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Abstract

In recent years, incomplete multi-view clustering (IMVC),
which studies the challenging multi-view clustering prob-
lem of missing views, has received growing research inter-
ests. Previous IMVC methods suffer from the following is-
sues: (1) the inaccurate imputation for missing data, which
leads to suboptimal clustering performance, and (2) most ex-
isting IMVC models merely consider the explicit presence of
graph structure in data, ignoring the fact that latent graphs
of different views also provide valuable information for the
clustering task. To overcome these challenges, we present a
novel method, termed adaptive feature imputation with la-
tent graph for incomplete multi-view clustering (AGDIMC).
Specifically, it captures the embedded features of each view
by incorporating the view-specific deep encoders. Then, we
construct partial latent graphs on complete data, which can
consolidate the intrinsic relationships within each view while
preserving the topological information. With the aim of es-
timating the missing sample based on the available informa-
tion, we utilize an adaptive imputation layer to impute the
embedded feature of missing data by using cross-view soft
cluster assignments and global cluster centroids. As the im-
putation progresses, the portion of complete data increases,
contributing to enhancing the discriminative information con-
tained in global pseudo-labels. Meanwhile, to alleviate the
negative impact caused by inferior impute samples and the
discrepancy of cluster structures, we further design an adap-
tive imputation strategy based on the global pseudo-label and
the local cluster assignment. Experimental results on multi-
ple real-world datasets demonstrate the effectiveness of our
method over existing approaches.

Introduction

The proliferation of multi-view data has created a com-
pelling demand for researchers to analyze this intricate in-
formation. As an important unsupervised learning approach,
multi-view clustering has been widely applied in real-world
applications, such as recommendation systems, multimedia
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analysis, and bioinformatics (Nie, Cai, and Li 2017; Zhan
et al. 2018; Chen et al. 2020; Huang, Kang, and Xu 2020;
Xuetal. 2021). Most existing multi-view clustering methods
heavily rely on the assumption of fully available data. How-
ever, it is a commonly encountered scenario that only partial
data can be collected and transmitted owing to factors such
as unstable sensors and damaged storage media. Therefore,
an increasing attention is paid to partial multi-view cluster-
ing or incomplete multi-view clustering IMVC) problems
(Peng et al. 2019; Lin et al. 2021, 2022).

To handle the incompleteness issue, traditional incom-
plete multi-view clustering methods with satisfactory per-
formance have been proposed. Typical strategies are mainly
based on matrix decomposition (Li, Jiang, and Zhou 2014;
Zhao, Liu, and Fu 2016; Hu and Chen 2019b), incomplete
multiple kernel learning (Liu et al. 2020; Guo and Ye 2019)
and graph-based methods (Xu et al. 2018; Wen et al. 2019,
2021). Improving the performance of incomplete multi-view
clustering relies on the ability to learn more discriminative
consensus representations despite the presence of incom-
plete view information. Most methods naturally focus on
addressing the challenge of missing data by imputing, re-
covering, or inferring values for the missing samples.

However, the above traditional IMVC methods all exploit
the shallow learning based methods, which are not effec-
tive enough to excavate the in-depth knowledge hidden in
the data (Zhao et al. 2018). In recent years, deep incomplete
multi-view clustering (DIMVC) have demonstrated remark-
able progress by integrating clustering with the representa-
tion learning capabilities of deep models (Wen et al. 2019;
Wang et al. 2020; Lin et al. 2022). Most existing DIMVC
methods utilize the generalization capability of deep mod-
els to achieve the imputation for missing data (Yang et al.
2022).

Although existing DIMVC methods have achieved signif-
icant progress through imputation, they have at least two is-
sues. On the one hand, the effectiveness of these methods
is limited as they cannot exploit the topological information
of samples. On the other hand, imputing missing data accu-
rately based on observed data poses a significant challenge,
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especially when a large number of samples are missing. Ad-
ditionally, assessing the quality of imputation becomes com-
plex due to the unavailability of ground truth for the missing
data.

