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Abstract—Static analysis tools are frequently used to scan
the source code and detect deviations from the project coding
guidelines. Given their importance, linters are often introduced to
classrooms to educate students on how to detect and potentially
avoid these code anti-patterns. However, little is known about
their effectiveness in raising students’ awareness, given that these
linters tend to generate a large number of false positives. To
increase the awareness of potential coding issues that violate
coding standards, in this paper, we aim to reflect on our
experience with teaching the use of static analysis for the purpose
of evaluating its effectiveness in helping students with respect to
improving software quality. This paper discusses the results of
an experiment in the classroom, over a period of 3 academic
semesters, involving 65 submissions that carried out code review
activity of 690 rules using PMD. The results of the quantitative
and qualitative analysis show that the presence of a set of PMD
quality issues influences the acceptance or rejection of the issues,
design, and best practices-related categories that take longer time
to be resolved, and students acknowledge the potential of using
static analysis tools during code review. Through this experiment,
code review can turn into a vital part of the educational
computing plan. We envision our findings enabling educators
to support students with code review strategies in order to raise
students’ awareness about static analysis tools and scaffold their
coding skills.

Index Terms—static analysis tool, education, quality

[. INTRODUCTION

Linting is the process of using static analysis tools to
scan the source code and detect coding patterns that are
considered bad programming practices. These patterns can be
responsible for future bugs and stylistic anomalies beyond
compiler errors. Given their importance, linters have been
introduced in classrooms to educate students on detecting and
potentially avoiding these code anti-patterns [1]. However,
little is known about their effectiveness in raising students’
awareness with respect to anti-patterns, given that these linters
tend to generate a large number of false positives [2]—[5].

In this paper, we reflect on the experience of using linters to
support students with their task of debugging and improving
the quality of existing systems. In particular, we require
students to use PMD !, a state-of-the-art static analysis tool, to
detect potential issues in a software system that they did not
implement themselves, and then, for each reported issue, they
reason whether it should be corrected and suggest corrective
action, in the form of a code change, depending on the type
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of issue reported. The pedagogical goals of this assignment
are multiple: 1) Develop the skill of enhancing source code
quality through static analysis. Students will be exposed to
various bad programming practices that they need to reason
on how to address them and suggest corresponding fixes. 2)
Train students to review existing code, using the linter, reason
over its warnings, and only propose a solution if they are
convinced. It trains them to contextualize the problem within
the code scope and document the decision of whether it has to
be fixed. 3) Initiate students with reading and comprehending
code that is not theirs. It prepares them for a more realistic
industrial setting, where they will eventually be reading and
updating existing code bases.

This paper contributes to the broader adoption of static
analysis warnings by (i) designing a practical assignment for
improving the quality of software systems, and (ii) reporting
experience of using the PMD tool in a software quality assur-
ance course that has been taken by 65 graduate students. As
part of this paper’s contributions, we provide the assignment
description and the tool documentation for educators to adopt
and extend 2.

The remainder of this paper is organized as follows: Section
IT reviews the existing studies related to automated static
analysis tools. Section III outlines our experimental setup in
terms of data analysis and research questions. Section IV
discusses our findings, while the reflection is discussed in
Section V. Section VI captures any threats to the validity of
our work, before concluding with Section VII.

II. RELATED WORK

Research on automated static analysis tools (ASAT) has
been important to practitioners, researchers, and educators.
The research community has spent considerable effort studying
static analysis tools from different domains. This literature
has included the usage of ASATSs in the context of bug fixes
[6], [12], [15], quality [7], security [8], [16], code review [9],
[11], [17], defect classification and predication [10], [14], and
technical debt [13]. However, except for [1], [20]-[22], most
of the above studies focus on studying and improving the
effectiveness of using ASAT for open-source communities,
as opposed to our work that focuses on educating students
on locating and fixing software defects. In this section, we

Zhttps://smilevo.github.io/self-affirmed-refactoring/

Authorized licensed use limited to: University of Michigan-Flint. Downloaded on October 01,2024 at 03:14:27 UTC from IEEE Xplore. Restrictions apply.



TABLE I: Related work in automated static analysis tool (ASAT).

Study Year  Context Tool Purpose

Kim & Ernst [6] 2007  Bug fix PMD/FindBugs/JLint Study warning prioritization

Plosch et al. [7] 2008  Quality PMD/FindBugs Study relation between EQA and ASAT

Di Penta et al. [8] 2009  Security Splint/Rats/Pixy Observe evolution and decay of vulnerabilities

Panichella et al. [9] 2015  Code review CheckStyle/PMD Study if ASAT helps with code review

Beller et al. [10] 2016  Defect classification CheckStyle/PMD/FindBugs/JS1 Analyse state of ASAT
Eslint/Jscs/Jshint/Pylint/Rubocop

Singh et al. [11] 2017  Code review PMD Study ASAT helps reducing review efforts

Liu et al. [12] 2018  Bug fix FindBugs Mine fix patterns for FindBugs violations

Digkas et al. [13] 2018  Technical debt SonarQube Fix issues & pay back technical debt

Querel & Rigby [14] 2018  Bug prediction FindBugs/JLint Integrate statistical bug models with ASAT

Marcilio et al. [15] 2019  Bug fix SonarQube Study how developers use SonarQube

Aloraini et al. [16] 2019  Security Rats/Flawfinder/Cppcheck Study warnings generated by ASAT
PVS-Studio/Parasoft/Clang

Trautsch et al. [17] 2020  Code review PMD Study the effect of PMD on quality

Romano et al. [18] 2022  Test-driven development  SonarLint Study if ASAT affects software quality

Licorish & Wagner [19] 2022  Bug fix PMD Detect performance faults

This work Education PMD Support students in enhancing quality with PMD

are only interested in research related to using ASAT. We
summarize these approaches in Table 1.

Kim and Ernst [6] investigated the possibility of leveraging
the removal times for ASAT warning prioritization by utilizing
commit histories of ASAT warnings. Later, Plosch et al. [7]
correlated software quality metrics and defects with warnings
found by various ASATs. The authors utilized three releases
of the eclipse ecosystem and demonstrated correlations for
various aspects, including size, complexity, and object-oriented
software metrics.

In a security-related context, Di Penta et al. [8] performed
an empirical study to extract the history of three open-source
projects and analyze security-related ASAT warnings using
three static code analyzers. In a similar context, Aloraini et
al. [16] analyzed security-related ASAT warnings using 116
open-source projects. Both of these studies concluded that the
warning density of security-related ASAT remains constant
throughout their selected time span.

