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NewYearsProgTransformer (P, args, [frmA, frmB]):
// Set background color.
setAppearance("bg", args.background)

Motion vectorization

Program
transformer

// OBJECT SELECTOR: Query for the red semicircle.

selObjs = objSelector (P, propQuery, "color", "red", [frmA, frmB])

// OBJECT TRANSFORMER: Change the appearance to the year.
changeAppearanceObjTransformer (selObjs, args.year, [frmA, frmB])

// Repeat obj selection and obj transformation for banner and animal.
selObjs = objSelector (P, propQuery, "color", "yellow", [frmA, frmB])
changeAppearanceObjTransformer (selObjs, args.banner, [frmA, frmB])
selObjs = objSelector (P, propQuery, "color", "white", [frmA, frmB])
changeAppearanceObjTransformer (selObjs, args.zodiac, [frmA, frmB])

// OBJECT SELECTOR: Query for the gray curve.
selObjs = objSelector (P, propQuery, "color", "gray", [frmA, frmB])
changeAppearanceObjTransformer (selObjs, args.characters, [frmA, frmB])
// OBJECT TRANSFORMER: Apply an oscillating scale.
function pulse(t, [sx, sy]):

return [sx + 0.5 *x np.sin(t / 10), sy + 0.5 * np.sin(t / 10)]
motionTexObjTransformer (selObjs, pulse, args.pulseArgs, [frmA,frmB])

// OBJECT SELECTOR: Query for the blue circle.

selObjs = objSelector (P, propQuery, "color", "blue", [frmA, frmB])
// OBJECT TRANSFORMER: Remove the object.

removeObj (selObjs, [frmA, frmB])

Fig. 1. To edit an input motion graphics video (top left) we provide a pair of tools. Our motion vectorization pipeline converts the video into an SVG motion
program that represents objects, their per-frame motions (scale, translate, rotate, skew) and their occlusion relationships (z-index). Our program transformation
APl enables programmatic creation of variations of the SVG motion program. Here the program transformer creates variations for the Chinese new year,
selecting objects in the input video based on their color and then changing their appearance, matching the animal to the year and adding a pulsing motion

texture to the Chinese characters above the animal icon.

Motion graphics videos are widely used in Web design, digital advertising,
animated logos and film title sequences, to capture a viewer’s attention. But

Authors’ addresses: Sharon Zhang, Stanford University, USA, szhang25@stanford.
edu; Jiaju Ma, Stanford University, USA, jiajuma@stanford.edu; Jiajun Wu, Stanford
University, USA, jiajunwu@cs.stanford.edu; Daniel Ritchie, Brown University, USA,
daniel_ritchie@brown.edu; Maneesh Agrawala, Stanford University and Roblox, USA,
maneesh@cs.stanford.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2023/12-ART229 $15.00

https://doi.org/10.1145/3618316

editing such video is challenging because the video provides a low-level
sequence of pixels and frames rather than higher-level structure such as the
objects in the video with their corresponding motions and occlusions. We
present a motion vectorization pipeline for converting motion graphics video
into an SVG motion program that provides such structure. The resulting SVG
program can be rendered using any SVG renderer (e.g. most Web browsers)
and edited using any SVG editor. We also introduce a program transformation
API that facilitates editing of a SVG motion program to create variations
that adjust the timing, motions and/or appearances of objects. We show
how the API can be used to create a variety of effects including retiming
object motion to match a music beat, adding motion textures to objects, and
collision preserving appearance changes.

CCS Concepts: + Computing methodologies — Graphics systems and
interfaces.
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1 INTRODUCTION

Programs have proven to be useful in many areas of computer graph-
ics. The structure and repetition found naturally in our surroundings,
combined with the symbolic reasoning that humans use to describe
objects, can make programs particularly effective in representing
visual content. For instance, biologists use L-systems to model plant
structures [Prusinkiewicz and Lindenmayer 1996]; digital artists use
shader graphs to generate materials and textures [Cook 1984]; data
analysts use grammar-based APIs to create visualizations [Satya-
narayan et al. 2016; Wickham 2016]; and SVG is a widely adopted
declarative program format for vector graphics [W3C 2018].

There are several benefits to representing visual content with a
program rather than working directly in the output space of pixels
and frames. For one, programming languages often provide meaning-
ful abstractions and concepts (i.e., language primitives) that operate
at a higher level than pixels and align better with the ways that
humans think about the underlying content. With SVG, for example,
we can describe an animation as a collection of object primitives
moving in time, instead of specifying individual pixel colors over
time (Figure 1). Another benefit is that programs provide meaning-
ful control parameters. SVG programs can describe the motions of
objects using a sequence of affine transforms and editing the small
set of transform parameters can generate a wide range of motions.

In this work we focus on a particular domain of visual content-
namely, motion graphics—which are essentially animated graphic de-
signs usually consisting of shapes and typography in choreographed
motions. Such motion graphics are ubiquitous in Web design, digital
advertising, animated logos, and film title sequences. Yet, creating
effective motion graphics requires expertise in crafting eye-catching
motions and skill with animation software. Moreover, once they
have been rendered as video—the most common format for motion
graphics on the Web—they become very difficult to edit. Creating
variations of a motion graphics video (e.g., swapping out objects,
changing the text, or retiming motions of individual objects to mu-
sic) is impractical without access to a higher level representation.

We present tools for editing a motion graphics video by first con-
verting it into an SVG motion program. Our motion vectorization
pipeline identifies objects, tracks their motions and occlusion rela-
tionships across the video, and generates an SVG motion program
(Figure 1 top row). Our approach adapts the differentiable image
compositing optimization method of Reddy et al. [2020] to our track-
ing problem. The resulting motion program can be rendered using
an SVG renderer (e.g., most Web browsers) and edited using an SVG
animation editor. To take further advantage of our representation,
we introduce a program transformation API that allows users to
programmatically create variations of the SVG motion program.
Our approach is to treat the SVG motion program as a scene graph
composed of objects and their motions. We demonstrate how our
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API can be used to create a variety of effects, including retiming
object motion to match music beats, adding motion textures (e.g.,
pulsing, wobbling) to objects and programmatically changing the
appearance of objects (Figure 1 middle, bottom rows).

In summary, we make two main contributions:

(1) A motion vectorization pipeline that converts a motion graph-
ics video into an SVG motion program.

(2) A program transformation API for programmatically editing
SVG motion programs to create variations.