In this paper, we propose Adaptive Feature Imputation
with Latent Graph for Deep Incomplete Multi-View Clus-
tering (AGDIMC) to address the aforementioned issues.
Specifically, we employ latent graphs to enable embedded
features to capture topological information via GCN mod-
ule, which mines the potential structure information. Con-
cretely, to reduce the negative effects from low-quality im-
puted features, we design an adaptive imputation module to
assess the quality of imputed features by measuring the dif-
ference between two soft pseudo assignments derived from
original embedded features and imputed features, respec-
tively. With this assessment, imputation can be circulatively
adapted. After obtaining a more consistent representation
from imputed features refined by weight graph fusion, the
complementary cluster information contained in this rep-
resentation transforms to supervised information with high
confidence. This transformation aims to achieve consistent
cluster assignments for all views. Moreover, to pay more at-
tention to the reliable neighbors in latent graphs, we intro-
duce the graph embedding constraint to preserve this rela-
tion. We illustrate the framework of our proposed AGDIMC
in Fig. 1. In summary, our key contributions are as follows.

* We propose AGDIMC, a novel deep model for incom-
plete multi-view clustering which can capture topologi-
cal information by leveraging both weight graph fusion
(that containing complementary information) and latent
graphs (capturing topological details) to perform deep in-
complete multi-view clustering.

We propose a novel adaptive imputation module that can
evaluate the quality of imputation effectively in an un-
supervised manner which reduces the negative effects
from low-quality imputed features. Moreover, it boosts
the confidence of assignments by improving the consis-
tency of incomplete data.

We propose a graph embedding constraint to reinforce
the neighbor relationships, which helps prevent distortion
of discriminative information during fusion. Extensive
experiments demonstrate that our method achieves supe-
rior clustering performance compared to existing state-
of-the-art methods.

Related Work
Incomplete Multi-View Clustering

Multi-view clustering is a data analysis technique that clus-
ters data points using multiple sets of distinctive features
or viewpoints. However, dealing with incomplete multi-
view data, where some views are missing or partially
available, presents a challenge in transitioning from tra-
ditional multiple-view clustering to incomplete multi-view
clustering. Unlike traditional multi-view clustering meth-
ods that assume complete and consistent information across
all views, incomplete multi-view clustering (IMVC) (Wen
et al. 2022; Trivedi et al. 2010) deal with scenarios where
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some views may be missing or partially observed for cer-
tain data points. Many methods aim to obtain consistent
information from multiple views to handle the incomplete
problem. (Lin et al. 2021) maximized mutual information
between different views through contrastive learning, en-
abling the learning of informative and consistent represen-
tations. (Xu et al. 2019) simultaneously learned a common
latent space and infers missing data using element-wise re-
construction and generative adversarial network (GAN). (Hu
and Chen 2019a) leveraged instance alignment information
to learn a common latent feature matrix for all views. (Xu
et al. 2023) proposed an imputation-free deep IMVC method
that incorporates distribution alignment in feature learning.
The method employs adaptive feature projection to avoid the
need for imputation of missing data.

Graph-based Incomplete Multi-View Clustering

The graph structure represents dependencies among data
points, enables information propagation, and allows for di-
verse clustering techniques. In the context of handling multi-
view data with missing information, graph-based incomplete
multi-view clustering (Wen et al. 2018; Wu et al. 2018)
emerges as a suitable method. It leverages graph-based tech-
niques to capture relationships, handle missing data, and in-
tegrate multiple views. In recent years, many graph-related
methods have been developed with the aim of completing
incomplete graphs to obtain more accurate representations.
(Zhou, Wang, and Yang 2019) tackled the problem by con-
structing complete graphs for each view using information
from other views. This graph construction process takes into
account the missing instances and effectively captures the
relationships between the data points in each view. (Li, Wan,
and He 2021) employed consensus graph learning to un-
cover data structures and adaptively weights the stretched
base partition to retain useful information while minimiz-
ing noise. (Wen et al. 2020a) addressed the problem of in-
complete multi-view data clustering by developing a joint
framework for graph completion and consensus representa-
tion learning.

