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Abstract—Unmanned aerial vehicle (UAV)-based remote sens-
ing applications in plant phenotyping have received attention in
modern plant breeding programs that increasingly have the need
to automate time-consuming manual measurements of agronomic
traits. This paper focuses on the prediction of sorghum biomass
using machine learning algorithms such as Linear Regression, K-
Neighbors Regressor, and the XGBoost Regressor. Results from
a field experiment of 344 sorghum genotypes conducted at the
Donald Danforth Plant Science Center (Saint Louis, MO, USA)
showed accurate prediction models. The K-Neighbors Regression
model performed better than the other two models (R2 = 0.65,
RMSE = 4968.60 kg/ha). The developed approach in this study
could be used as a decision support tool for sorghum biomass
phenotyping in breeding programs.

Index Terms—UAV, Remote sensing, Plant phenotyping, Ma-
chine learning, Sorghum

I. INTRODUCTION

Biomass is an important trait governing the biofuel produc-

tion capacity of sorghum genotypes, as it is indicative of plant

growth and the ability to produce ethanol [1]. Novel remote

sensing technologies involving multispectral imaging sensors

on board a UAV provide a compelling alternative to the more

challenging, labor-intensive, and time-consuming traditional

phenotyping methods. Also, the existing methods for biomass

measurement involve destructive sampling, which may be

logistically challenging for large-scale breeding programs [2],

[3]. Recently, remote sensing (RS) data have been used as

inputs of machine learning (ML) models to develop accurate

predictions of phenotypic traits such as plant biomass. Deep

neural networks are also widely explored by many researchers

and offer more accuracy compared to classical ML [4].
A major challenge of ML is the requirement of ground truth

data, where quantity and quality underpin the ML model’s

capacity to consider hypotheses and distributions from the

training datasets. The prediction accuracy will depend on

ground truth data size, type, and prediction methods. Although

ML and UAV-sensor data have been utilized to estimate

biomass in many crops, including maize [5], wheat [6], pea

[7], and sorghum [1], [8], [9], the prediction accuracy varies

amongst models, genotypes and environment for the same

crop species. Therefore, the quest for appropriate models for

a defined number of genotypes under specific environmental

conditions is a relevant subject and, to the best of our knowl-

edge, no such studies have been done using the ML algorithms

used in this study with multispectral sensor data for estimating

end-of-season sorghum above-ground biomass.

To solve the above-mentioned issues, this work develops

ML-based prediction models of final sorghum biomass using

UAV multispectral imagery data, with the intention to aid field

phenotyping operations for an efficient large-scale breeding

program. The described work shows the potential of spectral

data from UAV imaging to capture plant biomass traits. We

also used ML models to obtain prediction accuracy with

limited data sizes. Finally, we compare the ML models.

The rest of the paper is organized as follows. Section

II presents the related works of our proposed solution. We

discuss the proposed ML methods in Section III. Section IV

discusses the performance analysis process and results. Finally,

Section V summarizes the conclusions of the paper.

II. RELATED WORKS

We discuss the existing literature based on various aspects

of data collection and ML methods in the case of biomass

prediction.

Masjedi et al. [10] used a recurrent neural networks model

to predict sorghum biomass from time series UAV data. Zhang

et al. [11] used RGB and hyperspectral UAV-based image

data as input features to explore multiple layer perception

(MLP) neural networks and support vector regression (SVR)

for predicting sorghum biomass. They found the MLP method

to be more accurate when the number of samples in the

training dataset was limited, while the SVR models performed

better than MLP when the number of samples increased.

Among these studies, ML algorithms achieved high-accuracy

prediction of sorghum biomass.

Although the classical ML methods are powerful tools in

modeling crop biomass, the model accuracy drops when time

series data from multiple sensors, collected from different

locations are all used as input features [10], [12]. In the

last decade, deep neural networks have been widely explored

by many researchers and offer more accuracy compared to

classical ML [4]. When using ML regression models, the

prediction accuracy will depend on many factors like the

ground truth data size, type, and prediction method [12]. How-

ever, biomass prediction based on UAV data and ML models979-8-3503-2377-1/23/$31.00 ©2023 IEEE
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Fig. 1: Orthoimage of the field experiment with plot delimitation

remains challenging because of the complexity of the biomass

trait [13], the lack of ground truth data in terms of quantity

for model validation [14], and high phenotypic variability

observed in field experiments [15]. The main characteristic

of ML is the requirement of ground truth information that

underlies the model’s capacity to consider hypotheses and

distributions directly from the training dataset [16]. For ML

models to be able to properly predict traits, another common

challenge is the requirement of a similar distribution between

training and testing datasets, even for extensive training data

[17], [18].