On the other hand, Beller et al. [10] empirically investigated
the usage of ASAT in open-source projects by focusing on the
prevalence of ASAT and the evolution of the configurations
for different programming languages. In another study, Querel
and Rigby [14] utilized FindBugs and Jlint for bug prediction.
Their main finding revealed the information provided by
the ASAT warnings could improve statistical bug prediction
models. Liu et al. [12] explored ASAT warning over time
by performing a large-scale study using the tool FindBugs
via SonarQube. Their approach identified fix patterns that are
then applied to unfixed warnings. In another study, Digkas
et al. [13] utilized SonarQube to detect ASAT warnings and
their removal strategies. The authors focused on technical
debt and the resolution time assigned by SonarQube to each
detected ASAT warning. Marcilio et al. [15] concentrated on
developer usage of ASAT through SonarQube. They focused
on the active engagement of developers when fixing different
types of issues reported by ASAT. In a similar context,
Licorish & Wagner [19] combined GIN and PMD for code
improvements by focusing on detecting performance faults
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from Stack Overflow code snippets. Their findings show that
static analysis techniques could be combined with program
improvement methods to enhance publicly available code.
Some ASATs are used in the context of code review.
Panichella ef al. [9] studies if ASAT warnings are taken care of
during the code review process. Their main finding indicated
that the density of warnings slightly varies after each code
review. Singh et al. [11] evaluated how ASAT can reduce code
review effort. They investigated the overlap between reviewer
comments on GitHub pull requests and warnings from the tool
PMD. Their finding showed that PMD overlapped with around
16% of reviewer comments. Trautsch et al. [17] performed a
longitudinal study of ASAT warning evolution and the effect
of ASAT on quality. The authors analyzed the commit history
of 54 projects, taking into account 193 PMD rules and 61
PMD releases. They found that significant global changes in
ASAT warnings are mostly related to coding style changes.
Another study relevant to our work is by Romano et al. [18].
The authors [18] studied the benefits of leveraging an ASAT
on software quality in the context of test-driven development
(TDD). Their study reveal that the use of a SonarLint helps
the participants to improve software quality, although the
participants found that TDD is more difficult to be performed.
To summarize, the study of static analysis tools has been
extensively studied (e.g., [18][12] [7]). Since we are focusing
on Java, there are a few widely adopted Java-based open-
source static analysis tools such as CheckStyle 3, FindBugs
4 JLint 5, PMD © and SonarQube ’. The choice of PMD
is motivated by different factors: its widespread use in the
Java community and its maturity (i.e., it is available since
2002 and therefore has been in use for a long time [17]), and
works on the Java source code to find coding style problems,
which is not the case by FindBugs and JLint that work
on byte code and focus on finding programming errors and

3https://checkstyle.sourceforge.io
“http://findbugs.sourceforge.net
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neglecting programming style issues [7]. CheckStyle focuses
more on readability problems compared to PMD, which tends
to highlight suspicious situations in the source code [9].
Further, although there are recent studies that explored the use
of static analysis tools on open-source communities focusing
on how warnings evolve across the software evolution history
[6], [8], [17], this is the first study investigating how PMD
can support students in improving code quality, and reflecting
on how students are using it in the classroom. To advance
the understanding of the practice of learning how to find
and fix bugs, in this paper, we performed a study in an
educational setting using open-source projects having a large
number of issues. This study complements the existing efforts
that are done in open source systems [6]-[19] and in education
[1], [20]-[22], by complementing the quantitative analysis
with a qualitative one, providing evidence of several kinds of
warnings students pay more attention to, during code analysis.

III. STUDY DESIGN

A. Goal & Research Questions

We formulate the main goal of our study based on the Goal
Question Metric template [23], as follows:

Analyze the use of an automated static analysis tool
(ASAT) for the purpose of familiarizing students with
improving source code, by developing the culture of
reviewing unknown code and patching it with respect
to software quality from the point view of educators in
the context of Master’s students in SE/CS who analyze
Java-based software projects.

According to our goal, we aim to answer the following
research questions:

o RQ1. What problems are typically perceived by students
as true positives versus false positives?
Motivation: This RQ aims at evaluating whether students
can apply analytical skills to identify and fix issues in
existing systems. The findings will shed some light on
the feasibility of this learning activity to educate students
to perform effective code reviews and quality control.
Measurement: We examine (1) the types of issues that can
be identified and (2) the PMD ruleset categories that are
perceived by students as a true positive and false positive.

o RQ2. What category of problems typically takes longer
to be fixed?
Motivation: This RQ investigates which PMD ruleset is
taking longer time to be fixed, with respect to other
rulesets. The finding raises educators’ awareness of issues
types that are hard for students to understand and address.
Measurement: We examine the resolution time taken by
students to fix each ruleset, clustered by category.

o RQ3. What is the perceived usefulness of PMD?
Motivation: This RQ explores the tool’s feedback, and
how students perceive PMD in general. The finding will
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Fig. 1: Key phases of our study.

inform educators on the usefulness, usability, and func-
tionality of the tool, and allow them to make decisions
about what ASATS can better support students with code
improvement.

Measurement: We examine students’ feedback. We ex-
tract all their positive and negative comments as they
describe their experience with using PMD.

As part of this paper’s contributions, we provide the as-
signment description, dataset, and tool documentation for
educators to adopt and extend®.

B. Course Overview

Software quality assurance is a graduate course, consisting
of 2 lectures weekly, an hour and 15 minutes each. The
course explores the foundations of software quality and soft-
ware maintenance and introduces several challenges linked
to various aspects of software evolution along with support
tools to approach them. Also, the course covers various
concepts related to software analysis and testing, along with
practical tools, widely used as industry standards. Students
were also given a number of hands-on assignments related
to software quality metrics, code refactoring, bug reporting,
unit and mutation testing, and technical debt management.
The course deliverables consisted of five individual homework
assignments, a research paper reading and presentation, and a
long-term group project.

C. Teaching Context and Participants

The study involves one assignment in the software quality
assurance course. The course was taught at Stevens Institute of
Technology and Rochester Institute of Technology for a period

Shttps://smilevo.github.io/self-affirmed-refactoring/
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of 3 semesters. Before conducting the assignment, students
have already learned about several code, and design quality
concerns: (1) code quality (teaching quality concepts and how
to measure software quality), (2) code smells (teaching bad
programming practices that violate design principles), (3) code
refactoring (teaching refactoring recipes that help improving
software quality), and (4) bug management (teaching software
bugs and how to locate and fix them). The assignment con-
stituted 7.5% of the final grade. It was due 14 days after the
four corresponding sessions.