Methodogy

Notation Given a multi-view dataset X = {X ”}1‘)/:1 with
N samples in V' views, where XV = {z},25,... 2%} €
RN*Dv represents the instance set of the v-th view, d, is
the dimensionality of samples and /N denotes the number of
samples, and elements of the missing instances are denoted
as’NaN'. K is the number of categories to be clustered. We
denote n samples with complete data as a set X¢.

View-specific Feature Learning with Local Graph

Deep autoencoders have been widely used to extract high-
level representations of raw features (Peng et al. 2019; Xu
et al. 2021, 2022). Considering that different views con-
tains valuable information pertaining to specific features and
structures, we design several view-specific encoders fj, and
corresponding decoders g, , where §” and ¢" are learnable
parameters. For sample =) from the v-th view, the latent rep-
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Figure 1: The framework of AGDIMC. For the v-th view, X" denotes the input data, Z¥ denotes the embedded features, A"
denotes the latent adjacency graph generated from ZV, and Q denotes the cluster assignment distribution. A/ and P denote
the global graph and unified target distribution respectively. L,., L. and Ly y¢g denote the reconstruction loss, clustering loss,

and nearest neighbor constraint loss.

resentation can obtain by:
= fou (7). M
After that, z}’ is decoded as z; through the decoder gj.:

T = ggo (%)), @)
where £} represents the reconstructed data. Thus, the feature
learning encoder in each view is trained by optimizing the
reconstruction loss for each node in the latent graph, and it
can be formulated as:

v
ov

@I 3

Z Z ||z§ — 9¢v

v
L=> L=
v=1 v=1i=1

To achieve a comprehensive representation of graph struc-
tures, our approach involves the dynamic generation of
graphs within the latent space of each view. The rationale
behind this lies in the limitations associated with compos-
ing fixed graphs solely based on raw data. When using fixed
graphs, it is not possible to make adjustments based on the
clustering results, which limits the accuracy and adaptabil-
ity of the clustering process. Conversely, by leveraging the
deep autoencoders ability to extract highly representative
features, we construct graphs in the latent space.

To preserve the local structure information, we construct
the k-nearest neighbor graph from complete data as follows:

1, 1f(Z,J7éNaN)&
ALy = (Hev(z)orzyev(e) » @
0, otherwise
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where ¢ (z?) denotes the nearest sample set to z?

After 0bta1n1ng latent graphs from each view, a two-layer
GCN module is utilized to explore the information contained
in latent graphs that provide available information for the
clustering task. The embedded feature of each view can be
refined by its unique latent graph which contains discrimi-
native information.

m
)

2

=Y (piarD-
m=0

where A = I, + A, D;; = > ; A;;. Compared with other

existing GCN-based methods, our adopted simple yet effec-

tive GCN module has better generalization capability as it

does not require additional parameters.

To obtain clustering predictions, similar to the majority
of existing deep embedded clustering models, we utilize the
Student’s t-distribution. This distribution helps determine
the likelihood of the i-th example being assigned to the j-
cluster in the v-th view:

1
2

(&)

oy _ O lE =)
NN EE B
In the v-th view, ,ug denotes the learnable cluster centroids

and g;; is considered as the probability that the embedded
feature.

; €eQ’. (6

Adaptive Imputation Module

To reduce the risk of clustering performance degradation
caused by incomplete data, we further propose a novel adap-



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

tive imputation module based on cluster-oriented informa-
tion to recover the missing samples.