2 RELATED WORK

Recovering programs from visuals. Because programs are such a
useful representation for visual data, graphics and vision researchers
have investigated how to automatically infer such programs from
raw visual data. This problem has been explored in multiple visual
domains, including 3D shape modeling [Deng et al. 2022; Du et al.
2018; Jones et al. 2020, 2021, 2022; Kania et al. 2020; Li et al. 2020,
2022; Ren et al. 2021; Tian et al. 2019; Willis et al. 2021; Wu et al.
2021; Xu et al. 2021; Yu et al. 2022], 2D shape and layout model-
ing [Ellis et al. 2018; Ganin et al. 2021, 2018; Reddy et al. 2021; Seff
et al. 2022; Sharma et al. 2018; Xu et al. 2022], material and texture
modeling [Guerrero et al. 2022; Hu et al. 2019, 2022; Tchapmi et al.
2022], extracting human motion primitives from video [Kulal et al.
2021, 2022] and deconstructing visualizations [Harper and Agrawala
2014, 2018; Poco and Heer 2017; Savva et al. 2011]. Deep learning
is a popular technique, either to detect primitives which are then
combined into programs using an optimization process [Ellis et al.
2018; Guo et al. 2020], to guide a search algorithm [Ellis et al. 2021;
Wang et al. 2019] or to predict higher-level functions that make
programs more compact and easier to edit [Ellis et al. 2021; Jones
et al. 2021]. In our work, we leverage the visual regularity of motion
graphics videos to perform per-frame primitive detection without
heavyweight neural network machinery; we then turn these per-
frame primitives into a temporally-consistent SVG motion program
via optimization.

Motion tracking. Multi-object motion tracking for natural video
is a well-studied problem [Ciaparrone et al. 2020; Luo et al. 2021].
Many of these systems output coarse-level motion information such
as per-frame object bounding boxes; they cannot reconstruct an
input video. Moreover, motion graphics videos tend to be relatively
textureless and may contain objects that undergo large motions
between frames. As a result, feature-based tracking methods such
as SIFT [Lowe 2004] and KLT [Lucas and Kanade 1981; Tomasi and
Kanade 1991] are less reliable. Recent neural network models for
optical flow [Dosovitskiy et al. 2015; Teed and Deng 2020] also take
advantage of the high-frequency textured nature of realistic video
and are less effective on motion graphics. In our work, we instead
use neural optical flow as initialization for additional optimization
or motion parameters.

Researchers have also developed motion tracking techniques for
cartoon style video [Liu et al. 2013; Sykora et al. 2009; Zhang et al.
2012; Zhu et al. 2016]. While these methods are built for flat-colored
cartoon sequences, they often produce undesirable correspondences
in motion graphics videos containing many repeated objects (e.g.,
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letters). Our work is inspired by Bregler et al’s [2002], who motion
capture and retarget the exaggerated deformations of cartoon char-
acters. However, they require manually annotated object contours
as input, whereas our goal is to further automate the object detec-
tion and motion tracking process and to recover an SVG motion
program that we can retarget via a program transformation APL

Layered video decomposition. Our work enables object-level ma-
nipulation of motion graphics video, which calls for an object-centric
layered decomposition. Prior work in decomposing natural videos
uses motion cues to generate layers based on relative depth from
the camera [Brostow and Essa 1999; Wang and Adelson 1994] or
on coherent camera motion [Fradet et al. 2008]. More recent neu-
ral methods decompose video into layers represented as frame se-
quences [Lu et al. 2020, 2021] or as neural atlases [Kasten et al. 2021;
Ye et al. 2022]. Such outputs can support appearance editing but
do not enable motion editing. Zhang et al. [2022] generate sprite
decompositions of cartoon videos, where each sprite is a sequence
of frames and a corresponding sequence of homographies that map
between sprite and frame coordinates. Since the appearance of each
sprite can change from frame to frame, the corresponding homogra-
phies do not fully characterize the sprite motion. They also assume
a fixed depth ordering of the layers which results in artifacts when
objects change in relative depths. Our pipeline adapts Reddy et
al’s [2020] differentiable compositing method to compute relative
depth (and motion parameters) as a function of time, allowing for
dynamic object occlusion relationships.

3 BACKGROUND

Characteristics of motion graphics video. Motion graphics videos
are commonly composed of a set of foreground objects, including
basic shapes (e.g., rectangles, discs, etc.) and typography moving
over a static background. The objects may occlude one another as
well as split into separate objects, or merge together into a single
object. In general, motion graphics videos may use textures and
gradients to color both the foreground objects and the background,
and foreground objects may move and deform non-rigidly. But
we have found that in many contexts where motion graphics are
prevalent—e.g., Web design, animated logos, digital advertising, film
title sequences—a common stylistic choice is to use mostly solid-
colored foreground objects undergoing affine motions over a static
background. Sparing use of texture and photographic elements in
combination with simpler motions can improve legibility and make
it easier to guide the viewer’s gaze through the video. which is
crucial in contexts such as advertising. We focus on converting this
important class of motion graphics video into SVG programs.

Structure of SVG motion programs. Scalable vector graphics
(SVG) is a declarative programming format for vector graphics
that is widely implemented in Web browsers across a variety of
devices [W3C 2018]. To convert a motion graphics video into an
SVG motion program we can represent each foreground object,
as an SVG group <g> containing its appearance <image> and a
sequence of per-frame motion transforms. SVG natively supports
affine transforms for warping elements with separate parameters
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Fig. 2. Differentiable image compositing [Reddy et al. 2020], takes a set
of sources S = {5y, ...,SN} and a target image T as input and computes
a set of layering placement tuples S* = {(S;,©s;,As;)} such that the
composite image C(S*) matches T. MY (S;, C(S*)) is a binary mask of
the visible pixels of S; after compositing. We extend Reddy et al’s technique
to generate affine transforms @g; rather than similarity transforms.

for scale, translate, rotate and skewX and skewY!. Each object
also includes a per-frame z-index depth ordering. Finally, a static
background lies at the lowest depth. Figure 1 shows an example
of our SVG representation where we have elided some detail to
highlight the per-frame sequence of transform parameter values,
(vals=...) for one of the objects in the scene.

4 MOTION VECTORIZATION

The goal of our motion vectorization pipeline is to recover an SVG
motion program from an input motion graphics video. The primary
challenge is to identify and track each of the objects in the input
video as they appear, move, occlude one another and disappear. We
use a four stage pipeline: (1) we segment frames into regions (e.g.
potential objects), (2) we generate candidate mappings explaining
how objects might move from frame-to-frame, (3) we select the best
collection of mappings explaining the frame-to-frame movements
of the objects and finally (4) we write an SVG motion program.
Our motion vectorization pipeline builds on Reddy et al’s [2020]
differentiable compositing optimization technique. We first describe
how we adapt differentiable compositing to our problem setting in
Section 4.1; we then present each stage of our pipeline in Sections 4.2
to 4.5.

