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Abstract

Deep neural networks are susceptible to generating
overconfident yet erroneous predictions when presented
with data beyond known concepts. This challenge un-
derscores the importance of detecting out-of-distribution
(0OOD) samples in the open world. In this work, we pro-
pose a novel feature-space OOD detection score based on
class-specific and class-agnostic information. Specifically,
the approach utilizes Whitened Linear Discriminant Analy-
Sis to project features into two subspaces - the discrimina-
tive and residual subspaces - for which the in-distribution
(ID) classes are maximally separated and closely clustered,
respectively. The OOD score is then determined by combin-
ing the deviation from the input data to the ID pattern in
both subspaces. The efficacy of our method, named WDis-
cOOD, is verified on the large-scale ImageNet-1k bench-
mark, with six OOD datasets that cover a variety of dis-
tribution shifts. WDiscOOD demonstrates superior per-
formance on deep classifiers with diverse backbone archi-
tectures, including CNN and vision transformer. Further-
more, we also show that WDiscOOD more effectively de-
tects novel concepts in representation spaces trained with
contrastive objectives, including supervised contrastive loss
and multi-modality contrastive loss.

1. Introduction

Deep learning models are typically designed with a
closed-world assumption [46], where test data is assumed
to be drawn from the same distribution as the training data.
Without any built-in mechanism to distinguish novel con-
cepts, deep neural networks are prone to generate incorrect
answers with high confidence when presented with out-of-
distribution (OOD) data. Such a misleading decision could
result in catastrophic consequences in applications, which
makes the deep neural network hard to deploy in the open
world. To address this issue, significant research efforts
have been devoted to the problem of OOD detection, which
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Figure 1: Performance on two OOD detection benchmarks.
We propose a novel OOD detection method based on Whitened
Linear Discriminant Analysis, wihch is highlighted with red star.
It outperforms baselines with both ResNet-50 (x-axis) and ViT-
B/16 (y-axis) model on ImageNet-1k benchmark. Blue dots and
yellow square denote classifier-based and feature-based methods,
respectively. The AUROCS are averaged over six OOD datasets,
for which the detailed results are tabulated in Tab. 1.

aims to establish a robust method for identifying when the
testing data is “‘unknown.”

Specifically, OOD detection requires establishing a scor-
ing function to separate ID and OOD data. Designed for
deep visual classifiers, the majority of works examine acti-
vation patterns from the classification layer. For example,
a popular baseline is to leverage the maximum posterior
probability output of a softmax classifier to indicate ID-ness
[21], assuming that the network is more confident with its
decision for ID data. The idea is enhanced by neural net-
work calibration techniques [17, 32, 24], which aim to align
network confidence with actual likelihood. The technique
has been shown to improve OOD detection performance.
Other classifier-based scores explore unnormalized poste-
rior probabilities known as logits [20, 33], and norms of gra-
dients backpropagated from the classification layer [25, 29].

Recently, ViM [44] argues that both class-dependent
and class-agnostic information can potentially facilitate the
OOD detection task. Based on the idea, it designs a scor-
ing function by mapping the feature-space principle com-
ponent residual to the logit space. Despite the great per-



formance achieved, ViM still requires supervision to train
the classification layer. Meanwhile, advances in pretraining
large-scale visual encoders using contrastive learning tech-
niques [3, 27] have occured in recent years. These meth-
ods no longer rely on jointly training deep visual encoders
with task heads, but instead formulate objectives directly
in the feature space to produce high-quality visual repre-
sentations. The learnt encoder can be applied to down-
stream tasks with little or no fine-tuning required [36, 39],
suggesting a new paradign for addressing computer vision
problems. While it is non-trivial to adopt classifier-based
OOD detection methods directly to visual encoders, ap-
plying feature space methods is straightforward. For ex-
ample, SSD [38] applies Mahalanobis [3 1] distance in the
contrastive feature space, and demonstrates superior perfor-
mance compared to a typical classification visual encoder.

In this work, we aim to reason about both class-specific
and class-agnostic information solely within the feature
space. To achieve this, we utilize Whitened Linear Discrim-
inant Analysis (WLDA) to project visual features into two
subspaces: a discriminative subspace and a residual sub-
space. The former contains compact class-discriminative
signals, while the latter constrains shared information. We
refer to these subspaces as Whitened Discriminative Sub-
space (WD) and Whitened Discriminative Residual Sub-
space (WDR), respectively. Given the compactness of the
WD space, we detect anomalies by measuring the distance
to the nearest class center. Conversely, in the WDR space
where in-distribution (ID) classes are entangled, we exam-
ine the distance to the centroid of all training data as an
OOD indicator. The final proposed scoring function uni-
fies the information from both subspaces by computing a
weighted sum of the scores in each space.

While subspace techniques for OOD detection have been
explored previously [5], our approach differs significantly.
Assuming ID data lies on a low-dimensional manifold, ex-
isting approaches measure the residual magnitude as an in-
dicator for OOD-ness [34]. In contrast, we assume the
residual space captures rich class-shared information. Fur-
thermore, while past literature examines the residual to prin-
ciples [44] or classifier weights [5], we explore the remain-
ing information to discriminative components. This design
enables us to jointly reason with both discriminative and
residual information without relying on task heads, which
is more applicable to stand-alone visual encoders.