The view available and missing information is recorded
in an indicator matrix I € {0, 1}*V where I;, = 1 if the
i-th sample is available in the v-th view, otherwise I, = 0.
After extracting embedded features from the view-specific
autoencoders, let Z¥ = {zV,23,...,3%} € R"*% . Then
refined embedded features from all views are concatenated
to form a unified representation, denoted as Z:

Z=[7V 22, 2 e RV S ()

Furthermore, Eq. (6) allows us to easily obtain the soft
pseudo assignment for each view. Then, we acquire the
global cluster assignments () to assist us in adaptive impu-
tation by following the formula:

v
M
\%4
Zv:1 Iiu

Besides, we denote Z = [Z¢; Z;], we leverage only the
observed complete data to learn a consensus representation
that guides the imputation of missing samples from each
view, thus avoiding the impact of inconsistent with missing
views. The view-specific patterns W can be optimized by:

4 = €Q. ®)

T 2
min | Ze ~ WQCI
. )
min

.
i 33 E - WUl

v=lo=lzveZ,

We can leverage information from global cluster assign-
ments (), global centroid C, and view-specific patterns W
to impute the unavailable embedded features z;. In partic-
ular, it focuses on imputing the missing embedded features
by considering the sample commonality and cross-view cor-
respondences. In this case, when I;, = 0, the embedded
feature of missing sample z; can be imputed as follows:

Ef =W"v q,C" € Z;. (10)
With the process of imputation, the consistency of em-
bedded features improves. By learning from these multiple
views simultaneously, we can uncover more comprehensive
and accurate representations from incomplete data. To lever-
age the discriminative information across all views, we con-
catenate the embedded features obtained by expanding the
data in Eq. (10) to update global features: Z = [Z¢; Z;].
It’s worth noting that higher missing rates can drift the
view information leading to inaccurate imputation. To ad-
dress this limitation, we assess the imputed global features.
If the clustering result in ¢;; by Eq. (6) from imputed global
features is inferior to the result ¢;; without imputation,
we abandon the imputation process and use the unimputed
global features for subsequent training.

After that, each view latent graph Aj s
learned from imputed features by Eq. (4) as
Aimp = {A}mp, AZ - Afp}. By considering

the discriminative information of each view, we can ef-
fectively capture the unique characteristics of different
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perspectives. The global graph, being more informative and
extracting more complete relationships between different
nodes, makes it natural to fuse these multi-view graphs into
a more robust global graph. The global graph Af plays a
crucial role in capturing the underlying sample similarity
present within the multi-view data. To mitigate the impact
of low-quality and noisy views, we adopt a strategy of
assigning distinct weights to different graphs.

Based on the above motivations, we develop a graph fu-
sion method which can be formulated as follows:

v
f — mi f_pv
A *fg%}lzwv”A A

imp (1 1)

[
v=1

We use the inverse distance of fusion graph A and each
latent graph A" to obtain w,. In our model, we assign the
value of the exponential parameter of the inverse distance
weighting method to 2, and then w,, can be adaptively com-
puted as:

1

AT - A

. (12)
zmp”F

Wy

By doing so, our method progressively obtains clearer
clustering structure from the latent features as training pro-
cess forwards. Meanwhile, by assigning smaller weights to
the less reliable views, the negative affect of noise graphs
is reduced effectively. To utilize the A and imputed global
feature Z as the input of the GCN module we mentioned,
the refined global representation H with more comprehen-
sive information can be obtained.

Through this cluster-oriented method, we can extract con-
sistent imputations and mitigate the risk of clustering perfor-
mance degradation caused by inconsistent imputations. The
adaptive imputation module is as effective as learning solely
from complete data in terms of generalization risk.

