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A Greedy Monitoring Station Selection for Rumor
Source Detection in Online Social Networks
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Qiufen Ni , and Rosanna E. Guadagno

Abstract— In monitoring station observation, for the best
accuracy of rumor source detection, it is important to deploy
monitors appropriately into the network. There are, however,
a very limited number of studies on the monitoring station
selection. This article will study the problem of detecting
a single rumormonger based on an observation of selected
infection monitoring stations in a complete snapshot taken at
some time in an online social network (OSN) following the
independent cascade (IC) model. To deploy monitoring stations
into the observed network, we propose an influence-distance-
based k-station selection method where the influence distance
is a conceptual measurement that estimates the probability that
a rumor-infected node can influence its uninfected neighbors.
Accordingly, a greedy algorithm is developed to find the best
k monitoring stations among all rumor-infected nodes with a
2-approximation. Based on the infection path, which is most likely
toward the k infection monitoring stations, we derive that an
estimator for the “most like” rumor source under the IC model
is the Jordan infection center in a graph. Our theoretical analysis
is presented in the article. The effectiveness of our method is
verified through experiments over both synthetic and real-world
datasets. As shown in the results, our k-station selection method
outperforms off-the-shelf methods in most cases in the network
under the IC model.

Index Terms— Independent cascade (IC) model, influence
distance, monitor deployment, rumor source detection.

I. INTRODUCTION

DURING the last decade, the information source detection
problem has drawn increased attention since the seminal

study regarding rumor source detection by Shah and
Zaman [1]. Most existing works on finding the source of
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information propagation in networks are under an information
diffusion model, such as the independent cascade (IC) model
and the epidemic model. Based on the assumed information
propagation model, many approaches to detection have been
developed. Some detection approaches rely on some applicable
observations, such as the states of the nodes and the
timestamps at which nodes received (or infected by) the
information. The information source detection problem has
been studied in many application domains after Shah and
Zaman’s: for example, detecting the source of an epidemic
to control the spreading of disease infection [2], identifying
a virus source in a computer network [3], locating the source
of gas leakage with a wireless sensor network [4], finding
multiple sources of information propagation in complex
networks [5], and investigating misinformation sources in
online social networks (OSNs) [6]. In this article, we are
interested in one application of detecting the source of
the rumor, which is actively sparked off deliberately for
disseminating fake information in the current online social
media environment. Some comprehensive studies regarding
this application have been investigated by multiple recent
surveys [7], [8], [9].

In our work, we use the IC model [10] for simulating the
rumor infection process through the OSN, and the network
is considered as an undirected graph. There are two possible
states of each node in the graph: rumor-infected (or active) and
uninfected (or inactive). Rumor-infected nodes are users who
adopted the rumor, and they cannot be deactivated. Initially,
only one rumor-infected node is the rumor source. All rest
nodes in the graph are considered to be in the uninfected state.
Since then, the rumor source started to infect its currently
inactive neighborhood based on the propagation probability
upon edges between them. The rumor spreads out in the
network after some time, given a complete observation of the
network taken at some time, which contains rumor-infected
and uninfected nodes. Our goal is to select a set of the best
k rumor-infected nodes to be our monitoring stations and to
detect the rumor source based on these k infection monitoring
stations, even though without knowing the first infection time
of each selected monitoring station and the neighbor from
which the infection of the rumor is accepted.

To overcome the problem, our main contributions are
summarized in the following paragraph.

Consider an OSN G = (V, E) with the IC diffusion
model, and there is a single rumor source. We first proved
the metric of influence distance for each edge associated
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with a propagation probability that node u can influence
node v after it is active under the IC model. This proved
measurement allows the computation of influence propagation
to be transformed into the computation of hop distance
on regular tree graphs. Based on the influence distance,
we propose a k-station selection approach to deal with
the deployment of monitoring stations with a greedy-based
2-factor approximation algorithm. And, based on the infection
path that most likely yields to the selected k monitoring
stations, the rumor source estimator is derived from being
the root node along this most-likely infection path, and such
root node is called the Jordan infection center in the graph
and it can be found by a polynomial time algorithm. Our
performance evaluations have experimented on both synthetic
and real-world datasets. It can be seen from the experimental
results that our proposed greedy k monitoring station selection
method performs better than all other three state-of-art baseline
methods in most cases. To the best knowledge, our work is
first studied on a new monitor selection method for rumor
source detection problems in the OSN. Also, the estimator
using eccentricity in graph theory to identify the rumor source
is first discussed under the IC model in our work, as it has only
been studied in the epidemic models [11], [12], [13] before.

The rest of the article is organized as follows. Section II
introduces the most relevant works. The problem formulation
and the metric of influence distance under the IC model are
shown in Section III. The greedy k-station selection method
and the rumor source estimator on tree networks under the
IC diffusion model are discussed in Section IV. Section V
shows the experimental evaluation on our method using both
synthetic and real-world datasets. Section VI concludes this
article.

II. RELATED WORK

Extensive existing studies on the rumor source detection
problem in OSNs are assumed with two classical diffusion
models—epidemic models like SI, SIR, SIS, or SIRS and IC
model.

Shah and Zaman [1] first studied the single rumor source
detection problem on regular trees under the epidemic SI
model, and they proposed a rumor centrality in the graph
and proved it to be the maximum likelihood estimator (MLE).
Later, [11] proposed an infected path-based approach on tree
network under the epidemic SIR model for the single source
detection problem with a complete snapshot, in which the
source estimator is proved to be a Jordan infection center. The
approach is also applied in other different problem settings,
such as partial observation of a snapshot [14], multiple sources
in the network [15], and under a different epidemic SIS
model [12].