As shown in Fig. 1, WDiscOOD achieves superior per-
formance on large-scale ImageNet-1k benchmark compared
to a wide range of baselines, under both classic CNN and
recent Visual Transformer (ViT) architectures. In addi-
tion, our method surpasses other feature-space approaches
in distinguishing novel concepts from stand-alone con-
trastive encoders, involving Supervised Contrastive (Sup-
Con) model [27] and Contrastive Language-Image Pre-

Training (CLIP) model [36]. What’s more, we discover
that the Whitened Discriminative Residual Space is more
effective in identifying anomalous responses compared to
other subspace techniques or even a subset of classifier-
based scoring methods, verifying the importance of the
class-agnostic feature component for the task.

In summary, our contribution involves:

e A new OOD detection score, based on WLDA, that
jointly considers class-discriminative and class-agnostic
information solely within the feature space.

o A new insight into the effectiveness of the Whitened Dis-
criminative Residual Subspace space, which captures the
shared information stripped of discriminative signals, for
detecting anomalies in OOD samples.

e New state-of-the-art results achieved by our method on
the large-scale ImageNet OOD detection benchmark, for
various visual classifiers (CNN and ViT) as well as con-
trastive visual encoders (SupCon and CLIP).

2. Related Work

Scoring Functions for Pretrained Models One line of
work explores scoring functions to distinguish inliers and
outliers, which is fundamental to the OOD detection task.
Multiple designs have been proposed for pretrained deep vi-
sual classifiers [1, 28, 37, 16, 21, 33, 20, 25, 29, 40, 44, 34,

, 41]. The most straightforward design is Maximum Soft-
max Probability (MSP) score, which considers the network
confidence as an uncertainty measurement. ODIN [32] im-
proves MSP’s performance via two calibration techniques -
input preprocessing and temperature scaling. Logit-space
methods involve max logit [20] and energy score [33].
The latter is further enhanced by feature rectification [33].
Huang et al. [25] and Lee et al. [29] investigate gradi-
ent space, which demonstrates effectiveness in revealing ID
and OOD distinction. Those methods achieve great per-
formance on several OOD detection benchmarks, but are
tailored to the classification task and not applicable to pre-
trained visual encoders since they are dependent on classi-
fier outputs. On the other hand, methods based on feature
space analysis, such as Mahalanobis [31] and KNN [41],
not only exhibit exceptional OOD detection performance
for classification models, but also showcase applicability to
stand-alone visual encoders, including SupCon [27, 38] and
CLIP [36, 14]. Subspace analysis [44, 34, 5] measures the
residual information from low-dimensional manifold [34]
or column space of classifier weights. However, to achieve
state-of-the-art performance, the result needs to be con-
verted to classifier output space to factor in class-dependent
information [44]. In this work, we combine the residual
and discriminative information solely in the feature space
via Linear Discriminant Analysis, which makes our method
applicable to any visual encorder.
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Figure 2: Overview of WDiscOOD method. We detect an OOD sample by projecting the feature into Whitened Discriminative Subspace
(WD) and Whitened Discriminative Residual Subspace (WDR), where 1D classes are maximally separated and closely clustered, respec-
tively. The projection functions are obtained from offline Whitened Linear Discriminant Analysis on the ID dataset. OOD samples are
presumed to be far from the class clusters in WD space and the entire dataset clutter in WDR space. Therefore, we formulate the OOD
score as a combination of the distance to the nearest class centroid in the WD space and to the entire dataset centroid in the WDR space.

Model Modifications & Training Constraints Another
branch of OOD detection methods trains the network to re-
spond differently to ID and OOD data, by either modify-
ing the network structure [24] or adding specialized train-
ing regularization [26, 48, 47]. Along these lines, the
most direct approach is to encourage the network to give
distinguishable predictions for outlier data, such as a uni-
form posterior probability [22], lower energy [33], or con-
fidence estimation from dedicated branch [7]. to do so re-
quires an auxiliary OOD training set, commonly known as
Outlier Exposure (OE) [22]. Several methods [8, 22] as-
sume the availability of unknown data from outlier datasets,
which can hardly cover all potention distribution shifts in
the open world, and is not always feasible. Lee et al. [30]
utilizes generative models, such as Generative Adversarial
Networks (GAN) [15] for outlier data synthesis. However,
generating high fidelity imagery induces optimization diffi-
culties. To avoid these obstacles, VOS [ 1] synthesize out-
liers in the feature space, which can adapt to the ID feature
geometry during training. Although effective, these meth-
ods require network re-training to endow the model with
the ability to reject OOD data, which can be expensive and
intractable. Especially for models trained on large-scale
datasets. On the other hand, our OOD scoring function de-
sign can be directly applied on any pre-trained visual model.

