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Self-Weighted Contrastive Fusion for Deep
Multi-View Clustering
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Abstract—Multi-view clustering can explore consensus informa-
tion from multiple views and has attracted increasing attention
in the past two decades. However, existing works face two major
challenges: i) how to deal with the conflict between learning
view-consensus information and reconstructing inconsistent view-
private information and ii) how to mitigate representation
degeneration caused by implementing the consistency objective
for multi-view data. To address these challenges, we propose
a novel framework of self-weighted contrastive fusion for deep
multi-view clustering (SCMVC). First, our method establishes
a hierarchical feature fusion framework, effectively segregating
the consistency objective from the reconstruction objective. Then,
multi-view contrastive fusion is implemented via maximizing
consistency expression between the view-consensus representation
and global representation, fully exploring the view consistency
and complementary. More importantly, we propose to measure the
discrepancy between pairwise representations, and then introduce
a self-weighting method, which adaptively strengthens useful
views in feature fusion and weakens unreliable views, to mitigate
representation degeneration. Extensive experiments on nine public
datasets demonstrate that our proposed method achieves state-of-
the-art clustering performance.
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I. INTRODUCTION

W ITH the rapid development of multimedia applications,
a large amount of data is being collected from various

sources or described with diverse attributes. In particular, these
data generally lack label information. For instance, in the case of
a video, it may include images captured from different cameras,
audio with varying voices, and text descriptions. To explore use-
ful consistent and complementary information among multiple
views in an unsupervisedway, multi-view clustering (MVC) [1],
[2], [3], [4] aims to integrate data from different sources to gain a
more comprehensive understanding of the underlying phenom-
ena.
In the field of multi-view clustering (MVC), deep multi-view

clustering methods [5], [6] have been proven to achieve supe-
rior clustering performance owing to the powerful representa-
tion learning ability of deep networks. Specifically, these meth-
ods [7], [8] employ a view-specific encoder network to learn
the salient features for each view. Then, these learned view
representations are further fused to obtain a more discrimina-
tive global feature that can be divided into different categories
based on the complementary information across all views. De-
spite considerable progress has beenmade in recent years within
the realm of deep multi-view clustering, there remain two major
challenges: (i) how to deal with the conflict between learning
common view-consensus information and reconstructing incon-
sistent view-private information, and (ii) how to mitigate repre-
sentation degeneration caused by implementing the consistency
objective for mutli-view data.
More specifically, multi-view data generally contains two

types of information, i.e., the consensus information across all
views, and the inconsistent view-private information about the
individual view. In MVC, an intuitive idea is to capture as much
consensus information as possible across all views, thereby ex-
ploring more discriminating clustering structures [9]. In light
of this, most deep MVC methods, e.g., [8], [10], conduct the
consistency objective on the latent features to unveil view con-
sistency. However, they tend to ignore that the reconstruction
objective retained in the same feature space might compel the
salient features to redundantly reconstruct meaningless private
information. To elaborate, the former tries to learn the consen-
sus features across all views as much as possible, while the latter
wants to maintain the invariance between inputs and outputs for
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Fig. 1. (a) Typical MCL framework: the latent embeddings {Zv}Mv=1 are projected into the consistent feature spaces {Rv}Mv=1, where the contrastive learning
is implemented among different views, i.e., Lm,o

CL and Ln,o
CL. (b) Clustering accuracy of individual views on Caltech-5 V dataset. (c) Clustering accuracy of view

1 and view 4 with typical MCL framework. The high-quality views will be forced to align with the low-quality views.

the individual view. This inconsistent conflict severely limits
MVC methods.
To handle the above challenges, contrastive multi-view clus-

tering methods [9], [11] have been proposed, emphasizing the
alignment of representations from each view to mine consensus
information. Despite achieving satisfactory results, we found
that the excessive pursuit of view consistency might cause rep-
resentation degeneration that the high-quality views would be
forced to align with the low-quality views to achieve maxi-
mum view consistency. This side effect restricts the effective-
ness of multi-view clustering tasks (see Fig. 1). Moreover, the
global complementary information is often discarded during
contrastive learning [12]. The lack of complementary semantics
might further exacerbate representation degeneration, thereby
leading to the inability to capture sufficient discriminative infor-
mation.
To address the above issues, we propose a novel framework