4.1 Differentiable image compositing

Differentiable image compositing [Reddy et al. 2020] is an optimiza-
tion technique originally designed to decompose a graphic pattern
comprised of discrete elements (which may partially occlude one
another) into a layered representation (Figure 2). It takes in a target
pattern image T and a set of source element images S = {51, .., SN’}
that appear in the pattern and optimizes a similarity transform
(translation, rotation, and uniform scale) for each source element.
It also computes a depth ordering so that when the transformed
elements are rendered in back-to-front order they reproduce the
target pattern. That is,

DC(S,T) = {(Si,0s,, As;)|Si € S}, (1)
The scale and translate parameters allow separate control over x and y.
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Fig. 3. Eight types of mappings that can occur between objects O; in frame F;_; and regions R; in frame F;. (1) One-to-one. A single object O; maps to all
pixels in a single region R; under a single affine transform ®¢, from the object to the region or vice versa under transform O, . (2) One-to-many (no split).
A single object O, maps to multiple regions under a single affine transform ©o, from object to regions. Since a single transform explains how the object
moves to match all of the regions we consider all of them to be part of the same object (i.e., the object does not split). (3) Many-to-one (no merge). Two or

5. One-to-many (split)

more objects map to a single region, but require different affine transforms (e.g. ©0,, ®0,, ...) from each object to the region. Since multiple transforms are
needed, we consider the objects as remaining distinct in frame F; (i.e., the objects do not merge). (4) Many-to-one (merge). Two or more objects map to a
single region under a single affine transform ©g,, from the region to the objects. Since a single affine motion explains how the region moves to match all of
the objects, we consider this a merge of the distinct objects. (5) One-to-many (split). A single object maps two or more regions but require a different affine
transformation to map each region to the object (e.g. ©g,, OR;, ...). Since multiple transforms are required we consider the objects splitting into new distinct
objects. (6) Many-to-many (split and merge). Multiple objects map to multiple regions under differing motions. Object(s) are splitting and simultaneously
merging and the transforms needed to explain how such object(s) map to regions are ambiguous. (7) Unmapped object (disappear). When an object does
not map to any region in the current frame F; we consider the object to have disappeared. Unmapped region (appear). When a region does not map to any
object in the previous frame F;_; we consider it a new object appearing for the first time.

where g, is the transform that places S; in T, and Ag; is the layer
z-ordering for S; in T with respect to the other elements in S after
transforming by their ©’s. We refer to the resulting set of layering
placement tuples as S* = {(S;, ®Si’ASi)}1{\i1‘

With this information, we can define two additional image oper-
ators: (1) a compositing operator C(S*) composites all of the trans-
formed source elements Oy, (S;) in back-to-front order according to
their A’s; (2) a visibility mask operator MV (S;, I) produces a binary
mask of the pixels of image I where S; is visible. Importantly, MV
always operates in the frame space represented by I. For example,
MYiS(S;, C(8*)) is the set of pixels of the transformed Og, (S;) that
are visible in C(S™). See Figure 2 for examples of both of these
operators.

To apply differentiable compositing to the context of tracking
objects in motion graphics video, we have extended the optimiza-
tion to compute an affine transformation @g, (translation, rotation,
non-uniform scale and skew) rather than a similarity transform.
Specifically, we add scaleX, scaleY, skewX, and skewY as indepen-
dent parameters in the optimization.

4.2 Stage 1: Region extraction

The first stage of our vectorization pipeline is to segment each input
frame F; into regions. Since we focus on motion graphics with
mostly solid colored objects, as a default we use color clustering
in LAB colorspace and mark the pixels in the cluster of the mode
color as background. Alternatively users can specify a background
image if the video has a photograph, texture or colored gradient
as background. To separate the remaining foreground pixels into
regions, as a default we construct an edge map for the frame [Canny
1986] and then apply Zhang et al’s [2009] trapped-ball segmentation.
This gives us a set of regions R; = {Ry, ..., Ry} for each frame F;. If
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the foreground is textured, users can choose to skip edge detection
and apply connected-components segementation on the foreground
pixels to form regions. Finally, we let users manually specify pixel-
level region boundaries if necessary, as noted in Section 5.

4.3 Stage 2: Generate candidate mapping types

Given a set of regions for every input frame, our goal is to identify
unique foreground objects and track them between frames. We
initialize this process at the first frame F; by treating each region
R; € Ry as an object O; so that O; := R;. For each subsequent frame
Fy, our task is to determine how objects in the previous frame map
to regions in the current frame R; under affine transformations.
Figure 3 shows the eight types of mappings that can occur between
objects and regions.

To determine which of these mapping types best matches objects
in F;_1 with regions in F;, we construct an initial set of the likeliest
mapping types in the form of two bipartite graphs: (1) the forward
candidate mapping graph Bgyq holds likely mappings taking objects
to regions; (2) the backward candidate mapping graph B4 holds
likely mappings taking regions to objects. We first describe how we
build the graphs and then explain how they encode likely mappings.

Build candidate mapping graphs. Figures 4 and 5 show how
we build Bgyg and Bpyq. For Bgyg, we first apply differentiable
compositing as DC(O;—-1,F;) = O, treating O;_1 as the set of
source elements and the current frame F; including all of its regions
Ry, as the target image. Then, for each object O; € O;—_1, we consider
each region Rj € R; and compute a source coverage weight as

IM¥15(0;,C(0%)) N MVS(R;, Fy)|

WCOV O’R = 5
sre. (01, Rj) |MY1s(0;, C(O*))]

@
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Fig. 4. To build the forward candidate mapping graph Bgyq (top row), we
consider each edge (O;,Rj) from object O; to region R; and compute
coverage weights Wi2¥(O;, R;) and Vl/fg‘z‘/(O,-,Rj)‘ We retain only highest
non-zero weighted edges in the graph for each object - highlighted in green
in the matrices, one per row. We similarly build the backward mapping
graph Bpyq (bottom row), but flip the direction of the edges (Rj, O;) to run
from region R; to object O; with the coverage weights similarly inverted

Wi (R}, 0;) and Wtcg‘t"’ (R}, O;) (bottom row).
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Fig. 5. Foredge (O;, R;j), we compute coverage weights Wy2" and Wtcg‘i‘/ by

first transforming the source object O; to form ©p, (0;). W2 is the area
of the visible overlap between ©¢, (O;) and R; (purple) as a percentage of
the visible area of the transformed object ®0, (O;) (pink or purple). Vl/'tcg‘;"
is the area of the overlap (purple) as a percentage of the visible area of the

target region R; (cyan or purple).