3. Methods

The core of OOD detection lies in creating a scalar func-
tion s(-) that assigns distinguishable scores to ID and OOD
data. This allows the query data to be classified as either ID
or OOD by applying a threshold to the score. In this paper,
we aim to assign higher scores for ID data. Our approach in-
volves disentangling class-discriminative and class-general
information from the features of a deep network’s penulti-
mate layer using Whitened Linear Discriminant Analysis.

We then jointly reason with both types of information to ef-
fectively identify OOD data. We first summarize the LDA
method in Sec.3.1, then explain the proposed WDiscOOD
score based on LDA in Sec. 3.2 .

3.1. Multiclass Linear Discriminant Analysis

The objective of Linear Discriminant Analysis (LDA)
[13, 12] is to find a set of projection directions, termed
discriminants, along which multi-class data are maximally
separated. Specifically, given a training dataset {(x; €
RP ,ci)}?’ of D-dimensional features from C classes (c; €
{1,2,---,C}), the objective of LDA is to find the direction
w such that the Fisher discriminant criterion [2], defined
as the ratio of inter-class variance over intra-class variance,
is maximized:
wTSb'w
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where S, and S,, are between-class scatter matrix and
within-class scatter matrix. Denote the cardinality for class

c as N., then the scatter matrices are formulated as:
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where p is the center of the entire training dataset.
The optimization program defined in Eq. 1 is resolved
by solving the generalized eigenvalue problem:

Spw = AS,,w, 4)

where the generalized eigenvalue is equal to the Fisher crite-
rion for the corresponding eigenvector. Intuitively, a larger



Fisher criterion suggests that ID classes are better separated.
Therefore, projecting original features along top discrimi-
nants, known as the Foley-Sammon Transform (FST), maps
the original feature to a low-dimensional subspace where
ID classes are compactly clustered. As described in the fol-
lowing section, we utilize FST to disentangle discriminative
and residual information from visual feature space.

3.2. WDiscOOD: Whitened Linear Discriminant
Analysis for OOD detection

For a given extracted image feature z, Fig. 2 depicts
the proposed WDiscOOD score to involve three steps: (1)
offline data whitening with the statistics derived from the
training dataset; (2) discriminative and residual space map-
ping with discriminants and discriminant orthogonal com-
plement set, which are estimated based on offline LDA; (3)
a weighted sum of distances to ID cluster(s) in both spaces
as the final WDiscOOD score.

Data Whitening We begin by whitening the feature prior
to conducting LDA. The application of whitened LDA has
been extensively studied and implemented across various
domains [35, 18]. According to Hariharan et al. [18], data
whitening eliminates the correlation between feature ele-
ments and enhances the feature’s capability to encode data
similarity. Furthermore, it improves the numerical condi-
tioning of LDA, particularly in scenarios with small sample
sets. In this paper, whitening is applied to the within-class
covariance matrix of Eq. 2. Suppose the eigenvalue de-
composition for the covariance matrix on the feature space:
S.w=V,A, VI, where V,, e RP*" A, € R™", r denotes
matrix rank, then the feature is whitened by:

x=S8."2=V,A,'*V~ 5)

Discriminative and Residual Space Mapping To iso-
late the class-specific and class-agnostic components of the
whitened visual feature, we leverage LDA to project the
data onto two distinct subspaces. The first subspace, re-
ferred to as the Whitened Discriminative Subspace (WD),
encodes the discriminative information of the data by com-
pactly grouping samples from the same class and separating
different classes. The second subspace, referred to as the
Whitened Discriminative Residual Subspace (WDR), cap-
tures the residual of the discriminative information by clus-
tering together samples from all classes.

Following [9], we solve LDA by adding a multiple of
identity matrix to the within-class scatter matrix S,, +pI. It
stablizes small eigenvalues and ensures a sufficiently well-
conditioned scatter matrix. It also converts the generalized
eigenvalue problem in Eq. 4 to an eigenvalue problem:

(Sy+pD) ' Spw = 2w (6)

With discriminants solved from LDA, project the fea-
tures into WD via Foley-Sammon Transformation. To
be specific, construct the projection matrix W =
[wy,wy,- -, wy,] € RD*Np by stacking the top Np discrim-
inants corresponding to the largest Fisher criterion. The
WD projection is defined to be

gx)=W'e. (7

To capture the class-agnostic information, project the
data onto the subspace spanned by the orthogonal com-
plements of the top-Np discriminants, e.g., to the WDR
space. The orthogonal complements correspond to projec-
tion directions with lower Fisher criterion values, which
implies that the separation between classes is less signifi-
cant compared to intra-class variance. Thus, WDR space
captures shared information among the ID classes, which
can be used to formulate additional constraints for ID
data. Formally, suppose the eigendecomposition: WW T =
QAw QT then the WDR projection of a query feature is

h(z)=I-QQ"x. (8)

WDiscOOD Score The WDiscOOD score combines ID
data constraints in both WD and WDR spaces. In the dis-
criminative subspace, where discrepency between known
classes is maximized, all ID data is in close proximity to
some class cluster. Formulate the WD space OOD detec-
tion score as the distance to the nearest class center p)'”:

sg(@) = —min|ig(x) - !l ©)

In the WDR space where inter-class discrepency is mini-
mized, the data from ID classes tends to scatter around a
shared centroid. Measure the OOD score in WDR space as
the distance to the center of all ID training data gV PR:

su(@) = —|lh(z) — p" PRl (10)

The design is distinct from residual norm score from prior
work [44, 34], which assumes minimal information left
from ID data that is irrelevant for the classification task. In-
stead, we assume that the residual space contains abundant
shared information, motivating us to formulate the distance-
based score in Eq. 10.

