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Abstract—High annotation costs serve as a significant hurdle
in deploying modern deep learning architectures for clinically
relevant medical applications, especially when dealing with the
inherent heterogeneity of multimodal data, proving the criti-
cal need for innovative algorithms that can effectively utilize
unlabeled data. In this paper, we propose a model named
MCLCA, which integrates multimodal contrastive learning and
cross-modal attention to diagnose Alzheimer’s Disease (AD) and
identify biomarkers using both labeled and unlabeled multimodal
brain imaging genetics data. Through multimodal contrastive
learning, MCLCA can effectively learn representations even in
the absence of sufficient labels. By utilizing cross-modal attention
blocks, the model captures deep connections between different
modalities, providing a more comprehensive view of diagnosis.
Our proposed MCLCA model is evaluated using the ADNI
database with three imaging modalities (VBM-MRI, FDG-PET,
and AV45-PET) and genetic SNP data. The results demonstrate
that MCLCA can identify important biomarkers with better
prediction accuracy compared to the existing methods. The
source code is available at https://github.com/MCLCA.

Index Terms—Brain imaging genetics, contrastive learning,
cross-modal attention, Alzheimer’s disease

I. INTRODUCTION

Alzheimer’s disease (AD) is one of the most severe neu-
rodegenerative disorders, profoundly affecting millions of in-
dividuals worldwide [1]. In recent years, the convergence of
brain imaging genetics has been recognized for its potential in
detecting AD, including its early stage, mild cognitive impair-
ment (MCI). Techniques like positron emission tomography
(PET) and magnetic resonance imaging (MRI) are increasingly
employed to establish connections between brain regions and
genetic markers, such as Single Nucleotide Polymorphisms
(SNPs). A surge of studies [2]–[4] validates the strong ties
between brain imaging traits and genetic factors in AD. This
combined approach offers potential for new biomarkers and
advances in treatments.
Recent studies have increasingly used deep neural networks

for multimodal brain imaging genetics [5]–[12], but they often
focus on specific applications or require full supervision,
leading to a dependency on phenotypic data like medical

history, which may introduce biases. Additionally, challenges
in this field include unreliable or absent labels in datasets and
data heterogeneity due to different acquisition methods and
equipment [13]. These factors make it difficult to compare
datasets directly and integrate data effectively. Therefore, there
is a critical need to develop robust methods for accurate
disease prediction and classification in the diverse landscape
of multimodal brain imaging genetics.
Self-supervised contrastive learning emerges as a viable

solution to circumvent the above challenges, primarily due
to its ability to learn data representations without reliance
on labels [14]. Many various methods have been developed
and widely recognized. SimCLR [15], for instance, leverages
large batch sizes and data augmentation strategies to learn
efficient embeddings. BYOL [16] eliminates the necessity of
negative samples, introducing an innovative bootstrapped ap-
proach. Barlow Twins [17] emphasize reducing redundancy in
representations by utilizing a decorrelation loss. SimSiam [18]
promotes similarity between two augmented views of the same
image without requiring batch normalization. NNCLR [19]
extends this idea, using nearest neighbor techniques to further
refine the learning. However, while these methods have shown
promising results, their primary focus remains on uni-modal
data. Such a focus poses limitations when confronted with
the inherent heterogeneity of multimodal medical datasets.
Recently, ContIG [20] was proposed for multimodal medical
imaging with genetics. While this method facilitates multi-
modal contrastive learning, it sometimes overlooks valuable
intra-modality contrastive information, leading to potential
losses in representational richness.
In this paper, we propose a model named MCLCA, which