This weight measures the visible overlap between the transformed
object and the region as a percentage of the visible area of the
transformed object (Figure 5). We add the highest non-zero weighted
edge (O;, R;j) to the forward graph Byyq (top left weight matrix in
Figure 4). Similarly, for each region R;, we consider each object O;
and compute a farget coverage weight as

IMY5(01,C(0%)) N MYS(R;, Fy)|

Wit (03, R)) = 4
et (00 Ry) IMVis(R;, Fy)|

®)

This weight measures the visible overlap between the transformed
object and the region as a percentage of the visible area of the region
(Figure 5). We add the highest non-zero weighted edge (O;, Rj) to
Brwq if it has not already been added to the graph (top right weight
matrix, Figure 4).

The backward graph is built in exactly the same way except that
we treat the regions R; as source elements and the previous frame
F;_1 as the target in the differentiable compositing optimization to
compute DC(Ry, F;—1) = R*. For the coverage weights computa-
tions (Equations 2 and 3), we similarly flip the computation treating
regions R; as sources and objects O; as targets and replace F; with
F;—1 (bottom row, Figure 4).
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In practice, we have found that DC is sensitive to the initial place-
ment of source elements. Therefore, we initialize the source place-
ment using shape context [Belongie et al. 2006], optical flow [Teed
and Deng 2020] and RANSAC to estimate how each object (or re-
gion) moves to F; (or F;—1). Note also that when we use DC, we
save the resulting sets of layering placement tuples O* and R* for
use in later stages of our pipeline.

Extract candidate mappings. The forward and backward can-
didate mapping graphs encode multiple candidate mappings. To
extract the individual candidate mappings from either of these
graphs, we first consider each connected component of the graph.
We treat any such component that is one-to-one, one-to-many,
or many-to-one (i.e., the component contains exactly one object
or exactly one region) as a candidate mapping. If the component
forms a many-to-many graph, we fur-
ther break it into pieces (see inset) as .
follows. For each node (object or region) - + *—>+
in the component, we form a subgraph ~ 7
that includes all edges the node is part of. 4 +
Each resulting subgraph is then either
a one-to-one, one-to-many, or many-to- Fig. 6. Breaking a many-to-
one mapping candidate. many component of Bfyg.
As shown in Figure 3, many-to-many mappings are ambiguous
because they require object(s) to simultaneously split and merge.
In practice, we have found that such split-merges are rare for the
kind of motion graphics videos we focus on in this work. Thus,
our approach is to force our algorithm to explain many-to-many
mappings as a combination of one-to-one, one-to-many, or many-
to-one mappings. Figure 7 shows the complete set of mappings we
extract from Bpyq and Byyq for the example in Figure 4.

R—+

4.4 Stage 3: Select best collection of mappings

To select a set of mappings that best explain how objects move from
frame F;_1 to F; we first score each candidate mapping we obtain in
stage 2 using a visibility-based penalty loss. Suppose H is a candidate
mapping type extracted from the forward graph, and Ofl_ , and Rfl
are the set of object(s) and region(s) in H. We define the visibility
loss £V as a masked Ly-norm of color differences between the
composite image C(O) of the transformed and layered objects, and
the current frame F;. That is,

L08R = ||(C(0%) - Fy) @ M|, )

where ® denotes pixel-wise multiplication and M?!! is a mask

ml=| | ] mB0,coM|u| || MERF)| ©)

Oie()f{l Rj€(RfI

consisting of the union of the visible pixels of all of the transformed
objects O; € Of{ ; (first term) with the union of all of the regions
Rj e R{{ (second term). This loss is minimized when the pixels of
the transformed objects in H match those of corresponding regions
in H and there are no mismatched pixels. Similarly, if H is a can-
didate mapping type from the backward graph, we compute the
penalty score as LVI(RH, Of 1)» while replacing O* with R* and
F; with F;_; in Equations 4 and 5. In particular, the visibility loss
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Fig. 7. We compute penalty scores £V for each candidate mapping and
then select the best conflict-free set of mappings using a greedy approach.

differs from the coverage weights (Section 4.3) as it evaluates the
color appearance of an entire mapping rather than object-region
alignment. Figure 7 shows the penalty scores for the mappings we
extracted for the example in Figure 4.

We next select a set of conflict-free mappings from our set of can-
didates that collectively best explain how objects move, appear, or
disappear between frames F;_1 and F;. A pair of candidate mappings
are in conflict if they include the same object or region (Figure 7).
Starting with the complete set of candidate mappings, we repeatedly
select the candidate with the lowest penalty score and remove all
conflicting candidates from the set. We stop when the candidate
mapping set is empty, or the lowest score of the remaining candi-
dates is greater than a threshold e. We have found that € = 0.1 gives
good results across all our examples.

Finally, we propagate object IDs from the previous frame objects
O;_1 to current frame regions R; based on the selected mappings
as shown in Figure 8. Anytime an object disappears we do not
propagate its ID to any subsequent regions. Thus, objects which
become completely occluded will re-appear with a new ID by de-
fault, though this can be easily changed with user input (Section 5).
During this process we also keep track of a canonical image for each
object. When an object first appears, we save its labeled pixels as
its canonical image. Every time an object appears unoccluded and
covers a larger region of pixels in a subsequent frame, we update
that canonical appearance by replacing the entire canonical image.
Thus we maintain a high-resolution appearance for each object.

4.5 Stage 4: Write an SVG motion program

In the final stage, we refactor the frame-to-frame affine motion
transforms for each object into an affine transform mapping the
object’s canonical image to each frame. This motion refactorization
could be obtained by multiplying the frame-to-frame transforms
or their inverses. In practice, we have found that we can further
increase motion accuracy by re-running the DC optimization using
the canonical images as the source and the corresponding labeled
pixels in each frame as the target. Finally, we write out a SVG motion
program with a static background image and a set of foreground
objects, each represented by a canonical image, a per-frame sequence
of affine transforms placing the canonical image in the frame, and a
per-frame z-index depth for the object.