To incorporate information from both spaces, the WDis-
cOOD score is defined as the weighted sum of both scores:

s(x) = sg(x) + asy(x) (11D

4. Experiments

This section compares the described approach with state-
of-the-art methods on a large-scale OOD detection bench-
mark to demonstrate the effectiveness of the core concept.



Evaluation is done for visual classifiers and stand-alone
constrative visual encoders. Additionally, a comprehensive
ablation study provides further insights into WDiscOOD.

ID and OOD datasets Following recent work [26],
testing involves a large-scale OOD detection task with
ImageNet-1k [0] as the ID dataset. Six test OOD datasets
are applied for evaluation, including: SUN [45], Places
[49], iNaturalist [43], Textures [4], ImageNet-O [23], and
Openlmage-0O [44]. The first three (SUN, Places, iNatural-
ist) use the subset curated by [26] with non-overlapping cat-
egories w.r.t the ID dataset. Note that this evaluation is more
comprehensive than previous OOD detection literature in-
vestigating ImageNet benchmark [44, 41], in the sense that
they only adopt a subset of the above OOD datasets. Uti-
lizing a variety of OOD data sources encompasses a wider
range of distributional shift patterns, thus enabling a more
comprehensive evaluation of OOD detection methods.

Evaluation Metrics Evaluation uses two commonly
adopted metrics that quantify a scoring function’s ability
to distinguish ID and OOD data. The first is Area under
the Receiver Operating Characteristic Curve (AUROC), a
threshold-free metric that measures the area under the plot
of the true positive rate (TPR) against the false positive rate
(FPR) under varying classification thresholds. The AUROC
metric is advantageous as it is invariant to the ratio of pos-
itive sample number to that of negative sample, making it
suitable for evaluating OOD detection task, where the num-
ber of ID and OOD samples is imbalanced. Higher value
indicates better performance. The second is False positive
rate at 95% true positive rate (FPR95) (smaller is better).

Models Settings and Hyperparameters Testing is done
with classification models for ImageNet-1k [6] having var-
ious backbones. The first is a ResNet-50 backbone [19],
the most widely applied convolutional neural network. The
second is a Vision Transformer (ViT), a transformer-based
vision model that processes an input image as a sequence
of patches. Following [41], we adopt the officially released
ViT-B/16 architecture pretrained on ImageNet-21k and fine-
tuned for classification on ImageNet-1k.

For stand-alone visual encoders, we test with Super-
vised Contrastive (SupCon) [27] and Contrastive Language-
Image Pre-Training (CLIP) [36] models. The former is op-
timized to encourage smilarity between the embeddings of
samples from the same class, while maximizing the distance
between them for different classes. The latter is a multi-
modality representation learning method, trained to pull to-
gether the features for matched image-text pairs, and push
them away for non-matching pairs. Both encoders adopt a
ResNet-50 backbone with officially released weights. Dif-
ferent from [14], we discard the language encoder from

CLIP and perform OOD detection only in the visual fea-
ture space. This removes the assumption of the availability
of a textural ID class name or description, which is not al-
ways feasible in real-world application. While both models
utilize a projection head to a low-dimensional embedding
space to formulate the training objectives, we leverage the
backbone penultimate layer feature for better OOD detec-
tion performance following [41].

Per ViM [44], we adopt different hyparameter settings
according to feature dimension. For ResNet-50 encoder
with D = 2048 dimensional features, we set the number of
discriminants as Np = 1000 and the score weight in Eq.
11 as @ =5. On the other hand, we adopt Np = 500 and
a =1 for ViT feature space of D = 768 dimensionality.
When performing Linear Discriminant Analysis, we sam-
ple N = 200,000 training images that are evenly distributed
among all ID classes for the estimation of statisticcal quan-
tities, such as means and scatter matrices.

Baseline Methods Comparison uses nine baselines that
derive scores from pretrained models without requiring net-
work modification or finetuning. Seven logit/probability-
space methods are included: MSP [21], Energy [33], ODIN
[32], MaxLogit [20], KLMatch [20], ReAct [40], and ViM
[44]. For ReAct, we use Energy+ReAct with truncation per-
centile p = 99. Two feature-space baselines are included:
Mahalanobis [31] and KNN [41]. For the Mahalanobis
method, we follow SSD [38] to directly apply the scoring
function on the final layer feature without input-precossing
nor a multi-layer feature ensemble technique.

4.1. OOD Detection Performance on Classifiers

The first experiment presents the OOD detection com-
parison with classification models based on ResNet-50 and
ViT backbones. Tab. la and Tab. 1b provide the quantita-
tive results, consisting of outcomes for each OOD dataset
and average performance across them. The best AUROC
and FPR9S5 are in bold, with second and third rank under-
lined. On average across all OOD datasets, WDiscOOD ex-
hibits superior performance compared to the baselines for
both ViT and ResNet-50 models. This validates the efficacy
of our OOD score function design.