Apart from the epidemic models, [16] first studied the single
rumor source detection problem under the IC model using the
monitor observation approach on tree graphs. Specifically, they
incorporated their proposed metric of rumor source candidates
called the rumor quantifier with three classic monitor selection
methods—random, incoming degree (ID), and betweenness
centrality (BC) on the detection precision. They concluded

that when the random monitor selection method is used, the
accuracy of locating the rumor source averagely increases
with an increasing number of monitors in the network
from 50 to 2000. And, the larger number of monitors is more
effective in detection in practice. However, their suggested
range (with exact numbers) of monitors does not practically
work for monitor selections in different sizes of networks.
Also, all three methods take all nodes into monitor selection,
which results in misselection on the uninfected nodes that are
unuseful as they lack infection information, which, in turn,
induces our work that monitors are only selected from rumor-
infected nodes instead of all nodes in the network for all
compared monitor selection methods, and multiple percentages
in the monitor selection for different sizes of synthetic and
real-world networks are also discussed.

The following are two additional inspiring works.
Lim et al. [17] formulated a rumor source detection problem
based on the k-minimum distance error in a network under the
IC model. The objective of which is to find the optimal set of k
candidate rumor source nodes to further minimize the average
shortest hop distance error from the actual rumor source to
any node in the set of k candidate sources. The impact of
the value of k on the average shortest hop distance error
was discussed. In [18], the L1 distance between the observed
states and expected states of the nodes was aimed to minimize
with several heuristic algorithms based on a snapshot of tree
networks under the IC model.

III. PROBLEM FORMULATION

A. IC Model for Rumor Spreading

An OSN is represented by an undirected graph G = (V, E),
where nodes v ∈ V represent users, and each edge in E
represents interactions between two users. Each node has
two possible states: rumor-infected (active) and uninfected
(inactive). Time is discretized into multiple slots. Denote the
state of each node v in time-slot t as Xv(t). And, X [0, t] =
{Xv(τ ) : 0 ≤ τ ≤ t, v ∈ V } is defined to be an infection path
of the rumor, on which the states of nodes are known from
time 0 to t .

All nodes in the graph except the rumor source are in an
uninfected state at the beginning of time. Under the IC model,
at the beginning of each time slot t , a rumor-infected node
u attempts to influence its uninfected neighbor node v. If u
succeeds, then v changes its state into infected at the next time
slot t + 1; otherwise, v remains uninfected. There is only one
chance for each infected node to infect each of its uninfected
neighborhoods. Each attempt is independent of the others. The
process of infection propagation runs until no node can be
further activated. There is the infection probability (or called
propagation probability) associated with each edge, which is
also representing the chance of success for each attempt. Let
puv ∈ [0, 1] denote the infection probability associated with
the edge (u, v), the next inactive neighboring node of v will
be infected with probability 1 −

∏
u∈Nactive(v)(1 − puv), where

N (v) denotes all neighbors of node v. Note that puv = pvu ,
as we consider the undirected graph. In addition, we assume
an infected node retains the rumor forever once it is infected.
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A complete snapshot O = {Xv(t), v ∈ V } is taken at a time
t , such that

v ∈

{
Oa, if v is rumor-infected
Ob, if v is uninfected.

Define Oa as a set of rumor-infected nodes and Ob to be a set
of uninfected ones. Our method is to detect the rumor source
s∗ based on an observation of an optimal subset M ⊆ Oa of k
rumor-infected nodes to be our monitoring stations (or called
monitors). The observation time t is assumed to be unknown.

B. Influence Distance Under the IC Model

In an OSN following the IC model, there exists a concept of
influence distance that measures the distance with respect to
the propagation probability of the edge between two nodes. For
example, the influence distance duv measures the probability
that the node u can influence the node v. Moreover, the smaller
the value of duv , the higher probability that influence can be
diffused from u to v.

We start off by showing the proof of how we extracted the
influence distance for each edge with propagation probability
from the IC model in graph G.

Suppose that at a time t , there is a weighted path
Xv1vk [0, t] =< p12, p23, . . . , pi(i+1), . . . , p(k−1)k > from node
v1 to vk , where pi(i+1) is the propagation probability of each
edge between two nodes along the path. The propagation
probability of the path Xv1vk [0, t] is then defined to be

Pr
(
Xv1vk [0, t]

)
=

k−1∏
i=1

pi(i+1) (1)

where the term of the product is over a set of edges on the path.
By intuition, along the path Xuv[0, t], the chance of node u
activating node v is Pr(Xuv[0, t]) and all nodes along this path
need to be activated. Let χG

uv(t) denote a set of all paths from u
to v in graph G observed at time-slot t , for the case that there
are multiple paths between u and v. Let P̄r(Xuv[0, t]) denote
the path in χG

uv(t) that has the largest propagation probability.
And we say, P̄r(Xuv[0, t]) is maximum propagation path from
u to v, and P̄r(Xuv[0, t]) ∈ χG

uv(t).
Since there are many alternative joint paths from u to

v, P̄r(Xuv[0, t]) obviously cannot completely capture the
influence diffusion. To handle this hardness, we borrow the
kth influence distance defined in [19].

Definition 1: Let χ k
uv(t) be the set of k independent paths

that includes the maximum propagation probability from node
u to node v at an observation time t . Define the kth influence
distance dk

uv between u and v to be

dk
uv = −ln

1−
∏

Xuv [0,t]∈χ k
uv(t)

(1− Pr(Xuv[0, t]))

. (2)

Upon the structure of χ k
uv(t), the paths in χ k

uv(t) are edge-
disjoint so that u activates v independently of these paths.
Hence, 1 −

∏
Xuv [0,t]∈χ k

uv(t)
(1 − Pr(Xuv[0, t])) represents the

probability that u can activate v through the paths in χ k
uv(t).

