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Abstract—Deep multi-view clustering (MVC) has recently
gained significant interest for its capability to harness comple-
mentary information across multiple views through deep neural
networks, enhancing clustering performance. However, existing
deep MVC methods still have two issues: (1) They separate the
feature learning objective and the clustering objective, potentially
leading to suboptimal embedding features due to the neglect of
the global clustering structure. (2) Most works utilize the target
distribution obtained by the clustering objective to supervise
feature learning. However, they simply sharpen the soft clus-
tering distribution to obtain the target distribution, lacking the
dynamics of the clustering process. To address these issues, in this
paper we propose a novel end-to-end self-supervised multi-view
clustering approach based on NeuralODEs, namely nmODE-
MYVC. Our approach operates in two stages: In the first stage,
all view-embedded features are extracted, and then unified them
into a global feature, facilitating global clustering assignments by
exploiting multi-view data’s complementarity. The second stage
leverages the dynamic attributes of NeuralODEs to dynamically
refine the data features and generate a target distribution that
actively drives the clustering decisions. We formulate these
learning processes as a unified optimization problem, facilitating
iterative training and refinement. The effectiveness of nmODE-
MYVC is validated through extensive experiments on multiple real-

*Corresponding author
979-8-3503-5914-5/23/$31.00 ©2023 IEEE

2"d Song Wu
School of Computer Science and Engineering,
University of Electronic Science and Technology of China
Chengdu, China
songwu.work @outlook.com

4™ Xiaorong Pu*

School of Computer Science and Engineering,
Shenzhen Institute for Advanced Study,
University of Electronic Science and Technology of China
puxiaor @uestc.edu.cn

6" Lifang He
Department of Computer Science and Engineering,
Lehigh University
Bethlehem, USA
lih319 @lehigh.edu

world multi-view datasets.
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I. INTRODUCTION

Clustering is a fundamental task in unsupervised learn-
ing, which can find extensive applications in diverse areas.
With the advent of deep learning technologies, researchers
have gradually focused on applying deep models to improve
clustering performance. Specifically, classical methods such
as Deep Embedded Clustering (DEC) [1] and Structural
Deep Clustering Network (SDCN) [2] have shown promise
in leveraging the capabilities of deep neural networks for
clustering task. Despite the advancements in deep clustering,
traditional deep learning models often entail discretized data
propagation within the network. This approach can inhibit the
model’s ability to naturally encapsulate continuous processes
and introduce discrepancies between the learned and accurate
data distributions. To address these issues, Neural Ordinary
Differential Equation (NeuralODE) [3] can elegantly mirror
the continuous dynamics of real-world processes and enhance
model flexibility. This continuous modeling potentially facili-
tates better representation learning for the clustering task.
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In the real world, data often come with multiple views. The
principle of multi-view clustering (MVC) is rooted in the no-
tions of consistency and complementarity. Well-known MVC
algorithms such as Simple Multi-View Clustering (SiMVC)
[4], Contrastive Multi-View clustering (CoMVC) [4] and Self-
Supervised Discriminative Feature Learning for Deep Multi-
View Clustering (SDMVC) [5], have demonstrated efficacy
in leveraging these principles. However, while these MVC
methods have found success, they typically rely on static
frameworks that lack the adaptability to dynamically changing
data distributions. NeuralODEs [3], [6]-[8] bring a dynamic
perspective into play, allowing for network parameters to
change according to input data, rather than remaining static.
Unlike traditional deep neural networks where each layer
is associated with a fixed set of weights and biases, in
NeuralODEs, all parameters exist within a dynamical system
that evolves over time. This design grants neural networks
enhanced adaptability, enabling them to better handle complex,
changing input data. This dynamic trait of NeuralODEs can
be particularly beneficial for multi-view clustering, as it could
dynamically adjust to different views’ characteristics and the
complementary information they offer.

Based on this, we make the following two suggestions: First,
the continuous data flow inherent in NeuralODEs aligns well
with the notion of seamless information propagation across
different views, fostering a cohesive representation space.
Second, the dynamism offered by NeuralODEs can potentially
adjust and recalibrate the clustering scheme in response to the
idiosyncrasies of each view and the supplementary information
they introduce. To test these conjectures, we proposed neural
memory ODE-based Multi-View Clustering (nmODE-MVC),
an end-to-end self-supervised multi-view clustering approach
based on NeuralODEs.

Building upon the work of [5], we first utilize an au-
toencoder to extract the salient features for each view, and
concatenate the embedding features across different views,
thereby forming an aggregated global feature representation.
Then, the K-means algorithm is employed to perform a
clustering process on these global embeddings, which yields
pseudo-labels. Subsequently, inspired by [6], we leverage the
nmODE model. The global embedded features derived from
clustering are used as inputs for the nmODE model, and the
pseudo-labels supervise model learning more discriminative
target distributions. This integration enables nmODE-MVC to
exhibit explicit dynamism, allowing for a global convergence
trajectory from the input to the target distribution. Specifically,
our proposed framework alternate between training the autoen-
coder and the nmODE model for obtaining more reliable the
target distribution. Finally, through a carefully designed set
of experiments, we have corroborated our theoretical claims
and demonstrated the efficacy of our nmODE-MVC. The main
contributions of this work are summarized as follows:

e We have achieved seamless information propagation
across different views to establish a unified representation
space, effectively integrating multi-view clustering into a
dynamic system while capitalizing on the continuous data

flow.

e Our method can adapt and fine-tune the target distribution
in our clustering strategy to suit the unique characteristics
of each view and the complementary information it
contributes.

e Our approach has been rigorously tested through ex-
tensive experiments on multiple real-world multi-view
datasets. The results validate the efficacy of our proposed
method, showcasing its superiority in comparison to
several state-of-the-art methods.

