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Abstract—Unmanned aerial vehicle (UAV)-based remote sens-
ing applications in plant phenotyping have received attention in
modern plant breeding programs that increasingly have the need
to automate time-consuming manual measurements of agronomic
traits. This paper focuses on the prediction of sorghum biomass
using machine learning algorithms such as Linear Regression, K-
Neighbors Regressor, and the XGBoost Regressor. Results from
a field experiment of 344 sorghum genotypes conducted at the
Donald Danforth Plant Science Center (Saint Louis, MO, USA)
showed accurate prediction models. The K-Neighbors Regression
model performed better than the other two models (R = 0.65,
RMSE = 4968.60 kg/ha). The developed approach in this study
could be used as a decision support tool for sorghum biomass
phenotyping in breeding programs.

Index Terms—UAYV, Remote sensing, Plant phenotyping, Ma-
chine learning, Sorghum

I. INTRODUCTION

Biomass is an important trait governing the biofuel produc-
tion capacity of sorghum genotypes, as it is indicative of plant
growth and the ability to produce ethanol [1]. Novel remote
sensing technologies involving multispectral imaging sensors
on board a UAV provide a compelling alternative to the more
challenging, labor-intensive, and time-consuming traditional
phenotyping methods. Also, the existing methods for biomass
measurement involve destructive sampling, which may be
logistically challenging for large-scale breeding programs [2],
[3]. Recently, remote sensing (RS) data have been used as
inputs of machine learning (ML) models to develop accurate
predictions of phenotypic traits such as plant biomass. Deep
neural networks are also widely explored by many researchers
and offer more accuracy compared to classical ML [4].

A major challenge of ML is the requirement of ground truth
data, where quantity and quality underpin the ML model’s
capacity to consider hypotheses and distributions from the
training datasets. The prediction accuracy will depend on
ground truth data size, type, and prediction methods. Although
ML and UAV-sensor data have been utilized to estimate
biomass in many crops, including maize [S], wheat [6], pea
[7], and sorghum [1], [8], [9], the prediction accuracy varies
amongst models, genotypes and environment for the same
crop species. Therefore, the quest for appropriate models for
a defined number of genotypes under specific environmental
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conditions is a relevant subject and, to the best of our knowl-
edge, no such studies have been done using the ML algorithms
used in this study with multispectral sensor data for estimating
end-of-season sorghum above-ground biomass.

To solve the above-mentioned issues, this work develops
ML-based prediction models of final sorghum biomass using
UAYV multispectral imagery data, with the intention to aid field
phenotyping operations for an efficient large-scale breeding
program. The described work shows the potential of spectral
data from UAV imaging to capture plant biomass traits. We
also used ML models to obtain prediction accuracy with
limited data sizes. Finally, we compare the ML models.

The rest of the paper is organized as follows. Section
IT presents the related works of our proposed solution. We
discuss the proposed ML methods in Section III. Section IV
discusses the performance analysis process and results. Finally,
Section V summarizes the conclusions of the paper.

II. RELATED WORKS

We discuss the existing literature based on various aspects
of data collection and ML methods in the case of biomass
prediction.

Masjedi et al. [10] used a recurrent neural networks model
to predict sorghum biomass from time series UAV data. Zhang
et al. [11] used RGB and hyperspectral UAV-based image
data as input features to explore multiple layer perception
(MLP) neural networks and support vector regression (SVR)
for predicting sorghum biomass. They found the MLP method
to be more accurate when the number of samples in the
training dataset was limited, while the SVR models performed
better than MLP when the number of samples increased.
Among these studies, ML algorithms achieved high-accuracy
prediction of sorghum biomass.

Although the classical ML methods are powerful tools in
modeling crop biomass, the model accuracy drops when time
series data from multiple sensors, collected from different
locations are all used as input features [10], [12]. In the
last decade, deep neural networks have been widely explored
by many researchers and offer more accuracy compared to
classical ML [4]. When using ML regression models, the
prediction accuracy will depend on many factors like the
ground truth data size, type, and prediction method [12]. How-
ever, biomass prediction based on UAV data and ML models
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Fig. 1: Orthoimage of the field experiment with plot delimitation

remains challenging because of the complexity of the biomass
trait [13], the lack of ground truth data in terms of quantity
for model validation [14], and high phenotypic variability
observed in field experiments [15]. The main characteristic
of ML is the requirement of ground truth information that
underlies the model’s capacity to consider hypotheses and
distributions directly from the training dataset [16]. For ML
models to be able to properly predict traits, another common
challenge is the requirement of a similar distribution between
training and testing datasets, even for extensive training data
[17], [18].

