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Abstract—Integrating brain images and genetic data provides
a great opportunity to discover potential biomarkers for neuro-
logical disorder diagnosis. However, learning genetic information
and brain network dysfunction remains a challenging task. In
this paper, we propose an interpretable multi-modal imaging and
genetic graph convolution network (GCN) for Alzheimer’s disease
diagnosis. Our genetic network uses hierarchical GCN to mimic
a gene ontology-based graph of biological processes and learn the
information flow in this graph. In parallel, our imaging network
uses a sparse interpretable GCN with node and edge importance
probabilities to learn the brain network from multi-modal im-
ages. After multi-modal fusion, the final representation guided
by a cluster-based consistency constraint is used to predict the
disease-related clinical measures. We evaluate our method on the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.
Our result shows that our imaging-genetics framework achieves
superior prediction performance compared to all state-of-the-art
methods. The interpretation demonstrated that the salient SNPs,
and salient regions interpreted by important probabilities were
significantly correlated with AD-related clinical symptoms, and
considerably important for developing novel biomarkers. The
code is available at https://github.com/Houliang-Zhou/IG-GCN.

Index Terms—Graph convolutional network, imaging genetics,
multi-modality, neuroimaging, sparse interpretation

I. INTRODUCTION

Imaging-genetics is an emerging field that facilitates
Alzheimer’s disease (AD) diagnosis by merging both imag-
ing and genetic features [1], [2]. The imaging features are
extracted from the magnetic resonance imaging (MRI) or
positron emission tomography (PET) modalities [3], and the
genetic variants are detected from Single Nucleotide Poly-
morphisms (SNPs) [2]. In recent years, various methods have
been proposed to analyze the imaging-genetics. On the one

* Corresponding author.

1004

4™ Li Shen
Biostatistics, Epidemiology and Informatics
University of Pennsylvania
PA, USA
li.shen @pennmedicine.upenn.edu

2" Yu Zhang
Bioengineering, and Electrical and Computer Engineering
Lehigh University
PA, USA
yuzi20@lehigh.edu

5" Brian Y. Chen*
Computer Science and Engineering
Lehigh University
PA, USA
byc210@Ilehigh.edu

hand, Du et al. proposed a multitask sparse canonical corre-
lation analysis (MTSCCALR) to detect genetic associations
with imaging phenotypes in AD [1]. However, they don’t
consider the non-linear relationships and don’t provide the
intrinsic interpretation for Imaging-genetic biomarkers. On
the other hand, Zuo et al. used the concrete autoencoder to
identify consistent imaging genomic biomarkers [4]. However,
autoencoder-based methods don’t consider the information
about interactions between a multitude of genetic variants
that interact through various biological processes. In genetics,
some studies have connected SNPs and genes to diverse
biological processes [5], [6]. Gaudelet et al. built an artificial
neural network with genetic risk from biological processes
to predict phenotypic variables [6]. Such neural networks
fail to consider the hierarchical and interconnected nature of
biological processes. Ghosal et al. designed an interpretable
genetic and imaging graph neural network (GUIDE) based
on the gene ontology hierarchy for schizophrenia analysis
[7]. However, the GUIDE ignores the connective abnormality
between ROIs from images, which limits the ability of Graph
convolutional network (GCN) to learn neuroimaging dysfunc-
tions. Therefore, a GCN-based method to learn neuroimaging
connectivity dysfunction and capture interconnected genetic
variants from gene ontology hierarchy is a need for analyzing
neurological disorders like AD.

In this paper, we propose an interpretable multi-modal
imaging and genetic graph convolution framework shown in
Fig. 1 to jointly regress three typical AD-related clinical
scores, including Mini-Mental State Examination (MMSE),
Alzheimer’s Disease Assessment Score 13 (ADAS13), and Tau
for Alzheimer’s disease diagnosis. Our experiments show that
the scores predicted by ours correlate significantly with these
clinical measures. Our main contributions include:
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Fig. 1.

An overview of the proposed framework for Alzheimer’s diagnosis and imaging genetic biomarker interpretation. The box a of the framework

illustrates the gene ontology-based hierarchical graph attention network with SNPs importance probability Pg to learn the SNPs information. The box b of
the framework illustrates a sparse interpretable graph convolutional network with node importance probability Py and edge importance probability P4 to

learn the multi-modal brain images.

o The first application of using gene ontology-based hierar-
chical GCN to capture information flow through hierarchy
and identify the key genetic variants in AD diagnosis.

o The first integration of multi-modal brain imaging and
genetic variants by building interpretable and hierarchical
GCN for imaging-genetic biomarker identification.

o The extension of interpretable GCN model with impor-
tance probabilities to discover the important SNPs and the
discriminative ROIs under multi-modal imaging-genetics.