5 RESULTS: MOTION VECTORIZATION

Figure 1 shows an abstracted example of the SVG motion program
our vectorization pipeline recovers from an input motion graphics
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Fig. 8. Propagating IDs based on mapping type. For one-to-one and one-to-
many (no split) mappings, we assign all pixels of the corresponding region(s)
the ID of the object. For one-to-many (split) and unmapped region (appear)
mappings, we create new IDs and label the pixels of each region with a
different ID. For many-to-one (merge) mappings, we create a new ID to
assign to the pixels of the region and then relabel all previous instances of
the corresponding objects in the mapping to this new ID. For many-to-one
(no merge) mappings, we assign the 1Ds of each object O; in the mapping

to the corresponding pixels in ©0, (O;).

video. We apply our motion vectorization pipeline on a test set
of 38 motion graphics videos sourced from the Web, with many
containing occlusions or fast object motion. A few videos include
textures, photographic elements or color gradients in the foreground
or background. Table 1 (Appendix A) gives more detail about these
videos and the supplemental website provides complete running
SVG motion programs for all of them.

We first consider the reconstruction error between frames of the
input motion graphics videos and corresponding frames produced by
the SVG motion programs. Overall, the average Ly RGB error across
our test set is 0.0086. Slight reconstruction errors appear mostly at
edges of objects due to small inaccuracies in transform parameters,
noise, compression or anti-aliasing (Figure 9 left). As a comparison
we also use the sprite-from-sprite decomposition method [Zhang
et al. 2022]. Sprite-from-sprite successfully decomposes the 30 test
videos and runs out of memory on the rest. The average L, RGB
reconstruction error for sprite-from-sprite on this subset of videos
is 0.018, compared to 0.0079 using our method. See supplemental
materials A for a more detailed discussion of this comparison.

We also compute the number of tracking errors in each video.
We define a tracking error as any time a mapping from objects in
frame F;_1 to regions in F; is incorrect with respect to a manually
annotated set of ground truth mappings. Table 1 (Appendix A) shows
the total number of such tracking errors as well as the count of errors
amongst each mapping type for all the videos in our test set.

We find that 24 videos in our test set contain no tracking errors
at all, even as some of them contain fast motion, occlusions, or both.
The remaining 14 videos all contain 15 errors or fewer. Across all
the videos, 75% of the tracking errors occur in one-to-one mappings.
Such errors are often due to fast motion and occlusions when ob-
jects enter or exit the frame (Figure 9 right top). The next most
common tracking error type, at 21%, is incorrect one-to-many (no-
split) mappings. Such errors often occur when objects occlude one
another and the mapping is misidentified as a one-to-many (split)
(Figure 9 right bottom). Two of the three remaining tracking errors
occur when many-to-one (no merge) mappings are misidentified as
many-to-one (merge) mappings. In these cases the video contains
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Fig. 9. Left: Reconstruction errors (L, RGB difference) between frames of input motion graphics videos (5k, avokiddo) and the corresponding frames rendered
with the SVG motion program generated by our vectorization pipeline. Right: Tracking errors due to fast object motions and occlusions. Right Top: The
kapptivate input video contains characters translating quickly right to right. In frame 13 the ‘a’ is correctly assigned object ID 3, but in frame 14 it is incorrectly
assigned a new object ID 8. This occurs because the leftmost ‘p’ in frame 14 is the closest similar looking region to the ‘a’ in frame 13 but the candidate
mapping between the ‘a’ and the ‘p’ is rejected as being too low quality. The ‘p’ in frame 13 is also incorrectly mapped to the rightmost ‘p’ in frame 14 for
similar reasons, while the leftmost ‘p’ in frame 14 is incorrectly assigned a new object ID 7 since it remains unmatched. Thus this example yields 2 one-to-one
mapping errors and 1 unmatched region (appear) error. Right Bottom: In the [ucy video object 22 is correctly tracked before frame 76 (we visualize it in frame
69 to show the complete unoccluded object). In frame 76 occlusions alter the visibility of the corresponding region so much that a one-to-many (no split)

mapping is misidentified as a one-to-many (split) mapping and the additional regions are given brand new IDs 27, 29 and 31.

similarly colored overlapping objects that move in unison, so our
pipeline merges them into one object. The final tracking error occurs
when a newly appearing region is incorrectly mapped to an existing
object. The unmatched region (appear) mapping is misidentified as
a one-to-one mapping (example in Figure 9 top right). Our test set
did not produce errors of the other four mapping types.

Correcting tracking errors. Most tracking errors are easily fixed
by reassigning object IDs to regions. For instance if a region was
assigned object ID 3 but should have been assigned object ID 7, we
can manually relabel it. We provide a programmatic interface for
such reassignment. An error in a many-to-one (no merge) mapping

can require breaking the pixel mask of a region into multiple regions.

In this case users can manually specify the pixel boundaries of each
region in the frame where the error appears in Stage 1 of our pipeline
to enforce the correct region boundaries. We found this correction
to only be necessary for two videos (shapeman, confetti) in our test
set. In general however, because our pipeline produces relatively
few tracking errors they can often be corrected very quickly.

Discussion. The SVG motion programs produced by our vectoriza-
tion pipeline provide a representation of motion graphics videos that
can be rendered using a SVG renderer, including most Web browsers.
In addition, the motion programs can be edited using a SVG ani-
mation editor. We have built SVG motion program importers for
Adobe After Effects [Christiansen 2013] and Blender [Community
2018]. Such editors allow users to manually customize the motion
and appearance of the objects using a graphical interface they may
already be familiar with (see supplementary video).

6 MOTION PROGRAM TRANSFORMATION

Our program transformation API lets users programmatically express
different ways of manipulating an SVG motion program to generate
variations of it. Our approach is to treat the SVG motion program
as a scene graph that describes the motions of objects over time.
Our API adopts a well known-design pattern for working with
a scene graph via two types of methods; (1) state queries that
look up information about the objects and events in the scene, and
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(2) operators that modify the appearance or motion of objects. A
transformation program typically starts by querying for a set of
objects based on their properties (e.g. red colored objects) or the
events they participate in (e.g. collisions) and then applies one or
more operators to modify the selected objects. This design pattern
of querying and then modifying a scene graph is often used in game
engines (e.g., Unity [Unity Technologies 2023]) as well as Web APIs
(e.g. jQuery [Open]JS Foundation 2023], D3 [Bostock et al. 2011],
CSS [Mozilla 2023] and Chickenfoot [Bolin et al. 2005]) that treat
the DOM as a scene graph.

We describe the methods of our program transformation API
(Sections 6.1 and 6.2) and briefly describe how we can use them to
build a variety of higher-level transformation effects (Section 6.3).
The supplemental materials B provides additional details about our
API as well as multiple code examples. While our proof-of-concept
implementation of the API enables all of the examples that follow,
it is meant to minimally demonstrate our approach. In practice, it
could be extended to include additional state queries and operators
as necessary.