Previous studies used different ML algorithms (e.g., RNN,
SVR, MLP, RF, PLSR, CART) with hyperspectral, RGB
and LiDAR data to develop prediction models for sorghum
biomass [1], [10], [11]. However, to our knowledge, there are
no such studies that applied the ML algorithms used in this
study to multispectral sensor data for estimating end-of-season
sorghum above-ground biomass.

III. ML-BASED PREDICTION OF SORGHUM BIOMASS

We discuss the proposed ML-based prediction of sorghum
biomass in the following subsections. The initial phase of the
proposed method presents the data collection and process-
ing. Thereafter, three different ML-based regression models
— Linear Regression, K-Neighbors Regressor, and XGBoost
Regressor are used to study the Root Mean Squared Error
(RMSE) and R-squared (R?).

A. Ground truth and UAV data Collection

The field experiment was conducted at the Donald Danforth
Plant Science Center Field Research Site in O’Fallon, MO.
An augmented design with 10 repeated genotypes (checks)
and 344 non-repeated genotypes were distributed in 3 blocks
and 9 sub-blocks (Fig. 1). UAV data collection was carried
out using a multicopter drone equipped with a Micasense
Altum multispectral camera (Micasense, inc) with five spectral
bands (blue, green, red, rededge, and near-infrared). The drone
made a round trip over the entire field, allowing a side and
forward overlapping fraction of 0.8 between raw images. At

[ Ground truth ]

{ UAV data J

[ ML algorithms }\;[ Train J

Select the best
algorithm

Fig. 2: Flow diagram of biomass prediction

crop maturity, plants were sampled and weighed for above-
ground biomass measurements.

B. Image processing

UAV raw images were processed using Pix4D [24] soft-
ware to generate calibrated and corrected orthomosaics. Real
reflectances were calculated using a control panel with known
reflectance, and multiband co-registration was done to ad-
just and correct the images’ coordinate system and decrease
geometric distortions. Plot delimitation was done in QGIS
software and the generated shapefile was used, along with
the multiband orthoimage in R software (Raster, RStoolbox,
tidyverse packages) to extract vegetation indices (Table 1) and
near-infrared bands for input into the ML models. Features
were selected based on their high relationship with biomass,
and Modified Soil-Adjusted Vegetation Index, MSAVI, was
the most related feature.
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TABLE I: Vegetation indices used as inputs for ML algorithms

Vegetation indices Formulas Ref.
Normalized Difference Vegetation Index NDVI = % (191
The Corrected Transformed Vegetation Index CTVI = % x /] NDVI+0.5 | 201
Green Normalized Difference Vegetation Index GNDVI = % o1
Modified Soil-Adjusted Vegetation Index MSAVI = 2PN+ /(xp NIRQH)%B*(’J NIE—pRed))

[22]

. . _ pNIR—pRE

Normalized difference red edge Index NDRE = ONTRToRE .

Note: Near-Infrared band (NIR), Red Edge band (RE)

C. ML-based evaluation process

Fig. 2 shows the proposed ML-based biomass prediction
method. After collecting data in the form of ground truth
and UAV, the combined data were passed through a set
of pre-processing steps including data cleaning and feature
engineering. We used feature ranking with recursive feature
elimination for fitting. The final dataset was passed through the
considered ML-based regression models for both the training
and validation datasets. Finally, the best algorithm was chosen
for predicting biomass. We discuss the best-performing set of
ML models in the following subsections.

D. Machine Learning algorithms

1) Linear Regression (LR): Recently, Multiple Linear Re-
gression (LR) model-based supervised learning has proven to
be suitable and reliable for predictions. Linear regression is
generally used in research studies to evaluate the predicted
effects and model them against multiple input variables.
This method usually analyzes and learns initial training data
from which it models relationships between dependent and
independent variables. The longitudinal regression of LR has
high precision in long-term trait prediction with a slight
variance [25]. The properties of this model, such as being
well-understood, fast, and minimizing ‘lack of fit, motivate
us to use it.

2) K-Neighbors Regressor (KNN): The input of this al-
gorithm allows choosing the k-closest training examples in
a dataset, which helps identify and remove outliers. We use
dynamic £ values in the considered use case scenarios. KNN
can predict more accurately within a long-history database,
bringing more similar neighboring patterns. One of the key
advantages of the KNN model is that the prediction accuracy
is not affected by increased data size after a certain threshold
level [26].