Self-Supervised Clustering Layer

After obtaining the refined global features H
{hi,he,...,hn} € RNXZ_ydv, through global graph
convolution module, we impose the nearest neighbor graph
constraints on the common latent representation of all views.
This serves to reinforce local neighbor relationships from
complete data. The following graph constraint is considered:

1 X
v 2 4o
Lyneg = N ZZ [[hi — thQAi,j'

i=1 j=1

13)

We apply K-means(MacQueen 1967) to calculate the
cluster centroids c;:

N K
min Z Z [lh: — cj||2 .
C1,C2,-.-,CK

i=1j=1

(14)

Then, the soft pseudo assignment ¢;; between each global
embedding and each cluster centroid with Student’s ¢-
distribution is defined as

2\ —

R o el e
L/ 2\_1°
2+ Nhi = esl17) 71

5)



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

To increase the discriminability of the soft pseudo assign-
ments, the global target distribution P is computed by

(tzzj/ Ez tij)

Dij = = e
T )
The clustering loss of each view is the KL divergence be-

tween the unified target distribution P and its own cluster
assignment distribution Q"

N K
L = Dgr, PHQU :ZZ zglOg

To learn an accurate assignment for clustering, it is neces-
sary to introduce an integrated objective to guide the learn-
ing process. To this end, we jointly optimize the deep au-
toencoder embedding and clustering learning, and the total
objective function is defined as:

LY = L] + aL; + Lyneg: (18)

where 0 < a < 1 is a trade-off coefficient that controls
the degree of distorting embedded space. We set a@ = 0.5
for all experiments. Minimizing KL divergence between @)
and P will make the distribution of () sharper and mine the
information in different views. After obtaining soft cluster
assignments from multiple views, the highly confident pre-
dictions will guide the training process, which can also avoid
the interference of a few wrong predictions. When the whole
training process is completed, we compute the pseudo-label
P once again and the final clustering assignment y; for the
i-th sample is:

(16)

LT

.7

y; = arg mjaX(pij)- (19)

Optimization

Algorithm 1 summarizes the optimization procedure of
AGDIMC. It is composed of two procedures, ¢.e., initial-
ization, and fine-tuning. In the initialization stage, for each
view, we firstly pretrain autoencoders fg., and gg. by opti-
mizing the reconstruction loss in Eq. (3). During the finetun-
ing stage, the embedded features of missing samples can be
imputed by Eq. (8) and Eq. (10). Based on the unified repre-
sentation H, the soft pseudo assignment can be obtained by
Eq. (6). Intuitively, the quality of imputed features can be as-
sessed by measuring the difference between two soft pseudo
assignments derived from original embedded features and
imputed features, respectively. For every 7' iteration, if im-
puted features with high consistency, the whole network of
AGDIMC is trained by optimizing the objective function Eq.
(18). Otherwise, we focus on training on complete data to
get P that helps to generate informative embeded features.
When the whole training process is completed, we compute
the pseudo-label P once again to get the result by Eq.(19).
The workflow of AGDIMC is summarized in Algorithm 1.

Experiments
Experimental Setup

Datasets Three widely used and publicly available multi-
view datasets are used in our study:
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Algorithm 1: Optimization of the proposed AGDIMC

Input: Multi-view dataset X, cluster number K.
Output: Cluster assignments Y’
1: Pretrain the autoencoder separately in each view by op-
timizing Eq. (3).

2: Initialize the pseudo-labels by Eq. (16)
3: Initialize the centriods ¢ by the decomposing the
global cluster centroids.
4: while not reach the maximum iterations 7},,,, do
5:  repeat
6: Optimize Eq. (3) and Eq. (17), update 8, ¢ and
p; of each view.
7: Optimize Eq. (9), update W.
8:  until The iteration time is divisible by T’
9:  Compute the ¢;; by Eq. (8)
10:  Impute the missing sample by Eq. (10)
11:  Compute the g;; by Eq. (6) from imputed features.
12:  if argmax;(q;;) > max;(g;;) then
13: Update P by imputed features.
14: Optimize Eq. (13), update the H.
15:  end if

16: end while
17: Compute the final pseudo-labels P by Eq. (16)
18: Compute for each sample by Eq. (19)

BDGP (Cai et al. 2012) contains 2500 samples from 5
categories and each class has 500 samples. For each sam-
ple, the texture feature and three kinds of visual features ex-
tracted from the lateral, dorsal, and ventral images via the
bag-of-words extractor are regarded as four views.