6.1 Program Transformation API: State Queries

State queries retrieve properties or events for a specific object, over
a range of frames:

propQuery(obj, propType, [frmA, frmB]): Returns a property of obj
for each frame in [frmA, frmB] based on propType. Property types
include: all, color, position, size, velocity, etc.

eventQuery(obj, eventType, [frmA, frmB]): Returns a list of events
obj is involved in over the range of frames [frmA, frmB] based
on eventType. Event types include: heldFrames, collisionFrames,
motionCycleFrames, etc.

To handle property queries, our API internally computes the cho-
sen property for the object from our motion program representation.
For example, to compute the color property of an object it clusters
the pixels of the canonical image in color space and returns the color
of the largest cluster for each frame in the frame range. Properties
that vary based on the motion (e.g., position, size, velocity) are
computed using the objects motion transform and reported in the
global coordinates of the video frame. The all property type returns
all objects that appear in motion program over the frame range.

To handle event queries, our API internally processes the motion
of the object to find frames when the chosen event type occurs. For
example, to identify heldFrames we look for successive frames of
the object where the motion transform from the canonical image to
the frame placement remains fixed and return a list of all such frames.
To identify collisionFrames we look for frames where the closest
distance between the object boundary and another object boundary
is below a threshold (e.g. the objects touch) and at least one of the
objects experiences a large change in velocity. The API returns a list
of collisions including the other object(s) involved and the points of
contact on each object. To identify motionCycleFrames we look for
peaks in the autocorrelation of motion parameters (translation, rota-
tion, scale skew) of the object and return a list of the corresponding
frames.
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6.2 Program Transformation API: Operators

Our API provides operators to modify the appearance or motion of
a specific object over a range of frames including:

retime(obj, [sFrmA, sFrmB], [tFrmA, tFrmB], easeFn[t]): Linear-
ly remap motion transforms in source frame range [sFrmA, sFrmB]
to target frame range [sFrmA, sFrmB]. Then resample the trans-
forms in the target frame range using easing function easeFn[t].
adjLocalMotion(obj, xformFn[t], [frmA, frmBl): Adjust motion of
obj in local coordinate frame (i.e., of canonical image), over the
range of frames [frmA, frmB] based on affine transforms generated
by linearly sampling xformFn[t] in the range [0, 1]. This method
post-multiplies canonical-to-frame transform of obj.
adjGlobalMotion(obj, xformFn[t], [frmA, frmB]): Adjust motion of
obj in global coordinate frame (i.e., of video frame), over the range
of frames [frmA, frmB] based on affine transforms generated by
linearly sampling xformFn[t] in the range [@, 1]. This method pre-
multiplies the canonical-to-frame transform of obj.
changeAppearance(obj, newAppearance, [frmA, frmB]): Set canoni-
cal image of obj to newAppearance for frames in [frmA, frmB].

In addition to the operators listed here, our API provides basic
operators for creating new objects, deleting objects, copying mo-
tions, setting the motion transforms (rather than adjusting them via
pre- or post-multiplication), etc.

Figure 10 shows the the general pattern of a motion program trans-
former, written with our API. An objSelector code block (or func-
tion) selects one or more objects for transformation using a propQuery
or eventQuery. An objTransformer code block (or function) then
applies one or more operators to change the timing, motion or ap-
pearance of the selected object(s). For example, to transform all of
the red colored objects to blue, the objSelector function would
run a propQuery to obtain the color of each object and then select
out the red ones. Then the objTransformer code block would use
changeAppearance to set the color of the selected objects to blue.

6.3 Higher-level object transformer effects

Using our motion program transformation API we have built a va-
riety of objTransformer functions that each produce a different,
higher-level effect on the timing, motion or appearance of objects
(e.g. anticipation/follow-through, motion textures). Several of these
transformers implement motion adjustments commonly found in
other animation editing systems [Kazi et al. 2014, 2016; Ma et al.
2022]. Importantly, the functions in our API are designed to com-
pose with one another and facilitate the creation of many variations
of a motion graphic, thereby supporting iterative design and ex-
ploration. Figure 10 provides code for a few object transformers,
and supplemental materials B includes code for all of them. The
supplemental website also includes multiple example SVG motion
programs transformed by each of the higher-level effects described
here that can be executed in a Web browser. The following sections
give a brief overview of the types of object transformers.

Retiming. These object transformers manipulate an individual
object timeline. This includes functions that linearly stretch or
shrink the time scale of an object, apply slow in/out easing, re-
time object motions to reference audio beats, etc. See Figure 10c
and 10d for examples.
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// Program Transformer structure.

MPTransformer (P, *args, [frmA, frmB]):
// OBJ SELECTOR: Select objects in P via queries using any criteria
// specified in the args.

// OBJ TRANSFORMER: Apply an object operator to selected objects.

(b) Object selector

// Returns a list of object data which match some criteria.
function objSelector (P, queryFn, queryType, criteria, [frmA, frmB]):
selObjs = {}
selObjsInfo = {}
for each obj in selObjs:
x = queryFn(obj, args.queryType, [frmA, frmB])

// Retime to music beats (assume video has more segments than beats).
function retimeToBeatsObjTransformer(selObjs, music, eventType, [frmA, frmB]):

// Get music beat points using 1ibROSA in units of frames.
beatPts = getMusicBeatPts(music)

for each obj in selObjs:
// Form video segments for each beat segment between beat points based on
// eventType. If eventType 1is null default to beatPts as segment points.
if eventType == null:

segPts = beatPts
else:

segPts = eventQuery(obj, eventType, [frmA, frmB])

for index i in segPts:
// beatPts 1is 1in units of frames and includes a beat point at 0.
retime(obj, [segPts[i], segPts[i + 1]],
[beatPts[i], beatPts[i + 1]], f(t)=tr4)

if x matches criteria:
selObjs.insert(obj)
selobjsInfo.insert(x)

(e) Object transformer: Anticipation/follow-through

return selObjs, selObjsInfo

(c) Object transformer: Linear time stretch/shrink

// Linear time scale by factor of k in frame range [frmA, frmB].
function linearRetimeObjTransformer(selObjs, k, [frmA, frmB]):
for each obj 1in selObjs:
sourceDur = frmB - frmA + 1
targetDur k * sourceDur
// Retime from source range [frmA, frmB] to target frame range
// [frmA, frm + targetDur]
retime(obj, [frmA, frmB]l, [frmA, frmA + targetDur], f(t)=t)

// Add anticipation/follow through via Cartoon Animation Filter
function anticipateFollowThruObjTransformer(selObjs, [frmA, frmB], A, sigma):

for each obj 1in selObjs:
// Define the cartoon animation filter based on Wang et al.
function cartoonAnimationFilter(t, obj, [frmA, frmB], A, sigma):

adjGlobalMotion(obj, cartoonAnimationFilter, [frmA, frmB]