Consistency across OOD distributions. Tajwaretal [42]
shows on small-scale OOD benchmarks that existing OOD
detectors do not have a consistent performance across OOD
data sources. Consistency is important as the OOD data
distribution is unpredictable in the open world. WDis-
cOOD consistently achieves top performance across all
OOD datasets. As an illustration, it achieves top-3 perfor-
mance in 11 out of 12 metrics (2 - AUROC and FPR95 - for
each of the 6 OOD datasets) when used with the ViT-B/16
model, with 6 of them being the highest compared to the



Textures SUN Places iNaturalist ImgNet-O Openlmg-O Average
Method FPR95|AUROCT FPR95|AUROCT FPR95|JAUROCT FPR95|AUROCT FPR95|AUROCT FPR95|AUROCT |FPR95|AUROCT
Classifier-dependent methods
MSP [21] 72.98 7492 70.98 78.75 73.43 76.65 60.90 84.40 95.65 53.13 69.73 81.17 | 73.94 74.84
Energy [33]  95.74 48.60 97.93 50.12 97.77 48.90 98.12 50.86 92.80 48.23 95.41 52.33 | 96.30 49.84
ODIN [32] 75.94 69.33 75.51 74.05 77.54 71.28 68.60 79.88 94.95 51.19 73.98 76.15 |77.75 70.31
MaxLogit [20] 75.92 69.33 75.51 74.05 77.55 71.28 68.57 79.88 9495 51.19 73.97 76.15 |77.74 70.31
KLMatch [20] 57.57 86.09 70.36 8291 74.04 80.65 46.83 90.81 89.75 68.86 58.21 88.31 | 66.13 82.94
ReAct [40] 98.05 34.51 99.66 23.68 99.80 22.86 100.00 23.13 99.40 37.31 99.86 23.86 |99.46 27.56
ViM [44] 25.18 92.63 69.22 81.39 7490 76.40 30.02 93.38 76.15 77.08 46.70 88.60 |53.70 84.91
Feature space methods
Maha [31] 31.17 91.62 66.29 84.31 70.27 81.45 25.64 95.38 81.45 75.65 44.36 91.41 | 53.20 86.64
KNN [41] 23.26 93.11 88.59 74.01 89.00 71.07 74.60 85.83 71.0581.15 70.29 84.01 |69.47 81.53
WDiscOOD 29.20 91.90 56.83 86.74 64.40 83.13 22.39 95.59 81.60 75.52 44.67 90.51 [49.85 87.23
(a) ResNet-50 [19].
Textures SUN Places iNaturalist ImgNet-O Openlmg-O Average
Method FPR95|AUROCT FPR95|AUROCT FPR95|AUROCT FPR95|AUROCT FPR95|AUROCT FPR95|AUROCT |FPR9S|AUROCT
Classifier-dependent methods
MSP [21] 52.43 8542 5322 86.93 57.75 85.72 13.66 97.00 51.75 85.81 31.99 92.48 |43.47 88.89
Energy [33] 36.13 91.25 34.44 93.28 42.8090.98 5.60 98.94 30.30 93.36 16.06 96.87 |27.56 94.11
ODIN [32] 38.57 90.86 37.45 92.81 44.68 90.66 6.03 98.81 33.50 92.69 17.83 96.54 |29.68 93.73
MaxLogit [20] 38.56 90.86 37.45 92.81 44.68 90.66 6.03 98.81 33.50 92.69 17.83 96.54 |29.68 93.73
KLMatch [20] 51.22 85.12 56.04 85.45 61.08 83.86 13.68 96.32 49.90 85.62 31.38 91.93 | 43.88 88.05
ReAct [40] 36.35 91.17 34.55 93.22 43.32 90.83 5.61 9894 30.30 9340 16.01 96.88 |27.69 94.07
ViM [44] 38.67 91.38 32.4793.41 44.23 89.86 140 99.68 31.80 94.05 16.61 97.10 | 27.53 94.25
Feature space methods
Mabha [31] 36.61 91.67 35.37 92.89 46.08 89.55 0.96 99.78 30.45 94.22 13.8597.50 | 27.22 94.27
KNN [41] 38.28 90.74 46.08 90.73 54.50 87.54 6.75 98.70 38.95 92.53 20.59 96.12 | 34.19 92.72
WDiscOOD  36.58 91.79 32.62 93.34 43.74 89.91 0.89 99.81 30.1594.36 14.30 97.44 |26.38 94.44

(b) ViT-B/16 [10].

Table 1: Results on ResNet-50 [19] and ViT [10] classification models. We test all methods on six OOD datasets and
compute the average performance. Both metrics AUROC and FPR95 are in percentage. We highlight the best performance
in bold, and underline the 2nd and 3rd ones. Our method consistently outperforms all classifier-dependent or feature-space
baselines under both network architectures in terms of average performance.

baseline methods. Close baselines are ViM and Maha (both
achieve 7 top-3 including 2 top-1). but their top-1 results
are achieved for one dataset, whereas WDiscOOD does so
for three. Similar outcomes occur for ResNet-50. Examin-
ing both discriminative and residual information promotes
the detection of a broader range of OOD patterns.