Handwritten Numerals (HW) represented by six kinds
of features extracted from its binary image. Each class has
200 samples. Each instance has six visual views, includ-
ing profile correlations, Fourier coefficients of the character
shapes, Karhunen-Love, morphological features, pixel aver-
ages in 2 x 3 windows, and Zernike moments.

Reuters is comprised of 1200 articles in 6 categories
(C15, CCAT, E21, ECAT, GCAT and M11), each providing
200 articles. For each article, it is written in five different
languages (English, French, German, Italian, and Spanish).

Comparing Methods Comparison methods include 8
state-of-art methods, i.e., GIMC-FLSD (generalized in-
complete multi-view clustering with flexible locality struc-
ture diffusion (Wen et al. 2020b)), CDIMC-net (cogni-
tive deep incomplete multi-view clustering network (Wen
et al. 2021)), DCP ( completer: incomplete multi-view clus-
tering via contrastive prediction (Lin et al. 2021)), HCP-
IMSC (high-order correlation preserved incomplete multi-
view subspace clustering (Li et al. 2022)), IMVC-CBG
(highly-efficient incomplete large-scale multi-view cluster-
ing with consensus bipartite graph (Wang et al. 2022)),
DSIMVC (deep safe incomplete multi-view clustering: The-
orem and algorithm (Tang and Liu 2022)), LSIMVC (lo-
calized sparse incomplete multi-view clustering (Liu et al.
2022)), and PGP (self-guided partial graph propagation for
incomplete multi-view clustering (Liu et al. 2023)).
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Evaluation metrics

ACC

NMI

ARI

ACC

NMI

ARI

ACC

NMI

ARI

ACC

NMI

ARI

BDGP

GIMC-FLSD(Wen et al. 2020b)
CDIMC-net(Wen et al. 2021)
DCP(Lin et al. 2021)
HCP-IMSC(Li et al. 2022)
IMVC-CBG(Wang et al. 2022)
DSIMVC(Tang and Liu 2022)
LSIMVC(Liu et al. 2022)
PGP(Liu et al. 2023)
AGDIMC(ours)

0.833
0.882
0.465
0.968
0.392
0.963
0.732
0.526
0.979

0.628
0.789
0.447
0.902
0.242

0.905

0.713
0.327
0.937

0.634
0.819
0.186
0.922
0.154
0912
0.805
0.536
0.949

0.783
0.744
0.443
0.938
0.374
0.956

0.594
0.537
0.325
0.823
0.221
0.886

0.555
0.503
0.066
0.852
0.106
0.910

0.772
0.727
0.424
0.901
0.363
0.941

0.532
0.594
0.305
0.769
0.176
0.829

0.534
0.517
0.054
0.759
0.056
0.859

0.725
0.524
0.356
0.896
0.342
0.917

0.497
0.311
0.277
0.726
0.018
0.791

0.456
0.224
0.053
0.759
0.068
0.807

0.613
0.472
0.962

0.555
0.316
0.908

0.571
0.542
0.912

0.490
0.496
0.961

0.388
0.310
0.883

0.493
0.496
0.906

0.380
0.422
0.922

0.236
0.268
0.829

0.575
0.496
0.816

Reuters

GIMC-FLSD(Wen et al. 2020b)
CDIMC-net(Wen et al. 2021)
DCP(Lin et al. 2021)
HCP-IMSC(Li et al. 2022)
IMVC-CBG(Wang et al. 2022)
DSIMVC(Tang and Liu 2022)
LSIMVC(Liu et al. 2022)
PGP(Liu et al. 2023)
AGDIMC(ours)