// Copy and pad segment of xForms to be set up for convolution later.
tmpXForms = copy(obj.xForms[frmA, frmB])

pad (tmpXForms, 0.5 * sigma)

// -LoG is the 1inverse of the Laplacian of Gaussian function.
newXForms = A * convolve(tmpXForms, -LoG(sigma))

return newXForms[t]

Fig. 10. The general structure of motion program transformer (a) takes an SVG motion program P as input and alternates object selector blocks with object
transformer blocks to modify the SVG program. The object selector function objSelector (b) selects one or more objects for transformation. It first runs
queryFn (i.e., either propQuery or eventQuery) using the specified queryType (i.e., color, collisionFrames) and then filters the objects to only those
that match the specified criteria. The object transformers adjust the timing (c, d) motion (e) or appearance of a set of selected objects selObjs. See the
supplemental material B for additional examples of object transformers we have built to achieve a variety of effects.

Spatial motion adjustment. These adjustment object transform-
ers manipulate how an individual object moves across the frame.
This includes functions that add anticipation/follow-through (Fig-
ure 10e) and functions that apply motion textures (e.g. wobbling or
pulsing) to an existing motion.

Appearance adjustment. The changeAppearance object trans-
former updates the appearance of a given object by replacing the
canonical appearance of an object with a new image. One unin-
tended consequence of an appearance change is that collisions be-
tween objects may be affected. For instance, naively changing the
dark blue circle in Figure 11 to a smaller-sized coin would not main-
tain collisions between the smaller coin and the yellow circle. Since
collisions are often important events in a video, we also allow for
collision-preserving appearance changes. This type of appearance
change uses event queries to find collisionFrames and then ap-
plies local motion adjustments to best preserve the original collisions
at those frames.

7 RESULTS: MOTION PROGRAM TRANSFORMATION

By combining objSelector and objTransformer blocks, we can
create a variety of motion graphic variations. Figure 1, Figure 11 and
Figures 5-6 in supplemental materials A show examples where we
have composed multiple objSelector and objTransformer blocks
to generate complex variations of retiming, spatial motion adjust-
ment and appearances changes. Executable SVG motion programs
and program transformer code for other additional examples with
retiming, spatial motion adjustments and appearance adjustments
are provided in the supplemental website. We encourage readers

to browse the examples to see the breadth of different transforma-
tions and variations that can be achieved with our motion program
transformation APL

Usability evaluation. To further evaluate the usability of our
program transformation API, we asked 10 people (all experienced
Python coders, 5 familiar with query-then-operate design pattern)
to use the API to programmatically create a variation of an SVG mo-
tion program (Figure 12). We first gave each participant a 30 minute
tutorial (a combination of oral instruction and a Colab notebook)
explaining how to use the APL. We then gave them 15 minutes to
write their own program transforming an animated digital card into
one suitable for a different occasion.

All participants successfully wrote a transformation program
containing two or more object queries and transformations. On a
5 point Likert scale (1 = very hard, 5 = very easy) they all rated
the query-then-operate pattern as easy or very easy to understand.
Two participants who were familiar with the design pattern com-
pared the structure of our API to SQL and other scene-graph based
content creation APIs like Maya [Autodesk, INC. 2023a] and Mo-
tionBuilder [Autodesk, INC. 2023b]. Multiple participants stated in
free-response feedback that the API was "intuitive to understand,'
"lightweight and natural," and "easy to use."

Many participants liked the expressivity of the API Nine partic-
ipants noted that the API was flexible enough to accomplish the
edits they wanted to make. One participant liked “how powerful
the API is while still being easy to use," further commenting that “it
covered a lot of possible transformations within relatively simple
operations." Another wrote that the programmatic approach of our
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// Change to a piggybank and coin while
// preserving collisions.
PiggybankProgTransformer (P, [0, P.endFrm]):
// OBJ SELECTOR: Select dark blue ball.
selObjs = objSelector (P, propQuery, "color", "gray", [frmA, frmB])
// OBJ TRANSFORMER: Replace with coin but
// preserve collisions.
collisionPreserveObjTransformer (selObjs, “coin.png”, [frmA, frmB])
// OBJ SELECTOR: Select yellow ball.
selObjs = objSelector (P, propQuery, "color", "yellow",
[frmA, frmB])
// OBJ TRANSFORMER: Replace with piggybank
changeAppearance(obj, “piggybank.png”, [frmA, frmB])

@4_1

Program
transformer

Fig. 11. Changing appearance while preserving collisions. This input video contains two balls that interact with one another with the dark blue ball bouncing
around outside and inside the yellow ball. The program transformer changes the blue ball into a coin that is smaller than the blue ball. It then uses the
collisionPreserveObjTransformer to adjust the motion of the smaller coin so that the collision points are maintained with the yellow ball. Finally it
changes the appearance of the yellow ball to a piggy bank with the body of the bank the same size as the yellow ball.
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Fig. 12. We asked user study participants to use our transformation API to
repurpose a digital card with confetti falling down (top row). One participant
created a happy holidays card with falling snow (middle). Another created
a new years card reversing the falling motion to create streamers and stars.

API “would be especially useful for mass producing animations or
images that still look customized" and “[they] would welcome [the]
programmatic approach compared to painful and arduous manual
process of doing it through interfaces like InDesign." Overall, this
feedback suggests that users familiar with programming are able to
use our transformation API to easily produce variations of a SVG
motion program.

8 LIMITATIONS AND FUTURE WORK

Our work enables editing of motion graphics video by first convert-
ing the video into an SVG motion program and then using motion
program transformers programmatically create variations. However
there are a few limitations that warrant future work.

Lifting assumptions on input video. Our work focuses on motion
graphics video with a static background and solid-colored, lightly
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textured or gradient-filled objects undergoing affine motions. Ex-
tending our approach to handle natural video containing moving
backgrounds with highly textured, photographic foreground objects
undergoing deformable motions, may be possible using recent video
matting techniques [Kasten et al. 2021; Lu et al. 2021]. Handling non-
affine motions within our pipeline would require modifications to
the differentiable compositing optimization (Section 4.1) to account
for the deformations.

Vectorizing canonical images. Our SVG motion programs repre-
sent the appearance of each object using a canonical image. Con-
verting these canonical images into a vector representation (e.g.,
composed of paths, shapes, gradients, etc.) would bring the benefits
of a higher-level abstraction to the appearance of the objects in
addition to their motions. Techniques for converting images into
vector representations [Orzan et al. 2008; Reddy et al. 2021] is an
active area of work that might be adapted to this context.