D. Assignment Content and Format

Initially, students are asked to analyze one version of a JAVA
software of their choice approved by the instructor to ensure its
eligibility based on popularity, besides making sure it correctly
compiles, since PMD requires it. The rationale behind giving
students the choice of project is to let them choose one that
they are comfortable with and that fits into their interests. For
students who do not want to search for a project, they have
given a list that the instructor has already curated (see Table
IT). We selected these projects as we already know they contain
a variety of software defects. Then, students are requested to
set up and run PMD to analyze the chosen project production
code. Students are also given the choice of running either the
stand-alone version of the tool, or one of its plugins associated
with popular IDEs (Eclipse, IntelliJ), as we want the students
to be familiar with the coding environment, and reduce the
setup overhead. Upon running PMD, students are required to
choose a minimum of 10 warnings, and at least one from
each category, if applicable. We enforce the diversification of
warnings, to ensure a wider exposure to different types of
potential issues, varying from design to multithreading, and
documentation. It also increases students’ learning curve as
they cannot reuse their fix to address multiple instances of
the same exact warning. Yet, we allow students to choose the
instances they want to address. It implicitly makes students
read many warnings, from all categories, which increases the
likelihood of incidental learning. Furthermore, letting students
choose the code fragments to review, increases their confidence
in the decision they will make with respect to the given
warning, i.e., either consider it as a true positive, and provide
a code fix, or consider it as a false positive, and provide a
justification. In a nutshell, students followed these steps:

1) Install the PMD.

2) Run PMD on a project of students’ choice and select 10
issues of different types.

Report the findings for each issue: (1) the type of issue,
(2) whether it is a true or a false positive, (3) if it is a
true positive, what are the necessary steps to fix it, (4)
how long it took to check it / fix it, and (5) the code
snippet.

Add to the report a concise comment about the experi-
ence with PMD (optional).

Submissions artifacts’ evaluation was based on 1) assess-
ment of students’ ability to understand the type of issues
(concept understanding (RQ1)); 2) assessment of whether

3)

4)
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students have provided acceptable fixes, or proper justification
in both cases or accepting or rejecting PMD’s recommendation
(program analysis and evolution (RQ2)). Students’ perception
of the code was excluded from the evaluation process, as it can
bias the experiment, as students would be filling out the survey
arbitrarily, under the pressure of being graded. Also, providing
feedback was anonymous and not mandatory, to increase the
magnitude of PMD usage experience (RQ3). Although feed-
back was optional, many students have completed it (92.3%).
Figure 1 depicts an overview of our experiment setup and
execution.

E. Assignment Execution

The assignment was performed over three consecutive
semesters. 65 students, primarily from computer science (CS)
and software engineering (SE) majors, were enrolled during
these semesters and completed the assignment.

FE. Data Analysis

We analyzed the responses to the open-ended question to
create a comprehensive high-level list of themes by adopting
a thematic analysis approach based on guidelines provided
by Cruzes et al. [24]. Thematic analysis is one of the most
used methods in Software Engineering literature [25]-[27].
This is a technique for identifying and recording patterns
(or “themes”) within a collection of descriptive labels, which
we call “codes”. For each response, we proceeded with the
analysis using the following steps: i) Initial reading of the
survey responses; ii) Generating initial codes (i.e., labels)
for each response; iii) Translating codes into themes, sub-
themes, and higher-order themes; iv) Reviewing the themes
to find opportunities for merging; v) Defining and naming the
final themes, and creating a model of higher-order themes
and their underlying evidence. The above-mentioned steps
were performed independently by two authors. One author
performed the labeling of students’ comments independently
from the other author who was responsible for reviewing the
currently drafted themes. By the end of each iteration, the
authors met and refined the themes to reach a consensus. It is
important to note that the approach is not a single-step process.
As the codes were analyzed, some of the first cycle codes were
subsumed by other codes, relabeled, or dropped altogether. As
the two authors progressed in the translation to themes, there
was some rearrangement, refinement, and reclassification of
data into different or new codes. We used the thematic analysis
technique to address RQ3.

IV. RESULTS

A. What problems are typically perceived by students as true
positives versus false positives?

In Tables III and IV, we illustrate PMD rules that are
perceived by students as True Positive (TP) and False Pos-
itive (FP). It is worth noting the diversity of these warn-
ings/violations, i.e., they spread from warnings regarding style,
code practice, and documentation, to warnings dealing with
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TABLE II: The list of open-source projects used in the

assignment.
Project # commits  # contributors Domain
Ant 14,887 64 Java builder
GanttProject 4,361 38 Project management
Hutool 4,074 191 Code design
JCommander 1,009 64 Command line parsing
JFreeChart 4218 24 Data visualization
JHotDraw 804 3 Data visualization
Log4J 12,211 137 Logging
Nutch 3,293 46 Web crawler
Rihno 4,119 80 Script builder
RxJava 6,004 289 Java VM
Xerces 6,463 5 XML parser

design and performance. Thus, upon analyzing students’ as-
signment solutions, we cluster the issues according to the PMD
ruleset categories listed in the PMD official documentation 9
namely, ‘Best Practices’, ‘Code Style’, ‘Design’, ‘Documen-
tation’, ‘Error Prone’, ‘Multithreading’, ‘Performance’, and
‘Security’. These categories were captured at different levels
of granularity (e.g., package, class, method, and attributes). In
the rest of this subsection, we provide a more in-depth analysis
of these categories and the associated PMD rulesets.
Category #1: Best Practices. This category refers to
the rules which enforce generally accepted best practices
that are vital in an overall assessment of software quality.
This category assists students in uncovering code that
might violate main design and coding strategies, or indicate
areas that might consider unnecessarily inefficient or
difficult to maintain. Examples of the rules perceived by
students as true positives include LooseCoupling,
SwitchStmtsShouldHaveDefault, and
JUnitAssertionsShouldIncludeMessage.
Category #2: Code Style. This category refers to the
rules which enforce a specific coding style. Most prominently,
brace and naming rules, consist of good coding practices
regarding code blocks and naming conventions. This can be
illustrated briefly by rules IfStmtsMustUseBraces and
ClassNamingConventions, which shows that it should
be followed by braces even if it is followed only by a single
instruction and class names should be in camel case naming
conventions to improve naming quality in the code and reflect
the actual purpose of the parameters and variables.
Category #3: Design. This category refers to the
rules which help discover design issues. Students
captured design rules that contain best practices
concerning overall code structure. By way of illustration,
AvoidDeeplyNestedIfStmts rule indicates avoiding
deeply nested if statements and GodClass shows the
violation of single responsibility principles that increases the
complexity of the code (e.g., CyclomaticComplexity).
Category #4: Documentation. This category refers to
the rules which are related to code documentation. Doc-
umentation is the description, in natural language, of the
code-level changes and such description is crucial as it re-

“https://pmd.sourceforge.io
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veals the developer’s rationale behind their coding decisions.
CommentRequired rule is a good illustration of this group
and shows that students seem to pay attention to the quality
of the code comments.