of self-weighted contrastive fusion for deep multi-view cluster-
ing (SCMVC). Specifically, focusing on the challenge (i), we
establish a hierarchical feature fusion framework to avoid the
reconstruction loss directly acting on consensus feature learn-
ing. First, we leverage the autoencoders to learn the low-level
features from raw data. Subsequently, two MLPs are stacked to
separate the consistent feature learning from the reconstruction
objective, where a linear MLP is used to mine view-consensus
information for each view, while another nonlinear MLP con-
ducts feature fusion on all latent embeddings to fully explore the
complementary information. Motivated by the insight that the
salient representations of the same sample from different views
are typically similar, we conduct multi-view contrastive fusion
between view-consensus features and global features to achieve
the consistency objective. Considering the challenge (ii),we pro-
pose to first measure the discrepancy among pairwise represen-
tations, and then adaptively strengthen useful views in feature
fusion, weakening unreliable views. In this way, high-quality
views with informative semantics would dominate the feature
fusion, while significantly reducing the impact of low-quality
views. In summary, our key contributions are as follows:! We propose a hierarchical feature fusion framework where

different objectives are conducted in different feature

spaces. In this way, our method can effectively explore the
consensus information for each view, and further learn the
global discriminative representation for the downstream
task.! We propose a novel self-weighted multi-view contrastive
fusion paradigm, which can adaptively strengthen useful
views with informative semantics in feature fusion while
reducing the impact of unreliable views.! Extensive experiments are conducted on nine public
datasets, and the results demonstrate the state-of-the-art
clustering performance of our proposed method.

II. RELATED WORK

A. Multi-View Clustering

In this paper, we roughly divide the existing MVC meth-
ods into four categories: (1) Subspace-based multi-view clus-
tering [13], [14]. In [15], latent subspace representations, which
are more accurate and robust, are learned by leveraging the
complementarity of multiple views. Liu et al. [16] combine
anchor learning and graph construction into a uniform frame-
work. Particularly, the algorithm directly outputs the cluster-
ing via graph connectivity constraint. (2) Matrix factorization
based multi-view clustering [17]. Non-negative matrix factor-
ization is used to decompose each view into low-rank matrices,
and then the data are clustered in a low-dimensional space [18].
Wei et al. [19] propose a deep matrix factorization based solu-
tion, where multi-view data matrices are factorized into multi-
ple representational subspaces layer by layer. (3) Graph-based
multi-view clustering [20], [21]. Many MVC methods aim to
generate more significant clustering representations by intro-
ducing topological information [22]. In [23], the graph autoen-
coder is used to learn latent clustering representations,where one
informative graph view is employed, and latent representations
are reconstructed into multiple graph views. (4) Deep embedded
multi-view clustering [24]. One of themost representativeworks
is deep embedded clustering DEC [25], which jointly learns the
clustering assignments and embedded features of autoencoders.
Based on this, improved DEC [26] introduces a trade-off be-
tween clustering and reconstruction objectives to prevent the
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collapse of deep models. Furthermore, Yan et al. [27] further
introduce the transformer architecture for deep multi-view clus-
tering task, where the structure relationship of all samples is
fully explored.

B. Multi-View Contrastive Learning

Contrastive learning is a novel unsupervised representation
learning method that aims to learn feature representations by
comparing the similarity or difference between different data
points [28], [29]. In computer vision, the contrastive learning
paradigm has been widely used due to its effective feature learn-
ing ability [30], [31]. For instance, Zhong et al. [32] lift the
traditional instance-level consistency to the cluster-level con-
sistency via contrastive learning. Particularly, multi-view con-
trastive learning (MCL) aims to handle multi-view data widely
existed in multimedia applications, attracting increasing atten-
tion [33], [34]. Ke et al. [12] conduct contrastive fusion from
multiple views, and the characteristics of view-specific repre-
sentations are maintained. Xu et al. [9] explore how to learn
the view-consensus representation and avoid the impact of the
view-private information, where different levels of features are
learned via contrastive learning. In [35], a dual mutual informa-
tion constrained clustering method is proposed, where the mu-
tual information across all the dimensionalities is minimized,
and that of the similar instance pairs is maximized. Although
superior results have been achieved in many cases, we found
that most previous works often ignore the representation degen-
eration problem that the high-quality views would be forced to
align with the low-quality views, like Fig. 1. Focusing on ad-
dressing this issue, in this paper, we propose a self-weighted
contrastive fusion framework (SCMVC).

III. THE PROPOSED METHOD

Problem Statement: Given a multi-view dataset {Xv}Mv=1

with N samples across M views, where Xv = {Xv
1;X

v
2;

. . . ;Xv
N} ∈ RN×Dv ,Dv denotes the dimension of the raw fea-

tures in the v-th view. Multi-view clustering aims to partitionN
instances into k clusters. In order to enhance clarity and concise-
ness, the main symbols used in our study are listed in Table I.