II. METHODS
A. Data Acquisition

In this work, we evaluated our framework on the public
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset
[8]. These brain imaging genetic data were gathered from 874
non-Hispanic Caucasian participants, including 199 HC, 524
MCI, and 151 AD subjects. The dataset includes genetic vari-
ants detected from Single Nucleotide Polymorphisms (SNPs)
and brain images consisting of three modalities including
structural Magnetic Resonance Imaging (VBM-MRI), 18F-
fluorodeoxyglucose Positron Emission Tomography (FDG-
PET), and 18F-florbetapir PET (AV45-PET) scans. In the ge-
netic data, we included 54 SNPs collected from the neighbors
of the major AD risk factor APOE based on the ANNOVAR.

B. Gene Ontology-based Hierarchical Graph on Genetics

1) Important Probabilities to Interpret Genetic Biomarkers:
The top portion of Fig. 1 illustrates the gene ontology-
based hierarchical graph attention module to learn genetic
information. The mechanism of this graph is based on the gene
ontological hierarchy [9]. Specifically, we group the SNPs
into the related genes, and further map these genes into their
biological processes to build the graph, where we regard the
biological process as a node. Mathematically, inputs are the
SNPs information g € R*S for each subject, where S is

1005

the number of SNPs. We define the relation from SNPs to
biological processes as a sparse matrix M, € RT*S where
T is the number of biological processes. In order to find the
important SNPs that contribute most to disease prediction, we
define the learnable SNPs important probabilities Ps € R
with sigmoid function. We learn the projection of the important
SNPs onto 7' graph nodes. The node signal in the graph is a
d-dimensional feature vector, X, € RT*4,

Xy = ReLU((My © P§)W,) (1)

where W, ¢ RS*4 js the learnable parameters and ©
denotes the Hadamard element-wise product.

2) Attention-based Hierarchical Graph Learning: We
leveraged an attention-based GCN to mimic the flow of
hierarchical information from biological processes. We use the
attention mechanism to learn the weights that select the most
discriminative edges for each node. Specifically, we define the
edge weight between child node ¢ and its parent node j at
convolutional layer [ as

i) — e OWIXL G WB)
S ot (XL WXL () WTBD)
2
where X é (j) is the feature vector for node j at layer I,
W e Ruxdit1 and b! € R24+1%1 are the learnable param-
eters, « is the activation function, and || is the concatenation
function. Finally, we coarsen the graph by hierarchical pooling
to learn the genetic embedding.

C. Sparse Interpretable GCN on Multi-Modal Images

In neuroimages, we concatenated multiple modalities into
the ROI’s feature vector. We define an adjacency matrix
A € RV*N using the Gaussian similarity and feature matrix
X € RVXDP where N is the number of ROIs and D is
the dimension of multi-modal features. To identify important
subset X, and subgraph G that have the greatest impact on
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disease prediction, we introduce a shared multi-modal feature
importance probability Px, and the edge importance proba-
bility P4 between nodes within each subject. Mathematically,
we denote the important subgraph as Gy, = A ® P, and the
important subset of multi-modal features as X, = X © Px.

Given that the diverse modalities of ROIs have varying
impacts on disease prediction, the multi-modal feature im-
portance probability is defined as Px € RV*P and Px =
[p1, P2, ...,PN], where p; € RP, 1 < i < N, represents
the feature importance probability for ith ROI. Because the
ROI's multi-modal features are highly associated with the
strength of their connections, we build the edge importance
probability P4 € RY*Y between node i and j based on the
joint connection between features x; and x;:

Pa 3)

where p; represents the feature importance probability for
ith node, v € R2P denotes the learnable parameter. Later, we
use cross-attention to fuse imaging and genetic embedding.

= o(v"[z; © pillz; © p;])

i J

D. Loss Function

In this section, we define the mean square error loss to
regress the clinical scores and determine the SNPs, ROIs,
and edge importance probabilities. Specifically, we train our
model and find the Pg, Px and P4 by minimizing the mean
square error between the true y and the predictive output §
learned by our imaging genetic framework. Assuming there is
M subjects, the mean square error 10ss L4, is expressed as:

1M
Eregr = M Z (ym - ym)z (4)
m=1

In addition, we applied the sparse loss Ly, including ¢;
and entropy regularization to induce the sparsity on Pg, Px,
and P4. We further propose the cluster-based consistency
constraint to force our method to keep the latent representation
of subjects within the same cluster to be similar. We conducted
a k-means clustering on multi-modal features. The cluster-
based consistency constraint is expressed as:

n
['cons = Z 84,5 ||h? - hf”z = t’l’((H)TLH) (5)

i,
where s; ; € [0,1] is the similarity between subject ¢ and
j, H is the latent representation after cross attention layer.
We note that if two subjects belong to the same cluster,
s;; is 1, otherwise 0. Therefore, the latent representation
learned from the imaging-genetics of subjects within the same
cluster will become similar. We further impose the orthogonal
constraint L,,;;, on the latent representation H. The final

training objective of our proposed method is:

(6)

where \’s are the tunable hyperparameters regarded as
penalty coefficients for the different loss terms. In our result,
the importance probabilities learned from our method provide
the interpretation regarding the important SNPs and salient
ROIs in AD.