Category #5: Error Prone. This category refers to
the rules which detect constructs that are either broken,
extremely confusing, or prone to run time errors. One
of the key aspects to avoid these issues is readability.
If the students refactor the code to be easily read and
understood, there is less chance for misunderstandings
and coding mistakes, and so students spend less time
comprehending code. This is exemplified by error-prone-
related rules such as AvoidDuplicateLiterals and
MissingStaticMethodInNonInstantiatableClass.

Category #6: Multithreading. This category refers to
the rules that flag issues when dealing with multiple
threads of execution. For example, PMD recommends
AvoidUsingVolatile to be avoided as the keyword
‘volatile’ is used to fine-tune a Java application and requires
the expertise of the Java Memory Model.

Category #7: Performance. This category refers to the
rules that flag sub-optimal code. Since performance plays
a vital role, students are encouraged to follow best cod-
ing standard practices such as AvoidArrayLoops and
AvoidInstantiatingObjectsInLoops rules to avoid
degrading the performance of the code.

For our study, we analyzed a total of 690 rules of students’
selected issues violating 155 distinct PMD rules. We found that
89 (57.41%) issues had 100% acceptance rate, while 9 (5.80%)
issues had 100% rejection rate. The remaining had a mix of
acceptance and rejection (36.79%). As can be seen from Tables
IIT and IV, the majority of the violated rules are accepted
and perceived by students as true positives, a few of these
violated rules are rejected and perceived by students as false
positives, and the remaining ones are distributed among both
groups. While our results are not intended to be generalized,
as it requires further experiments with larger sample sizes, our
experience shows the success of PMD in triggering students’
critical thinking about the problems outlined in the issues.
Since students are given a choice to either accept or reject to
address the issue, they can take the easy route of rejecting the
majority of recommendations, as it is easier than accepting
them and performing the necessary fixes. Fortunately, PMD
has successfully attracted them to explore the various types
of problems and provided sufficient documentation for them
not only to comprehend it but also to code the needed fix
for the problem. Moreover, it achieves another goal of our
maintenance class, as it trains students to comprehend and act
on code that they do not own.

Looking at the PMD rules that could play a role in ac-
ceptance and rejection, Figure 2 depicts the percentages of
issues perceived by students as both TP and FP. As can be
seen, the most common PMD ruleset category perceived as
TP and FP concerns ‘Code Style’, representing 43.2% of the
issues. This observation is in line with the findings of previous
studies describing that most code reviewers look for style
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TABLE III: PMD rules that were perceived by students as true positive and false positive, broken down by category, as well
as the percentages of responses for which students accepted/rejected the issues. Cells with 100% acceptance are highlighted
in blue, while cells with 100% rejection are highlighted in red.

Category  Rule Metric Ratio Category  Rule Metric Ratio
AbstractClassWithoutAbstractMethod ;;‘:el;o;::lvfe ﬁ AvoidCatchingGenericException Z;‘llseel;»(::::r\,ee F
ArrayIsStoredDirectly ’Fr;‘l‘:el;:;::l"fe ;827/2 AvoidDeeplyNestedTfStmts g;'f:e};;:s'::\i 0%
AvoidGloballModifier ::‘l’felz’g::::’:e . AvoidRethrowingException I;'I‘:EP:;:::,VVZ 0%_
AvoidMessageDigestField ;:Ti?f::::’:c 0 AvoidThrowingNullPointerException E:‘iﬁ;:i‘:::z 0%_
AvoidPrintstackTrace gﬁ;ﬁiﬁ&xz ggz AvoidThrowingRawExceptionTypes EX;?::E&; ?222%
AvoidReassigningParameters ;;ﬁZizzx;; gg;iz ClassWithOnlyPrivateConstructorsShouldBeFinal ;:ﬁ;?::ﬂs; ggz
AvoidUsingHardCodedIP g;‘l':epp‘:;;:::"fe 0 CognitiveComplexity E{,‘f;ﬁiﬁ;‘f{,ﬂ; F
ForLoopCanBeForEach g‘l’fepp"s;l::’:e . CollapsiblelfStatements E:'fe};;l;ive F
JUnit4TestShouldUseBeforeAnnotation ;:‘l’ipp‘f:“:’fc o CyclomaticComplexity ;:?ff;fj::’i F
JUnitAssertionsShouldIncludeMessage ;;1:81;0;:::/; 0 DataClass ;:lll:ei(fsl::rvee F
JUnitTestContainsTooManyAsserts ’Fr:l‘:el;:;;:iv:e 0 DoNotExtendJavalangError g;'ffe};’;si,‘i;i ?
JUnitTestsShouldIncludeAssert :;ﬂ;ﬁz:gli 0 Excessivelmports l:ﬁ;ﬁ::ﬁx; ZZ@Z?
LiteralsFirstInComparisons I'{:‘I’fepp‘f:“::’fe 0 ExcessiveMethodLength E:?f;;:i‘::;; 0%_

. LooseCoupling ;;‘l‘:cplf;‘“ 0 ExcessivePublicCount ;;';i?;::fc F

? MethodReturnsInternalArray E;ﬁzzg;;x; Z%Z H FinalFieldCouldBeStatic %;ﬁ;z::ﬂxl gg;

¢ Pos 2 Stive

- L ——— s Posve N

2 . T Fostive o't P———YO False Postve_16,66%
PreservestackTrace File Posive__20% LawofDeneter Fale bosiine__16.66%
ReplaceEnumerationWithIterator ;;'l’fer;‘f:::; 0 NPathComplexity E;‘,‘fei‘fiﬂ,vfs F
ReplaceHashtableWithMap ’Fr;‘:eprjgs':"l":e . SignatureDeclareThrowsException :;'1’;};;’:5':3'\1 ?
ReplaceVectorfithList g;‘l‘:el;;'::l":e 28;72 SimplifyBooleanExpressions :;'I‘;PP‘:S'::VL& ?
SwitchStmtsShouldHaveDefault ;:ll’fel;‘f:":’fe ZZZZ SimplifyBooleanReturns Z:?if;z,s::,\:,i 0%—
systenprintln et singularField e Posie. T
e T Fise Positve_ 33.33%
UnusedFormaliaraneter Trwe Posiive ~ I Tooanyvethods Fale o o0t
UnusedTmports :;ﬁ;ﬁz:gx; i?égz UselessOverridingMethod Ex;ﬁz:ﬁx; Zgg
UnusedLocalVariable ;ﬁiﬁg?“:i ?gz UseObjectForClearerAPT EXiszini 0%
UnusedPrivateField e Fosiie H UseUtilityClass ;;?f:;f:::fs 0%
UnusedPrivateMethod ;;T:el;?;:"lvfe ggg:

UseAssertNullInsteadOfAssertTrue g;ﬁ;ﬁ;ign; 0

UseTryWithResources o Positve I

AbstractNaming E;‘l’:el;f’;;l:;’:e % AssignmentInOperand I:Iuseepli)c::tlnvvse gngD
AtLeastOneConstructor ;;ﬁiﬁzf“ye ;gz AvoidFieldNameMatchingMethodName ;:tzsz:ﬁxz ggggz
AvoidFinallocalVariable ;;ﬁ;ﬁgixs; 0% AvoidLiteralsInIfCondition ;Zﬁ;ﬁ::ﬂ;; gg;
Trwe Posiive 0 T e
BooleanGetMethodName g;ﬁ;ﬁ;ig:; ConstructorCallsOverridableMethod ;:ﬂ;ﬁz:ﬂx; ggz
CallSuperInConstructor ;;ﬂ;iz:ﬂxl CloseResource ;Zﬂls::g;i ?ggg%
ClassNamingConventions ;;.;:cl?;gi_ve EmptyihileStmt Z;‘]lif;fs:::ec T
CommentDe faultAccessModifier ;;ﬁiiizxxz LoggerIsNotStaticFinal ;;ﬁ;?:iﬂx; ggé
ControlStatementBraces l;ﬁlﬁ:igxz SuspiciousEqualsMethodName ;:ﬁzzz:ﬂxl ggz
DefaultPackage :;ﬂlﬁgi'xz ggz UnnecessaryCaseChange :Zﬂ;ﬁ%:v ZZZ

:T DontImportJavalang ;;?:cl);ziiliye (]tzﬂ E EmptyCatchBlock lj-::?fcfi:il:::vi Zégf{

3 EmptyMethodInAbst ractClassShouldBeAbstract ;;';:epl,o;"'i‘fe 281;;’ 5 AvoidCatchingThrowable ;;‘;f:;f:::fs F

© FieldNamingConvention ;;‘:;;’;S':"l":e 0% | = AvoidInstanceofChecksInCatchClause :;'l’:e*;f:s':::'\ee ?
FinalParameterInAbstractlethod g;‘l‘:el;i;s':::’:e 28;72 CloneThrowsCloneNot SupportedException IT:;'I';I:;:S'::‘; W
ForLoopsMustUseBraces g;?:el;‘i:g;/fe ?;23 EqualsNull E::‘:ef;;z,.(:j\i,se F
GenericsNaming ;;‘l’fcl:iifi."e 0% EmptyFinallyBlock ;::ififos::ﬁ F
IfElseStmtsMustUseBraces e Fosiie ?8;;: EmptylfStmt ;;lll:el;»(:,ssl::rvee F

[00% ]

IfStmtsMustUseBraces

True Positive
False Positive

LocalVariableCouldBeFinal

True Positive
False Positive

66.66%

33.33%

LocalVariableNamingConventions

True Positive

MissingBreakInSwitch

True Positive
False Positive

0%

MissingStaticMethodInNonInstantiatableClass

True Positive
False Positive

0%

NonStaticInitializer

True Positive

0%

False Positive 0% False Positive
. True Positive 33.33% . True Positive
Longvariable False Positive  66.66% Nullhssignnent False Positive
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TABLE IV: PMD rules that were perceived by students as true positive and false positive, broken down by category, as well
as the percentages of responses for which students accepted/rejected the issues. Cells with 100% acceptance are highlighted
in blue, while cells with 100% rejection are highlighted in red (Cont’d).

Categor Rule Metric Ratio Categor Rule Metric Ratio
gory gory
. True Positive 81.81% True Positive -
MethodArgumentCouldBeFinal False Positive  18.18% ProperLogger False Positive 0%
. . True Positive 60% . True Positive  |D0EEN
MethodNamingConventions False Positive 40% OverrideBothEqualsAndHashcode False Positive 0%
True Positive 60% <) True Positive  |IN0EEN
OnlyOneReturn False Positive 40% E ReturnEmptyArrayRatherThanNull False Positive 0%
ShortClassName True POSI.".Ve V% 2 ReturnEmptyCollectionRatherThanNull True P051}1ye _
False Positive 2 False Positive 0%
ShortMethodName True POSI.“.Ve £ UnconditionalIfStatement True POSI.“.Ve _
False Positive A False Positive 0%
. True Positive ~ 80.95% | 5 ; True Positive  |ID0EEN
ShortVariable False Positive 19.04% 5 UseEqualsToCompareStrings False Positive 0%
. . True Positive . . True Positive 50%
_ SuspiciousConstantFieldName False Positive AvoidMultipleUnaryOperators False Positive  50%
2 : True Positive ‘ True Positive 0%
g TooManyStaticImport False Positive DataflowAnomalyAnalysis False Positive _
< True Positive True Positive  75%
;'; UnnecessaryConstructor False Positive AddEmptyString False Positive 25%
= e = 7
ﬁ UnnecessaryFullyQualifiedName ;:i‘see};);;i‘:iv\?e AvoidArrayLoops l’I::.]i]seePPf)(:;iltliv\?e ;géz
= — —
14 True Positive o True Positive  |D0EEN
&) UnnecessaryImport False Positive AvoidFileStream False Positive 0%
UnnecessaryLocalBeforeReturn ;ﬁ:e?::::i\fe 0% AvoidInstantiatingObjectsInLoops g;?:el;);:it:ivje ?222
. True Positive 80% ; ) True Positive  |ID0EEN
UnnecessaryModifier False Positive 20% AvoidUsingShortType False Positive 0%
True Positive . True Positive  |N0EEN
UnnecessaryReturn False Positive 0% BooleanInstantiation False Positive 0%
. True Positive . True Positive | INIDOEEN
UseDiamondOperator False Positive 0% ConsecutiveAppendsShouldReuse False Positive 0%
True Positive 70% . True Positive  |ID0EEN
UselessParentheses False Positive 30% InefficientEmptyStringCheck False Positive 0%
s True Positive 0% . . . True Positive | INIDOEEN
UseShortArrayInitializer False Positive InefficientStringBuffering False Positive 0%
) ) ; True Positive 75% . ) ) True Positive  |ID0EEN
VariableNamingConventions False Positive 25% InsufficientStringBufferDeclaration False Positive 0%
. True Positive 90% 8 . True Positive  |ID0EEN
g CommentRequired False Positive 10% é IntegerInstantiation False Positive 0%
b= True Positive  27.77% True Positive  |D0EEN
= . C
g commentSize False Positive ~ 72.22% “E LongInstantiation False Positive 0%
g True Positive & . True Positive | D0EEN
§ UncommentedEmptyConstructor False Positive 0% OptimizableToArrayCall False Positive 0%
2 True Positive ) . True Positive | INIDOEEN
UncommentedEmptyMethodBody False Positive 0% RedundantFieldInitializer False Positive 0%
. . . True Positive 50% . . . True Positive  |N0EEN
AvoidUsingVolatile False Positive 50% SimplifyStartsWith False Positive 0%
. L True Positive | INDOEEN
StringInstantiation False Positive 0%
g TooFewBranchesForASwitchStatement True Posmye _
;5 False Positive 0%
1 . ; True Positive | N0EEN
I ogs
£ UnnecessaryWrapperObjectCreation False Positive 0%
= e
b= True Positive  75%
= .
§ UseArrayListInsteadOfVector False Positive  25%
True Positive  |D0EEN
UselndexofChar False Positive 0%
. True Positive  |ID0EEN
UselessStringValueOf False Positive 0%
. ) True Positive  |N0EEN
UseStringBufferForStringAppends False Positive 0%