integrates multimodal contrastive learning and cross-modal
attention to diagnose disease and identify biomarkers using
brain imaging genetics data. As depicted in Fig. 1, our model
consists of two closely intertwined modules: (i) Multimodal
Contrastive Learning (MCL) Module: This module starts by
using a deep neural network (DNN) to preliminarily extract
features from each modality. Through contrastive learning,
the model is then encouraged to learn more comprehensive
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Fig. 1. An overview of the proposed framework. Assuming there are three imaging modalities (AV45-PET, FDG-PET, and VBM-MRI, denoted as x1, x2, x3
respectively) and one genetic modality (SNPs, denoted as x4). In the multimodal contrastive learning (MCL) module, several deep neural networks f(·) are
used to extract the hidden representations h1, h2, h3, h4. Then the MLP-based projection heads g(·) are employed to produce the representations z1, z2, z3, z4
for contrastive loss computation. In the cross-modal attention disease prediction (CAD) module, some cross-modal attention blocks are employed for cross-
modal information fusion based on the hidden representations h1, h2, h3, h4. Finally, the cross-modal attention representations r1, r2, r3, r4 are concatenated
to obtain the disease prediction by an MLP.

and discerning hidden representations for each modality. (ii)
Cross-Modal Attention Disease Prediction (CAD) Module: We
employ cross-modal attention blocks to process the hidden
representations acquired from the MCL module. This enables
the model to discern deep connections between different
modalities, supplying a more holistic view of information for
diagnosis.
Our comprehensive experiments, utilizing the real-world

ADNI dataset with three imaging modalities (VBM-MRI,
FDG-PET, and AV45-PET) and genetic SNP data, demonstrate
that our model performs significantly better than other com-
petitive models in classifying AD vs. HC, AD vs. MCI, and
MCI vs. HC groups. Furthermore, our model’s explanations
can highlight disorder-specific biomarkers that align with
neuroscience findings. Lastly, we provide evidence that com-
bining classification and correlation models amplifies disease
prediction efficacy.

II. METHODS

A. Multimodal Contrastive Learning (MCL) Module
Suppose there are N subjects, each with M different

modalities. For the i-th subject, the m-th modality is denoted

as xi
m, where i = 1, 2, · · · , N , and m = 1, 2, · · · ,M .

Fig. 1 gives an overview of our proposed model that
consists of several interrelated phases. The initial step in our
process involves the generation of modality-specific hidden
representations. For this, we employ the separate deep neural
network denoted as fm(·) for the corresponding modality xi

m

to extract the intrinsic hidden representations expressed as
hi
m = fm(xi

m).
After the hidden representations hi

m are obtained, we further
transform them using projection heads, denoted by gm(·).
Each projection head is structured as a nonlinear Multilayer
Perceptron (MLP) [21] comprising a single hidden layer. The
projection head operates on the hidden representations hi

m

and projects it onto a new representations space, creating the
transformed representations denoted as zim = gm(hi

m).
One of the core of our approach is the application of

contrastive learning [22]. In contrastive learning, the aim is to
distinguish between positive and negative pairs. In this paper,
we define the positive pairs to be the modality pairs from the
same subject. By contrast, negative pairs are defined as the
different modality pairs from different subjects.
To guide this learning process, we introduce a loss function
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that seeks to minimize the distance between positive pairs
while maximizing the distance between negative pairs in the
transformed representation space. For clarity, we begin by
exploring contrastive loss across two modalities: modality α
and modality β. For the i-th subject xi

α from modality α,
we consider the same i-th subject xi

β from modality β as
the positive subject and other subjects xj

β as the negative
subjects. Hence, the contrastive loss Lcont (α,β) comprises
two components: (i) L(α,β), which anchors the modality α
and contrasts the modality β, and (ii) L(β,α), which anchors
the modality β and contrasts the modality α:

L(α,β) = −
N∑

i=1

log
exp

(
cos

(
ziα, z

i
β

)
/τ

)

∑N
j=1,j !=i exp

(
cos

(
ziα, z

j
β

)
/τ

)

Lcont (α,β) = λL(α,β) + (1− λ)L(β,α),
(1)

where τ denotes the temperature coefficient, cos represents
the cosine similarity and λ ∈ [0, 1] is a hyperparameter used
for adjusting the weight of the loss.
We now generalize the contrastive loss from two modalities

to a broader multimodal setting. Specifically, we conduct pair-
wise contrasting across all modalities Hence, the generalized
multimodal contrastive loss can be defined as:

Lmcl =
M−1∑

α=1

M∑

β=α+1

Lcont (α,β). (2)

As the model optimizes this loss function, it is encouraged
to generate more similar representations for different modali-
ties of the same subject and distinctly different representations
for different subjects, enhancing the model’s ability to discrim-
inate effectively among subjects based on multimodal data.