We assume the maximum propagation path is always unique.
Thus, by (2), we have influence distance for k = 1

d1
uv = −ln

1−
∏

Xuv [0,t]∈χ1
uv(t)

(1− Pr(Xuv[0, t]))


= −ln

(
P̄r(Xuv[0, t])

)
. (3)

Lemma 1: Given a graph G = (V, E) under the IC model,
from node u to node v, let the path Xuv[0, t] be a set of disjoint
edges with propagation probabilities at an observation time t .
The influence distance duv = −ln(Pr(Xuv[0, t])).

Lemma 2: Given an edge-disjoint path Xuv[0, t] between
two nodes u and v with weighted edges under the IC model
in the graph G. The influence distance duv is the sum over the
influence distance of edges of the path from u to v.

Proof: Take aforementioned weighted path Xv1vk [0, t]
from node v1 to vk as an example, then by (1), we have

Pr
(
Xv1vk [0, t]

)
= p12 · p23 · · · · · p(k−1)k .

Next, by Lemma 1, it turns out that

dv1vk = −ln
(
Pr

(
Xv1vk [0, t]

)
= −ln

(
p12 · p23 · · · · · p(k−1)k

)
= −ln(p12)− ln(p23) · · · − ln

(
p(k−1)k

)
= d12 + d23 + · · · + d(k−1)k .

□
One can see that the calculation of influence probability

becomes to calculate the influence distance in G under the IC
model. A short influence distance between two users implies
that the rumor is more easily spread between them. Note that
duv = dvu as we consider the undirected graph. Our method
uses influence distance as distance.

C. Infection Path-Based Estimation

For the following rumor source estimator, as the observation
time t is unknown, on tree networks following the IC model,
we propose an infection path-based method to identify the
infection path X M

[0, t] that most likely proceeds to the
observed set M of k infection monitoring stations from 0 to
t . That is

X M [0, t] = argt max
X [0,t]∈χ(t)

Pr(X [0, t]) (4)

where χ(t) = {X [0, t]|M ⊆ Oa}, and Pr(X [0, t]) is the
probability of the path that leads to all infection monitoring
stations in M . The root node associated with X M

[0, t] is
considered the rumor source.

IV. SINGLE RUMOR SOURCE ESTIMATION
FOR TREE NETWORKS

In this section, the underlying network G is assumed on
trees following the IC model with only one single source.
The greedy k monitoring station selection method is proposed.
We then derive that the root node of the infection path
X M
[0, t], which most likely yields to the set M of k selected

infection monitoring stations up to time t , has minimum
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infection eccentricity in G. As such, the root node is the Jordan
infection center in G which is an optimal estimator for the
rumor source. First, let us introduce the following definitions.

Definition 2: Let dvu denote the distance, that is, the
shortest path between two nodes v and u in the graph. Given
a set M (|M | > 0) of explicitly observed infection monitoring
stations, define the longest distance between node v and any
monitoring station u to be

d̄(v, M) = max
u∈M

dvu (5)

where d̄(v, M) is called the infection eccentricity of node v,
denoted by ẽM(v) [11]. Any node with minimum ẽM(v) is
defined as the Jordan infection center in the graph.

Definition 3: Given that v is the source of the infection
process and a set M (|M | > 0) of explicit observed
infection monitoring stations. Let X M

v [0, t] ∈ χv(t) to be the
infection path that most likely toward M up to time t

X M
v [0, t] = argt max

X [0,t]∈χv(t)
Pr

(
X [0, t]|s∗ = v

)
(6)

where χv(t) is viewed as the set of all possible infection paths
beginning at v and their endpoints in M at a time slot t .
Pr(X [0, t]|s∗ = v) is the likelihood of obtaining the path
X M

v [0, t] given the infection source v.

A. Infection Path Propagation Time

Lemma 3: Given a rumor-spreading network G = (V, E)

following the IC model where the rumor source is v, and a
set M (|M | > 0) of explicit observed infection monitoring
stations. The rumor spreading time along the infection path
that most likely yields to M is given by t M

v = d̄(v, M).
Proof: We analyze the time duration of the most likely

infection path such that

t M
v = argt max

Xv [0,t]∈χ v(t)
Pr

(
Xv[0, t]|s∗ = v

)
(7)

which means that we want the time t M
v maximizing the

likelihood of obtaining the path covering the set M of observed
infection monitoring stations.

Time is assumed as discrete time slots. Within one time slot,
the propagation of infection is at most one hop further from
the source v. If observation time t < d̄(v, M), the infection
of the rumor cannot infect the nodes in the M . Hence, it is
not possible for every node in M to get infected. Therefore,
we have the observation time t ≥ d̄(v, M).

Intuitively, an infection path involves more infected nodes
as later as an observation time t is. Each infected node can
contribute a probabilistic factor of (1− p) in each time-slot t to
the overall probability of infection path to be infected. Thus,
the infection probability associated with the path X M

v [0, t] is
monotonically decreasing with respect to t .

From above-mentioned two conclusions, and according to
Lemma 1, it can be proved that

t M
v = d̄(v, M).

□
We will have unique t M

v for each v ∈ V .

B. Infection Source Estimator

In a complete snapshot graph G of a rumor-spreading
network, the infection subgraph can be formed by connecting
the rumor-infected nodes including the rumor source. As such,
the detection of the rumor source can be limited to
search on the infection subgraph. Let t be the observation
time, which is a random variable independent of the source
node.

Lemma 4: Suppose the rumor source is node v of G and the
rumor infection spreading follows the IC model. For a set M
(|M | > 0) of explicit observed infection monitoring stations,
let g denote the minimum connected infection subgraph of G
that includes M and v, and let t M

v = d̄(v, M) for each v ∈ g.
Then, for any pair of neighbors u and v in g, if t M

v < t M
u ,

we have

Pr
(
X M

v

[
0, t M

v

])
> Pr

(
X M

u

[
0, t M

u

])
. (8)

Proof: If t M
v < t M

u , by Lemma 3, we can easily have
d̄(v, M) < d̄(u, M). According to Definition 2, we have
ẽM(v) < ẽM(u) in the infection subgraph g. Further by
Lemma 1, which indicates that the path beginning at a root
with a smaller infection eccentricity is with a larger likelihood
over edges of the path, which means that the path is more
likely to occur, we then can prove Lemma 4. □

Lemma 5 ([11]): On a tree network with at least one
rumor-infected node, there exists at most two Jordan infection
centers. Furthermore, when the network exactly has two Jordan
infection centers, these two centers must be adjacent.