3) XGBoost Regressor (XGB): Another supervised learn-
ing, XGBoost Regressor (XGB), is used for the proposed
prediction. The objective function of XGB contains a loss
function and a regularization term, which finds the difference
between actual and predicted values. XGB is promised to be
salable with a productive improvement of gradient-boosting
decision tree implementation. It allows building a new weak

learner that is highly correlated with the loss function negative
gradient linked to the whole assembly for each iteration [27],
[28]. XGB offers a novel distributed algorithm that expedites
the boosted tree searching and construction. The contribution
score of each feature to the training model is considered for
evaluating and selecting the appropriate features for efficient
prediction [17].

The choice of the three ML methods in this study was
based on previous tests using many algorithms. The final set of
models were found to be best suited to the considered features
and scenarios. Further, tree learning algorithms like XGB are
better suited for this type of dataset as they do not imply
linear interactions between features. The KNN method is more
tolerant to low data size, and LR has interesting properties
like minimizing lack of fit, slight variance, and long-term
prediction capability.

I'V. PERFORMANCE EVALUATION

For the performance evaluation, we used three ML-based
regression models, including Linear Regression (LR), K-
Neighbors Regressor (KNN), and XGBoost Regressor (XGB).
The regression model outputs were assessed using the R2
coefficient of determination and the RMSE. The RMSE
indicates the distances of predicted values from the observed
values in the dataset. A ML model will fit better in the dataset
when the RMSE value is less. The RMSE value is calculated

as follows:
(P —04)?
N

where, P;, and O; are the predicted and observed value for
the it" observation, respectively, and N is the sample size. On
the other hand, the value of R? (0 < R? < 1) indicates how
closely data are associated with the fitted regression line. A
higher R? value indicates a better fit of a model. The R? value
can be calculated as:

RMSE = (1

_ SSR
TSS

where, SSR is the sum of squares of residuals and 7'SS is
the total sum of squares.

RZ=1 2
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TABLE II: Performance comparison of ML algorithms

Algorithms RMSE R2

K-Neighbors Regressor 4968.60 0.65
Linear Regression 5082.52 0.64
XGB Regressor 7896.11 0.13

A. Model evaluation (R? and RMSE)

For regression modeling, three ML-based models were used
in this study, including Linear Regression (LR), K-Neighbors
Regressor (KNN), and XGBoost Regressor (XGB). The re-
gression model outputs were assessed using the R? coefficient
of determination and the root-mean-square error (RMSE). The
R? is the proportion of variance in the dependent variable that’s
explained by the original model using prediction test data,
and it is highly related to the overall accuracy of the model.
In each model, we used a data partitioning of 80% training
and 20% testing data. The regression analyses were conducted
using python language. Results presented in Table 2 showed
good model accuracy for LR and KNN with R? values of 0.64
and 0.65, respectively. The XGB model, however, recorded
low prediction accuracies, likely due to a non-suitable model
and limited data size. This model performed better in soybean
grain yield prediction with an R? of 0.41 when 60 features
(radiometric and geometric) obtained from both RGB and
multispectral cameras were used [17]. The results shown in
Fig. 3 represent a single linear regression between MSAVI and
biomass, highlighting the potential of the different vegetation
indices used to estimate plant biomass in sorghum crops.

B. Features

Low data size remains the most problematic in the ML
regression approach. Despite many studies showing an in-
crease of model performance when the number of genotypes
and plots is higher, the number of features also can have
an impact on model performance. Here, we evaluate model
performance under an increasing number of features (Fig. 4
& 5). The results showed different responses with three ML
models. While the LR model exhibited the highest increase in
performance when the number of features increased from 2 to
6, the XGB model did not show feature-dependent variation.
However, the KNN model showed a slight increase with the
increasing number of features (i.e., up to 3 features), then
maintains an optimal R? (i.e., 0.65). This suggests that the
KNN model fits better when fewer data features are used for
ML studies, while the LR model accuracy should provide the
best accuracy when the data feature size increases.

V. CONCLUSION

The results found in this paper substantiate the potential
of high-resolution images acquired with UAVs to effectively
estimate end-of-season above-ground sorghum biomass. The
relationship between vegetation indices and biomass proved to
be robust for estimation. The ML algorithms, including LR and
KNN, gave good accuracy in predicting biomass despite the
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Fig. 3: Relationship between MSAVI and AGB (above ground
biomass kg/ha)
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Fig. 4: Comparison of RMSE values for different ML models

small data size. As ground truth data collection will continue
to be a bottleneck in plant phenomics, this work opens and
highlights interesting key research regarding the choice of the
appropriate model when data quantity is limited. In the future,
it would be interesting to test other models with limited UAV
data. This will be helpful in selecting the appropriate model
for low data size, a common issue with in-field phenomic and
breeding datasets.
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