B. Cross-Modal Attention Disease Prediction (CAD) Module
Following the hidden representations hm obtained from the

MCL module, the CAD module takes these hidden repre-
sentations to further process disease prediction. We employ
several cross-modal attention [23] blocks to harmoniously fuse
multimodal information, capitalizing on their ability to selec-
tively highlight and integrate crucial inter-modal relationships,
thereby maximizing the potential of the combined modalities
for more accurate disease prediction.
Suppose there are three linear transformation matrices,

Wq
m ∈ Rdm×dk ,Wk

m ∈ Rdm×dk ,Wv
m ∈ Rdm×dv ,

operating on the m-th modality feature representations
hm = [h1

m, h2
m, · · · , hN

m] ∈ RN×dm to obtain: Qm =
hmWq

m,Km = hmWk
m, Vm = hmWv

m . Now we still
consider two modalities: modality α and modality β. First,
the attention score between modality α and modality β is
computed as:

score(α,β) = softmax
(

QβK
T
α√

dk

)
. (3)

Then, the cross-modal attention representations of modality
α which considers the information from modality β can be
calculated as h′

α = score(α,β)Vα.

Considering the information from all other modalities, the
cross-modal attention representations of modality α can be
computed as:

rα =
M∑

β=1,β !=α

h′
α =

M∑

β=1,β !=α

score(α,β)Vα. (4)

We compute cross-modal attention representations for each
modality, deriving representations r1, r2, · · · , rM . Then we
concatenate these all cross-modal attention representations,
formulated as rconcat = [r1, r2, · · · , rM ].
Then rconcat is processed through an MLP consisting of a

hidden layer with a ReLU activation [24]. The outputs of the
MLP then pass through the softmax function [25] to derive the
disease prediction ŷ. However, it’s important to note that not
every subject in our dataset has a disease label. To circumvent
this, we introduce a masking strategy.
For the i-th subject, the disease prediction is denoted as

ŷi. For each subject, we create a mask denoted as ki. Mask
ki is either 0 (indicating a missing label) or 1 (indicating the
presence of a label). With the ground truth label represented
as yi and disease prediction ŷ, the masked cross-entropy loss
can be defined:

Lcls = −
N∑

i=1

kiyi log
(
ŷi
)
. (5)

This loss only considers subjects where the mask k is set to 1
(indicating the presence of a label). Overall, our final training
objective can be defined as:

L = Lmcl + γLcls, (6)

where Lmcl is the self-supervised multimodal contrastive loss,
while Lcls is the supervised cross-entropy disease prediction
loss. The coefficient γ is a tunable hyperparameter, harmoniz-
ing the scales of the individual loss components, ensuring an
equitable contribution from both during the model optimiza-
tion process.

III. EXPERIMENTS AND RESULTS

A. Data Acquisition and Preprocessing
Our study utilized brain imaging and genetic data from

887 participants in the ADNI database [26], including 520
with disease labels (120 AD, 251 MCI, and 149 HC) and
367 without specific labels. The data comprised three imaging
modalities: structural Magnetic Resonance Imaging (VBM-
MRI), 18 F-fluorodeoxyglucose Positron Emission Tomogra-
phy (FDG-PET), and 18 F-florbetapir PET (AV45-PET). We
aligned these images to each participant’s visit, standardizing
them to the MNI space and segmenting them into 90 Regions
of Interest (ROIs) using the AAL-90 atlas [27], focusing on
gray matter, white matter, and cerebrospinal fluid maps. For
genetic analysis, we selected 54 SNPs near the AD risk gene
APOE from the AlzGene database1, using data genotyped by
Illumina platforms and subjected to standard quality control.

1www.alzgene.org
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TABLE I
CLASSIFICATION PERFORMANCE COMPARISON. THE BEST RESULTS ARE IN BOLD.