Combining Lemmas 3–5, we come up with Theorem 6.
Theorem 6: Suppose the rumor infection spreading follows

the IC model. Consider a tree network graph G = (V, E), and
a nonempty set M including observed infection monitoring
stations. Then, the single rumor-infected source associated
with X M

[0, t] in (4) is estimated by the following equation:

s∗ = arg min
v∈V

ẽM(v). (9)

Intuition: We will assume one Jordan infection center s∗.
According to Lemma 5, when there exist two Jordan infection
centers, they can be considered as one single node. Next,
we will show that, for any node a ∈ g \ {s∗}, where g is
the minimum connected infection subgraph of G that includes
M and the infection source, there exists an infection path
from a to s∗ on which the infection eccentricity monotonically
decreases, indicating that s∗ is supposed to be a Jordan
infection center.

Proof: In Fig. 1, on the infection path from a to s∗,
assume that u is the neighbor node of s∗. Denote T−s∗

u (g) as
the subtree of g starting with a root node u but without a
branch from s∗, and the nodes s∗, u ∈ g.

It is obvious that there exists an observed infection node
w such that dwu = ẽM(s∗) − dus∗ , where ẽM(s∗) = dws∗ is
assumed, and the node w ∈ T−s∗

u (g)∩M . Considering a node
l ∈ T−s∗

u (g) ∩ M , we will hold that dlu ≤ dws∗ − dus∗ .
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Fig. 1. Illustration for the proof in Theorem 6. Node w is viewed as an
observed infection monitor in M .

Now consider a ∈ g \ {s∗}, and assume a ∈ g \ T−s∗
u (g),

then, for any node l ∈ T−s∗
u (g) ∩ M , we have

dal = das∗ + ds∗u + dul

≤ das∗ + ds∗u + dws∗ − dus∗

= das∗ + dws∗

which denotes that ẽ(a) = das∗ + dws∗ . Next, since
ẽ(s∗) = dws∗ , it can be proved that the infection eccentricity
decreases along the infection path from a to s∗. After that,
by repeatedly using Lemma 4, we come up with a conclusion
that the infection path with a root at node s∗ is highly likely
to happen than that rooted at node a from a to s∗. Therefore,
this theorem holds. □

C. Monitoring Station Selection

In this section, let us discuss how to distribute k monitoring
stations based on a complete snapshot O = {Oa, Ob} of the
undirected graph G taken at some time t . Given a positive
integer k, a subset M ⊆ Oa of k observed infection monitoring
stations such that |M | = k. We expect the following formula
to be smaller:

min
v∈V

ẽOa (v)−min
v∈V

ẽM(v). (10)

By Definition 2, ẽOa (v) = maxu∈Oa dvu , and ẽM(v) =

maxu∈Oa∩M dvu , where dvu denotes the influence distance
between two nodes in our selection method. This expectation
induces that the subset M is to be a solution to the k-center
problem.

Definition 4 (The k-Center Problem): Given an undirected
graph where a finite set V of nodes in space, and a positive
integer k ∈ |V |, select a subset C ⊆ V with |C | = k, called
k cluster centers, such that the largest distance of any node in
V to its cluster center is minimized. The problem is formally
defined as follows:

min
C⊆V :|C |=k

(
max
i∈V

d(i, C)

)
(11)

where d(i, C) = min j∈C di j , and maxi∈V d(i, C) is called
radius of C , that is the maximum value over all cluster center
of C to their associated farthest neighbor node of V , denoted
by the following equation:

r(C) = max
i∈V

d(i, C). (12)

Fig. 2. Illustration of the k-center problem in a metric space with a finite
set V of nodes, see Fig. 2(a). We can place 5 balls (value of k) of radius of
r(C) to cover V , where the set C = {c1, c2, c3, c4, c5}, see Fig. 2(b).

The k-center problem can be viewed by covering |V | nodes
using k balls. Given a node u in space, define B(u, r) to
be the ball of radius r whose center is at u. Suppose that
C is any solution to the k-center problem, according to the
definition of radius in (12), if we use balls of radius r(C) to
cover V , every node in V locates within the union of these
balls. Also, r(C) should be as small as possible. So for that
one of the nodes of V will lie on the boundary of one of
these balls. In other words, the neighbor nodes of each center
ck ∈ C(k = 1, 2, . . . , |C |) will lie within their associated ball.
See Fig. 2.

Given the above-mentioned perspective of the k-center
problem, we propose a k-station (monitor) selection problem
as follows.

Definition 5 (k-Station Selection Problem): Here is a com-
plete snapshot O of the OSN following the IC model for rumor
propagation. Given a set Oa ⊆ O of rumor-infected nodes and
a positive integer k ≤ |Oa|, find an optimal set M (M ⊆ Oa

with |M | = k) of balls of radius r as small as possible centered
at k selected infection monitoring stations (nodes) such that
Oa lies within the union of these k balls.
The selected k infection monitoring stations are considered
representative centers covering all rumor-infected nodes in the
network. Observation only in them can effectively help detect
the source of the rumor.

Theorem 7: The k-station selection problem is NP-hard.
Proof: The k-center problem, like many clustering

problems, is known as NP-hard. Identically, our proposed
k-station selection problem is also NP-hard. □

As the proposed k-station selection problem is computa-
tionally hard, it is not possible to solve the problem exactly.
Thus, we develop a greedy-based algorithm that achieves an
approximation to the optimum value of radius r based on the
influence distance in polynomial time in the worst case for
general graphs.