A. Motivation

In general, multi-view datasets are susceptible to containing
noise and redundant information. Hence, the mainstream meth-
ods generally implement self-supervised autoencoder models,
e.g., AE [36], VAE [37], and MAE [38], to learn salient rep-
resentations from raw features. Specifically, for the v-th view,
letEv(Xv; θv) andDv(Zv;φv) represent multi-layer nonlinear
encoder and decoder, where θv and φv are the learnable param-
eters of autoencoder networks, denoteZv = Ev(Xv) ∈ RN×dv

as the latent embedding in dv-dimensional feature space. Then,
the autoencoders are optimized via forcing the decoded output
X̂v = Dv(Zv) ∈ RN×Dv to be consistent with the original in-
put Xv , so the reconstruction objective LZ can be formulated

TABLE I
DESCRIPTIONS OF MAIN SYMBOLS USED IN OUR STUDY

as:

LZ =
M∑

v=1

Lv
Z =

M∑

v=1

‖Xv −Dv (Ev (Xv))‖2F . (1)

Despite the popularity of autoencoder models, its effectiveness
actually is constrained by two major factors: (i) Impact of
view-private information: In (1), the LZ aims to reconstruct
the latent embeddingsZv consistent with the input, whichwould
introduce much view-private information. They are meaning-
less, and even lead to model collapse. (ii) Lack of informa-
tion interaction: The autoencoder is limited to its own view
information, where it lacks cross-view interaction, and com-
plementary information across all views is ignored. To address
the aforementioned constraints, multi-view contrastive learning
(e.g., CoMVC [11] and MFLVC [9]) aims to mine the con-
sistent information for multiple views. Specifically, as shown
in Fig. 1(a), we denote R(Zv;Ψ) as a feature MLP acted on
{Zv}Mv=1, to filter out meaningless private information for all
views, andLm,n

CL (R(Zm),R(Zn)) represents a view contrastive
loss. Then, the overall objective is conducted by minimizing the
following loss function:

∑

v

LZ

(
Xv, X̂v

)
+ λ

∑

m,n

Lm,n
CL (R (Zm) ,R (Zn)) , (2)

where the consistency objective is conducted by aligning la-
tent feature spaces from different views, and λ > 0 denotes a
trade-off coefficient. The view-consensus representationsRv =
R(Zv) ∈ RN×dr in dr-dimensional feature space are used to the
downstream task.
Nevertheless, as shown in Fig. 1(b)–(c), we found that MCL

might lead to representationdegeneration that the high-quality
viewswould be forced to alignwith low-quality views. There are
two main reasons: 1) Most previous works, like (2), conduct the
consistency objective based on a prior condition that different
views have semantic consistency. However, the characteristics
and qualities inherent in different views typically exhibit signifi-
cant variation. Low-quality views tend to limit the effectiveness
of MCL. 2) The excessive pursuit of view consistency might
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Fig. 2. Framework of SCMVC.Wepropose a hierarchical network architecture to separate the consistency objective from the reconstruction objective. Specifically,
the feature learning autoencoders first project the raw data into a low-dimensional latent space {Zv}Mv=1. Then, two feature MLPs learn view-consensus features
{Rv}Mv=1 and global features H, respectively. Particularly, a novel self-weighting method adaptively strengthens useful views in feature fusion, and weakens
unreliable views, to implement multi-view contrastive fusion.

cause the model to discard complementary information, which
would yield the final features that capture insufficient semantics.
To address these challenges, we propose a new framework

of self-weighted contrastive fusion for deep multi-view cluster-
ing (SCMVC) as shown in Fig. 2. To fully explore cross-view
complementary information, we extend the previous framework
like Fig. 1(a), implementing global feature learning through the
fusion of all latent features. Then, multi-view contrastive fusion
is conducted by maximizing consistency expression between
view-consensus features and global features. More importantly,
to mitigate representation degeneration, we implement the con-
sistency objective via a self-weightingmethod,which adaptively
strengthens useful views, and reduces the impact of unreliable
views. Overall, our optimization objective is:

∑

v

LZ

(
Xv, X̂v

)
+
∑

v

WvLv
CL (Rv,H) . (3)

where Wv is an adaptive view weight. H and Rv denote the
global representation and view-consensus representation, which
will be introduced in the following section.

