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Abstract— We propose an improved keypoint approach for
6-DoF grasp pose synthesis from RGB-D input. Keypoint-based
grasp detection from image input demonstrated promising
results in a previous study, where the visual information
provided by color imagery compensates for noisy or imprecise
depth measurements. However, it relies heavily on accurate
keypoint prediction in image space. We devise a new grasp
generation network that reduces the dependency on precise
keypoint estimation. Given an RGB-D input, the network
estimates both the grasp pose and the camera-grasp length
scale. Re-design of the keypoint output space mitigates the
impact of keypoint prediction noise on Perspective-n-Point
(PnP) algorithm solutions. Experiments show that the proposed
method outperforms the baseline by a large margin, validating
its design. Though trained only on simple synthetic objects, our
method demonstrates sim-to-real capacity through competitive
results in real-world robot experiments.

I. INTRODUCTION

Robotic grasping is a fundamental and challenging prob-
lem, requiring both object perception as well as geometric
reasoning from visual input. Past reasearch simplified the
problem by constraining the grasp poses to SE(2) space,
assuming that the camera has a (nearly) top-down view of
the scene, and the gripper approaches perpendicular to the
support plane [1]-[3]. The restriction permits planar grasp
methods to represent grasps as simple oriented rectangles
or keypoints in the image space, which permits directly
adopting existing data-driven tools from computer vision
tasks, such as object [4] or keypoint [5] detectors. However,
it also neglects possible grasp poses reaching from other
directions, which impedes SE(2) grasp recognition utility in
constrained environments [6], [7].

The limitation of planar grasps has motivated exploration
of 6-DoF grasp synthesis, which outputs grasp poses in
SE(3). Point cloud methods, utilizing point set feature ex-
tractors like PointNets [8], [9], have achieved success in
generating or evaluating 6-DoF grasp poses directly from
depth sensor data. However, these methods face empirical
limitations such as poor grasp poses for small-scale objects
due to limited point perception [10], and compromised per-
formance in the presence of sensor noise. A point sampling
strategy [10] has been proposed to balance object scales at
the cost of increased computation due to the need for an
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additional instance segmentation network. The sensitivity to
input uncertainty or imprecision remains a concern.

Consequently, the use of 2D/2.5D input for 6-DoF grasp
detection has gained attention due to the additional visual
information offered by color images. Visual clues provided
from a color image, as extracted by modern convolutional
neural networks (CNNSs), not only facilitate the discernment
of small objects imperceptible to depth sensors, but also
improve robustness to depth sensor measurement noise [11].
Despite demonstrating promising results, existing methods
[11], [12] still utilize direct regression of 3D grasp pose rep-
resentations and force the network to estimate 3D structural
information from 2D projective input, which is coupled to
camera geometry. Such regression requires more extensive
annotation information, such as surface normals, for training
[12]; or dense discretization of SO(3) space [11].

To avoid directly estimating 3D pose parameters,
Keypoint-GraspNet (KGN) [13] isolates the 2D-to-3D re-
covery stage from the network. Instead of using a 3D
representation, KGN represents a grasp pose as a set of
gripper keypoints in the image space and recovers the SE(3)
pose from the 2D keypoints with a PnP algorithm [14].
KGN avoids discretization error, as keypoint coordinates are
continuous in the image space, and removes the requirement
for estimating surface normal directions. However, imprecise
keypoint predictions cause unstable estimation of the scale
factor (here, the magnitude of the translation of the grasp
pose relative to the camera), especially in novel test domains,
such as when training on synthetic data and testing on
real-world data. KGN heuristically addresses the issue by
adopting the perceived depth as the scale, whose accuracy is
affected by depth measurement error and occlusion.