Our greedy algorithm starts with selecting any node in Oa to
be the initial monitoring station m1. The following process is
then repeated until we have the k monitoring stations. Denote
Mi = {m1, . . . , mi } to be the current set of monitoring stations.
Remember that, r(M) is the maximum distance of any infected
node in Oa from its nearest center in M . Let the node u ∈ Oa\

{m1} be the node that achieves this distance. Intuitively, u is
the farthest user that accepts the rumor by its closest infection
monitoring station. To satisfy u, the greediest approach is to
directly select u to be the next monitoring station. In other
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Fig. 3. Illustration of one step of the greedy approximation in Algorithm 1
to the proposed k-station selection problem.

words, we set that

mi+1 ← u

and

Mi+1 ← Mi ∪ {mi+1}.

The pseudocode is presented in Algorithm 1. To be simplified,
M is set to be empty. When the first monitoring station is
selected, all the nodes of Oa then have infinite distances.
Hence, the initial selection is arbitrary. And, the value of du

indicates the influence distance from the node u to its closest
monitoring station.

Algorithm 1 Greedy Influence-Distance-Based k-Station
Selection
Input: Oa ⊆ V ; a positive integer k
Output: M ⊆ Oa with |M | = k

1: Initialize M ← ∅
2: for u ∈ Oa do
3: Initialize du = ∞

4: end for
5: for i ← 1 to k do
6: Let u ∈ Oa \ {m1} be the node s.t. du is maximum
7: mi+1 ← u
8: Mi+1 ← Mi ∪ {mi+1}

9: for v ∈ Oa do
10: dv = min(dv, dvu) ▷ //update influence distance to

nearest station
11: end for
12: r = maxv∈Oa dv ▷ //update the radius r of each

station to its farthest neighbor node in Oa

13: end for
14: return (M, r)

Lines 5–8 of Algorithm 1 are illustrated in Fig. 3. Assuming
that we have three monitoring stations M = {m1, m2, m3},
let m4 be the node that is farthest from its closest station,
say m1. Then, we create a station at m4. And now, M =

{m1, m2, m3, m4}. In anticipation of the next step, we find the
node, say m5, that maximizes influence distance to its nearest
monitoring station. And if the algorithm continues, m5 will be
the location of the next monitoring station.

Theorem 8: Greedy influence-distance-based k-station
selection algorithm runs in O(k · |Oa|).

Proof: According to Algorithm 1, we can simply figure
out that its running time is O(k · |Oa|). Generally k ≤ |Oa|,
so for the worst case, its running time is O(|Oa|

2). □

Theorem 9: Greedy influence-distance-based k-station
selection algorithm is a 2-approximation solution for the
k-station selection problem.

Proof: Let M = {m1, . . . , mk} denote the set of
monitoring stations computed by the greedy k-station selection
algorithm, and r(M) denotes the radius of M . Let Y =
{y1, . . . , yk} denote the optimum set of k monitoring stations
such that r(Y ) is the smallest possible. We will show that the
result produced by our greedy Algorithm 1 is guaranteed to
be no more than twice the optimal value, that is

r(M) ≤ 2r(Y ).

Since Y and r(Y ) are unknown, our approach is to determine
a lower bound rmin on the optimum value of the radius, that is,
rmin ≤ r(Y ). Then we will show that our greedy Algorithm 1
generates a value of r(M) that is at most twice this lower
bound value of rmin, that is, r(M) ≤ 2rmin. Thus, it will follow
that r(M) ≤ 2r(Y ). We will prove that based on three claims
as follows.

Let us define Mi to be the set of monitoring stations selected
by the greedy Algorithm 1 after its i th execution, and let
ri = r(Mi ) denote its overall radius—the farthest any node
is from its nearest station in Mi . The algorithm stops with
mk , but for the purpose of the analysis, let us consider the
next monitoring station to be appended if we execute it for
an additional iteration. That is, let mk+1 denote the node of
Oa that maximizes the value of r(Mk) to its nearest station in
Mk . Also, we define Mk+1 = {m1, . . . , mk+1}.

Claim 9.1: For 1 ≤ i ≤ k + 1, ri+1 ≤ ri . That is, the
sequence of the radius is monotonically nonincreasing.

Proof: Whenever a new monitoring station is added to the
network, the distance to each node from its closest monitoring
station will either be the same or will decrease. In Fig. 3,
we also see the fact that the covering radii decrease with each
step (e.g., r3 ≥ r4). □

Claim 9.2: For 1 ≤ i ≤ k + 1, every pair of monitoring
stations in Mi using greedy Algorithm 1 is separated by a
distance of at least ri−1.

Proof: Consider the i th step. By the induction hypothesis,
the first i − 1 stations are separated from each other by
distances where ri−2 ≥ ri−1. By definition, the i th station is at
the location with distance ri−1 from its closest station. Hence,
it is at a distance of at least ri−1 from all the other monitoring
stations. □

Claim 9.3: rmin ≥ r(M)/2.
Proof: We want to show that rmin = r(M)/2, which

means that rmin ≥ r(M)/2. To prove it, we will assume
that rmin < r(M)/2, then we use this assumption to derive
a contradiction.
As rmin is assumed to be a lower bound on the optimum value
of the radius, we then have rmin ≤ r(Y ). By Definition 4,
we have r(Y ) ≤ r(S) for any set S of k monitoring stations.
Then, by our greedy Algorithm 1, we know that the maximum
distance between any node and its closest monitoring station
in M is at most r(M). Consider any monitoring station y in
the optimal solution Y . Since y is a cluster centering station,
there must be at least one node x in the cluster such that
dyx ≤ r(Y ). Now, let any monitoring station m in M be closest
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to x . By Definition 4, we know that dxm ≤ r(M). Since dyx

and dxm are nonnegative, and y and m are two distinct stations,
by the triangle inequality, we have

dym ≤ dyx + dxm ≤ r(Y )+ r(M).