B. Self-Weighted Contrastive Fusion

As aforementioned, the features {Zv}Mv=1 obtained by (1)mix
both consensus and private information. To solve it, we propose
to establish a hierarchical feature fusion framework. As depicted
in Fig. 3, we first treat {Zv}Mv=1 as low-level features, and stack
a linear feature MLP R(Zv;Ψ) on {Zv}Mv=1 to obtain view-
consensus features {Rv}Mv=1, filtering out meaningless private
information. Meanwhile, unlike the previous MCL works, like
Fig. 1(a), which often ignore the complementary information,

Fig. 3. Self-weighted contrastive fusion framework. Z, R, and H denote
the low-level features, view-consensus features, and global features, respec-
tively. The consistency objective (i.e., Lm

CL and Ln
CL) is implemented in a

self-weighting manner.

we extend our approach to learn global features H by stacking
another nonlinear fusion MLP on {Zv}Mv=1. In this way, the
gradients from the reconstruction objective in (1) cannot directly
act on {Rv}Mv=1 and H. The global representation H can be
computed as:

H = F
(
Ẑ;Φ

)
= F

([
Z1,Z2, . . . ,ZM

]
;Φ

)
, (4)

where Ẑ ∈ RN×d, d = M × dv , and H ∈ RN×dh . We denote
Ψ andΦ as the parameters ofMLPs. To preserve the consistency
between H and {Rv}Mv=1, we set dh = dr.
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Inspired by MCL, we maximize the consistency expression
between the features {Rv}Mv=1 and H. The global features H
can directly access consensus information fromeach view, rather
than indirectly acquire common semantics through feature align-
ment. Then, the overall objective is:

∑

v

LZ

(
Xv, X̂v

)
+ λ

∑

v

Lv
CL (Rv,H) . (5)

In consensus feature space, the learned global features H sum-
marize the consensus information of each view, where these
view-consensus representations {Rv}Mv=1 from different views
in the same sample are similar. Hence, the global representation
H and view-consensus representations {Rv}Mv=1 from different
views of the same sample should be mapped close together. In
this respect, we denote {Hi,Rv

j}
v=1,...,M
j=i asM positive feature

pairs, and the rest {Hi,Rv
j}

v=1,...,M
j %=i are M(N − 1) negative

feature pairs. To implement multi-view contrastive fusion, we
first use the cosine distance to measure the similarity of feature
pairs:

sim
(
Hi,R

v
j

)
=

〈
Hi,Rv

j

〉

‖Hi‖ ‖Rv
j‖

, (6)

where 〈·, ·〉 is the dot product operator. We introduce a tem-
perature parameter τ to moderate the effect of similarity, and
1[j %= i] ∈ {0, 1} denotes the indicator function. For the v-th
view, the contrastive fusion maximizes the similarities of posi-
tive pairs, and minimizes that of negative pairs:

Lv
CL (Rv,H) = − 1

N

N∑

i=1

log
esim(Hi,Rv

i )/τ

∑N
j=1 1 [j %= i] esim(Hi,Rv

j )/τ
.

(7)

Self-weighting method: The characteristics and qualities in-
herent in different views typically exhibit significant varia-
tion. In most previous works, such as [11], [24], multi-view
contrastive learning is applied in an equal-sum manner, e.g.,∑

m,n L
m,n
CL (Rm,Rn). Intuitively, high-quality viewswould be

forced to align with low-quality views during contrastive learn-
ing to achieve maximum consistency. To mitigate it, we encour-
age conducting the consistency objective in a self-weighting
manner, i.e.,

∑
v WvLv

CL(R
v,H). Here, Wv adaptively ad-

justs the weight of each view in feature fusion. Concretely, if
the view is useful and with informative semantics, contrastive
learning between them is adaptively strengthened. Conversely,
for unreliable views, contrastive learning between them is adap-
tively weakened. In this manner, high-quality views will domi-
nate the feature fusion process, significantly mitigating the rep-
resentation degeneration problem. In light of this, we redefine
multi-view contrastive loss as:

LCL =
M∑

v=1

WvLv
CL (Rv,H) , (8)

whereWv is an adaptive weight between the global representa-
tionH and view-consensus representation Rv .

In the unsupervised case, it is difficult to distinguish which
representations in {Rv}Mv=1 are meaningless noise, and which

contain valuable semantic information. To simplify it, we
propose to measure the discrepancy between global features H
and view-consensus featuresR. The featuresRv having a lower
discrepancy with global featuresH have higher correlation, and
are consequently assigned higher viewweights, i.e.,Wv . To this
end, we define D(Rv,H) as the discrepancy between Rv and
H, and denote P(·) as a weight decision function. The view
weight is updated by:

Wv = P (D (Rv,H)) . (9)

To estimate the correlation among different feature pairs, the
maximummean discrepancy (MMD) [39] can effectivelymea-
sure the discrepancy between two distributions P and Q based
on the expectations of the two view data Xs = {Xs

i}
ns
i=1 and

Yt = {Yt
j}

nt
j=1. The Xs and Yt are generated from distribu-

tions P and Q, respectively. Mathematically, MMD can be
expressed as:

MMD (Xs,Yt) =

∥∥∥∥∥∥
1

ns

ns∑

i=1

φ (Xs
i )−

1

nt

nt∑

j=1

φ
(
Yt

j

)
∥∥∥∥∥∥
H

,

(10)

where H represents a Reproducing Kernel Hilbert Space
(RHKS), and φ(·) is the nonlinear feature mapping function
(e.g., Gaussian kernel). Then, getting square on both sides:

MMD2 =

∥∥∥∥∥∥
1

ns

ns∑

i=1

φ (Xs
i )−

1

nt

nt∑

j=1

φ
(
Yt

j

)
∥∥∥∥∥∥

2

H

=

∥∥∥∥∥
1

ns

ns∑

i=1

φ (Xs
i )

∥∥∥∥∥

2

H

+

∥∥∥∥∥∥
1

nt

nt∑

j=1

φ
(
Yt

j

)
∥∥∥∥∥∥

2

H

− 2

∥∥∥∥∥∥
1

nsnt

ns∑

i=1

nt∑

j=1

φ (Xs
i )φ

(
Yt

j

)
∥∥∥∥∥∥
H

. (11)

In a Reproducing Kernel Hilbert Space, k(Xs
i ,Y

t
j) denotes

the inner product of φ(Xs
i ) and φ(Yt

j). We expand (11), and
MMD2 finally can be formulated as:

MMD2 (Xs,Yt) =
1

ns
2

ns∑

i=1

ns∑

j=1

k
(
Xs

i ,X
s
j

)

+
1

nt
2

nt∑

i=1

nt∑

j=1

k
(
Yt

i ,Y
t
j

)

− 2

nsnt

ns∑

i=1

nt∑

j=1

k
(
Xs

i ,Y
t
j

)
. (12)

In the end, the MMD is implemented to estimate the dis-
crepancy between the features Rv and global features H, i.e.,
D(Rv,H). In particular, MMD is a non-parametric method that
avoids specific assumptions about the distribution’s form, al-
lowing it applicable to a diverse range of data types. We use lin-
ear kernel (i.e., k(x, y) = xT y) to project representations into
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RKHS. Since the features Rv have the same size as global fea-
tures H, the D(Rv,H) can be expressed as:

DMMD (Rv,H) =
1

N2

N∑

i=1

N∑

j=1

k
(
Rv

i ,R
v
j

)

+
1

N2

N∑

i=1

N∑

j=1

k (Hi,Hj)

− 2

N2

N∑

i=1

N∑

j=1

k (Rv
i ,Hj) . (13)

Considering that the featuresRv having lower discrepancy with
global features H should be weighted a higher value, we em-
ploy a normalized weight decision function P(D(Rv,H)) =
Softmax(−D(Rv,H)) for computing the weightWv . The fi-
nal view weight is updated by:

Wv = P (D (Rv,H)) =
e−DMMD(Rv,H)

∑
v′ e−DMMD(Rv′ ,H)

. (14)

In consequence, the view-consensus features can be written as
Rv = R(E(Xv)), allowing them to filter out the view-private
information of {Zv}Mv=1. And the global features can be writ-
ten as H = F([Z1,Z2, . . . ,ZM ]), fully exploring cross-view
consensus and complementary information. More importantly,
Wv adaptively adjusts the consistency objective betweenH and
{Rv}Mv=1, where the useful views will dominant feature fusion
while the unreliable views are weakened, significantly mitigat-
ing representation degeneration. Overall, the loss of our pro-
posed SCMVC is:

Ltotal = LZ + LCL

= LZ

({
Xv, X̂v

}M

v=1
; {θv,φv}Mv=1

)

+ LCL

(
{Rv,H}Mv=1 ;Ψ,Φ, {θv}Mv=1

)
, (15)

where LZ and LCL are the reconstruction and consistency ob-
jectives that are conducted in different feature spaces. Thanks to
our self-weightingmethod, we do not need weight parameters to
balance the different losses, i.e, decreasing the hyperparameter
λ in (5).

C. Clustering Module

For the final clustering task, we take thek-means algorithm on
global featuresH to obtain the clustering results for all samples.
Specifically, the learned global representationH is factorized as
follows:

min
U,C

‖H−UC‖2

s.t.U1 = 1,U ≥ 0 (16)

where U ∈ RN×K is cluster indicator matrix. C ∈ RK×dh is
the center matrix of clustering.

TABLE II
SUMMARY OF DATASETS USED IN OUR STUDY

Algorithm 1: Optimization of SCMVC.

Input: Multi-view dataset {Xv}Mv=1; Cluster number k.
Output: Cluster indicator matrixU.
1: Pretrain autoencoders {θv,φv}Mv=1 by minimizing Eq.

(1).
2: while Not reach the maximum iteration Tmax

3: Update the view weight by Eqs. (13,14).
4: Calculate the multi-view contrastive loss by Eq. (8).
5: Compute the overall loss function by Eq. (15).
6: Back propagation and train the whole SCMVC

model.
7: end while
8: Compute U on the final global features H by Eq. (16).