conformance when evaluating the quality of code [11], [28].
The next most common categories are ‘Documentation’, ‘Best
Practices’, and ‘Error Prone’, representing 15.8%, 14.2%, and
13.1% of the issues, respectively. This might indicate that stu-
dents have different perspectives on whether developers follow
the best practices, write descriptive enough code comments, or
make code less susceptible to errors. The category ‘Design’,
‘Performance’, and ‘Multithreading’ had the least number of
issues perceived as TP and FP, which had a ratio of 9.9%,
2.8%, and 1.1%, respectively.

185

Among the 690 analyzed issues, representing 155
distinct PMD rules. Nearly 75% of the rules had 100%
acceptance rate, and only 6% had 100% rejection rate.

B. What category of problems typically takes longer to be
fixed?

By looking at Figure 3, we found issues belonging to
the ‘Design’ and ‘Best Practices’ categories (u 7.11
and p = 3.20, respectively) take more time to be fixed,
compared to the other categories. We speculate that these
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two categories take time to fix as students need to apply
techniques to resolve quality flaws or design issues, including
code smells (e.g., GodClass), and quality attributes (e.g.,
CyclomaticComplexity). This is exemplified in the
assignments undertaken by students to resolve the issues.
Students refactor the code and optimize the design by
performing repackaging, i.e., extracting packages and moving
the classes between these packages, and merging packages
that have classes strongly related to each other. The present
observations are significant in at least two major respects: (1)
improving the quality of packages structure when optimizing
cohesion, coupling, and complexity and (2) avoiding
increasing the size of the large packages and/or merging
packages into larger ones which might have an impact on the
following design rules, namely, CognitiveComplexity,
CyclomaticComplexity, and NPathComplexity.
Further, students might find fixing PMD issues violating best
coding practices to be a challenge when trying to balance
the trade-offs when maintaining efficient code with minimal
errors. The other categories take less time to fix when
comparing the mean (‘Code Style’ = 2.0, ‘Documentation’
= 1.63, ‘Error Prone’ = 2.79, ‘Performance’ = 2.90), which
might possibly hint at an easy resolution of the reported
issues or warnings.

The fact that design issues take significantly longer to be
resolved, reflects a deeper challenge for the students. These
antipatterns are symptoms of poor design or architectural
decisions, requiring students to comprehend the anticipated
design first, in order to scope the symptoms of the antipattern.
Unlike other issues, this requires going beyond one or few
instructions, into reasoning over methods and classes, and how
they are architected. While there is empirical evidence of how
these antipatterns significantly increase the code’s proneness
to errors [29], and hinder program comprehension [30], there
is no consensus on how to detect [31] and correct them [32].
Yet, students are not trained to handle the subjective nature
of the problem, and therefore, it can potentially cause longer
reflection before reaching a refactoring decision.

Similarly to design patterns, being widely adopted in mod-
eling classes [33]-[35], students should also be exposed to
antipatterns. When design patterns are being taught, students
are engaged in identifying key aspects of common design
structure that make it reusable, while adhering to Object-
Oriented design principles. Yet, existing large and complex
systems are known to exhibit the existence of antipatterns
[36]. Therefore, students shall be able to identify symptoms of
bad design and programming practices, i.e., problem-based
learning. This learning paradigm leverages complex real-
world problems (e.g., antipatterns) to vehicle the learning of
concepts (e.g., design principles) [37]. One success criterion of
this paradigm is the ability of problems in motivating students
to propose multiple solutions for their resolution. Antipatterns
challenge students’ design thinking as they reason over their
correction. Since there are multiple refactoring opportunities
associated with each antipattern, students would need to justify
their choices. This can be achieved by measuring design

Documentation

Performance 2.7%
Multithreading 1.1%

Code Style
43.2%

Fig. 2: Percentage of issues perceived as true positives and
false positives, clustered by PMD categories.
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Fig. 3: Boxplots of time taken to fix issues, clustered by
PMD ruleset categories.

quality, in terms of structural metrics, before and after the
refactoring is implemented. Design evaluation is another as-
pect that students need to develop. Unlike error fixes, where
students can systematically test their code for correctness,
there is no trivial approach to validate the adequacy of a design
change, without proactively measuring its impact on quality.
The existence of multiple potential solutions, to address a
given antipattern, can be leveraged by educators to establish
a cooperative learning assignment. This paradigm allows
students to compare their solutions through the assessment of
refactorings’ impact on antipattern resolution, along with its
impact on software quality.

Design’ and ‘Best Practices’ PMD ruleset categories
take longer time to be resolved.

C. What is the perceived usefulness of PMD?

In Table V, we report the main thoughts, comments, and
suggestions about the overall impression of the usefulness,
usability, functionality, and recommendation of the tool, in ac-
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TABLE V: Student’s insight about the usefulness, usability and functionality of the tool.