Since y was an arbitrary monitoring station in Y , which
implies that the maximum distance between any monitoring
station in Y and its closest monitoring station in M is at most
r(Y )+ r(M).

Now, we assume that rmin < r(M)/2. Since we have
rmin ≤ r(Y ), that implies r(Y ) > r(M)/2; if we add
r(M) to both sides of this inequality, we then have
r(M)+r(Y ) > r(M)/2+r(M), that is, r(Y )+r(M) > 3

2r(M),
which contradicts the fact that the maximum distance between
any monitoring station in Y and its closest monitoring station
in M is at most r(Y ) + r(M). Therefore, we must have
rmin ≥ r(M)/2. This completes the proof that
rmin = r(M)/2 if and only if M is an optimal solution
to the k-station selection problem. □

Claim 9.4: Let rmin = r(M)/2. Then for any set S of k
monitoring stations, r(S) ≥ rmin.

Proof: By Definition 4, we know that every node of Oa

lies within distance r(S) of some point of S, and since M ⊆
Oa , this is true for M as well. Because |Mk+1| = k+1, by the
pigeonhole principle, there exists at least two monitoring
stations m, m ′ ∈ Mk+1 that is in the same neighborhood of
some station s ∈ S, that is, max(dms, dm ′s) ≤ r(s). Since
m, m ′ ∈ Mk+1, according to Claim 9.2, dmm ′ ≥ rk = r(M).
Among the triple (m, s, m ′), by applying the following two
typical properties of any natural distance function, we then
have

r(M) ≤ dmm ′

≤ dms + dsm ′ (by triangle inequality)
= dms + dm ′s(by distance symmetry)
≤ r(s)+ r(s)

≤ r(S)+ r(S) = 2r(S).

Hence, r(S) ≥ r(M)/2. By condition, rmin = r(M)/2, then
we have r(S) ≥ rmin, as desired. □

Now, by applying Claim 9.4 to the optimum set Y , we have
that r(Y ) ≥ rmin; by applying Claim 9.3, we have that
rmin = r(M)/2, and thus we can prove Theorem 9 that
r(M) ≤ 2r(Y ). □

D. Infection Path-Based Source Detection

An efficient algorithm to find the Jordan infection center has
been discussed in [11] under the SIR model, which we will
call infection path-based source detection (IPSD) algorithm
under the IC model in this work. The details are described in
Algorithm 2.

According to Theorem 6, the estimator for the rumor source
based on the most-likely infection paths on trees is a Jordan
infection center in the graph, which could be considered as a
source candidate of the rumor.

The procedure of the IPSD algorithm is to find the Jordan
infection centers based on the optimal infection paths toward

the set of selected infection monitoring stations. First, let
every selected infection monitoring station i in M disseminate
the rumor message containing its station identification si to
its neighbors. After every time slot, each neighbor node u
will check whether the received message contains the station
identification that was received before. If not received before,
the node will record the new station identification as well
as its received time of the message, say t si

u . The node then
spreads the message attached to the station identification
to its neighborhood. When a node receives all k infection
monitoring station identifications, it will announce itself as
the rumor source, and the procedure terminates. If there are
multiple nodes that receive all k infection monitoring station
identifications at the same time, we break ties based on the
infection closeness, which is defined as the inverse of the
sum of distances from a node to all infected nodes in [11],
which measures the efficiency of information propagating from
a node to infected nodes. The IPSD algorithm breaks ties
at random by selecting a Jordan infection center with the
maximum infection closeness. In other words, we choose the
node with the smallest

∑
t si
u to break ties. And, the set R

denotes the candidates of Jordan infection centers.

Algorithm 2 Infection Path-Based Source Detection
Input: set M of k infection monitoring stations; g = (V, E)

Output: the estimated rumor source s∗

1: Set t = 1
2: for i ∈ M do
3: i disseminates the rumor message including its station

identification si to its neighbors
4: end for
5: do
6: for u ∈ V do
7: if u receives si for the first time then
8: Set t si

u = t and continue disseminating the
rumor message including si to its neighbors

9: end if
10: end for
11: t = t + 1
12: while no node receives k distinct station identifications
13: return (s∗ = arg minu∈R

∑
i∈M t si

u ), where R is the set of
nodes who receives k distinct station identifications when
the iteration terminates. Ties are randomly broken.

Theorem 10: The worst case complexity of Algorithm 2 is
equal to O(k · |E |).

Proof: To implement Algorithm 2, we refer to some
operations in [11]. For each node, we assign an array in
the size k of integers and a counter. We also assign an
index i ∈ Z to each infection monitoring station. Then, the
data of the array equal to the influence distances from a
node toward the infection monitoring stations. The counter
records the number of distinct station indices received at the
node. Let a message only include the index of an infection
monitoring station. Every time when a node receives a new
message, it will examine if the station index in the message
has been received or not. If not, it will update the data,
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whose value equals to the influence distance from the current
node to the infection monitoring station associated with the
received station index, at the corresponding position of the
array. Otherwise, the message will be discarded. At each
iteration, each node propagates the new station indices to its
neighborhood. After that, the counter of the node increases by
one and checks whether its current value equals to k. And the
complexity of the above-mentioned operation on one message
is O(1). Supposing that each edge handles to broadcast at
most k messages in one direction, and thus there are at most
2k · |E | messages in transmission. Therefore, our algorithm
runs in O(k · |E |) in the worst case. □

V. EXPERIMENT

In this section, we conduct the evaluation on our proposed
greedy influence-distance-based k-station selection method
(referred to as Greedy) with our source estimator algorithm
(IPSD) to identify the single rumor source based over synthetic
d-regular trees and real-world networks. Also, we conduct
the comparative analysis on our greedy monitoring station
selection method with three monitor selection methods as
discussed in [16] as follows.