Higher-level program abstraction based on gestalt principles.
Our SVG motion programs represent motion graphics video using
abstractions (e.g., objects) and controls (e.g., affine transform param-
eters) that are more meaningful than pixels and frames of video. One
way to provide further meaningful abstraction might be to group
objects based on perception and gestalt principles. For example if
a motion graphic contains objects (e.g., letters) that move together
and are near one another, they might be grouped together to form a
higher-level composite object (e.g., a word). Such higher-level group-
ing could further facilitate program transformation as changes and
adjustments could be applied to the composite objects.

GUI for motion editing. Our system enables users to work with a
programmatic representation of motion graphics video rather than
pixels and frames. However, we have not developed a graphical user
interface for editing the resulting SVG motion programs. Indeed,
we believe many different GUIs could be built using our motion
program representation and our program transformation APIL. One
approach that may be especially fruitful is to extend the bidirectional
SVG editing interface of Sketch-n-Sketch [Hempel et al. 2019], so



that direct manipulation changes to the graphics are immediately
reflected in the SVG representation and vice versa. Inferring how
direct, graphical manipulations should affect an underlying motion
program is an important direction for future work.

9 CONCLUSION

While motion graphics videos are prevalent on the Web today, they
are difficult to edit because they are simply a collection of pixels
and frames. We have presented a motion vectorization pipeline that
converts such video into a SVG motion program that represents the
video as objects moving over time. We further provide a motion
program transformation API that enables programmatic editing
of the resulting SVG programs to create variations of the timing,
motions and object appearance. We believe that these tools can allow
users to more easily explore motion graphics design options by
borrowing from widely-available motion graphics video examples
and that they open the door to dynamically adapting the graphics
to the preferences of the viewer.
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Table 1. Our test set of 38 motion graphics videos. Six of the videos contain
no occlusions and no fast motion. Twelve contain only occlusions and no
fast motions. Seven contain only fast motion. Thirteen contain both. Some
of the videos contain textures, photographic elements or color gradients in
the foreground or background (marked with £). The reconstruction L; error
shows the average RGB error for the SVG motion program produced by
our vectorization pipeline. The rightmost columns show the total number
tracking errors (all) and the errors by mapping type (Figure 3).

Video Num. | Num. | Recon. Tracking errors
frames | objs | L; error | All [ Mapping type
No occlusions and no fast motion
ball2 500 4 0.0034 0 0,0,0,0,0,0,0,0
ball3 215 8 0.0024 0 0,0,0,0,0,0,0,0
eyes 312 14 0.0050 0 0,0,0,0,0,0,0,0
format 151 6 0.0036 0 0,0,0,0,0,0,0,0
levers 144 6 0.0063 0 0,0,0,0,0,0,0,0
support 299 9 0.0024 0 0,0,0,0,0,0,0,0
Occlusions only
dog 133 12 0.017 0 0,0,0,0,0,0,0,0
five 144 5 0.0024 0 0,0,0,0,0,0,0,0
giftbox1 80 8 0.0078 1] 0,0,0,0,0,0,0,0
giftbox2 80 10 0.012 0 0,0,0,0,0,0,0,0
hypel 144 4 0.022 0 0,0,0,0,0,0,0,0
hype2 144 4 0.024 0 0,0,0,0,0,0,0,0
pingpong 144 21| 00093 | 0| 0,0,0,0,0,0,00
playDesign 438 13 0.0068 0 0,0,0,0,0,0,0,0
sundance 336 70 0.0071 0 0,0,0,0,0,0,0,0
ball5 289 4 0.0072 0 0,0,0,0,0,0,0,0
sydney (%) 98 44 | 00394 | 4| 40,000,000
morningShow 147 162 0.011 5 5,0,0,0,0,0,0,0
Fast motion only
ball4 79 2 0.0026 1] 0,0,0,0,0,0,0,0
book2 (¥) 36 36 0.0095 0 0,0,0,0,0,0,0,0
transforms 358 27 0.0034 0 0,0,0,0,0,0,0,0
seesaw () 188 4 0.0017 | 0| 0,0,0,0,0,0,0,0
wordAWeek 151 12 0.0036 0 0,0,0,0,0,0,0,0
deconstruct 156 11 0.0010 0 0,0,0,0,0,0,0,0
beautiful 221 16 0.0037 5 4,1,0,0,0,0,0,0
Both occlusions and fast motion
ball1 () 394 2 0.0083 | 0 0,0,0,0,0,0,0,0
face 156 5 0.0011 0 0,0,0,0,0,0,0,0
filmRadio 177 60 0.0040 1 1,0,0,0,0,0,0,0
183 96 32 0.010 2 2,0,0,0,0,0,0,0
gsuite () 481 24 0.017 3 3,0,0,0,0,0,0,0
book1 () 108 7 0.0036 4 4,0,0,0,0,0,0,0
kapptivate 50 13 0.0063 4 3,0,0,0,0,0,0,1
avokiddo 130 20 0.0033 6 6,0,0,0,0,0,0,0
dates (%) 181 36 0.023 6 6,0,0,0,0,0,0,0
5k (F) 119 18 0.033 7 4,3,0,0,0,0,0,0
shapeman 70 14 0.0048 10 6,3,1,0,0,0,0,0
confetti 45 143 0.012 13 | 12,0,1,0,0,0,0,0
lucy 353 33 0.013 15 | 4,11,0,0,0,0,0,0
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A APPENDIX: MOTION GRAPHICS VIDEO TEST SET

We created a test set of 38 motion graphics video to evaluate our
motion vectorization pipeline (Table 1). Tracking foreground objects
through occlusions (either between objects or at the edge of the
frame as on object entry/exit) and across fast motions (which we de-
fine as moments when an object’s bounding box in frame F;_; does
not overlap with its bounding box in F;) is especially challenging.
Many of the test videos contain such challenging features. A few of
the more challenging videos also contain textures, photographic el-
ements or color gradients in the foreground or background (marked
with ). The two rightmost columns of Table 1 show the total num-
ber of tracking errors and a breakdown of these errors by mapping
type; each element of the 8-tuple records the number of errors for
corresponding mapping type as shown in Figure 3. Thus, the video
named [ucy contains 4 one-to-one mapping errors (e.g., a region
in F; is assigned an incorrect object ID) and 11 one-to-many (no
split) errors (e.g., two or more regions that should be assigned the
same object ID were incorrectly assigned different object IDs). See
Figure 9 (bottom right) for an examples of this error for the lucy
video.
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