0.478
0.310
0.323
0.342
0.442
0.455
0.382
0.575
0.588

0.292
0.130
0.141
0.175
0.273
0.302
0.209
0.348
0.354

0.208
0.075
0.06
0.085
0.139
0.224
0.131
0.338
0.294

0.469
0.303
0.315
0.357
0.402
0.425
0.398
0.516
0.548

0.283
0.080
0.158
0.209
0.228
0.274
0.221
0.306
0.261

0.202
0.051
0.042
0.111
0.103
0.198
0.145
0.359
0.245

0.473
0.263
0.232
0.407
0.364
0.421
0.303
0.245
0.548

0.275
0.053
0.137
0.219
0.213
0.256
0.152
0.088
0.293

0.202
0.027
0.013
0.136
0.088
0.187
0.062
0.285
0.236

0.494
0.253
0.224
0.386
0.348
0.418
0.243
0.261
0.509

0.283
0.050
0.095
0.218
0.188
0.237
0.107
0.108
0.256

0.216
0.027
0.014
0.133
0.057
0.174
0.029
0.215
0.227

HW

GIMC-FLSD(Wen et al. 2020b)
DCP(Lin et al. 2021)
CDIMC-net(Wen et al. 2021)
HCP-IMSC(Li et al. 2022)
IMVC-CBG(Wang et al. 2022)
DSIMVC(Tang and Liu 2022)
LSIMVC(Liu et al. 2022)
PGP(Liu et al. 2023)
AGDIMC(ours)

0.613
0.797
0.933
0.817
0.572
0.810
0.943

0.577
0.753
0.878
0.788
0.598
0.798
0.889

0.456
0.570
0.861
0.724
0.444
0.725
0.920

0.427
0.742
0.892
0.797
0.512
0.778
0.936

0.440
0.743
0.831
0.767
0.509
0.772
0.880

0.307
0.640
0.808
0.709
0.320
0.686
0912

0.408
0.738
0.854
0.775
0.471
0.762
0.874

0.836
0.973

0.835
0.943

0.846
0.941

0.850
0.956

0.854
0.912

0.839
0.906

0.854
0.946

0.431
0.734
0.886
0.710
0.473
0.736
0.828
0.863
0.882

0.229
0.626
0.807
0.651
0.237
0.650
0.865
0.842
0.881

0.262
0.752
0.789
0.636
0.426
0.747
0.858
0.823
0.926

0.174
0.725
0.804
0.545
0.406
0.732
0.765
0.814
0.855

0.046
0.596
0.724
0.392
0.144
0.648
0.838
0.845
0.842

Table 1: Clustering results of all methods on three datasets. The best and second-best results are highlighted with bold and

underline, respectively.

Components BDGP Reuters HW

A | B | C| ACC | NMI | ARI | ACC | NMI | ARI | ACC | NMI | ARI
Item-1 v | v 0932 | 0.824 | 0.807 | 0.527 | 0.304 | 0.211 | 0.907 | 0.883 | 0.869
Item-2 | v v [ 0.789 ] 0.643 | 0.598 | 0.502 | 0.314 | 0.218 | 0.880 | 0.841 | 0.827
Item-3 | v | vV 0.913 | 0.783 | 0.797 | 0.462 | 0.268 | 0.204 | 0.938 | 0.902 | 0.895
Item4 | v | v | v | 0979 | 0937 | 0.949 | 0.588 | 0.354 | 0.294 | 0.973 | 0.943 | 0.941

Table 2: Ablation studies on three datasets.
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Figure 2: Convergence Analysis on BDGP, REU, and HW.

Implementation Details Following (Guo et al. 2017), we
use the same fully connected (Fc) autoencoder structure on
all three datasets. Specifically, for each view, the structure
of the encoder is Input - Fc500 - Fc500 - Fc2000 - Fc10.
Decoders are symmetric with the encoders of corresponding
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views. All the autoencoders are pre-trained for 2000 epochs.
The trade-off coefficient « is set to 0.5 and the number of
neighbors £ applied in kNN graph algorithm is set to 10. The
dimensionality of embeddings Z,, is reduced to 10. The acti-
vation function is ReLU (Glorot, Bordes, and Bengio 2011).
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Figure 3: Visualization of the clustering results on BDGP with different missing rates.