“The PMD code plugin allows us to automatically run the PMD code analysis tool on our project’s source code and generate a site report

“It generates several defects with Id, and description which will be helpful for developers to detect any bugs in source code.”
“The software is really powerful since it can find and categorize errors throughout the project very comprehensively and systematically in

“PMD plugin provides a very detailed explanation about each and every bug listed. It describes how it can be fixed along with an explanation
“The PMD is easy to use and covers a wider range code defects as compared to eclipse IDE. I have found it easy to use and the issue
“I appreciated the custom violations overview window - it clearly gives the PMD plugin moer flexibility over what information is shown

“[ liked the fact that it had its own view within Eclipse to make it really easy what I'm looking at and to organize all the different issues
that were found. The labels and colors also made it simple to determine the severity of anything that was found by the program so I knew

“PMD provide a better introduction to the common programming flaws. It also provides possibilities for recognize the complex problems

“I also appreciated the violations having very specific, detailed names presented in a clearly standardized fashion. I do like the violation
categories (eg., Urgent, Important, Critical, Blockers, and Warnings), but the color scheme and order of priority significance is not

“A good feature is that they have filter for severity filter for these violations which help to focus on the critical ones.”

“It is very simple and convenient to use. But there are still some shortcomings need manual analysis, but in general very good.”

“the reported bugs have two problems: First, the bugs sometimes repeat in reports,|...] maybe they are different at some detail in rules,
but the performed result are identical. Another Problem is too much bugs about conventions in reported bugs. It’s quite excellent to make
standardized name for variables, but in actual developments, especially informatization project, the name of variables should conform
to the meaning, not to the conventions. Both of these two problems could be fixed with rules option, but for real use PMD needs more

“PMD provides a clear list of issues per file, although there is no straightforward method to group the issues by categories across the

Category Sub-category Example (Excerpts from a related student’s comment)
Automation . .
with its results.
Awareness
Usefulness Debuggin, g . X I L
seing categories, making the debugging process efficient and effective.
Efficiency “Bug detection and source code analysis are completed in a matter of seconds.”
Quality “it is great tool for keeping the code clean and maintainable.”
D tati . s f »
ocumentation why it was classified as an issue.
Ease of use I
type are easy to understand.
ili nfigurabili . . . »
Usability Configurability (and how the hierarchy is organized).
Visualization
what I could look at and handle for this assignment reasonably.”
Design P .
e which insist many flaws.
Functionality Rules
immediately apparent in the current design.”
Warning severities
Automation
Correctness
Recommendation N &
improvement.
Customization . . 3 . e
entire project. It is relatively sound and works well for what it is.
Resolution

“Need to provide more fixes as to how developers can proceed in fixing the bug. Found that to be lacking using this tool.”

cordance with the conducted labeling. The table also presents
samples of the students’ comments to illustrate their impres-
sions of each theme.

Usefulness. Generally, the respondents found the tool to
be useful in regard to five main aspects: automation, aware-
ness, debugging, efficiency, and quality. A group of students
commented that the tool’s ability to automatically perform
code analysis on a project’s source code and generate a report
containing information about bugs is useful. Nearly 75% of
the students commented that PMD is intuitive to use and
was efficient to locate software defects, and convenient for
developers to use. Further, 6.42% of students commented that
the tool’s ability to find and categorize errors throughout the
project makes the debugging process efficient and effective.
A few students (12.84%) revealed that the PMD was fast in
terms of analyzing huge and complex software, and identifying
GodClass, and DataClass was one of the perks. 5.5%
of students communicated that detecting the issues assists in
increasing its readability, which helps improve overall code
quality.

Usability. Based on the feedback provided by the students,
the key areas in usability related to documentation, ease of
use, configurability, and visualization. 70% of the students
pointed out the tool is user-friendly and provides meaningful
documentation with examples. Other comments also stated
the tool’s compatibility with various Java build tools, such
as Maven, Ant, and Gradle, etc.

Functionality. According to the students’ feedback about
the tool’s functional features, 60% of the students’ comments
appreciate the idea of the approach and are satisfied with
various aspects of the tool’s operation, and how this feature
helps in better understanding of bad programming practices
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in real-world scenarios. Additionally, the students commented
on their ability to practice a variety of strategies to remove
issues. 20.18% of students mentioned that they liked the rule
violation categories, indicated by the tool, and the detailed
descriptions of these violations as they helped them decide
whether or not the code should be fixed or if the detected
issues were acceptable.

Recommendation. From the students’ feedback, we have
also extracted suggestions to improve the tool. 28.3% of
the students’ comments show a couple of suggested changes
as a recommendation to be made to the tool’s operation.
We found out the students pointed out some of the rec-
ommendations related to automation, correctness, customiza-
tion, and resolution. Students recommend the static analy-
sis tool to be integrated with refactoring IDE instead of
manually making those changes, as this feature will provide
will allows developers to leverage built-in, safe refactor-
ing features, instead of performing them manually. Other
students felt that some issues are duplicates (e.g., a stu-
dent reported that LiteralsFirstInComparisons and
PositionLiteralsFirstInComparisons are almost
the same bug issues), and can be clustered, to reduce the
number of suggested fixes. Students also recommended group-
ing the issues by categories across the entire project when
outputting the analysis results, and generating informative
messages and fixes (e.g., enable access to refactoring tools
to resolve static analysis warnings) since some of the flaws
were observed with inexplicable fixes or suggestions. This
observation is in line with previous studies [2], [4] finding
that bad warning messages and no suggested fixes are one
of the pain points reported by industrial software developers
when using program analyzers.
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Overall, the students were satisfied with the PMD and
rated its various aspects positively.

V. REFLECTION

This section provides the lessons learned from both stu-
dents’ and educators’ perspectives. Below, we first discuss
our thoughts as to what went well, and what our plans are
for Spring 2023. Then, we share the main reactions of the
students.

A. Student Perspective

Lesson #1: Learning the best coding practices for software
quality improvement. Running a static analysis tool as an
assignment allows students to learn best coding practices
to improve code quality and make the code less vulnerable
to errors. For example, upon analyzing students’ comments
about the tool, students learn and use refactoring strategies
for code smell resolution and quality improvement. Therefore,
adopting the best practices and sharpening students’ coding
skills further improve development skills as a professional
programmers, and support the characteristics of good code
base health (e.g., maintainability, readability, and understand-
ability).