L= £7'eg’r + )\l[-"spar + /\Q‘Ccons + )\3[-:07'th
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Fig. 2. The interpretation of top 20 salient ROIs under multiple modalities.
The bright-yellow color indicates a high score.

III. RESULTS
A. Experimental Results

We used our proposed method to jointly regress three
clinical scores including ADAS13, MMSE, and Tau. We
performed the 5-fold cross-validation to examine the regres-
sion performance by employing three metrics including the
Pearson correlation coefficient (Pearson’s r), the coefficient
of determination (R?), and Mean Squared Error (MSE).

Table I shows the regression comparison between the state-
of-the-art machine learning models and our proposed method.
Our method was compared with a CCA-based method called
MTSCCALR [1], a deep learning-based method called Au-
toencoder [4], a gene ontology-based method namely GUIDE
[7], and other GCN-based methods including GCN [10] and
GAT [11]. We noted that GUIDE didn’t consider the brain
connectivity graph from neuroimaging, and GCN and GAT
used such a connectivity graph without applying important
probabilities. In our result, the gene ontology-based GUIDE
was better than the MTSCCALR and Autoencoder to capture
the genetic variants. Brain connectivity-based GCN and GAT
methods were better than GUIDE at predicting Tau protein
content which built up in AD and damaged brain cells essential
for learning and memory [12]. Finally, the best metrics were
achieved by using our proposed method for each clinical score,
indicating the superior performance of our proposed method.

B. Interpretability

To interpret the salient ROIs for predicting clinical mea-
sures, we averaged the learned feature importance probability
Px across different modalities and ranked these scores in de-
scending order. The top 20 most salient ROIs were visualized
using BrainNet Viewer [13] in Fig. 2 and identified by different
modalities as well as the multiple modal analysis.

The node importance probability Px in our model identified
that the hippocampus, parietal gyrus, and olfactory gyrus were
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TABLE I
REGRESSION COMPARISON BETWEEN THE STATE-OF-THE-ART MACHINE LEARNING MODELS AND OURS ON THREE CLINICAL SCORES.

Clinical | 'Metrics | MTSCCALR  Autoencoder ~ GCN GAT GUIDE Genetic Imaging Ours
Scores Only Only
r 0.646+£0.054  0.683+£0.042  0.6974+0.046  0.7624+0.028  0.736+0.035 | 0.3224+0.062  0.754+0.022  0.829+0.012
ADAS13 | R2 0.325+£0.061  0.371£0.054  0.48240.059  0.6174+0.037  0.521£0.047 | 0.1024+0.073  0.593+0.041  0.698+0.023
MSE 0.128+£0.015  0.124+0.013  0.117£0.014  0.097+0.009  0.1034+0.011 | 0.1454+0.031  0.099+£0.010  0.07740.003
r 0.562+0.062  0.627£0.064  0.605+0.068  0.643+0.051  0.708+0.044 | 0.286+0.075  0.682+0.051  0.771+0.038
MMSE R? 0.205+0.049  0.269+£0.053  0.2434+0.057  0.358+0.032  0.462+0.037 | 0.0954+0.051 0.421+0.028  0.609+0.017
MSE 0.116£0.013  0.107+0.012  0.1124+0.015  0.105+0.012  0.0954+0.015 | 0.1324+0.020 0.098+0.013  0.082+0.011
T 0.536+£0.048  0.610+0.050  0.642+0.038  0.697+0.033  0.5794+0.025 | 0.213+0.032  0.724+0.036  0.768+0.014
Tau R? 0.263+0.052  0.316+0.064  0.3574+0.046  0.458+0.041  0.266+0.037 | 0.0514+0.038  0.4754+0.047  0.5314+0.021
MSE 0.13240.023  0.1204+0.019  0.1244+0.015  0.1184+0.017  0.1294+0.018 | 0.1574+0.021  0.116+0.015  0.10940.008
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Fig. 3. The interpretation of important SNPs and their overlapping genes.
Different color denotes different chromosomes.

the most salient brain regions for predicting clinical patterns.
These interpretations were highly consistent with established
findings on cognitive impairment in AD [3], [14]. In addition,
the SNPs importance probability Pg in our model identified
that the rs429358, rs4236673, and rs3865444 were the most
important SNPs for predicting clinical patterns, which were
consistent with the previous studies about genetic risk in AD
[15]. Fig. 3 showed the important probabilities of all the SNPs
with their overlapping genes. This interpretation suggested that
our model can extract discriminative biological information
from ontology and explore potential genetic biomarkers in AD.

IV. CONCLUSION

We have presented an interpretable multi-modal imaging
and genetic GCN for predicting typical AD-related clinical
scores. It extended the current interpretation of the GCN
method to identify novel neurological biomarkers under multi-
modal imaging and genetic analysis.
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