Robustness across encoder architectures. Another
property of WDiscOOD is its model-agnostic nature.
Its consistently high performance across network types
demonstrates an ability to handle the diverse feature
manifolds induced by distinct network architectures.

4.2. Results on Contrastive Visual Encoders

The WDiscOOD implementation is applied to the Sup-
Con [27] and CLIP [36] models to verify its applicability on
modern visual encoders. Since classifier-dependent base-
lines are not applicable to the stand-alone visual feature
extractors, baseline comparison involves only the feature-
space baselines - Mahalanobis [31] and KNN [41]. Tab. 2
collects the results. WDiscOOD surpasses the baselines for
both models, suggesting that it is more effective in identi-
fying OOD patterns across the feature spaces induced by
diverse representation learning objectives.



Config ResNet-50 ViT
Whiten” Dist |FPR95 | AUROC T |FPR95 | AUROC 1

SupCon [27] CLIP [36]
Method FPRO5S| AUROC? | FPR95] AUROCT
Mahalanobis | 4695  89.78 | 78.00 7531
KNN 4251 9035 | 8259  67.22
WDiscOOD | 40.10 90.89 T7.57 75.74

X Maha | 53.65 86.20 29.81 93.47
Eucl | 74.56 81.17 32.21 93.52

Table 2: Results on SupCon [27] and CLIP [36] visual
encoders. Our method surpasses other feature-space meth-
ods on these representation learning models. This table re-
ports only average performance, while detailed results for
each dataset can be found in the Supplementary material.

Method ResNet-50 ViT
FPR95| AUROC?T | FPR95, AUROCT

PR 56.72 84.01 34.59 92.44

WDR 53.74 86.56 30.35 93.72

Table 3: Comparison between subspace techniques. Our
proposed WDR space is more effective than the Principle
Residual (PR) space [44] for the OOD detection task. Fur-
thermore, its AUROC on ResNet-50 outperforms 8 out of 9
baselines, which demonstrates that WDR is informative for
OOD detection.

4.3. Understanding WDiscOOD

Discriminant Residual v.s. Principle Residual To con-
firm the efficacy of WDR space for OOD detection, it is
compared to other subspace residual designs. ViM [44]
bases their method on the residual of principle space, with
empirical evidence on its effectiveness over the classifier
null space method [5]. Comparative evaluation of this ap-
proach against the residual score in Eq. 10 on classification
models is provided in Tab. 3.

The WDR space scoring function outperforms the pre-
vious subspace technique in terms of AUROC and FPR95
for both ResNet-50 and ViT architectures. Additionally,
without the discriminative information, it performs compet-
itively compared to SOTA in Tab. 1. In particular, the WDR
space score achieves the third highest AUROC on ResNet-
50 classifier, behind the integrated WDiscOOD and Maha-
lanobis scores. This placing supports the claim that WDR
space is highly informative for OOD detection.

Effect of Feature Whitening We evaluate WDiscOOD
with or without feature whitening on the ResNet-50 and ViT
classification models. To isolate the effect of feature decor-
relation on LDA, we also ablate on Euclidean distance vs
Mahalanobis distance (whitening + Euclidean) in Eq. 9 and
Eq. 10. Tab. 4 collects the results, which indicate that
feature whitening improves (FR95) performance by a large
margin. Replacing Euclidean distance with Mahalanobis
after LDA slightly improves the results without whitening,
but is insufficent to fill the gap. This suggests that feature

X
v/ Maha| 4985 87.23 | 2660  94.40
v/ Eucl| 4986 8723 | 2649 9441 |

|

Table 4: Ablation on Data whitening. f: The option of
data whitening before DLA. Whitening the data prior to
DLA improves over no whitening (X+ Eucl) or whitening
after DLA (X+ Maha). Furthermore, with prior data whiten-
ing, Euclidean (v +Eucl) performs similar as Mahalanobis
(V'+Maha) while requiring less computation, which justi-
fies our design.

B Discriminative
Residual
[ Together

Textures SUN

Places iNaturalist IngNet-OOpenImg-O Average

Figure 3: The individual performance in WD and WDR space.
Our results demonstrate that two subspaces are effective in de-
tecting OOD data from distinct distributions. Moreover, the in-
tegrated score (black border) yields a superior performance com-
pared to each individual, evidencing that our method unifies class-
discriminative and class-agnostic information.

whitening facilitates isolation of class-specific and resid-
ual information for LDA, which is crucial for our method.
Mahalanobis after WLDA has similar performance as Eu-
clidean, but requires additional scatter matrix estimates in
subspaces. Therefore our design is justified.