II. RELATED WORK
A. Multi-View Clustering

Traditional clustering algorithms, limited by simple distance
metrics, tend to be ineffective when the input dimensionality
is high (e.g., K-means [9], spectral clustering [10]). To this
end, deep clustering methods [1], [11]-[13] aim to employ the
superior representation learning capabilities of deep models
(e.g., autoencoders (AEs) [14] and variational autoencoders
(VAESs) [15]) to learn clustering-oriented low-dimensional rep-
resentations from complicated high-dimensional data. These
deep methods focus on performing end-to-end clustering tasks,
where the clustering objective and embedded feature repre-
sentations are jointly optimized. One of the most representa-
tive works is DEC [1] which designs a clustering objective
inspired by t-SNE [16], and jointly learns the clustering
assignments and embedded features of autoencoders. After
then, improved DEC [11] introduces a trade-off between the
clustering objective and reconstruction objective to further
optimize the multi-objective learning process. Moreover, some
studies have attempted to incorporate the learning paradigm
of deep clustering into other clustering representation tasks.
Cai et al. [12] propose an efficient deep embedded subspace
clustering (EDESC) aiming to learn the subspace bases from
deep representation in an iterative refining manner while the
refined subspace bases in return improve the representation
learning of the deep models. EDESC achieves linear time
and space complexity. Yang et al. [17] attempt to incorporate
graph information that captures local data structures into a
deep Gaussian mixture model (GMM), and combine them
facilitates the deep network to learn powerful representations
for upstream clustering task.

The aforementioned deep clustering methods cater exclu-
sively to single-view data. However, in practical clustering
tasks, the input data often possess multiple views. Multi-
view clustering methods [18]-[23] propose exploiting the
complementary information among multiple views to enhance
clustering performance. Deep multi-view clustering algorithms
can be categorized into three types, based on their foundational
clustering theory: DEC-based, subspace clustering-based, and
GNN-based [24]. Xu et al. [18] propose a pioneering co-
training framework for Deep Embedded Multi-View Clustering
(DEMVC). This framework optimizes the reconstruction loss
by defining a switching shared auxiliary target distribution,
thereby preserving the variations across multiple views. To
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Fig. 1.

nmODE-MVC, designed to dynamically update and adapt to previously learned internal data features, facilitates seamless cross-view information

learning through the alternate training of the autoencoder and nmODE. Within the process, the feature concatenation is illustrated by dashed arrows from the
embedded features, represented by green for the first view (Z') and purple for the v-th view (ZV), towards the global feature R. The subsequent process,
where the global feature R and the soft clustering pseudo-labels are jointly introduced into the nmODE module, is indicated by red dashed lines. Then we
utilize the dynamic properties of the nmODE module to generate the target distribution P. The reconstruction loss is specifically designed on view-internal
representations Zv, while the clustering loss is constructed to utilize the target distribution P for optimizing the individual view’s soft clustering Qv.

amalgamate subspace learning methods with the latest break-
throughs in graph convolution networks, Muhammad et al.
[20] introduce a Graph-based Convolution Network (Multi-
GCN). It presents an effective strategy for adapting Graph-
Based Semi-Supervised Learning (GSSL) to a multi-view con-
text, bridging the gap between conventional learning methods
and multi-view data processing.

B. NeuralODE

Within the realm of traditional deep learning models, data
propagation through the network transpires discretely. Con-
trasting this established model, Chen et al. [3] pioneer the
concept of NeuralODEs, interpret ¢ as continuous and the
dynamics of the hidden state h(t) are depicted by an ODE
system formulated as

dh(t)

2 = phe), ), 1)

where f is a neural network defined by the parameters w. A

significant merit of NeuralODEs rests on their inherent conti-

nuity, a property enabling amplified precision in computation

and backpropagation, resulting in enhanced storage efficiency.

From this conceptual cornerstone, a surge of NeuralODE

models [6]-[8] has emerged, along with a suite of diverse
task extensions founded on NeuralODEs [25]-[27].

For instance, Zhang et al. [7] propose a strategic advance-
ment of the NeuralODE model, extending it to a coupled
ODE system. This system permits the parameters of the
model to evolve and activate dynamically over time. Fur-
thermore, Zhang et al. [25] unveil the Self-Attention ODE

Solver, a model adept at learning continuous hidden states
endowed with positional information, while simultaneously
training global representation matrices with high parameter
efficiency. Another practical implementation is by Niemeyer
et al. [26] and Jiang et al. [27], where NeuralODEs are
trained to reconstruct temporally deformed 3D objects. More
recently, Zhang [6] postulates a theory centered on a memory-
based NeuralODE, which distinguishes learning neurons from
memory neurons, thereby elucidating its dynamic behavior.
The nmODE can establish a nonlinear mapping from the ex-
ternal input to its corresponding attractor, thereby eliminating
recurring issues of learning features homeomorphic to the
input data space found in most existing NeuralODEs.