Figure 4: Clustering performance w.r.t. different parameter
settings on BDGP dataset with missing rate = 0.1.

The batch size is set to the instance number like most GNN-
based methods. We adopt Adam (Kingma and Ba 2014) to
optimize the deep models with a learning rate of 0.001. For
the comparing methods, we directly use the source codes
provided by authors and the suggested parameter settings.

Experimental Results and Analysis

Comparison with Baselines In our study, we compared
our model AGDIMC with several state-of-the-art algorithms
that have shown superior performance in recent years. We
evaluated the performance of AGDIMC on three bench-
mark datasets and four different missing rates: [0.1, 0.3, 0.5,
0.7]. The clustering performance of all methods on three
datasets is presented in Table 1. Our results demonstrate that
AGDIMC outperforms the baseline algorithms across these
datasets. We also found that the clustering performance of
all methods declines as the missing rate varies from 0.1 to
0.7. Nevertheless, our AGDIMC still achieves superior clus-
tering performance in most cases.

The success of AGDIMC can be attributed to the incor-
poration of clustering techniques. Furthermore, we address
the negative impact caused by inferior impute samples and
the discrepancy of cluster structures. These measures help
improve the overall performance.

Ablation Study To further verify the contributions of the
proposed method, we conduct an ablation study that shows
in Table 2. Components A, B, and C stand for local graph
convolution and global graph fusion, adaptive imputation
module, and nearest neighbor graph constraints, respec-
tively. Item-1 does not apply the GCN module to refine em-
bedded features that discard topological information, Item-2
is affected by low-quality imputed features without an adap-
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tive imputation module. Besides, Item-3 is limited because
the neighbor relationship is lost during the fusion process.
The best performance is achieved by Item-4, which illus-
trates the significance of different parts in our framework.

Convergence and Training Process The convergence
analysis was performed on the REC loss, KL loss, NNG
loss, and total loss using the BDGP, REU, and HW datasets.
Fig. 2 clearly demonstrates that as the number of epochs in-
creases, all four loss functions exhibit a gradual convergence
and reach a stable state. This provides strong evidence that
our model is both stable and effective.

Visualization of Learning Process We conducted cluster
result visualization analysis on BDGP. From Fig. 3, it can be
observed that our model is capable of effectively separating
embeddings from different categories. This visual demon-
stration highlights the effectiveness of our approach. Addi-
tionally, it can be noticed that as the missing rate increases,
the clustering structures of the embedded features become
less apparent.

Parameter Sensitivity In this analysis, we investigated
the sensitivity of our clustering model’s performance to two
main hyperparameters, o and k. The BDGP dataset was
used, with a missing rate of 0.1. We experimented with vary-
ing values of « and k and evaluated the clustering perfor-
mance using appropriate metrics. From Fig. 4, we observed
that within a certain range of « values, the clustering per-
formance remained relatively stable. This suggests that our
model is robust to changes in this hyperparameter and can
produce consistent results.

Conclusion

In this paper, we propose an Adaptive Feature Imputation
with Latent Graph for Deep Incomplete Multi-View Clus-
tering (AGDIMC). We not merely consider the topological
information that the latent graph can provide for the clus-
tering task, but also utilize the fusion graph to capture the
complementarity. Specifically, a novel adaptive imputation
module is developed to recover the missing samples dy-
namically and improve the robustness of multi-view clus-
tering on incomplete data. Besides this, it incorporates the
graph embedding technique to preserve the local structure
of data. Experimental results on multiple real-world multi-
view datasets demonstrate the state-of-the-art performance
of the proposed method.
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