Lesson #2: Using the static analysis tool as a quick reference
during the code review process. It is fundamentally vital to
expose students to work on open-source projects to provide
them with training to use the code that they did not write
since upon their graduation, they are most likely to work on
existing projects. That is why, this assignment challenges and
trains them to perform code review, which is becoming a
standard practice in the industry [5], [38]-[41]. For instance,
Google [5] and Facebook [41] found that providing developers
with an extensive list of warnings rarely motivates them to
fix them, but reporting warnings during code review improves
the adoption and removal of static analysis warnings. More
specifically, students practice the review of different kinds
of code changes (i.e., functional and non-functional) as it
helps a student to grow as a quality-aware developer. From a
pedagogical perspective, code review is considered an active
learning technique in SE education as it is a team-based ac-
tivity and requires technical knowledge to review and analyze
code [42], [43]. Our first and third research questions show
how students are being challenged in code comprehending
and fixing the issues. To cope with this challenge and develop
students’ critical and analytical skills, educators can consider
applying active learning approach by following activities: (1)
teach best practices for quality improvement, using metrics,
and performing refactorings, (2) provide students with comple-
mentary tools for issues detection and correction, (3) instruct
how to provide constructive criticism to others during code
review, and (4) spread instructions of how to leave useful
descriptive comments. Furthermore, it is necessary to teach
the next generation of software engineering students the best
practices for reviewing code that can result in higher quality
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code since, so far, these skills are generally acquired through
experience or training.

B. Educator Perspective

Lesson #1: Creating custom PMD rules to enforce software
engineering principles and good development practices.
Using PMD was beneficial to students as it offers insights
into various optimization possibilities and possible flaws in
the code. According to the student’s comments about the tool,
students are interested in defining their own specific rules
that would benefit their organization or future long-term class
project. Thus, in the next course iteration, we plan to add
scenarios where students are requested to design their own
ruleset and use them to identify what they consider to be
bad coding practices. Also, teachers can support students with
crowd-sourced further PMD rules by mining repositories and
detecting a range of faults in code provided on question-
answering sites like Stack Overflow [19]. Further, since re-
search in code smells mentioned that existing approaches
can be subjectively perceived by developers [44]-[48], it is
essential to translate that to students early enough so they
learn how to customize static analysis tools, and know how to
make their decision about their correction measure.

Lesson #2: Developing complementary assignments. Finding
that reviewing design-related code changes takes longer than
other changes reaffirms the necessity of integrating existing
tools and techniques that can assist students in the code review
process. For this to be successful and not troublesome to the
students, the static analysis assignments can be augmented
with refactoring recommendations (e.g., JDEODORANT ') and
software metrics (e.g., UNDERSTAND '!) to help students with
creating a pipeline of detecting issues, correcting them, and
measuring the impact of their change in code quality. Since
one of our primary goals is to enhance students’ problem-
solving abilities, we rely on ASAT as a medium for interactive
learning. When students analyze code, ASAT provides po-
tential coding issues that violate coding standards. Therefore,
students are being exposed to violations through examples,
which facilitate their understanding. As students attempt their
fix, they will interactively run the tool to verify the impact
of their changes and close the feedback loop. Moreover, we
noticed that poorly naming the code elements is one of the
main bad naming conventions practices, typically caught by
students when reviewing code changes. Integrating chapters
about naming convention, in the class, would support students
with refactoring bad names.

Lesson #3: Training students for real-world setting. Students
are typically given assignments where specific guidelines are
given about how their work should address the outlined
problems. Our assignment spins off by providing students with
an open-ended problem, where they are given the freedom
to select issues, and the responsibility to properly address
them. It trains students to approach existing systems, and

1Ohttps://github.com/tsantalis/JTDeodorant
https://scitools.com/
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carefully choose their changes. Also, students learn how to
justify their choices, either when accepting or denying a given
issue. Furthermore, we observe from Figure 3 that ‘Design’
and ‘Best Practices’ take longer to be resolved due to the fact
that resolving quality issues might require effective correction
measures. To facilitate the resolution time, increase students’
engagement, and improve the team’s code review culture, we
recommend educators implement cooperative learning strat-
egy in the classroom in which students work in small groups to
assist one another in learning the content. This can be achieved
by applying the following tasks: (1) advocate for students to
contribute to an open source project to fix issues as it has
been shown that this helps with improving students’ technical
skills and self-confidence [49], (2) experience students with
coming to a consensus during code review in cases opinions
differ, and (3) engage students in early computing courses in
the peer code review process.

VI. THREATS TO VALIDITY

In this section, we describe potential threats to the validity
of our research method, and the actions we took to mitigate
them.

External Validity. Concerning the generalizability of our
results, our study is limited to 65 submissions. Although
we obtained valuable information and performed accurate
analysis, the results may not represent the larger population of
students that use static analysis tools. However, our participant
pool is of a similar size (56) to the study that analyzed
how industrial and open-source developers engaged with static
analysis tools [3]. Further, our analysis was performed on
mature open-source Java projects that varied in size, contrib-
utors, and number of commits. However, we cannot claim
the generality of our observations to projects written in other
programming languages or belonging to different ecosystems.
Further investigation of even more projects is needed to
mitigate this threat.

Internal and Construct Validity. As for the complete-
ness and correctness of our interpretation of the open-ended
comments about the tool, we did not extensively discuss all
comments because some of them are open to various inter-
pretations, and we need further follow-up interviews to clarify
them. Additionally, to avoid personal bias during the manual
analysis, each step in the manual analysis was conducted by
two authors until reaching a consensus. The choice of PMD,
as a static analysis tool, may introduce some bias to the way
these issues are detected, especially since the detection of
bad programming practices and code smells is known to be
subjective [44]-[48]. Also, students may have had a different
experience, if another tool was selected in this assignment. We
chose PMD as it is one of the popular state-of-the-art tools, but
in future work, we plan on trying other static analysis tools,
to see if they can also reach this level of satisfaction.

Since students are choosing what to fix, they may skip fixing
relevant warnings for other non-technical reasons (e.g., late
assignment submission). However, since the rejection ratio is
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low, we believe that students did their best to take the issues
seriously.

VII. CONCLUSION

Understanding the practice of reviewing code to improve
the quality is of paramount importance to education. Although
modern code review is widely adopted in open-source and in-
dustrial projects, the relationship between the usage of ASATs
such as PMD and how students perceive it during code analysis
remains unexplored. In this study, we performed a quantitative
and qualitative study to explore the effectiveness of PMD
in familiarizing students with improving source code, by i)
detecting code issues and antipatterns, and ii) implementing
fixes for their correction. The paper develops the culture of
reviewing and patching unknown code.

Our results reveal that several kinds of ASAT warnings that
students pay more attention to during code review, reviewing
design and best practices related changes take longer to be
completed compared to other changes, and students rated vari-
ous aspects of the tool positively, while also providing valuable
ideas for future development. For future work, we plan on
using other ASATs which will complement and validate our
current study to provide the software engineering community
with a more comprehensive view of the use of ASATs in
order to engage students with software quality improvement
from educator and student perspectives. Moreover, we plan
to investigate students’ understanding of code review practice
using various real-world applications in a semester-long course
project.
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