The novel intersection of NeuralODEs and clustering has
remained relatively unexplored. Up until now, only one piece
of literature has addressed this emerging area of study. The
NODE-EDM [28] unveils a methodology for performing Neu-
ralODE evolutionary subspace clustering on time-series data.
This approach enables the learned NODE to function as a
universal solver for affinity matrices C, of any sequence
X, originated from similar video contexts. This cross-context
generalization exhibits promising potential for efficient and
robust analysis of time-series data in complex video sequences.

Despite the significant potential, the integration of Neu-
ralODEs with clustering is a domain that remains largely
untapped. The scarcity of work done in this area highlights the
wealth of opportunities that lie ahead for further exploration.
The convergence of these two fields has the potential to create
transformative solutions to pressing problems in machine
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learning and data science, catalyzing innovation in a breadth
of applications.

III. PROPOSED METHOD

In this section, we start by clearly explaining the research
problem we are focusing on. Then, we give a thorough descrip-
tion of how neural memory Ordinary Differential Equation
(nmODE [6]) and multi-view clustering work, both of which
play a central role in our approach. Finally, we explain in detail
how alternate training operates within our end-to-end nmODE-
based multi-view clustering framework. The overview archi-
tecture of the proposed method is shown in Figure 1.

A. Problem Formulation

Multi-view clustering aims to categorize the instances
into K distinct clusters. We consider a_multi-view dataset
{x} e RP @2 e RP2,.. . a} € RDV}Z\;, which signifies
the data from V' views. N is the number of examples, and
D1, Do, ..., Dy are the dimensionalities of the views.

B. Definitions

Incorporating a nonlinear dynamical system into clustering
tasks invites the conceptions:

e Attractor. If the embedded features beginning from a
certain initial state, eventually converge towards a specific
state or a set of states, such a state or set of states is termed
the clustering task’s attractor. This concept is of considerable
importance within nonlinear dynamical systems, as it mirrors
the system’s stability characteristics after a prolonged period
of evolution.

e Global Attractor. The basin of an attractor consists of
all initial states that will eventually enter this attractor. To
put it into perspective, imagine a water basin where all drops
eventually gather at the lowest point; similarly, all initial states
in the basin will eventually gravitate toward the attractor. If
a basin encompasses the entire clustering space, then this
attractor is referred to as a global attractor. The existence
of global attractor does not preclude the presence of local
attractors. Within the framework, multiple local attractors may
be formed. These local attractors can represent the typical
characteristics of each view.

Within the nmODE-MVC paradigm, attractors serve as a
stable portrayal of clustering decision results. To illustrate, in
a multi-view clustering model’s latent space, each view’s data
may eventually gravitate towards a specific attractor. These
attractors symbolize the typical characteristics of each view,
aiding in distinguishing different categories. The presence of
a global attractor does not imply an immediate convergence
of all data. It is a dynamic process, during which data may
form transient clusters. These temporary clusters can provide
valuable information about the inherent structure of the data.

C. Multi-View Feature Learning Encoder

Due to the natural heterogeneity of multi-view datasets, our
first step embeds distinct data from each view into a lower-
dimensional space. This process aims to reduce dimensionality

and noise, and to extract meaningful, representative infor-
mation. We implement it by learning view-specific encoder
and decoder, denoted as fg, and g respectively. For each
view, the unique features and information inherent to each
perspective can be effectively captured. Specifically, ¥ and
¢" are the parameters of the encoder and decoder pairs for
each view, and these non-linear mappings translate the high-
dimensional input data into a more compact and informative
low-dimensional feature representation as:

z{ = fou (27), 2)

where 2? € R denotes as the salient embedding of ! in
the d,-dimensional feature space. Further, the decoder g;ju
reconstructs the salient embedding as #¥ € RP+ by decoding
the low-dimensional feature representation z;:

&y = gl (21). 3)

Here, the reconstruction objective L£? is implemented by
forcing the decoded output to be consistent with the original
input, which can be expressed as:

N
£r =" |l= = b (S @) @)
=1

Considering that clustering objectives can effectively en-
hance salient representation learning, we firstly transform the
feature distribution into a soft clustering distribution. Inspired
by student ¢-distribution [29], the probability of the i-th sample
being a part of the j-th cluster is as follows:

R i
EAND AT P D

where u}? denotes the learnable cluster centroids, and we
initialize them by K -means. In subsequent processes, Q7; will
be guided by the target distribution P, derived by nmODE in
Eq. (12), which will be introduced in Section III-D in detail.

Since single view data generally lack global information, to
increase confidence of the clustering structure, we concatenate
all the embedded features from different views to form a
comprehensive global feature R for the final downstream
clustering task:

(&)

%z?,...,zy] € R o, (6)

T = [Z

We denote R as {ri,rs,...,ry}. The K-means is applied
to R as it effectively computes the cluster centroids, each
denoted by c;, representing the nucleus of the j-th cluster in

our data:
N K
min YN e — o) (7)

C1,C2,...,CK ~ -
1=1 j=1
Similarly, we compute the global cluster assignment for the
global feature R, and further transform it into the pseudo-
label s;, which will guide nmODE to dynamically learn
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latent clustering distribution. Then, the pseudo-label s; can
be computed by the following equation:

-1
(1 ll2i = es1P)

2\’
=5 (1+ 2= )

s; = argmax (I;5) . )
J

®)

ij =

Acting as proxies for the true data labels, these pseudo-
labels are incorporated into the supervisory information for
the nmODE’s alternating training scheme. This setup allows
for the facilitation of iterative learning, where the model
dynamically adjusts and refines its label predictions based on
insights gained from previous outputs.

