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1 | INTRODUCTION

Abstract

Over the last decade, the use of unmanned aerial vehicles (UAVs) for plant phe-
notyping and field crop monitoring has significantly evolved and expanded. These
technologies have been particularly valuable for monitoring crop growth and health
and for managing abiotic and biotic stresses such as drought, fertilization deficien-
cies, disease, and bioaggressors. This paper provides a comprehensive review of
the progress in UAV-based plant phenotyping, with a focus on the current use and
application of drone technology to gain information on plant growth, development,
adaptation, and yield. We reviewed over 200 research articles and discuss the best
tools and methodologies for different research purposes, the challenges that need to
be overcome, and the major research gaps that remain. First, the review offers a crit-
ical focus on elucidating the distinct characteristics of UAV platforms, highlighting
the diverse sensor technologies employed and shedding light on the nuances of UAV
data acquisition and processing methodologies. Second, it presents a comprehensive
analysis of the multiple applications of UAVs in field phenotyping, underscoring the
transformative potential of integrating machine learning techniques for plant analysis.
Third, it delves into the realm of machine learning applications for plant phenotyp-
ing, emphasizing its role in enhancing data analysis and interpretation. Furthermore,
the paper extensively examines the open issues and research challenges within the
domain, addressing the complexities and limitations faced during data acquisition,
processing, and interpretation. Finally, it outlines the future trends and emerging tech-
nologies in the field of UAV-based plant phenotyping, paving the way for innovative

advancements and methodologies.

(Gerland et al., 2014), threatening global supplies of food,
energy, and water. An environmentally sustainable approach

Increasing crop production to meet the food, fuel, and cloth-
ing needs of a growing populace is a global challenge for the
21st century (Yu et al., 2016). The United Nations Depart-
ment of Economic and Social Affairs states that the world’s
population will steadily grow upward of 9 billion by 2050

to meet these essential needs is through the development
and dissemination of high-performing crop varieties to farm-
ers (Tester & Langridge, 2010). It is, therefore, essential
to implement innovative breeding programs to efficiently
increase food crop production and allay food insecurity that is
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projected to increase worldwide in the coming decades (Ray
et al., 2015).

Modern-day biotech has significantly impacted the
progress and efficiency of crop breeding by increasing avail-
ability and access to genetic data and markers in breeding
programs. We can now quickly and affordably sequence the
genomes of many plants (Thomson, 2014). However, the
value of genetic data in breeding programs depends on the
quality of plant phenotype data collected across multiple and
diverse environments. New advancements in phenotyping
technologies are essential to ensure genetic gain and enhance
crops to meet future needs. To improve high-throughput
phenotyping for crop breeding, unmanned aerial vehicles
(UAVs5) are promising instruments that allow for increasingly
high-quality field data acquisition (Floreano & Wood, 2015;
Sankaran, Khot, Espinoza, et al., 2015; Yang & Zhai, 2022).

Precision phenotyping, with the help of UAV imaging,
allows breeders to obtain information on plant growth and
development status. One of the targeted traits in image-based
precision phenotyping is the assessment of plant number or
density. It is generally measured using RGB cameras and has
been used to estimate field emergence and to develop accurate
predictions of final yield parameters. Lin et al. (2021) did a
comparison study between MobileNets and CenterNet (Duan
et al., 2019), models of object detection (OD) for cotton stand
counts using unmanned aerial system (UAS) imaging.

Temperature is an essential variable of the environment
that has a significant impact on plant physiology traits like
leaf transpiration, photosynthesis, and water potential (Pignon
et al.,, 2021). Thermal remote sensing is a promising phe-
notyping methodology for measuring surface temperature of
plant canopies (Khanal et al., 2017), and thermal sensors have
gained popularity in recent years due to improvements in sen-
sor technology and a decrease in costs. A number of studies
have successfully shown the efficiency of thermal sensors
to measure canopy temperatures and monitor drought stress
(Anderson et al., 2013; Brewer et al., 2022; Khanal et al.,
2017).

UAUVs fitted with multispectral (MS) cameras can be used
to monitor spatial and temporal variations of vegetation
indices (VIs). Vs are spectral reflectance computations that
help to measure the vegetation presence and status through
photosynthetic response to incident light (Steven et al., 2015).
For instance, for healthy plants, the reflectance is high in
the infrared band and low in the red band due to chloro-
phyll absorption of red light. This can fluctuate in a stressed
or unhealthy plant that may have reduced chlorophyll pig-
ment (Khan et al., 2018). Several studies have validated
the accuracy of VIs derived from aerially captured MS or
hyperspectral imagery to quantify crop health, moisture, and
nutrient content (Cuaran & Leon, 2021; Goswami et al., 2021;
Shi et al., 2016; Tahir et al., 2018). MS sensor-derived VIs are
also increasingly used to estimate leaf area index, biomass,
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Core Ideas

* It is crucial to assess drone sensors for resolution,
speed, and phenotyping suitability.