This paper introduce KGNv2, an improved keypoint-based
grasp detection network with more accurate/less sensitive
grasp pose estimation. The network eliminates the need for
accurate keypoint proximity estimation by predicting pose
and scale separately, which improves the accuracy of the
generated poses. The keypoint output space is re-designed
to be (length scale) normalized, which reduces sensitivity to
keypoint error and enhances the precisioin of the estimated
pose. The simple modifications improve grasp prediction
performance across all tests applied using the primitive shape
dataset from [13]. The network generalizes to actual objects
with shape variation in real-world experiments, indicating
the potential of training grasp detectors on virtual data with
primitive geometries, for which obtaining ground-truth labels
is easier and faster.
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Fig. 1: Overview of KGNv2. Given an RGB-D input, our model predicts pixel-wise candidate grasp poses. It estimates the
pose up to a scale by applying PnP algorithm on generated image-space keypoint coordinates with camera intrinsic matrix.
The keypoints are obtained by predicted grasp centers and offsets. Then the homocity as well as the open width are inferred,
which complete the grasp description. The final grasp set is the collection of results over high-confident pixels.

II. RELATED WORK

The literature review scoping is narrowed to learning-
based 6-DoF grasp detection with antipodal end-effector.
Other related areas include dexterous grasp detection, planar
grasp synthesis, and model-based grasp detection. They have
been thoroughly reviewed by other survey papers [15], [16]
and are outside the scope of this paper.

A. Point Cloud Methods

The emergence of point set encoders like PointNets [8], [9]
and DeCo [17] led to a shift of emphasis in 6-DoF grasp pose
detection to point cloud inputs [18]. Early efforts employed a
generate-then-evaluate process, where a discriminative model
to predict grasp outcome is necessary [19]. PointNetGPD
[20] uses a geometry-based heuristic approach [21] to sample
from SE(3) spaces, whose trained network maps points in
candidate grasp regions to grasp pose scores. The variable
quality and insufficient density of the sampled grasp poses
limits recognition performance. 6DoF-GraspNet [22] re-
places the sampling-based candidate proposal approach with
deep generator trained with Generative Adversial Network
(GAN) or Variational Autoencoder (VAE) objectives. Other
approaches [23], [24] investigate refining the initial pose
proposal by increasing the score estimated from a learnt
evaluator.

The above point cloud pipelines are time-consuming due
the use of multiple forward passes. Driven by large scale
grasping datasets [25], [26], recent approaches turn their
attention to end-to-end grasp detection — with both grasp
pose parameter and confidence estimated by a single model.
The key difference lies in the grasp representation choice.
S4G [27] chooses the SE(3) representation, and directly
regresses the rotational and translational parameters anchored
on point with high confidence. To enable multiple detections
per point, GDN [28] extends the idea with a coarse-to-fine
representation idea, first performing classificaiton on a set of
discrete angular grids, then regressing translation and rotation
refinement values for high-confidence candidates. Another
thread of inquiry argues in favor of explicit contact physics
reasoning. The adopted representation is two contact points
plus pitching angle [29], [30], with the assumption that one

of the contact points references a visible point of the object’s
partial point cloud.

Point cloud methods share common drawbacks, as studied
in recent literature. Due to the high processing time to
extract geometric information from the point coordinates
enumeration, truncating the point cloud volume is necessary;
usually by downsampling [27] or target segmentation [22].
L2G [30] alternatively designs an learnable sampler, which
can be jointly tuned in end-to-end training. It assumes that
a properly designed sampling procedure will retain critical
information for grasp synthesis, which is not always the case.
Especially for high-resolution input. Another limitation of
point cloud methods is their bias towards larger objects due
to having higher point counts. Bias reduction was achieved
through balanced sampling based on instance segmentation
masks [10] at the additional computational cost of an external
segmentation module.

B. Image-based Methods

Relative to point clouds, images are faster to process with
modern networks and preserve pixel proximity relationships,
which can address the above issues. Hence, recent investi-
gations into 6-DoF grasp detection from image input [31],
where the color modality is shown to improve robustness to
depth uncertainty [11]. However, the intial exploration still
relies on 3D representaion of grasp poses, such as a contact-
point-based description [12], which fails to leverage existing
knowledge about 3D-to-2D camera projection.

In contract, KGN [13] describes a 3D grasp pose by
4 image space keypoints, and exploits the efficient key-
points synthesis of keypoint detectors like CenterNet [5],
[32]. Designing the 4 keypoints to model the projection
of virtual 3D points in the gripper frame with predefined
coordinates, the application of a PnP algorithm recovers
their original 3D structure by leveraging camera projective
geometry. Given fixed 3D coordinates, the relative location
and absolute distance between 2D keypoints determines the
pose up to scale and scale factor, respectively (e.g. closer
keypoints means the gripper frame is further to the camera
plane). However, the prediction of keypoint to camera length
scale was found to be unstable in novel test environments
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Fig. 2: Synthetic study on the relationship between pose scale
and pose recovery error from PnP algorithm [14] due to
noise. With larger grasp pose scale (grasp is further from
the camera), both rotational and translational error increases
under all noise levels. The observation motivates us to predict
scaled keypoint location as in §III-B.