D. Optimization

The entire optimization process of SCMVC is summarized in
Algorithm 1. The model consists of multiple autoencoder mod-
els and twoMLPs. Specifically,we adopt themini-batch gradient
descent algorithm to optimize the model. First, all autoencoders
are initialized by (1). Second, the self-weighted contrastive fu-
sion is conducted to achieve the consistency objective by (3). In
the end, we compute the global representation by (4), and the
cluster indicator matrix can be obtained by (16).

IV. EXPERIMENTS

A. Experimental Setup

1) Multi-View Datasets Description: To comprehensively
evaluate the performance of our proposed model SCMVC,
we conduct experiments on nine publicly available multi-view
datasets, which are shown in Table II. Specifically, there are four
small-scale multi-view datasets, including MNIST-USPS [40],
BDGP [41], Prokaryotic [42], Synthetic3d [43] to validate the ef-
fectiveness of SCMVC in multi-view tasks. Furthermore, to fur-
ther explore the model generalization, we select four large-scale
datasets, i.e., CCV [44], Fashion [45], Cifar10,1 Cifar1001. In
the end, we build four datasets based on Caltech [46] that
“Caltech-XV” represents that it consists of X views, allowing

1http://www.cs.toronto.edu/kriz/cifar.html
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TABLE III
RESULTS FOR ALL METHODS ON FOUR SMALL DATASETS

us to investigate our model robustness as the number of views
increases.
2) Comparing Methods: To demonstrate the performance of

our proposed SCMVC, we compare it with 10 state-of-the-art
multi-view clustering methods:
Shallow multi-view clustering methods: CGD:

multi-view clustering via cross-view graph diffusion [47],
LMVSC: large-scale multi-view subspace clustering [48],
and EOMSC: efficient one-pass multi-view subspace
clustering [16].
Deep multi-view clustering methods: DEMVC: deep em-

bedded multi-view clustering with collaborative training [49],
CoMVC: contrastive multi-view clustering [11], CONAN:
contrastive fusion networks for multi-view clustering [12],
MFLVC: multi-level feature learning for contrastivemulti-view
clustering [9], DSMVC: deep safe multi-view clustering [24],
GCFAggMVC: global and cross-view feature aggregation for
multi-view clustering [27], andDealMVC: dual contrastive cal-
ibration for multi-view clustering [50]. Among them, CoMVC,
CONAN, MFLVC, GCFAggMVC, and DealMVC employ
multi-view contrastive learning to implement the consistency
objective.
3) Evaluation Metrics: Three widely used metrics are ap-

plied to evaluate clustering performance, i.e., clustering accu-
racy (ACC), normalized mutual information (NMI), and purity
(PUR). The higher the values of these metrics, the better the
clustering results. The mean values of 10 runs are reported for
all multi-view clustering methods.
4) Implementation Details: All datasets are reshaped into

vectors, and the fully connected (Fc) autoencoders with a similar
architecture are used for extracting low-level features {Zv}Mv=1.
Specifically, for each view, the structure of the encoder is: Input
- Fc500 - Fc500 - Fc2000 - Fc64, and the decoder is symmet-
ric with the encoder. After that, we use a linear MLP, which
is constructed as Input(64) - Fc20, to extract view-consensus
features {Rv}Mv=1, and another non-linear MLP with two-layer
architecture, i.e., Input(M×64) - Fc256 - Fc20, to learn global
features H. The following settings are the same for all exper-
imental datasets. The ReLU activation function is used in all
the layers except for the output layer. Adam is chosen as the
optimizer with a default learning rate of 0.0003. The

experiments are conducted on aWindows PCwith Intel (R) Core
(TM) i5-9300H CPU@2.40 GHz, 16.0 GB RAM, and TITAN
X GPU (12 GB caches).

B. Comparative Result Analysis

The comparison results on eight datasets are shown in
Tables III and IV. We can observe that the proposed SCMVC
achieves the best results than the previousMVCmethods. Partic-
ularly, we have the following observations: (1) Comparing three
shallowmulti-view clusteringmethods (i.e., GCD, LMVSC, and
EOMSC), we can find that these methods attempt to learn the
data subspace representationor graph structure relationship from
raw data, whereas much meaningless private information is re-
tained. This information is harmful to learn latent features, even
causing model collapse. (2) Comparing two traditional deep
multi-view clustering methods (i.e., DEMVC and DSMVC),
we can find that these methods implement autoencoder mod-
els to learn the salient representation from raw data, where the
consistency and reconstruction objectives are retained in the
same feature space. The meaningless view-private information
is constantly reconstructed, which in turn produces suboptimal
solutions.
Moreover, our method outperforms previous contrastive