Previous studies used different ML algorithms (e.g., RNN,

SVR, MLP, RF, PLSR, CART) with hyperspectral, RGB

and LiDAR data to develop prediction models for sorghum

biomass [1], [10], [11]. However, to our knowledge, there are

no such studies that applied the ML algorithms used in this

study to multispectral sensor data for estimating end-of-season

sorghum above-ground biomass.

III. ML-BASED PREDICTION OF SORGHUM BIOMASS

We discuss the proposed ML-based prediction of sorghum

biomass in the following subsections. The initial phase of the

proposed method presents the data collection and process-

ing. Thereafter, three different ML-based regression models

– Linear Regression, K-Neighbors Regressor, and XGBoost

Regressor are used to study the Root Mean Squared Error

(RMSE) and R-squared (R2).

A. Ground truth and UAV data Collection

The field experiment was conducted at the Donald Danforth

Plant Science Center Field Research Site in O’Fallon, MO.

An augmented design with 10 repeated genotypes (checks)

and 344 non-repeated genotypes were distributed in 3 blocks

and 9 sub-blocks (Fig. 1). UAV data collection was carried

out using a multicopter drone equipped with a Micasense

Altum multispectral camera (Micasense, inc) with five spectral

bands (blue, green, red, rededge, and near-infrared). The drone

made a round trip over the entire field, allowing a side and

forward overlapping fraction of 0.8 between raw images. At

Fig. 2: Flow diagram of biomass prediction

crop maturity, plants were sampled and weighed for above-

ground biomass measurements.

B. Image processing

UAV raw images were processed using Pix4D [24] soft-

ware to generate calibrated and corrected orthomosaics. Real

reflectances were calculated using a control panel with known

reflectance, and multiband co-registration was done to ad-

just and correct the images’ coordinate system and decrease

geometric distortions. Plot delimitation was done in QGIS

software and the generated shapefile was used, along with

the multiband orthoimage in R software (Raster, RStoolbox,

tidyverse packages) to extract vegetation indices (Table 1) and

near-infrared bands for input into the ML models. Features

were selected based on their high relationship with biomass,

and Modified Soil-Adjusted Vegetation Index, MSAVI, was

the most related feature.
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TABLE I: Vegetation indices used as inputs for ML algorithms

Vegetation indices Formulas Ref.

Normalized Difference Vegetation Index NDVI = ρNIR−ρRed
ρNIR+ρRed

[19]

The Corrected Transformed Vegetation Index CTVI = NDV I+0.5
|NDV I+0.5|

×
√

| NDV I + 0.5 |
[20]

Green Normalized Difference Vegetation Index GNDVI = ρNIR−ρGreen
ρNIR+ρGreen

[21]

Modified Soil-Adjusted Vegetation Index MSAVI =
2∗ρNIR+1–

√
(2∗ρNIR+1)2–8∗(ρNIR−ρRed))

2
[22]

Normalized difference red edge Index NDRE = ρNIR−ρRE
ρNIR+ρRE

[23]

Note: Near-Infrared band (NIR), Red Edge band (RE)

C. ML-based evaluation process

Fig. 2 shows the proposed ML-based biomass prediction

method. After collecting data in the form of ground truth

and UAV, the combined data were passed through a set

of pre-processing steps including data cleaning and feature

engineering. We used feature ranking with recursive feature

elimination for fitting. The final dataset was passed through the

considered ML-based regression models for both the training

and validation datasets. Finally, the best algorithm was chosen

for predicting biomass. We discuss the best-performing set of

ML models in the following subsections.

D. Machine Learning algorithms

1) Linear Regression (LR): Recently, Multiple Linear Re-

gression (LR) model-based supervised learning has proven to

be suitable and reliable for predictions. Linear regression is

generally used in research studies to evaluate the predicted

effects and model them against multiple input variables.

This method usually analyzes and learns initial training data

from which it models relationships between dependent and

independent variables. The longitudinal regression of LR has

high precision in long-term trait prediction with a slight

variance [25]. The properties of this model, such as being

well-understood, fast, and minimizing ‘lack of fit,’ motivate

us to use it.
2) K-Neighbors Regressor (KNN): The input of this al-

gorithm allows choosing the k-closest training examples in

a dataset, which helps identify and remove outliers. We use

dynamic k values in the considered use case scenarios. KNN

can predict more accurately within a long-history database,

bringing more similar neighboring patterns. One of the key

advantages of the KNN model is that the prediction accuracy

is not affected by increased data size after a certain threshold

level [26].
3) XGBoost Regressor (XGB): Another supervised learn-

ing, XGBoost Regressor (XGB), is used for the proposed

prediction. The objective function of XGB contains a loss

function and a regularization term, which finds the difference

between actual and predicted values. XGB is promised to be

salable with a productive improvement of gradient-boosting

decision tree implementation. It allows building a new weak

learner that is highly correlated with the loss function negative

gradient linked to the whole assembly for each iteration [27],

[28]. XGB offers a novel distributed algorithm that expedites

the boosted tree searching and construction. The contribution

score of each feature to the training model is considered for

evaluating and selecting the appropriate features for efficient

prediction [17].