* Exploring machine learning algorithms in drone
image processing enables automated trait predic-
tion and disease detection.

* Drones enhance crop breeding, accelerating cycles
and improving efficiency by identifying desirable
traits.

* Addressing data processing challenges while antic-
ipating future tech directions and standardization is
needed.

and chlorophyll content (Gano et al., 2021; Li et al., 2018;
Potgieter et al., 2017; Shafian et al., 2018). Yu et al. (2016)
used high-resolution MS image data collected from a UAV-
based high-throughput platform over the course of a complete
soybean growth season to improve estimates of yield.

Amid the challenges posed by field plot heterogeneity and
dynamic environmental conditions in crop production sys-
tems, Light Detection and Ranging (LiDAR) technologies
offer high-resolution three-dimensional (3D) images of crop
plants while being less susceptible to the optical saturation
issues often observed in dense vegetation (Maimaitijiang,
Sagan, Erkbol, et al., 2020). In a similar vein, Radio Detec-
tion and Ranging (radar) technology provides an alternative to
optical sensors, harnessing a higher frequency band and wider
bandwidth to significantly enhance resolution capabilities
(Jiao et al., 2021; Lee et al., 2021).

The aim of this review is to provide up-to-date insight
into the application of drone-based remote sensing for pheno-
typing agronomic and physiological plant traits. We explore
the current use, limitations, and opportunities of UAS in
crop monitoring and precision agriculture, including camera
and sensor restrictions, data processing challenges, and cur-
rent aviation regulations. We propose key questions—Which
UAV and sensor package best suits a precision phenotyping
goal? What has successfully been done in previous stud-
ies? Which methods and tools were used? What were the
challenges?—and provide background information to con-
sider when choosing a UAV-based sensor platform for crop
phenotyping.

The remainder of this review is structured as follows: Sec-
tion 2 describes the method used to identify relevant papers
for this review. Sections 3 and 4 explore the technology
and sensor systems integral to UAVs. Section 5 delves into
the methodology of data collection and processing, while
Section 6 showcases real-world uses of UAVs in agricul-
ture. Section 7 examines advanced data analysis techniques.
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Section 8 identifies current gaps and challenges in the field.
Section 9 indicates the most interesting technologies for future
research, culminating in Section 10, which summarizes key
findings and outlines future directions for the use of UAVs in
advancing plant phenotyping and agriculture.

2 | LITERATURE REVIEW
METHODOLOGY

We conducted a comprehensive literature review using a
set of key search terms to systematically explore scholarly
databases, namely, Scopus, Web of Science, and Google
Scholar, with the aim of identifying pertinent literature within
peer-reviewed English language academic journals. Our focus
was on literature that delved into UAV-based plant phenotyp-
ing applications. The search was conducted by scrutinizing
article titles, abstracts, and keywords using specific search
strings, which included the terms “UAV,” “sensors,” “plant,”
“phenotyping,” and “machine learning” to extract relevant
publications. In addition to the search of keywords, we also
paid attention to the cited references in the published lit-
erature. These papers also met the search scope. Consulted

9 <

materials included peer-reviewed articles and conference arti-
cles using UAVs for phenotyping research. The searched
articles are published between 1973 and 2023. We have col-
lected 289 papers, as many as possible, but there might still
be missing papers. We believe that the number of articles
should cover all pertinent information related to UAV for phe-
notyping. However, some papers were rejected due to reasons
including too many articles from a single journal source and
older publications.

3 | UAV PLATFORMS

UAV or drone-based platforms are a technology that can be
used to obtain quantitative plant information for tens or even
hundreds of lines in a crop field using noninvasive imaging
techniques and protocols (Furbank & Tester, 2011; Ghanem
et al., 2015). Fully integrated remote sensing platforms con-
sist of an unmanned aircraft fitted with multiple sensors and
use communication and Global Navigation Satellite System
(GNSS) tools to acquire crop canopy images from the field.