multi-view clustering methods (i.e., CONAN, CoMVC,
MFLVC, GCFAggMVC, and DealMVC). Specifically, we find
that: (3) In CoMVC andMFLVC, they explore view consistency
by aligning the representations of each view, which has a nega-
tive impact since the lack of global complementary information
is prone to produce inferior solutions. Taking the Prokaryotic
dataset for example, our proposed SCMVC improves ACC by
27.0% and 31.8% compared to MFLVC and CoMVC, respec-
tively. (4) In CONAN and GCFAggMVC, they obtain a con-
sensus feature representation by contrastive fusion way. How-
ever, they treat each view equally, where the low-quality views
may dominate the entire feature fusion process, and thus harm-
ful to clustering. Taking the CCV dataset for example, our
proposed SCMVC improves ACC by 5.2% compared to the
second-best baseline GCFAggMVC. In conclusion, our pro-
posedSCMVCmethod enhances viewcomplementarity through
global information aggregation, and emphasizes the importance
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TABLE IV
RESULTS FOR ALL METHODS ON FOUR LARGE DATASETS

TABLE V
RESULTS FOR ALL MULTI-VIEW CLUSTERING METHODS ON CALTECH DATASET

Fig. 4. (a–c) Training process analysis (i.e., loss and performance variations) on MNIST-USPS, Syntheic3d, and Caltech-5 V, respectively.

of high-quality views in feature fusion to learn the global fea-
tures more effectively.
To further validate the robustness of our SCMVC method as

the number of views increases, we test the performance of dif-
ferent numbers of views on the Caltech dataset. Table V shows
the comparative results with the selected competitors. We can
observe that our proposed SCMVC is more robust compared
to the previous MVC methods. This is because our proposed
self-weighting method in (8) can adaptively strengthen useful
views, and can reduce unreliable views,which significantlymiti-
gates global features to discard useful semantics, and thus exhibit
strong robustness.

C. Model Analysis
1) Visualization of the Clustering Results: In order to visu-

ally investigate the effectiveness of the proposed SCMVC, the
t-SNE algorithm [51] is applied to visualize the distribution of
latent embedding of different levels, i.e., the features Z,R, and
H. As shown in Fig. 5, the clusters of global features H are
clearer than low-level features Z and view-consensus features
R, exhibiting a denser cluster structure. These results all confirm
the effectiveness of SCMVC.
2) Convergence Analysis: It is not difficult to discover that

the reconstruction objective LZ and the consistency objective
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Fig. 5. (a–d) Visualization results on BDGP dataset. (e-h) Visualization results on MNIST-USPS dataset. Specifically, the featuresZ,R, andH denote low-level
features, view-consensus features, and global features, respectively.

Fig. 6. Viewweighting analysis on Caltech-5 V, Synthetic3d and CCV datasets, respectively. Different views are firstly given different weights, and as the number
of iterations increases, the weights of the different views tend to converge.

LCL, i.e., ((1), (7)) are all convex functions.As shown inFig. 4, it
can be observed that the loss valuemonotonically decreases until
reaching convergence, while the values of ACC andNMI exhibit
an initial gradual increase followed by fluctuating within a nar-
row range. These results confirm the convergence of SCMVC.
3) Parameter Sensitivity Analysis: Thanks to our well-

designed self-weighted contrastive fusion framework, we do not
need numerous hyperparameters to balance different loss com-
positions. Specifically, in this section, we explore the best set-
tings of hyperparameters τ for (7). Fig. 8 demonstrates the ACC,
NMI, and PUR of SCMVC when the hyperparameter τ is tuned
in the range of {0.1, 0.3, 0.5, 0.7, 1}. We could observe that: (1)
When τ is at a small value, the clustering performance of the
proposed SCMVC decreases. This may be because the exces-
sive pursuit of view consistency might result in intrinsic feature
space being inseparable. (2) When the value of τ increases, the
clustering performance gradually recovers, and they are insen-
sitive to τ in the range 0.5 to 1. Empirically, we set τ = 0.3 for

the CCV dataset, τ = 0.5 for all Caltech datasets, and τ = 1 for
other multi-view datasets.
4) View Weighting Analysis: The self-weighting method is

one of key components in our SCMVC, which adaptively
strengthens useful views in feature fusion, and weakens un-
reliable views. In this section, we further explore how the
self-weighting method adjusts the multi-view contrastive learn-
ing. Specifically, Fig. 6 illustrates the change of weights with
iterations for different views on Caltech-5 V, Prokaryotic, and
CCV datasets, respectively. We can find that: (1) Initially, vary-
ing weights are assigned to different views. The high-quality
views are weighted by higher values and low-quality views are
de-weighted. Correspondingly, contrastive learning with high-
quality views will be strengthened, while mitigating the loss
caused by aligning with low-quality views, which is indicated
in Fig. 7. (2) With the increase in the number of iterations, the
weights of different views gradually converge. This is because
multi-view contrastive learning is capable of rapidly closing the
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Fig. 7. Variation in ACC for different quality views with the iterations of contrastive learning on Caltech-5 V, Synthetic3d and CCV datasets, respectively. The
global features can learn reliable semantics from high-quality views, while reducing the impact of low-quality views.