1) Random: Select k monitors randomly in this method.
Hence, the chance that v ∈ Oa is chosen to be a monitor
is (k/|oa|).

2) Incoming Degree: It is referred to as Degree in our
experiment. In this method, select k nodes with the
largest degrees as monitors. Ties are broken randomly.

3) Betweenness Centrality: In this method, select k nodes
having the largest BC as monitors, and ties are broken
randomly. We consider the hop distance to compute the
shortest path between two nodes for calculating BC.

A. Experiment Design

Our experiment proceeds as follows: 1) the rumor source
(the seed) is chosen at random on an undirected graph; 2) the
IC model is applied to simulate the propagation of the rumor,
and the infection probability of each edge is assigned; 3) either
the rumor fails to propagate after two time-slots for d-regular
trees, or it fails to reach 1% of all nodes for the real-world
network, it will be considered as a negligible rumor and
its cascade is discarded. A new rumor seed will then be
chosen and the above-mentioned steps 1)–3) are repeated; 4)
select k monitoring stations using greedy, random, degree, and
BC-based selection methods, respectively. k is determined as
follows: if there are x infected nodes at the end of propagation,
k = ⌈(y/100) ∗ x⌉, where y is chosen to be 10, 40, 70,
and 100 for d-regular trees and 10, 40, and 70 for real-
world dataset; 5) the rumor source is identified using the
IPSD algorithm for each monitor selection method; and 6)
we simulate cascades 200 times for each value of y for both
d-regular trees and real-world networks.

Detection rate and average hop distance are used to evaluate
the effectiveness of each monitor selection method on the
performance of our rumor estimator (IPSD). In our work, the
detection rate is defined to be the percentage of experiments
in which the predicated rumor seed matches the actual one.

TABLE I
PERFORMANCE ANALYSIS OF FOUR MONITOR SELECTION METHODS
USING THE IPSD ON SMALL-INFECTED TREE NETWORKS. (a) DETEC-

TION RATE (%). (b) AVERAGE HOP DISTANCE

The hop distance between the predicated rumor seed and the
actual rumor seed is determined for each cascade. The average
is taken for all the cascades and is called the average hop
distance.

B. Performance Analysis on Synthetic Regular Trees

This section presents our assessment of the proposed greedy
monitor selection method through contrasts with three other
methods on synthetic d−regular trees, which are the trees
where each node’s degree is d other than the leaf nodes.

1) Small-Infected Trees: First, the performance was
evaluated on the small-infected tree graphs. The infection
probability puv for each edge was selected uniformly from
(0, 1). At the time slot t , a complete snapshot O was taken,
and t was chosen uniformly from (3, 20). At the end of
propagation, the number of infected nodes was restricted to no
more than 50. The average number of infected nodes among
our experimental dataset being generated was 12. Degree d
was varied from 2 to 10.

2) Large-Infected Trees: Next, the performance is evaluated
on the large-infected trees. The infection probability puv

for each edge was the same. For each rumor cascade, that
probability was chosen randomly from (0.5, 0.95). A complete
snapshot O was taken at time-slot t and t was chosen
uniformly from (4, 100). Only those trees were selected that
had more than 50 but no more than 500 infected nodes at
the end of the rumor propagation. An average number of
infected nodes was 190 among our experimental dataset being
generated. Similar to the small-infected tree networks, degree
d varied from 2 to 10.

3) Experimental Results: Figs. 4 and 5 show the average
hop distance between the predicted and actual rumor seeds as
a function of degree d for all monitor selection methods with
different numbers of monitors on the small-infected and the
large-infected trees, respectively. In addition, Tables I and II
show the statistical evaluation of detection rate (%) and
average hop distance among all monitor selection methods
with different numbers of monitors using our source estimation
IPSD on the small-infected and the large-infected tree
networks, respectively.

4) Major Observations: For small-infected tree networks,
the average hop distance for the monitors selected through the
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Fig. 4. Average hop distance as a function of degree (d), for small-infected tree networks, when 10%, 40%, and 70% of infected nodes are selected as
monitoring stations (values of |k|), respectively. (a) 10%. (b) 40%. (c) 70%.

Fig. 5. Average hop distance as a function of degree (d), for large-infected tree networks, when 10%, 40%, and 70% of infected nodes are selected as
monitoring stations (values of |k|), respectively. (a) 10%. (b) 40%. (c) 70%.

TABLE II
PERFORMANCE ANALYSIS OF FOUR MONITOR SELECTION METHODS

USING THE IPSD ON LARGE-INFECTED TREE NETWORKS. (a) DETEC-
TION RATE (%). (b) AVERAGE HOP DISTANCE

proposed greedy k-station selection method is the least among
all methods, as observed in Table I(b). Moreover, the least
average hop distance noted is 1.40 using our proposed greedy
selection method when merely 40% of infected nodes are
selected as monitors. In addition, the average detection rate of
the proposed greedy selection method is the highest compared
to all other methods, as shown in Table I(a). We have also
observed that, in general, the average hop distance decreases
as the degree d increases for the cases of 10% and 40%
of all infected nodes selected as monitors, while the average
hop distance tends to increase as the degree increases when
there are 70% infected nodes selected as monitoring stations,
as shown in Fig. 4.