[13]. This work relaxes the requirement of precise distance
prediction by separately predicting the scale. The predicted
scale permits further redesign of the keypoint output space
based on the influence keypoint prediction noise has on the
scale factor. We show that our modified network, named
KGNV2, achieves superior performance relative to KGN in
the single- and multi-object settings.

III. METHODOLOGY
A. Problem Definition

Given a monocular RGB-D input, the objective is to
synthesize a set of 6-DoF grasps with grasp pose g € SE(3)
and associated open width w to pick up objects perceived
by the image without converting the input into 3D point
representations. The problem is challenging since the input
is in 2D image space while the output is in 3D space. The
proposed solution, as illustrated in Fig. 1, predicts grasp
poses from separately estimated keypoints, pose scale, and
grasp open width outputs.

B. Pose Estimation with Scale-Normalized Keypoint

Inspired by KGN [13], we adopt a keypoint-based strat-
egy that leverages camera 3D-to-2D projective structure to
estimate grasp poses up to scale. Specifically, given RGB-
D input, KGNV2 predicts a set of grasp centers {c'};,
defined as the center point between gripper tips, for each
orientation interval of line segment between gripper tips in
the image space: m € {1,2,--- ,M}. The orientation classes
enable simultaneous detection of multiple grasps sharing the
same center. It is useful for generating diverse candidate sets
of rotationally symmetric objects (e.g. grasps for a ball or
cylinder). It also functions as a non-maximum suppression
mechanism by considering grasps with overlapping centers
and similar orientations to be highly similar, resulting in only
one grasp being retained. Grasp centers are detected from a
heatmap Y € [0, 1]V *#'*M where W' and H’ represent the
resolution of the downscaled feature map.

From grasp centers, keypoints’ locations
{(p11,Ph, P, piy)} are predicted based on offset estimates.
Our network learns to generate center-keypoint offset

vector maps O, which encode the displacement from the
center keypoint to the grasp keypoints for each center and
orientation candidate. Keypoints locations, obtained from
the centers and offsets, input to the IPPE [14] algorithm
specifically designed for the coplaner PrP problem produce
6-DoF grasp poses. The final synthesized grasp set is the
collection of results from high confidence grasp centers.

Scale-Normalized Keypoint Prediction. A natural choice
of keypoint design is to define the ground-truth keypoints so
that they form a square whose sides have a length equal
to the grasp open width. In this way, 2D keypoints on the
image conform to the diameter across the grasped subregion.
However, such a design naturally favors grasp poses with
smaller scale (in close proximity to camera) during train-
ing, under distance-based loss functions. Unlike human or
object pose estimation [5], grasp poses are larger in quantity
per image due to the continuity of feasible grasps for each
object and exhibit a distribution across scales. As an object
recedes from the camera, its fixed width grasps generate
keypoints that project closer to each other due to perspective
projection. However, one property of PnP algorithm is that
recovered grasp pose for closer keypoints are prone to larger
error under the same noise level, based on PnP problem
conditioning. Hence, similar error proportions in keypoint
image space translates to larger error in pose space for more
distant grasps.

To empirically demonstrate this known property, we con-
duct a synthetic experiment examining the relationship be-
tween scale and pose estimation error. Orientation is ran-
domly sampled for grasps at the origin with the camera
optical axis pointed at the origin and sampled at variable
distances from it. The grasp pose is then estimated from
the keypoint projections injected by Gaussian noise. The
average rotational and translational error, defined in §IV-C,
is computed from the grasp pose estimate and the known
ground truth. When organized by noise and scale, then
plotted as in Fig. 2, the error trend shows an increase as
a function of scale conditioned on noise level.