D. nmODE Determines the Clustering Result

In conventional deep learning models, the propagation of
data through the network occurs in a discrete fashion. How-
ever, NeuralODE models adopt a different approach, where
data transmission is treated as a continuous process. Building
upon the work of nmODE [6], we conceptualize the mapping
from x to g as:

§ = —g+sin? [g+W<1>x+b}, (10)

where g € R*,z € R™,b ¢ R", W) = (wg)) e
R™™ and ¢ is the global attractor. Nevertheless, gixr?cﬂy
solving Eq. (10) to facilitate the mapping is commonly un-
tenable due to computational limitations and the inherent
complexity of the function. Consequently, the nmODE defines
the mathematical model for each one-dimensional ODE using
the representation in:

Y

where p € R! and w denote the perceptual input of the neuron.
This form of a one-dimensional ODE coined as neuronODE,
forms the building blocks of the nmODE. This formulation
allows the model to break down the complex mapping problem
into simpler and more manageable subproblems, each handled
by a separate ODE, hence offering a more computationally
feasible approach.

The pseudo-labels s; of the clustering results and the global
embedded features R are used as input of the nmODE, every
memory neuron ¢ independently yields output g;(¢) in the ¢-
th iteration of training, coalescing to form the overall pattern
g(t). Then, we delineate as:

hilt) = S5y w95 (1)
P = softmax (hi(t))

p=—p+sin’(p+w),

12)

where W) = (wl(f)) represents an additional learning
XN

parameter set. NeuronODEs signifying output target distri-
bution P are identified as decision neurons. The intention
behind this decision objective is to amplify the accuracy of
the clustering outcomes produced in the initial half of the
framework, whilst enabling nmODE to assimilate this target.

In pursuit of this, nmODE devises learning rules to update
(1)

parameters wg), (e and b; as follows:
2 2
wz(') ¢ wz(j) —ar afi{t) ~g;(t)
1 1
w —wl -8 s 13
i
bi <— bz — - gzi

where « and [ are the learning rates. Detailed elaborations
regarding the procedure for updating parameters, along with
the formulation of the loss L and cost functions .J, could be
found in [6].

In contrast to traditional target distribution, the P obtained
by nmODE, is instrumental in enhancing the quality of em-
bedded features gleaned by all autoencoders. Consequently, P
is utilized across all views to force the soft clustering assign-
ment of each view to approach the target distribution, which
in turn better improving the feature representation learning.
Specifically, for a given v-th view, the clustering loss LY is
computed as the Kullback-Leibler divergence. This divergence
is calculated between the uniform target distribution P and
its own clustering assignment distribution @V, as delineated
as follows:

N

K
£0 =D (PIQ") =33 pijlog 22

—=. (14)
4;;

i=1 j=1

Finally, we integrate feature representation learning and
clustering goals into a unified framework. The total loss of
each view consists of two parts:

LY=L +~LY, (15)
where + is the trade-off coefficient.

Hence how can the dynamics of nerualODE be exploited
during training? In contrast to traditional networks where
parameters remain fixed, nmODE introduces adaptability by
allowing the parameters to change based on the fluctuations in
input data. To this end, we alternately train the feature learning
autoencoders and nmODE. During the ¢-th round of alternate
training, nmODE exhibits learning behavior by updating pa-
rameters dynamically, in accordance with the knowledge it has
acquired previously.

Specifically, we optimize autoencoders by the total loss
LY, which the reliable pseudo-labels obtained by autoencoders
make nmODE producing more precise target distribution com-
pared to the initial input. The target distribution P encap-
sulates a range of probabilities, each corresponding to the
likelihood of a particular datapoint belonging to a specific
cluster. When considering the clustering result v, it is derived
from P by selecting the maximum value from each row of
P. In other words, for each datapoint, the cluster with the
highest likelihood in the target distribution P is chosen to
be its cluster assignment in y. This approach aligns with the
intuitive understanding that each datapoint should ideally be
assigned to the cluster to which it is most likely to belong,
based on the learned distribution.
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Algorithm 1 The optimization of nmODE-MVC.
Require: Multi-View Dataset; Cluster Number K.
1: Pretrain autoencoders by minimizing Eq. (4).
2: Compute each view’s embedded feature z; by Eq. (2),
global embedded feature R by Eq. (6).
Initialize pseudo-labels s; by Eqgs. (7)-(9).
Initialize parameters W) W) b o and 3.
while Not reach iteration 7" do
while Not reach nmODE iteration 7,4, do
Solve each i-th corresponding one-dimensional ODE
in Eq. (10) to get g;.
Update wg),wg) and b; by Eq. (13).
: end while
10:  Generate the target distribution P by Eq. (12).
11:  Calculate each view’s clustering loss £ by Eq. (14).
12:  for fixed target distribution P do

AN A

2 o0

. v _ v A n  9L]
13: By =Hj =5 2ui=1 opy
o A n 0L,
14: ¢U — ¢v -2 i—1 DG and
3 v _ v A n oL; oLy
15: v =0 nzi:1<89v +Vaov>~

16:  end for
17:  Update each view’s embedded feature 2z} by Eq. (2),
global embedded feature R by Eq. (6).

18:  Update pseudo-labels s; by Egs. (7)-(9).

19: end while

20: Compute the final target distribution P by Eq. (12).

21: Select the maximum value from each row of P to derive
cluster assignments y.

