells detection: Experimenting with the long method,” in 2010
Seventh International Conference on the Quality of Information and
Communications Technology, pp. 337–342, IEEE, 2010.
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