Consequently, we propose to predict image-space key-
points normalized by scale. The idea is related to hu-
man/object keypoints prediction with area-normalization
[33], [34] or object-size-normalization [35]. Here, grasp pose
normalization will be based on the relative grasp-camera
distance to achieve scale invariance. Specifically, we scale
the offset value related to keypoint proximity. For each grasp
center ¢ and associated actual offset vectors O, and scale S,,
the network is tasked to predict:

0. = 0./S, (1)

where the predicted scale (see §III-C) is used in the in-
ference. The scale-normalized keypoint design reduces pose
estimation sensitivity to noise for more distant grasp poses.
If the scaled offset predictions exhibit zero-mean Gaussian
noise € ~ .4 (0,62), then the effective perturbation to the
offsets reduces to (1/S.)e ~ .4 (0,62/S?), whose variance
decreases by S., leading to more accurate pose recovery.
Section IV-C shows that this design does improve accuracy.
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Fig. 3: Example of inaccurate keypoints proximity prediction
on primitive shape data. The predicted keypoints exhibit
greater proximity to each other than the ground truth key-
points, possibly due to the influence of visual disturbance
from surrounding objects, resulting in imprecise scale esti-
mation.

C. Scale Prediction

Another reason to normalize by scale has to do with
keypoint prediction errors induced by domain shift. For
example, when testing on multi-object scenes from the
Primitive Shape dataset [13], a keypoint detector trained with
single-object data tends to produce keypoints that are more
closely grouped than the ground truth; see Fig. 3. Since the
distance to the camera optical center is inversely proportional
to the size of objects in the image, imprecise image-space
proximity can lead to erroneous scale estimation impacting
the translation scale or the gripper width scale.

KGN [13] mitigates the problem by heuristically replacing
the predicted scale with the perceived depth at the grasp
center from the sensor. That leads to two potential problems.
First, center depth is not identical to grasp translation scale,
as the center point will generically not be a visible surface
point. When grasping a box, the gripper enclosing center
would fall inside of the box, which makes it unperceiv-
able. Hence, the heuristics will introduce additional error.
Furthermore, depth sensors may not always provide reliable
measurements. Perceived depth maps can be affected by
various sources of noise and may contain missing values
[36]. As a result, raw depth values are less informative for
accurate scale estimation for the grasp pose.

Rather than predicating scale estimation on keypoints
or raw depth value, KGNv2 directly predicts a scale map
S € RE>XWXM for each pixel and orientation class. Each
grasp pose directly matches to the scale prediction at the
corresponding grasp center location and orientation class. Al-
though similar to depth prediction problem, scale estimation
given only RGB input is essentially ill-posed across object-
grasp space. We assume the noisy depth map input serves
as a signal that reduces scale ambiguity. With accurate scale
predictions, the translation magnitude from the PnP can be
easily refined: Suppose for a predicted grasp center ¢ and an
orientation class m, the rotation and translation given by the
PnP algorithm is: § = {R, T}, then the final pose combined
with the scale prediction is:

Sc,m

I

g={R1})={R =T} )

D. Final Loss

Network training requires labels for all branch outputs,
which are easily generated from ground truth grasp poses
and camera intrinsic and extrinsic matrices. The objective
for training given ground truth labels involves the penalty-
reduced focal loss for the heatmap Ly, plus the L; regression
loss for the center-keypoint offsets Lo, open width Ly, and
translation scale Lg on labeled grasp centers. The final loss
is the weighted sum of the four losses:

L=1YLy+YoLo+ YwLw + ¥sLs €))

We chose: w =1, Y0 =1, v = 10, 5 = 10 to balance the
relative dynamic ranges of the loss components.

IV. EXPERIMENTS
A. Synthetic Dataset

Following [13], we use the Primitive Shape (PS) dataset
for network training. It is a synthetic dataset generated by
spawning objects of simple shapes with random pose on the
tabletop, which is the most common evaluation scenerio for
grasp detectors. The simple shape categories are: Cylinder,
Ring, Stick, Sphere, Semi-sphere, and Cuboid. Ground truth
grasps are annotated by sampling evenly distributed instances
from grasp families [37] — the closed-form grasp pose
distributions parameterized by the shape type and sizes.
The parameter ranges are assumed to sufficiently cover the
feasible grasp modes for a given primitive shape based on
human expertise, due to the simplicity of the object geometry.