Ensure: Cluster Assignments y. =0

E. Optimization

Algorithm 1 summarizes our overall optimization proce-
dure. Initially, we minimize the reconstruction loss indicated
in Eq. (4) to pretrain autoencoders for all views. Following
this, we apply K-means clustering on the concatenated global
embedded features, resulting in pseudo-labels s; according to
Eqgs. (7)-(9). These pseudo-labels serve as a semantic label
with information, guiding nmODE to generate more reliable
target distribution, which in turn will optimize the feature
learning. During the training process, the unique dynamical
properties inherent in nmODE are leveraged, leading to cap-
ture comprehensive global information. This enables a more
accurate target distribution P, thereby augmenting the efficacy
of data clustering distribution. Specifically, in a bid to optimize
our model’s performance, the training process incorporates
an automatic iterative update mechanism, which adjusts the
quantity and weights of each neuronODE. This dynamic
adaptation allows our model to flexibly react and evolve based
on the input data’s specific characteristics, thereby enhancing
the overall effectiveness of our clustering approach.

TABLE I
THE STATISTICS OF THE DATASETS.

Datasets | Samples | Views | Dimension | Classes
BDGP 2,500 2 [1750, 79] 5
HW 2,000 6 [216, 76, 64, 6, 240, 47] 10
Caltech-2V 1,400 2 [40, 254] 7
Caltech-3V 1,400 3 [40, 254, 928] 7
Caltech-4V 1,400 4 [40, 254, 928, 512] 7
Caltech-5V 1,400 5 [40, 254, 928, 512, 1984] 7

IV. EXPERIMENT
A. Experimental Setup

1) Datasets: In this study, we utilize three multi-view
datasets. The statistics of these datasets are shown in Table
I and the detailed descriptions are as follows:

e BDGP [30] includes 2500 samples from 5 different types
of fruit fly embryos. Each sample has two views, correspond-
ing to visual and text features.

e HW ! contains 2000 samples from 10 categories corre-
sponding to the digits 0-9. Each sample is composed of six
visual views.

e Caltech [31] consists of five features from RGB im-
ages, including Wavelet Moments (WM), CENsus TRansform
hISTogram (CENTRIST), Local Binary Pattern (LBP), Gen-
erallzed Search Trees (GIST), and Histogram of Oriented
Gradients (HOG). Caltech-2V has the feature of WM [32]
and CENTRIST [33], where each kind of feature is regarded
as a view; Caltech-3V adds another feature of LBP [34]
in comparison to the Caltech-2V; Caltech-4V adds another
feature of GIST [35] in comparison to Caltech-3V; Caltech-
5V adds another feature of HOG [36] in comparison to
Caltech-4V.

2) Baseline methods: We compare our proposed nmODE-
MVC method with several state-of-the-art multi-view clus-
tering methods. The comparison includes the single view
clustering method K -means [9] and five advanced MVC meth-
ods: DEMVC (Deep Embedded Multi-View Clustering with
collaborative training [18]), SIMVC (Simple multi-view clus-
tering [4]), COMVC (trosten2021reconsidering [4]), DSMVC
(Deep Safe Multi-View Clustering [19]), and SDMVC (Self-
Supervised Discriminative Feature Learning for Deep Multi-
View Clustering [5]).

3) Evaluation metrics: The clustering performance is eval-
uated by three metrics: clustering accuracy (ACC), normalized
mutual information (NMI), and adjusted rand index (ARI). For
all these metrics, a higher value indicates better performance.

4) Implementation Details: In terms of network configura-
tions, we set the structure of the encoder is: Input - Fc500
- Fe500 - Fc2000 - Fcl0O, and the decoder is symmetric
with the encoder, where Fc denotes the fully connected layer.
The autoencoder is alternately trained with the nmODEs 15
times. All experiments are performed on WindowsPC with
Intel(R)Core(TM) i5-12600K CPU@3.69GHz, 32.0GB RAM,

Uhttps://archive.ics.uci.edu/ml/datasets.php
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TABLE II
RESULTS FOR ALL METHODS ON CALTECH DATASET WITH DIFFERENT VIEWS. “-XV ” REPRESENTS THAT IT CONSISTS OF X VIEWS.

Datasets | Caltech-2V | Caltech-3V | Caltech-4V | Caltech-5V
Evaluation metrics | ACC  NMI ~ ARI | ACC NMI ARI | ACC NMI ARl | ACC NMI ARI
K-means [9] (1967) \ 0416 0305 0.351 \ 0463 0313 0.403 \ 0.546  0.467 0.489 \ 0.574 0491 0511
DEMVC [18] (2021) | 0.486 0.342 0486 | 0.505 0366 0.512 | 0454 0315 0474 | 0457 0378 0.489
SiMVC [4] (2021) | 0.499 0451 0.543 | 0.561 0495 0.584 | 0.622 0.541 0.657 | 0.714 0.677 0.722
CoMVC [4] (2021) | 0.462 0417 0.503 | 0.543 0.511 0.584 | 0583 0.527 0.614 | 0.667 0.576 0.697
DSMVC [19] (2022) | 0.584 0.466 0.589 | 0.729 0.629 0.729 | 0.830 0.768 0.830 | 0.899 0.815 0.899
SDMVC [5] (2022) | 0.478 0374 0406 | 0416 0306 0.379 | 0435 0305 0401 | 0421 0.282 0.387
nmODE-MVC (ours) | 0.614 0478 0.403 | 0.806 0.720 0.665 | 0.825 0.774 0.690 | 0.885 0.820 0.806
TABLE III comes clear that our proposed nmODE-MVC demonstrates

RESULTS FOR ALL METHODS IN TERMS OF ACC, NMI AND ARI ON
BDGP AND HW DATASETS.