Contribution by WD and WDR Spaces To understand
the role played by each subspace, we break down the scor-
ing function and evaluate the OOD detection solely within
WD or WDR, with Eq. 9 or Eq. 10 as OOD scores,
separately. The FPR95 performance is illustrated in Fig.
3. Our results demonstrate that two subspaces are effec-
tive in detecting different OOD patterns. Specifically, WD
outperforms WDR on three OOD datasets (SUN, Places,
INaturalist), while underperforming on the others (Tex-
tures, ImageNet-O, Openlmage-O). Additionally, the inte-
grated score achieves better performance than each individ-
ual space on average, indicating that our method effectively
leverages the complementary information provided by both
subspaces. Unlike ViM [44], we combine the class-specific
and class-agnostic information for OOD detection without
relying on task heads, which improves its general use.
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Figure 4: Ablate on scoring scale factor. The integrated per-
formance is better than individual subspace over a wide range of
scales, indicating that our simple linear combination is effective in
factoring in information from both subspaces for OOD detection.

Effect of scale factor « We ablate on the scale factor @
in Eq. 11 on the ResNet-50 classification model. We fix
the number of discriminants Np = 1000 and test with dif-
ferent scales from the set: a € {0.01,0.1,0.5,1,2,5,10,100}.
Fig. 4 depicts the average AUROC under varied scaling
factor. When the scaling factor is extreme, the score func-
tion biases towards one subspace over the other, leading to
lower performance at both ends of the curve. The integrated
scoring function outperforms the individual subspace scores
across a wide range of scales, indicating that the proposed
linear combination is effective at considering information
from both subspaces.

Effect of Discriminant Number Np We also ablate on
the effect of discriminant number Np, by testing our
method with Np € {10,100,500, 1000, 1500,2000} on the
same model. For each discriminant number, we test with
varied scaling factor within the same set as above, and re-
port the highest AUROC results. We further report indi-
vidual performance from each subspace. The results are
demonstrated in Fig. 5. As the discriminant number in-
creases, the individual performance in both WD and WDR
space improves as the result of better separation between
discriminative and residual information. The trend stops
when the number is sufficiently large, as the separation sat-
urates. As a result, the intergrated performance becomes
stable with increased discriminant number.

Robustness against Training Data Number N Here we
explore the effects of the training data quantity N on the per-
formance of WDiscOOD. We vary the quantity and plot the
resulting average AUROC for individual subspace perfor-
mance and integrated performance in Fig. 6. Near-optimal
results occur with 20% of the training data (200K out of
over 1000K), indicating the data efficiency of our method.

5. Conclusion

This paper presents a new OOD detection method
based on Whitened Linear Discriminant Analysis (WLDA),
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Figure 5: Ablate on Discriminant Number Np. Our method
achieves consistently high performance when the discriminant
number is sufficiently large, enabling complete disentanglement
of discriminative and residual information.
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Figure 6: Ablate on Training Data Number. Our method
achieves near-optimal performance using only 200K training data
out of over 1000K, indicating that it is not excessively data-hungry.
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named WDiscOOD. It jointly reasons with class-specific
and class-agnostic information by disentangling the dis-
criminative and residual information from the feature space
via WLDA. Comprehensive evaluation shows that WDis-
cOOD establishes superior results on multiple large-scale
benchmark, demonstrating robustness across model archi-
tectures as well as representation learning objectives. Anal-
ysis reveals the efficacy of Whitened Discriminative Resid-
ual Subspace (WDR) on OOD detection compared to other
subspace techniques, showing the importance of under-
standing the behavior of OOD activation in the residual sub-
space.
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Figure 7: Empirical Fisher Criterion (FC) values for ResNet-
50 classification model. FC values for discriminants are non-
trivial whereas that for discriminant orthogonals approach zero.
This verifies our assumption that WLDA disentangle discrimina-
tive and residual information from the feature space.

A. Model details

For ResNet-50 and ViT-B/16 classifiers, we adopt the
feature encoder trained with a single-layer classification
head on the ImageNet-1k training dataset. ViT-B/16 refers
to the base model variant (layer=12, dimension D = 768,
heads=12) with 16 x 16 input patch size. For the CLIP vi-
sual encoder, we adopt the ResNet-50 model trained with
ViT-B/32 language encoder. We discard the language model
and only use visual encoder in our experiments. The in-
put data is cropped and resized to 224 x 224 for ResNet
models (including ResNet-50 classification encoder, Sup-
Con, and CLIP), and 384 x 384 for ViT-B/16. For both Ma-
halanobis [31] and WDiscOOD, we L2-normalize the fea-
ture for models directly trained on inner products between
visual features (including SupCon model with Supervised
Contrastive loss on normalized feature, and ViT with atten-
tion mechanism). We found that a normalized feature space
enhances OOD detection performance when the inner prod-
uct between image features is trained to encode similarity.

B. Baseline details

Mahalanobis We remove the input preprocessing and
feature ensemble techniques proposed in the original pa-
per [31] for small-scale benchmarks, as we find that they
compromise the performance on large-scale benchmarks.
Instead, we follow SSD [38] and apply the Mahalanobis
distance directly to the penultimate layer feature. 200,000
random training samples are used for calculating the preci-
sion matrix and class-wise centroids.