The choice of the three ML methods in this study was

based on previous tests using many algorithms. The final set of

models were found to be best suited to the considered features

and scenarios. Further, tree learning algorithms like XGB are

better suited for this type of dataset as they do not imply

linear interactions between features. The KNN method is more

tolerant to low data size, and LR has interesting properties

like minimizing lack of fit, slight variance, and long-term

prediction capability.

IV. PERFORMANCE EVALUATION

For the performance evaluation, we used three ML-based

regression models, including Linear Regression (LR), K-

Neighbors Regressor (KNN), and XGBoost Regressor (XGB).

The regression model outputs were assessed using the R2

coefficient of determination and the RMSE. The RMSE

indicates the distances of predicted values from the observed

values in the dataset. A ML model will fit better in the dataset

when the RMSE value is less. The RMSE value is calculated

as follows:

RMSE =

√

∑

(Pi −Oi)2

N
(1)

where, Pi, and Oi are the predicted and observed value for

the ith observation, respectively, and N is the sample size. On

the other hand, the value of R2 (0 ≤ R2 ≤ 1) indicates how

closely data are associated with the fitted regression line. A

higher R2 value indicates a better fit of a model. The R2 value

can be calculated as:

R2 = 1−
SSR

TSS
(2)

where, SSR is the sum of squares of residuals and TSS is

the total sum of squares.
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TABLE II: Performance comparison of ML algorithms

Algorithms RMSE R2

K-Neighbors Regressor 4968.60 0.65

Linear Regression 5082.52 0.64

XGB Regressor 7896.11 0.13

A. Model evaluation (R2 and RMSE)

For regression modeling, three ML-based models were used

in this study, including Linear Regression (LR), K-Neighbors

Regressor (KNN), and XGBoost Regressor (XGB). The re-

gression model outputs were assessed using the R2 coefficient

of determination and the root-mean-square error (RMSE). The

R2 is the proportion of variance in the dependent variable that’s

explained by the original model using prediction test data,

and it is highly related to the overall accuracy of the model.

In each model, we used a data partitioning of 80% training

and 20% testing data. The regression analyses were conducted

using python language. Results presented in Table 2 showed

good model accuracy for LR and KNN with R2 values of 0.64

and 0.65, respectively. The XGB model, however, recorded

low prediction accuracies, likely due to a non-suitable model

and limited data size. This model performed better in soybean

grain yield prediction with an R2 of 0.41 when 60 features

(radiometric and geometric) obtained from both RGB and

multispectral cameras were used [17]. The results shown in

Fig. 3 represent a single linear regression between MSAVI and

biomass, highlighting the potential of the different vegetation

indices used to estimate plant biomass in sorghum crops.

B. Features

Low data size remains the most problematic in the ML

regression approach. Despite many studies showing an in-

crease of model performance when the number of genotypes

and plots is higher, the number of features also can have

an impact on model performance. Here, we evaluate model

performance under an increasing number of features (Fig. 4

& 5). The results showed different responses with three ML

models. While the LR model exhibited the highest increase in

performance when the number of features increased from 2 to

6, the XGB model did not show feature-dependent variation.

However, the KNN model showed a slight increase with the

increasing number of features (i.e., up to 3 features), then

maintains an optimal R2 (i.e., 0.65). This suggests that the

KNN model fits better when fewer data features are used for

ML studies, while the LR model accuracy should provide the

best accuracy when the data feature size increases.

V. CONCLUSION

The results found in this paper substantiate the potential

of high-resolution images acquired with UAVs to effectively

estimate end-of-season above-ground sorghum biomass. The

relationship between vegetation indices and biomass proved to

be robust for estimation. The ML algorithms, including LR and

KNN, gave good accuracy in predicting biomass despite the

Fig. 3: Relationship between MSAVI and AGB (above ground

biomass kg/ha)
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Fig. 4: Comparison of RMSE values for different ML models

small data size. As ground truth data collection will continue

to be a bottleneck in plant phenomics, this work opens and

highlights interesting key research regarding the choice of the

appropriate model when data quantity is limited. In the future,

it would be interesting to test other models with limited UAV

data. This will be helpful in selecting the appropriate model

for low data size, a common issue with in-field phenomic and

breeding datasets.
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