Fig. 8. (a-c) Parameter sensitivity analysis on five multi-view datasets, including MNIST-USPS, Fashion, BDGP, Synthetic3d, and Prokaryotic.

semantic gap among different views, where the discrepancy be-
tween view-consensus features Rv and global features H be-
comes progressively consistent.
Taking the Caltech-5 V dataset as an example, as depicted

in Fig. 1(b), we can observe that view 4 is the high-quality
view, while view 1 is the low-quality view. Correspondingly,
our self-weighting method gives a higher weight for view 4,
while de-weighting view 1 in Fig. 6(a). In this way, global fea-
tures can be better aligned with high-quality view 4, while con-
trastive learning with low-quality view 1 is adaptively weak-
ened. As shown in Fig. 7(a), global features can effectively
keep consistent with high-quality views, thereby learning more
useful semantics from reliable views. Finally, the weights of
view 1 and view 4 gradually converge to the mean value with
iterations increases to achieve the consistency objective. No-
tably, as shown in Fig. 7(b), global features benefiting from
complementary information tend to achieve superior cluster-
ing performance. These results demonstrate the effectiveness
of our proposed self-weighting multi-view contrastive fusion
method.

D. Ablation Studies

1) Loss Components: To understand the effectiveness of the
proposed SCMVC components, we remove each component
individually to observe the change in performance. Specifi-
cally, (A) MCL denotes the multi-view contrastive learning

TABLE VI
ABLATION STUDIES ON LOSS COMPONENTS

to implement the consistency objective. (B) SEW denotes a
self-weighting method to adaptively weight each view. (C)
SCMVC denotes the complete multi-view contrastive fusion
of our method. As shown in Table VI,MCL, i.e., LCL, plays a
crucial role in SCMVC, and without it, the model performance
shows a decrease of 10.9%, 20.0%, and 14.3% in terms of ACC
on the CCV, Caltech-5 V, and Prokaryotic datasets, respectively.
This is because global features H computed without LCL are
disturbed by the inherent irrelevant information from each view,
which severely impacts clustering performance. Furthermore,
SEW could further optimize the entire multi-view contrastive
fusion framework, where the model performance improves by

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on October 01,2024 at 04:37:12 UTC from IEEE Xplore.  Restrictions apply. 



9160 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 26, 2024

Fig. 9. Clustering performance for low-level features Z, view-consensus featuresR, and global featuresH on three small-scale multi-view datasets.

Fig. 10. Clustering performance for low-level features Z, view-consensus featuresR, and global featuresH on three large-scale multi-view datasets.

9.7%, 5.6%, and 10.9% in ACC on the CCV, Caltech-5 V, and
Prokaryotic datasets, respectively. These results confirm the ef-
fectiveness of the proposed MCL and SEW.
2) Hierarchical Feature Fusion Framework: In our SCM-

VC,we introduce a hierarchical feature fusion frameworkwhere
different objectives are conducted in different feature spaces.
Compared to the previous MCL framework like Fig. 1(a), our
framework further explores cross-viewcomplementary informa-
tion via feature fusion. Meanwhile, the consistency objective is
redesigned to implement between view-consensus features and
global features. To further verify the superiority of our architec-
ture, we perform k-means algorithms on different level features,
as shown in Figs. 9 and 10. In particular, for the results withmul-
tiple views, we select their best one. The results indicate that
our hierarchical feature fusion framework can make high-level
features, i.e., view-consensus features and global features, to
capture more reliable semantic information. Meanwhile, global
features exhibit optimal performance for downstream clustering
tasks.

V. CONCLUSION

In this paper, we propose a novel framework of self-weighted
contrastive fusion for deep multi-view clustering, where the
consistency objective is effectively separated from the recon-
struction objective. To fully explore view consistency and

complementarity, we maximize consensus expression between
global features, which summarizes the global common informa-
tion of each view, and view-consensus features. Particularly, a
self-weighting method is introduced to adaptively strengthen
useful views in feature fusion, andweaken unreliable views, sig-
nificantly mitigating the representation degeneration problem.
Extensive experimental results on nine public datasets demon-
strate that our proposed method outperforms state-of-the-art
multi-view clustering methods.
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