Task Measures SimCLR BYOL SimSam Barlow Twins ConIG (w/o) CL (w/o) CA MCLCA

AD vs. HC

ACC 0.826±0.047 0.794±0.052 0.847±0.046 0.858±0.044 0.884±0.037 0.883±0.030 0.901±0.027 0.914±0.021
AUC 0.904±0.028 0.896±0.035 0.927±0.022 0.916±0.035 0.934±0.020 0.945±0.023 0.952±0.019 0.974±0.017

Sensitivity 0.862±0.044 0.853±0.047 0.891±0.035 0.857±0.042 0.864±0.038 0.859±0.035 0.874±0.036 0.898±0.032
Specificity 0.741±0.075 0.739±0.084 0.813±0.055 0.746±0.029 0.773±0.057 0.863±0.052 0.886±0.048 0.918±0.054

AD vs. MCI

ACC 0.738±0.055 0.717±0.061 0.760±0.061 0.756±0.059 0.771±0.054 0.781±0.039 0.803±0.035 0.825±0.032
AUC 0.812±0.059 0.790±0.066 0.869±0.066 0.865±0.057 0.870±0.057 0.826±0.036 0.845±0.039 0.889±0.038

Sensitivity 0.766±0.061 0.741±0.068 0.815±0.068 0.814±0.049 0.821±0.044 0.797±0.044 0.823±0.031 0.856±0.029
Specificity 0.724±0.083 0.706±0.088 0.723±0.088 0.725±0.065 0.752±0.046 0.709±0.061 0.749±0.058 0.774±0.047

HC vs. MCI

ACC 0.594±0.079 0.566±0.081 0.581±0.073 0.601±0.071 0.622±0.068 0.597±0.042 0.627±0.037 0.712±0.035
AUC 0.637±0.045 0.601±0.049 0.626±0.042 0.643±0.046 0.643±0.044 0.692±0.061 0.716±0.058 0.824±0.049

Sensitivity 0.623±0.072 0.603±0.086 0.620±0.075 0.625±0.081 0.633±0.077 0.558±0.105 0.675±0.083 0.738±0.061
Specificity 0.645±0.088 0.621±0.091 0.637±0.135 0.647±0.102 0.617±0.112 0.479±0.104 0.602±0.096 0.707±0.086

B. Evaluation of Disease Classification Performance
For our disease prediction evaluation, subjects with disease

labels were segmented into three distinct groups: AD vs. HC,
AD vs. MCI, and MCI vs. HC. Performance was assessed
using four established metrics: accuracy (ACC), area under
the curve (AUC), sensitivity, and specificity. Given the limited
number of labeled subjects in our study, we implement a 5-
fold cross-validation process and present the results as an
average alongside the standard deviation. In each fold, all
unlabeled subjects were included to ensure a sufficiently large
sample size for the self-supervised contrastive learning phase.
Subsequently, a masking technique was utilized to allow these
unlabeled subjects to participate in the supervised disease
prediction. This design aimed to maximize the utilization
of available data while maintaining methodological rigor. To
benchmark the efficacy of our approach, we utilized state-of-
the-art contrastive methods as baselines, including SimCLR
[15], BYOL [16], Barlow Twins [17], SimSiam [18], NNCLR
[19], and ContIG [20]. While our method integrates cross-
modal attention followed by an MLP for disease prediction,
these baseline models utilized a DNN classifier for the same
purpose. To ensure a fair comparison, all methods were
evaluated under the same experimental conditions, using iden-
tical data splits and configurations. During the experiments,
we employed the Adam optimizer for model training. More
specifically, we configured the learning rate to be 0.0001 and
set the weight decay parameter to 0.001. Additionally, the
value for the parameter γ in our model was empirically set
to 2, and we trained the model for 1000 epochs.
Table I presents the classification performance across dif-

ferent tasks, where ± represents the standard deviation of
evaluation scores across the 5 folds. Notably, our proposed
MCLCA method consistently outperforms other state-of-the-
art contrastive methods in all metrics. In particular, for the
AD vs. HC, AD vs. MCI, and HC vs. MCI tasks, MCLCA
exhibits clear superiority. While methods such as SimSam and
Barlow Twins provide competitive results, especially in AD vs.
HC and AD vs. MCI tasks, MCLCA still achieves the highest
scores. The margin of improvement demonstrates the value of
our novel approach, especially in the challenging HC vs. MCI