We choose the dataset since shape decomposition proves to
be a very effective strategy and driving force in grasp synthe-
sis research for years [37]-[40]. The grasp label generation
approach is significanly more cost-effective compared to
sample-then-verify strategies based on simulation [25], [41],
[42]. Furthermore, it mitigates potential bias or inaccuracies
in the labeling process that can arise from sampling artifacts
[43], thereby avoiding the subsequent negative impact on
training and/or evaluation.

The PS dataset contains 1000 single-object scenes, divided
into 800 training scenes and 200 test scenes. For each scene,
RGB-D data is rendered from 5 random camera poses,
leading to 4000 training data and 1000 test data. In addition,
we generate a multi-object PS dataset of the same quantity,
where all 6 shapes with random size and color are spawned in
each scene. The grasp poses causing collisions are removed.
We increase the annotation sample density for test splits to
verify the extrapolation ability of the trained grasp detector
from sparse examples.

B. Implementation Details

The vision encoder used in our method is DLA-34 [44]
modified with deformable convolution layer [45], and with a
modified first layer consisting of 4-channel kernels for RGB-
D input. A shallow two-layer convolution network is used
for each task head. We finetune the network on PS training
splits starting from pretrained weights on CoCo dataset [46],
whose blue channel parameters are duplicated for the depth
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TABLE I: Vision Dataset Evaluation

Single-Object Evaluation (GPR% / GCR% / OSR %) | Multi-Object Evaluation (GPR% / GCR% / OSR%)

Methods
lem +20° 2cm+30°

3cm +45°

lecm +20° 2cm + 30° 3cm +45°

Contact-Graspnetf |29.9 /249 / 77.0|60.1 / 32.0 / 81.7

81.6/36.5/84.2

22.1/155/44.1|542/285/51.4|78.4/345/544

KGN [13] (single)!| 55.5 7/ 42.9 / 97.0|78.5 / 63.3 / 99.6
KGN [13] (multi)!| 38.6 / 18.5 / 63.7 | 63.8 / 33.1 / 85.0

86.9/73.2/99.9
7847462 /91.0

10.8 /5.48 /28.7|30.6 / 18.7 / 51.8 [ 49.6 / 33.8 / 62.4
52.6/40.7/86.5|78.1/66.7/93.1|882/782/94.8

KGNV2 (single)' |81.4 /59.1 /98.8|92.7 / 70.9 / 99.7
KGNv2 (multi)' |86.4 / 61.8 / 99.7|93.4 / 72.5 / 1.00

96.0/77.4799.8
95.7 / 80.4 / 1.00

21.4/7153/7429|41.1/32.2/584|56.7/459/68.7
80.4 / 58.5/93.1/91.0 / 73.5/94.6 | 95.1 / 80.5 / 94.9

! Single and multi in the paratheneses means trained on single-object or multi-object data.

* The evaluated model is trained on Acronym [25] dataset.

TABLE II: Ablation Study Results

Components Mult-Object Evaluation
Methods
sBranch! sKpt? | *Avg GPR% / GCR% / OSR%
KGN 304 /193 /47.6
KGNv2 v’ 38.8/30.7/53.2
KGNv2 v’ v’ 39.7 / 31.1/ 56.7

* Numbers averaged over three error tolerance levels.
! sBranch - Scaled branch (§.I1I-C).
2 sKpt - Scale-normalized keypoints (§III-B).

channel in the input layer. The network is trained for 400
epochs using the ADAM optimizer, with initial learning rate
as 1.25x 10~ and is decayed by 10x at epoch 350 and 370.
We adopts image augmentation, including random cropping,
flipping, and color jittering, for better generalization ability.
Training is done on a single NVIDIA RTX 3090 GPU, and
testing on a single NVIDIA RTX 1080Ti. The training takes
16 hours, and the inference speed is 9 FPS.

C. Synthetic Dataset Experiments

We first test our method on the Primitive Shape dataset
test split to examine its ability to learn the annotated grasp
distribution. The performance is compared against KGN [13]
to demonstrate the effectiveness of the proposed modifica-
tions. An ablation study break down the contribution of each
of the proposed components to the overall performance.