As seen in Table II for large-infected tree networks, the
proposed greedy selection method has the highest average
detection rate while it is smaller than that for the small-
infected tree networks. When 10% of infected nodes is selected

TABLE III
TOPOLOGICAL PROPERTIES OF REAL-WORLD NETWORKS. THE VALUE

OF |V | AND |E | DENOTE THE NUMBER OF NODES AND EDGES
IN A NETWORK G = (V, E), RESPECTIVELY. φ DENOTES THE

DIAMETER OF THE NETWORK. < d > IMPLIES THE AVERAGE
LENGTH OF ALL SHORTEST PATHS. < k > INDICATES THE

AVERAGE NETWORK DEGREE

as monitoring stations, the average hop distance using the
BC method is the least. We have also observed that the
average hop distance decrease as the degree increases for
all four monitor selection methods. And, the average hop
distance is lower than 5 when degree d > 6, as displayed
in Fig. 5.

C. Performance Analysis on Real-World Networks
This section compares our greedy monitor selection method

with all three other methods on real-world networks.
1) Datasets: We experiment on three datasets:

Dolphin [20], Netscience [21], and NIPS-Ego (Facebook
network) [22]. The basic topological information of them is
displayed in Table III. All datasets are available online and
can be downloaded from [23].

2) Parameter Settings: For all these networks, infection
probability puv for each edge was set uniformly from (0, 1).
A complete snapshot was taken at time t chosen uniformly
from (3, 20). There was no restriction for the maximum size
of infected nodes at the end of rumor diffusion. However, if the
rumor failed to reach at least 1% of all nodes in the network,
this propagation was discarded. Datasets Dolphin, Netscience,
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Fig. 6. Comparison of average hop distance as a function of the percentage of monitors between our greedy monitor selection method and the other three
methods, when 10%, 40% and 70% of infected nodes are selected as monitors (values of |k|), respectively.

Fig. 7. Comparison of detection rate as a function of the percentage of monitors between our greedy monitor selection method and the other three methods,
when 10%, 40%, and 70% of infected nodes are selected as monitors (values of |k|), respectively. The detection rate shows zero at 70% for the Random
method (see Fig. 7(b)) and at 10% for the Degree method (see Fig. 7(c)).

Fig. 8. Average hop distance as a function of snapshot time between our greedy monitor selection method and the other three methods.

and Nips-Ego have an average of 51, 200, and 642 infected
nodes, respectively.

3) Experimental Results: In Figs. 6 and 7, we compare
average hop distance and detection rate as a function of the
number of monitors between our greedy monitor selection
method and all other three methods, respectively. In addition,
we have also shown the average hop distance as a function of
snapshot time in Fig. 8.

4) Major Observations: Fig. 6(a) and (b) shows that
regardless of the monitor selection methods, the average
hop distance increases as the selected number of monitoring
stations increases. This is because in the relatively smaller
dataset, even if more monitors are selected, they do not provide
more evidence for the source estimator algorithm as they are
likely to be closer to each other. Meanwhile, for the larger
dataset, as observed in Fig. 6(c), the average hop distance

decreases as the number of monitors increases, although the
decrease is minor. Thus, we recommend using a reasonably
smaller number of monitors as compared to using all infected
nodes for estimating the rumor source no matter the size of the
network. The overall observation shows our greedy method
has a competitive performance with the other three monitor
selection methods for all three datasets.

Fig. 7 shows that, in general, the detection rate tends to
decrease as the network size increases. In Fig. 7(a) and (b),
we observe that on average the detection rate of our proposed
greedy selection method is higher in most cases, compared
to other selection methods. In Fig. 7(c), we can see that as
the dataset size grows in the number of nodes and edges, the
detection rate decreases. This is also the case for an increase
in the number of monitors. For example, the detection rate is
0 for 70% monitor selection in the Netscience dataset for the
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random method and for 10% monitor selection in the Nips-
Ego dataset for the degree method. This is because there is
an increase in the number of infection paths in the network
for the source estimator algorithm as the number of edges
and monitors increases. It can lead to the source estimation
algorithm converging to another node (i.e., source estimator)
and not the actual source.

In addition, we expect if the snapshot is taken at an earlier
stage, we can predict the actual rumor source more accurately.
This is evident in Fig. 8 for all three datasets, as the snapshot
time increases average hop distance also increases.

Based on the observations for both synthetic and real-
world datasets, we observe that average hop distance is a
better metric to evaluate the performance of the rumor source
detection algorithm, because inference from the result of the
detection rate may be misleading. We can conclude that an
appropriate monitor deployment strategy with a reasonably
small size of monitoring stations selected from the infected
nodes at some given snapshot is a more efficient way in terms
of performance of detection and time complexity.

VI. CONCLUSION

In this article, for some OSNs under the IC model,
we explain how to extract the influence distance that allows
the computation of influence propagation to be transformed
into the computation of hop distance. We first propose a
novel greedy k-station selection method for the single rumor
source detection problem in the undirected graph. The rumor
source estimator is derived to be the Jordan infection center
upon the optimal infection path that leads to the selected
k monitoring stations. We validate the performance of our
greedy monitor selection method with comparisons with other
monitor selection methods using both synthetic and real-world
networks. It can be observed from the results that our method
outperforms the others in most cases for synthetic regular
trees, and it is comparable to other methods for real-world
networks. With a reasonably small number of monitoring
stations itself, our rumor source estimator performs better
in terms of performance and time complexity. In addition,
we evaluate the performance of all methods as a function of
snapshot time and we observe that the performance of source
detection drops as later the snapshot is taken for all datasets.
Last but not the least, using average hop distance as the
performance metric for the rumor source detection compared
to the use of detection rate is recommended.

For future work, we first expect to apply our greedy monitor
selection method for other information diffusion models like a
linear threshold model. Next, under the IC model, we expect
to extend our selection and source estimation methods for
multiple rumor source detection in OSNs. It should be
noted that implementing our greedy selection method and the
IPSD algorithm in considerably larger networks could pose
a challenge. Therefore, we also expect that using machine
learning techniques can provide opportunities to optimize
monitor selection and improve the accuracy, efficiency, and
scalability of rumor source detection problems in real-world
significantly larger networks.
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