task where traditional methods show weaker differentiation
capabilities. A discernible trend is a decrease in ACC and AUC
values from the AD vs. HC task to the HC vs. MCI task for
all methods, reflecting the challenge of distinguishing between
closely related disease states. Overall, the results highlight the
efficacy and robustness of our MCLCA method in disease
classification using multimodal data.
Our proposed MCLCA model contains two important com-

ponents: Contrastive Learning (CL) and Cross-Modal Atten-
tion (CA). To understand the impact of each component, we
conducted ablation studies by evaluating the two additional
models: the MCLCA model trained without CL (w/o CL)
and without the CA (w/o CA). Table I presents the results
for the AD vs. HC task, it is evident that the removal
of either component results in a performance drop: from a
peak accuracy of 91.4% in the full model to 88.3% without
CL and 90.1% without CA. Similar trends are observed in
AD vs. MCI and MCI vs. HC tasks, with CL playing a
crucial role in distinguishing related classes and CA enhancing
feature interaction across modalities. The results confirm the
combined importance of CL and CA in achieving state-of-the-
art classification performance.

C. The Most Discriminative Brain Regions and SNPs

Determining the most significant brain regions, and Single
Nucleotide Polymorphisms (SNPs) stands as a pivotal task in
the accurate diagnosis of AD. To achieve this, we utilized the
integrated gradients interface from Captum [28]. This interface
offers the capability to allocate importance scores to each
feature from various modalities. It analyzes the pre-trained
model, shedding light on the intricate relationship between
input features and their influence on the final predictions.
Figs. 2(a-c) shows the top 20 discriminative ROIs identified

by the proposed method from each individual brain imaging
modality. Fig. 2(d) shows the top 20 discriminative ROIs
selected by the three modalities together. Here, specific regions
like the hippocampus, parahippocampal gyrus, precuneus,
and temporal lobe regions are underscored, confirming their
significance. Past research has highlighted the crucial role
these regions play in AD and MCI [29]–[31]. Moreover, the
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(a) AV45-PET (b) FDG-PET (c) VBM-MRI (d) Three Modalities

AD vs. HC

MCI vs. HC

AD vs. MCI

Fig. 2. Top 20 discriminative ROIs identified by MCLCA from three brain imaging modalities for three different classification groups in lateral, medial, and
ventral view. The color bar indicates the importance score.

AD vs. HC

MCI vs. HC

AD vs. MCI

Fig. 3. The importance scores of SNPs. The red color indicates a high score.

selection of ROIs exhibits variation across different classifi-
cation groups, underscoring the adaptability of our model in
pinpointing the critical ROIs pertinent to distinct diseases.
Moving to genetic markers, Fig. 3 highlights key SNPs like

rs429358, rs2718058, rs3851179, and rs3865444, identified
for their high discriminatory power. Their significance aligns
with previous genetic research, underlining the precision and
relevance of our approach [32], [33].

IV. CONCLUSION

In this paper, we introduce MCLCA, a multimodal model
that leverages the capabilities of multimodal contrastive learn-
ing and cross-modal attention on a combination of labeled and
unlabeled data. We showcase its potential in both diagnosing
AD and identifying crucial biomarkers. Our experiments using
the ADNI dataset encompassing three imaging modalities

and genetic SNP data confirmed the superiority of MCLCA
over other state-of-the-art contrastive methods. Specifically,
MCLCA not only demonstrates consistent superiority over
these techniques in AD disease classification tasks but also
excels in distinguishing between similar disease states like HC
and MCI. Moreover, MCLCA is able to identify the significant
brain regions related to AD, such as the hippocampus and
temporal lobes, alongside significant SNPs like rs429358,
which aligns with existing literature. The alignment between
our findings and those of previous studies bolsters the cred-
ibility of MCLCA, demonstrating its potential as a valuable
tool in the realm of AD research. Future work could explore
additional imaging techniques for deeper AD insights, assess
the model’s scalability and applicability to diverse populations,
and integrate temporal analysis to study AD’s progression.
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