Datasets | BDGP | HW

Evaluation metrics \ ACC NMI ARI \ ACC NMI ARI
K-means [9] (1967) \ 0432 0.569 0.260 \ 0.754  0.785 0.667
DEMVC [18] (2021) | 0.751 0.750 0.751 | 0.676 0.706  0.588
SiMVC [4] (2021) | 0.754 0.670 0.754 | 0.640 0.821 0.665
CoMVC [4] (2021) | 0.812 0.733 0.813 | 0.739 0.834 0.727

DSMVC [19] (2022) | 0.658 0.444  0.658 - - -
SDMVC [5] (2022) | 0.978 0.934 0.948 | 0.971 0944 0.939
nmODE-MVC (ours) | 0.991 0.969 0.975 | 0974 0.940 0.942

and GeForce RTX 3070ti GPU (8GB caches). For fair compar-
ison, all baselines are tuned to the best performance according
to the corresponding papers.

B. Experimental Results

In this section, we perform comprehensive experiments,
comparing our proposed nmODE-MVC method against exist-
ing state-of-the-art clustering algorithms. Clustering outcomes
for the BDGP and HW multi-view datasets are elucidated
in Table III, and those pertinent to the Caletch multi-view
datasets are detailed in Table II. The superior results in
each column are emboldened, and results of the runner-up
are underlined. When employing the K-means algorithm, we
initiated ten individual runs and then computed the average.

In the initial stages, we opted for the BDGP dataset en-
compassing two views and the HW dataset containing six
views. These datasets are marked by a considerable variance
in the number of views they present. The primary motive
of such a selection was to examine if our proposed model
could efficiently adapt to handle datasets with disparate view
data, thereby assessing its versatility and potential for gen-
eralization. Following this, we proceeded with the selection
of the Caltech-5V dataset. The dataset underwent subsequent
processing to be segregated into 2V, 3V, 4V, and 5V subsets,
where ‘V’ denotes the number of views. This process was
designed to further affirm the ability of our model to retain
or even enhance its performance as the quantity of views, and
consequently, the volume of information escalates.

1) Clustering Performance Comparison: Upon inspecting
the findings presented in Table III and Table II, it be-

notable efficacy on the multi-view datasets when evaluated via
three established metrics: ACC, NMI, and ARI. Remarkably,
nmODE-MVC achieves better ACC than the state-of-the-
art MVC model on four multi-view data clustering tasks,
i.e., BDGP (+1.3%), HW (+0.3%), Caltech-2V (+3.0%) and
Caltech-3V (+7.7%). On the other two datasets, nmODE-
MVC achieves ACC results close to the SOTA MVC model
and slightly exceeds SOTA on NMI: Caltech-4V (+0.6%) and
Caltech-5V (+0.5%).

2) Visualization of Learning Process: In order to intuitively
gauge the effectiveness of the proposed nmODE-MVC, we
have utilized the t-SNE algorithm [16] for the visualization
of varying layers’ global embedded distributions. While the
target distribution P remains not visually representable, the
global embedded feature R distribution nonetheless offers a
discernable representation of data separability. We provide a
clear illustration of data separability and inseparability across
four distinct stages — these include the original dataset, pretrain
phase, the 5-th stage of alternating training, and the 15-th
stage of alternating training. As evident in Figure 2, the initial
separability of the original dataset appears relatively low.
However, after the initial five rounds of alternating training
involving the encoder and nmODE, there’s a marked improve-
ment in the dataset’s separability. Furthermore, the clustering
structure becomes increasingly pronounced with additional
alternating training cycles, thus validating the effectiveness of
the proposed nmODE-MVC.

3) Analysis of Training Process: This section aims to
investigate the process of training across different datasets
and explore how the iteration number impacts the evolution
of clustering performance at varying stages. As depicted in
Figure 3, the ACC and NMI are respectively represented by
blue and orange lines. Our experimental findings suggest that
due to the dynamic characteristics inherent in nmODE-MVC,
which facilitates the dynamic updating of data features and
distributions previously learned, there’s a rapid enhancement
in the clustering performance during the nmODE training
phase. During the fine-tuning phase, we notice a moderate
improvement in the clustering performance. This is attributed
to the usage of the target distribution P, as generated by
nmODE, to aid in the fine-tuning of all autoencoders through
the minimization of the loss L, thereby assisting in their
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(b) Pretrain autoencoders
Fig. 2. Visualization of the embedded global features R for BDGP dataset.
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Fig. 3. Clustering performance during different training processes. (a) and
(c) indicate the nmODE training on the BDGP and Caltech-5V datasets,
respectively. (b) and (d) indicate the finetuning stage on the BDGP and
Caltech-5V datasets, respectively.

updates. Furthermore, the nmODE-MVC’s clustering results
tend to stabilize as the iteration number increases, showing
no significant fluctuations, thereby indicating the robustness
of our proposed model.