Metrics: Evaluation compares the predicted grasp pose
set to the ground truth (GT) set. Following [13], the three
evaluation metrics are: (1) Grasp Precision Rate (GPR):
Percentage of grasp predictions with a nearby GT grasp;
(2) Grasp Coverage Rate (GCR): Percentage of GT pose
with closeby predictions; (3) Object Success Rate (OSR):
Percentage of objects targeted by near-GT predictions. The
similarity between two poses are determined by thresholding
both the translational and rotational errors, defined as L,
norm between translations and the minimum angle required
to align rotations; see [47] and [48], respectively. Evaluation
occurs for three different tolerances from strict to loose:
(Iem,20°), (2cm,30°), and (3cm,45°).

Dataset Evaluation Results: We first evaluate KGNv2
and baseline KGN on both single- and multi-object test
sets, while training both methods on either single- or multi-
object training sets. The results are tabulated in Tab. I, which
includes the performance of Contact-GraspNet trained on
clutter scenes from Acronym [25] for reference. We first
notice that KGNv2 outperforms the baseline KGN under

Fig. 4: Objects used for physical experiments. Yellow bound-
ing box selects the object set for single-object grasping.

all settings. For example, when trained and tested both
on multi-object data, KGNv2 achieves 27.8%, 17.8%, and
6.6% performance improvement under the strictest threshold
values for GPR, GCR, and OSR, respectively. When trained
on single-object scenes and tested on more complex multi-
object scenarios, KGNv2 shows 10.6%, 9.8%, and 14.2%
performance gains, comparable to Contact-Graspnet, which
is considered to be an upper bound in this setting [13].

We also observe that our method trained on multi-object
data performs better in the single-object benchmark versus
when trained on single-object scenarios. This suggests that
the KGNv2 network learns to reason about critical scene
structure regarding grasp-object geometry, which benefits
all grasping tasks including single-object picking. A similar
trend is not observed for [13] - trained on multi-object data,
its GPR for single-object evaluation is 47.8% lower than that
of KGNv2 under the most strict error tolerance thresholds
in single-object testing, while being only 14% lower than
itself in multi-object object testing. The fact that KGN cannot
generalize to a simpler task suggests a deficit in its design
that prevents reasoning about geometric information, which
is mitigated by the modifications described here.

Ablation study: To better understand the benefits of
the modifications, an ablation study removes the scale-
normalized keypoint and scale prediction branch design
one-by-one. To test the capability of grasp detection under
domain shift, the networks are trained on single-object data
then tested on multi-object data. Tab. II reports the average
of the three metrics across all error tolerance levels. The
results demonstrate the impact of both modifications - the
simple scale branch improves the performance of grasp pre-
diction, and the scale-normalized keypoint further enhances
performance.
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(b)

Fig. 5: Demonstration of generated grasp candidates in physical experiments. (a)(b) Single-object experiment results. (c)(d)
Multi-object experiment results. Only at most 40 grasps are randomly selected for visualization.

TABLE III: Single-Object Grasping Comparison from Pub-
lished Works

TABLE IV: Multi-Object Grasping Comparison from Pub-
lished Works

* All results for baselines adopted from original paper for reference,
following [3].

D. Physical Experiments

To validate the sim-to-real generalization ability, we apply
the proposed grasp detector in real-world physical experi-
ments. The robotic system is composed of an Intel RealSense
D435 camera mounted at a fixed position for perception,
and a custom-made 7-DoF robotic arm for execution. The
trajectory is planned with Movelt [49]. The object set used
for experiments is depicted in Fig. 4. Both single-object
and multi-object grasping experiments are performed. For all
physical experiments, we use the KGNv2 weight trained on
Primitive Shape multi-object training set, as it demonstrates
superior performance even in single-object vision dataset
evaluation. 95% confidence intervals are reported.

Grasp selection strategy. A grasp selection strategy is
necessary to choose a pose for execution from the rich
candidate set generated by KGNv2. The annotated grasp
poses are generated in as gripper-agnostic a manner as
possible. Gripper-specific context is applied in the grasp
selection stage. To select the pose for grasp execution, we
first rank the candidate poses based on model confidence (as
output by KGNv2). We calculate a score for each grasp pose,
s(g), by combining the center confidence generated during
the keypoint detection stage with the reprojection error (RE)
introduced by the pose recovery stage: s(g) = Y., + RE.
Then, we choose the feasible pose with top confidence that
causes no collision and encloses a non-empty volume of the
grasp region point cloud based on gripper attributes [50].
For comparative purposes, we collect reported results from
related papers as references.