UAV classifications are globally based on their wing
design, which impacts their autonomy, size, and weight (De
Rango et al., 2019). There are three major types of UAVs—
fixed-wing, rotary-wing, and hybrids, also known as Vertical
Takeoff and Landing (VTOL) drones (Figure 1). UAV char-
acteristics (Table 1) within these three categories vary in their
aerodynamic features and have a significant impact on flight
time, altitude, speed, cost, resolution, and so forth (Custers,
2016; Feng et al., 2021; Garcia et al., 2020).
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TABLE 1 The pros and cons of main unmanned aerial vehicle
(UAV) platforms.
UAV platforms  Pros Cons
Rotary wings High maneuverability Low flight
endurance
Low cost Low speed

Lower altitude

Higher
maintenance

Excellent stability

Excellent hovering

requirements
Easy takeoff and landing  Energy consumer
Less piloting skills Weather sensitive
No runaway
Good cameras protection
Fixed wings Long distance High cost
Skilled pilot

Require runaway

Less energy
High endurance

Faster speed Less cameras

protection
High altitude Unable to hover
Heavier load
Hybrids High speed Expensive
High endurance Hard transition
between vertical
to horizontal
flight
Good stability Less controllable
Good hovering
Vertical takeoff and
landing
No runaway
No piloting skills
Heavy load
Good camera protection
3.1 | Rotary wings

Rotary-wing drones include single-rotor and multirotor sys-
tems (Figure 1A). They operate like helicopters with vertical
flight capability, which facilitates takeoff, landing, improved
maneuverability, and reduced aerial velocity. They are con-
venient for plant monitoring of average-sized breeding plots,
even if their flight endurance and speed are relatively low
compared to other drone types. Multirotor drones usually
hold eight or fewer rotors; they have excellent stability
and hovering, which allows easy remote piloting compared
to single-rotor drones; and they are often the drone of
choice for researchers in crop phenotyping (Cuaran & Leon,
2021). However, this type of drone has greater mechanical
and electronic complexity, which results in higher mainte-
nance requirements and decreased operational time as they
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UAV types (A-C)

(B)

UAV sensors (D-H)

(€)

(G) (H)

FIGURE 1

The main unmanned aerial vehicle (UAV) and sensor types used in precision phenotyping: (A) rotary wings (Inspired flight

IF1200A); (B) fixed-wing (senseFly eBee SQ); (C) hybrid, VTOL fixed-wing (DeltaQuad Evo); (D) RGB camera (Sony); (E) Puck LITE LiDAR
sensor (Velodyne); (F) multispectral camera (Micasense); (G) VIS-NIR hyperspectral camera (Optosky); and (H) DJI Zenmuse XT V2 640 thermal

camera (DJI).

use greater energy to sustain lift and are more subject
to damage under extreme weather conditions (e.g., winds,
thunderstorms, tornadoes, lightning, hail, etc.).

3.2 | Fixed wings

A fixed-wing UAV can fly long distances using less energy
due to their stabilized and level wings (Figure 1B). These
drones are more adapted for surveying large areas compared
to rotary-wing drones (Figure 1A). They have the greatest
UAV endurance, and some can stay in flight for up to 24 h.
For these reasons, they are generally used for long missions,
such as large-area surveying and chemical spreading. Fixed-
wing drones have faster speeds, fly at higher altitudes, and
carry heavier loads than rotary-wing drones. This generally
allows for a larger quantity of data collected from one flight.
Some of the limitations of fixed-wing drones are high costs
and the requirements for training and/or hiring highly skilled
operators. They also require a physical runway for launching,
which may be challenging to create in a research or crop field
environment (Panagiotou et al., 2020).

3.3 | Hybrids

The third category of drone types is hybrid systems
(fixed/rotary-wing) (Figure 1C). These drones capture the
advantages of fixed and rotary wings; they achieve high
speeds and are stable with long flight endurance and, due to

the presence of rotors, allow vertical takeoffs and landings
(VTOL) like a helicopter (Maddikunta et al., 2021). VTOL
drones do not require runways; they feature wings like an
airplane, which allow them to fly over a larger area more
efficiently. Some VTOL hybrid drones, like WingtraOne, are
able to carry heavier payloads than fixed wing and offer better
camera protection during landing.

4 | UAV SENSORS

UAV systems are ideal for outdoor plant phenotyping because
they can support high-resolution image data collection for
large areas of field plots. Most manual field trait data col-
lection methods are very labor and time intensive, and
the requirement for high-throughput alternatives is crucial.
UAV systems introduce an attractive opportunity to reduce
the time, effort, and cost necessary to collect field pheno-
types and data. However, the choice of which system and
what sensors to use depends on the research question, tar-
get species, and phenotypes of interest. This section reviews
common sensors deployed on UAVs and their utility for plant
phenotyping.