4) Ablation Experiments: We perform an ablation study
on the nmODE-MVC model by comparing it to four simpler
versions to understand the significance of each component in
our primary model. (1) “w/o L. L,”: excluding both clustering
loss L. and reconstruction loss £,.; (2) “w/o L,”: sans L. loss,
employing solely L,; (3) “w/o L.”: devoid of L,, utilizing
exclusively L.; (4) devoid of the nmODE dynamics module,
relying only on the autoencoder. We executed ablation experi-
ments on three distinct datasets, delivering both ACC and NMI
scores as illustrated in Table IV. The outcomes of the initial
three ablation baselines elucidate the essential contributions
made by the £. and £, loss functions obtained by the model
towards the overall clustering results. The fourth ablation
baseline underscores when the nmODE module is removed,

(c) Alternate training 5 times (d) Alternate training 15 times

TABLE IV
THE ABLATION STUDY RESULTS OF NMODE-MVC ON THREE DATASETS.
THE ORIGINAL RESULTS ARE SHOWN IN BOLD.

Model BDGP HW Caltech-5V
ACC NMI | ACC NMI | ACC NMI

w/o Le Ly 0.703  0.602 | 0.699 0.671 | 0.618 0.534
w/o L 0.867 0.724 | 0.851 0.808 | 0.762 0.710
w/o Lc 0.896 0.752 | 0.862 0.826 | 0.770  0.704
w/o nmODE \ 0.897 0.701 \ 0.674 0.702 \ 0473  0.504
nmODE-MVC \ 0.991  0.969 \ 0.974  0.940 \ 0.898 0.820

the model degrades to SDMVC [5]. However, the nmODE-
MVC only requires 15 iterations while SDMVC necessitates
numerous rounds of iterations. This considerable reduction
in computational iterations not only speeds up the process
but also contributes to a more stable and robust model, as
evidenced by the higher accuracy of nmODE-MVC compared
to the SDMVC variant in our ablation studies.

5) Complexity Analysis: Let M be the representation for
the maximum quantity of neurons embedded within the au-
toencoder’s hidden layers, Z symbolize the maximum di-
mensionality of the embedding features, T° symbolize the
number of iterations for the outer loop, T,4. symbolize
the number of iterations for the inner loop (ODE solving
step), and K, V, and N stand for the numbers of clusters,
views, and examples respectively. The K-means and target
distribution computations are performed once per outer loop
iteration. Thus, their contribution to the total complexity will
be T x O(NZK), giving us O(TNZK). The autoencoder
adheres to a complexity of O(T'N'V M?). The nmODE model
is architectured on the foundational blocks of neuronODE
(one-dimensional) and invODE (three-dimensional). Owing
to the relatively lower dimensions of these modules, their
computational tasks can be executed with relative ease, giving
us O(T'NT,q4.). The total algorithm adheres to a complexity
of O(TN(ZK + VM? + T,q4.)).

V. CONCLUSION AND FUTURE WORK

This work introduces a novel, end-to-end, self-supervised
multi-view clustering technique underpinned by NeuralODEs.
It overcomes the challenge of suboptimal embedding fea-
tures, commonly associated with autoencoders, by jointly
implementing the feature learning objective and the clustering
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objective In terms of addressing the noted limitations of the
K-means algorithm, particularly its inherent randomness and
instability, we have strategically refrained from utilizing it
directly to derive clustering outcomes. Instead, it is harnessed
for the generation of soft clustering pseudo-labels, and the
final clustering assignment is generated by nmODE model.
We have introduced the element of NeuralODE to our model,
which confers dynamical attributes to our clustering algorithm.
The effectiveness of the proposed method is validated through
experiments on multiple real-world multi-view datasets. Ad-
ditionally, one of the primary advantages of nmODE is its
efficiency, notably demonstrated by its ability to achieve
desirable results with a lower number of iterations compared
to other models, which is evidenced by the higher accuracy
of nmODE-MVC compared to the SDMVC [5] for the same
number of iterations in our ablation studies.

In the future, we are set on amplifying the capabilities of
our existing ODE-based multi-view clustering method. We
contemplate attaching an nmODE unit at the termination
of each view, which empowers it to dynamically tune its
parameters in response to the specific data characteristics of
each view. This enhancement will capacitate our model to
more proficiently encapsulate the distinct features prevalent in
each view, which, in turn, is anticipated to markedly improve
the precision of our clustering outcomes. The measure of
this enhanced accuracy will be subsequently validated through
rigorous evaluation methodologies

ACKNOWLEDGMENT

This work was supported in part by the National
Key Research and Development Program of China
(No. 2018AAA0100204) and Shenzhen Science and
Technology  Program  (Nos. JCYJ20230807120010021
and JCYJ20230807115959041). Lifang He is partially
supported by the NSF grants (MRI-2215789, IIS-1909879,
IIS-2319451), NIH grant under R21EY034179, and Lehigh’s
grants under Accelerator and CORE.

REFERENCES

[1] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for
clustering analysis,” in ICML, 2016, pp. 478-487.

[2] D. Bo, X. Wang, C. Shi, M. Zhu, E. Lu, and P. Cui, “Structural deep
clustering network,” in WWW, 2020, pp. 1400-1410.

[3] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural
ordinary differential equations,” NeurlPS, 2018.

[4] D.J. Trosten, S. Lokse, R. Jenssen, and M. Kampffmeyer, “Reconsider-
ing representation alignment for multi-view clustering,” in CVPR, 2021,
pp. 1255-1265.

[5] J. Xu, Y. Ren, H. Tang, Z. Yang, L. Pan, Y. Yang, X. Pu, P. S. Yu, and
L. He, “Self-supervised discriminative feature learning for deep multi-
view clustering,” TKDE, 2022.

[6] Z. Yi, “nmode: neural memory ordinary differential equation,” Artificial
Intelligence Review, pp. 1-36, 2023.