KNN For all models, we L2-normalize the features fol-
lowing the original work [41]. The KNN score is calculated

on 200,000 random training data. The nearest number is
downscaled proportionally based on k = 1000 for the full
training set.

ReAct Following the practice of [44], we use the most
effective Energy+ReAct setting. We also adopt rectification
percentile p = 99 instead of p = 90 from original work [40]
for better performance.

Principle Residual (PR) The settings for Principle
Residual (PR) baseline evaluated in Sec. 4.3 are adopted
from ViM [44]. Prior to principle component estimation, we
center the features based on classification layer weights and
bias. 1000 principle components are used when the feature
dimension is greater than 1500 (ResNet-50, SupCon,CLIP),
otherwise 512 principle components are used (for ViT).

C. Empirical Fisher Criterion Value

To empirically verify our assumption that WLDA dis-
entangles discriminative and residual information, we com-
pare the Fisher Criterion (FC) values for discriminants and
discriminant residuals from ResNet-50 classification model
trained on ImageNet; see Fig. 7. The FC values for discrim-
inants are non-trivial, indicating separation of ID features
along the directions. On the other hand, the projections
along discriminant orthogonal directions are non-separable,
as the FC values in those subspaces are close to zero. This
verifies our assumption that WLDA separate class-specific
and class-agnostic information, and explains the superior
performance of WDiscOOD method.

D. Detailed Results on SupCon and CLIP

Sec. 4.2 provides the average results for WDiscOOD
and the feature-space baselines on SupCon and CLIP visual
encoders. Here, Tab. 5 gives the AUROC and FPR95 mea-
sures on all six OOD datasets

E. OOD detection in the Embedding space

Both SupCon and CLIP formulate the contrastive loss in
a low-dimensional feature space obtained from a projection
head. As explained in Sec. 4, we follow KNN [41] and
SSD [31] to apply all feature-space methods on the penul-
timate layer feature space for better performance. To fur-
ther verify the claim, we test all feature-space methods, in-
cluding KNN, Mahalanobis, and the proposed WDiscOOD,
in the embedding spaces. For hyperparameters in WDis-
cOO0OD, we choose Np = 512 and « = 1 for CLIP embed-
dings with D = 1024 dimensions, and Np =50 and o = 1
for SupCon model with embedding dimension as D = 128.



Textures SUN Places iNaturalist ImgNet-O Openlmg-O Average
Method FPR95|AUROCT FPR95|AUROCT FPR95]JAUROCT FPR95|AUROCT FPR95|AUROCT FPR95]AUROCT |FPR95|AUROCT
Maha [31]  14.80 95.62 63.09 86.76 68.93 84.20 33.41 95.06 65.50 83.00 35.96 94.05 |46.95 89.78
KNN [41]  15.18 95.62 4797 89.29 5833 8545 30.30 94.83 66.10 83.88 37.18 93.05 |42.51 90.35

WDiscOOD 13.94 95.84 47.87 89.40 58.21 86.34 21.49 96.21 66.50 83.27 32.59 94.26 (40.10 90.89

(a) SupCon [27].

Textures SUN Places iNaturalist ImgNet-O Openlmg-O Average
Method FPR95|AUROCT FPR95|AUROCT FPR95|AUROCT FPR95]AUROCT FPR95|AUROCT FPR95|AUROCT |FPR95|AUROCT
Maha [31] 54.11 89.77 81.36 77.45 83.87 7821 97.74 56.41 76.50 74.89 7442 75.13 |78.00 75.31
KNN [41]  59.61 88.92 89.65 69.86 90.33 70.76 99.59 36.52 75.35 73.48 80.98 63.77 | 82.59 67.22

WDiscOOD 54.10 89.85 81.45 7833 81.54 80.14 96.81 57.69 76.95 74.38 74.59 74.05 |77.57 75.74

(b) CLIP [36].

Table 5: Results on SupCon [27] and CLIP [36] visual encoders. We test all methods on six OOD datasets and compute
the average performance. Both metrics AUROC and FPR95 are in percentage. We highlight the best performance in bold.
WDiscOOD more consistently outperforms the alternatives for both encoders in terms of average FPR95 and AUROC.

SupCon [27] CLIP [36]
Method | Space | b5 AUROCT | FPROS, AUROCT
Maha 54.74 86.61 97.06 67.83
KNN Embed | 55.96 86.40 96.42 61.81
WDisc 53.10 87.22 92.25 63.26
Maha Last 46.95 89.78 78.00 75.31
KNN Layer 42.51 90.35 82.59 67.22
WDisc 40.10 90.89 | 77.57 75.74

Table 6: Comparison between penultimate feature space
and embedding space for SupCon [27] and CLIP [36]
for all feature-space methods. Low-dimensional embed-
dings are less information for OOD detection compared to
penultimate layer features, suggesting potential loss of in-
formation critical for the task.

Comparision between performance in the embedding
space and penultimate feature space is in Tab. 6, where
all methods suffer from performance degradation in the em-
bedding space. The results show that distance between vi-
sual features in the embedding space do not imply similar-
ity, which is potentially caused by lost information due to
limited dimensionality.