Single-Object Grasping Results. We conduct pick-and-

. Success " . Success Clear
Approach* Settings Rate (%) Approach — Setstn:gs a— Rate (%) | Rate (%)
- - - - odality n )/ SN
: Modality | Obj | Trial/Obj PnGPD [20] PC 10 8 7777 97,5
6DoF-GraspNet [22] PC 17 3 88.0 Pn++ [9] PC 20 6 77.19 945
L2G [30] pC 48 5 50.5 RGBMatters [11] | RGB-D | 6 58 9.1 100
RGBMatters [11] RGB-D 9 20 91.67 MonoGN [12] RGB | 8 45 N/A% 80.6
MonoGraspNet [12] RGB 12 15 75.95 [ KGNv2 [ RGB-D | 10 ] 5 [ 80+£10.1 [ 96+7.4 ]
KGN RGB-D 3 875196 f*HAll. resgl}s for baselines adopted from original paper for reference,
ollowing [3].
KGNv2 RGB-D 8 5 92.54+6.7 + Calculated as the average success number over average attempts number.

i Not released by original paper

place experiments for individual objects that require the
robotic arm to retrieve a randomly placed target and move
it to a predetermined location. In this experiment, we utilize
the same set of eight objects with diverse shapes as employed
in [13], shown in Fig. 4. For each object, we conduct 5 trials
and calculate the success rate.

The results are collected in Table. III. Following [3], [37],
we also collect the results from published grasping research
efforts to place the performance of KGNv2 within a greater
context. KGNv2 demonstrates a top-performing success rate
in spite of being trained on basic, synthetic primitive shapes,
indicating that the critical geometric information is learnt.
Furthermore, it achieves a 5% performance gain compared
to KGN, suggesting the proposed modifications lead to
more accurate grasp pose prediction. Observed failure modes
involve the prediction of unstable grasps such as choosing
off-center grasp poses for the ball causing it to roll away, or
targeting the metallic, slippery section of the clamp.

Multi-Object Grasping Results Experiments conducted
with multiple objects involve randomly selecting five objects
from a set of objects to place on the table for each scene.
We iteratively select grasp poses generated by the model
for pick-and-place execution. The termination criteria for
each trial consists of two conditions, namely: (1) succesful
removal of all objects; (2) three consecutive failed attempts,
with the purpose of penalizing the system when stuck in a
persistent failure situation.

We evaluate the succcess rate for grasp attempts and
clearance rate for the objects. The experiment results are
tabulated in Tab. IV, which collects results from related
papers as before for reference. Our approach obtains a
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comparable success rate and clearance rate to state-of-the-art
methods, which further validates our method in real-world
tasks. For failure cases, the single-object picking failure
causes still exist. Additionally, we observed some failures
where grasps aim for occluded regions, probably due to
unreasonable extrapolation by the network.

V. CONCLUSION

This work describes a 6-DoF grasp pose detection method
from RGB-D image input. The method first generates pose
up to translational scale based on image-space keypoint
detection and the PnP algorithm, It also regresses pose scale
as well as open width. Based on numerical analysis on
PnP algorithm, a scale-normalized keypoint design improves
pose estimation accuracy and reduces sensitivity to keypoint
pixel error. On the Primitive Shape dataset, we verify that
our method learns to generate grasp distribution from the
designed labels better than a previous approach, and demon-
strate the impact of the modifications via ablation study.
Physical experiments are conducted to further validate our
approach’s generalization ability in relation to possible sim-
to-real gaps.

While the physical experiments show that KGNv2 suc-
cessfully learns geometric reasoning skills that generalize to
a set of common household objects from simple primitive
geometric data, the uniform color of the primitive shapes
may limit the model’s capacity to recognize diverse visual
appearances in the open world. Future efforts could explore
augmenting the dataset with authentic textures leveraging
generative methods such as diffusion model [51], [52].
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