[71 T. Zhang, Z. Yao, A. Gholami, J. E. Gonzalez, K. Keutzer, M. W.
Mabhoney, and G. Biros, “Anodev2: A coupled neural ode framework,”
NeurIPS, 2019.

[8] B. Zhang, X. Li, S. Feng, Y. Ye, and R. Ye, “Metanode: Prototype
optimization as a neural ode for few-shot learning,” in AAAL no. 8,
2022, pp. 9014-9021.

[9] J. MacQueen, “Classification and analysis of multivariate observations,”
in BSMSP, 1967, pp. 281-297.

[10]
(11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

(28]

[29]

(30]

(31]

(32]
[33]

[34]

[35]

[36]

A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and
an algorithm,” NeurIPS, 2001.

X. Guo, L. Gao, X. Liu, and J. Yin, “Improved deep embedded clustering
with local structure preservation.” in IJCAI, 2017, pp. 1753-1759.

J. Cai, J. Fan, W. Guo, S. Wang, Y. Zhang, and Z. Zhang, “Efficient
deep embedded subspace clustering,” in CVPR, 2022, pp. 1-10.

Z. Yang, Y. Ren, Z. Wu, M. Zeng, J. Xu, Y. Yang, X. Pu, S. Y. Philip,
and L. He, “Dc-fuda: Improving deep clustering via fully unsupervised
domain adaptation,” Neurocomputing, vol. 526, pp. 109-120, 2023.

P. Vincent, H. Larochelle, 1. Lajoie, Y. Bengio, P.-A. Manzagol, and
L. Bottou, “Stacked denoising autoencoders: Learning useful represen-
tations in a deep network with a local denoising criterion.” JMLR, no. 12,
2010.

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” JMLR,
no. 11, 2008.

L. Yang, N.-M. Cheung, J. Li, and J. Fang, “Deep clustering by gaussian
mixture variational autoencoders with graph embedding,” in CVPR,
2019, pp. 6440-6449.

J. Xu, Y. Ren, G. Li, L. Pan, C. Zhu, and Z. Xu, “Deep embedded
multi-view clustering with collaborative training,” Inf. Sci, pp. 279-290,
2021.

H. Tang and Y. Liu, “Deep safe multi-view clustering: Reducing the
risk of clustering performance degradation caused by view increase,” in
CVPR, 2022, pp. 202-211.

M. R. Khan and J. E. Blumenstock, “Multi-gcn: Graph convolutional
networks for multi-view networks, with applications to global poverty,”
in AAAI no. 01, 2019, pp. 606-613.

J. Xu, Y. Ren, X. Shi, H. T. Shen, and X. Zhu, “Untie: Clustering analy-
sis with disentanglement in multi-view information fusion,” Information
Fusion, vol. 100, p. 101937, 2023.

X. Chen, J. Xu, Y. Ren, X. Pu, C. Zhu, X. Zhu, Z. Hao, and L. He,
“Federated deep multi-view clustering with global self-supervision,” in
Proceedings of the 31st ACM International Conference on Multimedia,
2023, pp. 3498-3506.

C. Cui, Y. Ren, J. Pu, J. Li, X. Pu, T. Wu, Y. Shi, and L. He, “A novel
approach for effective multi-view clustering with information-theoretic
perspective,” arXiv preprint arXiv:2309.13989, 2023.

Y. Ren, J. Pu, Z. Yang, J. Xu, G. Li, X. Pu, P. S. Yu, and L. He, “Deep
clustering: A comprehensive survey,” 2022.

J. Zhang, P. Zhang, B. Kong, J. Wei, and X. Jiang, “Continuous self-
attention models with neural ode networks,” in AAAL no. 16, 2021, pp.
14393-14401.

M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger, “Occupancy
flow: 4d reconstruction by learning particle dynamics,” in /ICCV, Feb
2020.

B. Jiang, Y. Zhang, X. Wei, X. Xue, and Y. Fu, “Learning compositional
representation for 4d captures with neural ode,” in CVPR, 2021, pp.
5340-5350.

M. Bai, S. Choy, J. Zhang, and J. Gao, “Neural ordinary differential
equation model for evolutionary subspace clustering and its applica-
tions.” Jul 2021.

L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” JMLR,
pp. 2579-2605, 2008.

X. Cai, H. Wang, H. Huang, and C. Ding, “Joint stage recognition
and anatomical annotation of drosophila gene expression patterns,”
Bioinformatics, pp. 11624, 2012.

L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models
from few training examples: An incremental bayesian approach tested
on 101 object categories,” in CVPR, 2004, pp. 178-178.

D. Shen and H. H. Ip, “Discriminative wavelet shape descriptors for
recognition of 2-d patterns,” Pattern Recognition, p. 151-165, Jul 2002.
J. Wu and J. M. Rehg, “Centrist: A visual descriptor for scene catego-
rization,” TPAMI, no. 8, p. 1489-1501, Dec 2010.

T. Ojala, M. Pietikainen, and D. Harwood, ‘“Performance evaluation of
texture measures with classification based on kullback discrimination of
distributions,” in /ICPR. 1EEE, 1994, pp. 582-585.

A. Friedman, “Framing pictures: the role of knowledge in automatized
encoding and memory for gist.” Journal of experimental psychology:
General, no. 3, p. 316, 1979.

N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in CVPR, Jul 2005.

864
Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on October 01,2024 at 04:40:02 UTC from IEEE Xplore. Restrictions apply.