41 | RGB

RGB, or true-color imagery, collects electromagnetic radi-
ation in the red, green, and blue wavelengths and captures
snapshots at both nadir and off-nadir angles. Such sensors
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are popular for phenotyping as they require minimal special-
ized data collection methods and processing knowledge and
are commercially available at low costs (Sweet et al., 2022).
It is possible to work directly with RGB digital numbers for
trait discernment, though it is advisable to apply radiometric
corrections and obtain reflectance values in outdoor environ-
ments (Svensgaard et al., 2021). A common approach is to
collect RGB imagery for a field at a nadir depression angle,
then, through photogrammetric structure-from-motion (SfM)
algorithms, create an orthomosaic for the full study area. RGB
data can capture phenotypic details such as growth rate (Shu
et al., 2022), plant height (Lu et al., 2021; Volpato et al.,
2021), canopy and vegetation cover models (Raman et al.,
2022), disease detection (Kerkech et al., 2018; Schirrmann
et al., 2021; Sugiura et al., 2016; Tang, Wang, et al., 2023),
crop senescence (Buchaillot et al., 2019), and biomass and
yield estimates (Castro et al., 2020; Johansen et al., 2020).
Though limited by spectral resolution (Sweet et al., 2022),
RGB data are able to provide key structural data, and some VIs
of value for phenotyping, such as Excess Green-Red (Meyer
& Neto, 2008), Green-Red Vegetation Index, Normalized Dif-
ference Index (Pérez et al., 2000), and Normalized Green-Red
Difference Index (Hunt et al., 2005).

4.2 | Multispectral

MS sensors operate in a similar manner to RGB sensors but
provide wider spectral resolution. There is no set number
of bands that distinguish a sensor as MS, but if a sensor
has between four and 15 bands, it may be considered MS;
beyond this range, it is generally classified as hyperspec-
tral. The primary benefit of additional spectral bands is the
enhanced ability to derive information about a target’s mate-
rial and chemical composition (Santini et al., 2019). Due to
the increased spectral sensitivity, MS sensors benefit from the
use of downwelling light sensors (DLS) to manage changes in
solar angle and ambient light that may occur during flight.
Calibrated reflectance panels (CRPs) can also be used to
radiometrically calibrate each spectral band (Ramirez et al.,
2023). The improved spectral resolution, particularly in the
near-infrared (NIR) range, allows for the generation of sev-
eral spectral VIs related to crop vigor (Sankaran, Khot, &
Carter, 2015), morphology and density (Wilke et al., 2021;
Xu et al., 2019), and biochemical composition like chloro-
phyll content (Santini et al., 2019). Analysis of MS data
from UAV systems has been shown to be successful in deter-
mining water content (Yang et al., 2020), disease detection
(Garcia-Ruiz et al., 2013), yield prediction (Maimaitijiang,
Sagan, Sidike, et al., 2020), biomass (Tang et al., 2021),
and nutrient uptake (Ostos-Garrido et al., 2019; Zaman-Allah
etal., 2015).
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4.3 | Hyperspectral

Hyperspectral spectroscopy and snapshot hyperspectral cam-
eras commonly used for drones further increase the spectral
resolution of data, often capturing hundreds of bands in
a contiguous fashion from visible (VIS) to NIR to short-
wave infrared (SWIR) ranges (Hagen & Kudenov, 2013).
Unlike most RGB and MS imagers, which carry out snap-
shot captures, most hyperspectral imagers work as pushbroom
scanners that capture data cubes along a scan line. These
data cubes, often called hypercubes, contain three dimen-
sions, including one spectral and two spatial dimensions (Liu,
Bruning, et al., 2020). Such narrow spectral bands increase
sensitivity to noise, requiring careful field collection of CRPs
to account for illumination variations and allow for radiance
and reflectance conversions (Moghimi et al., 2020). Hyper-
cubes collected by aerial platforms require both geometric and
radiometric corrections to return standardized data products
in the form of orthorectified reflectance imagery. As hyper-
cubes tend to be big data with many superfluous elements,
it can be difficult to extract meaningful information from
them. Researchers are thus benefiting from advanced pre-
dictive modeling techniques created with machine and deep
learning algorithms (Zhu et al., 2020). With proper handling,
hyperspectral data have been particularly successful at dif-
ferentiating the material composition of targets (Behmann
et al., 2018). Areas of hyperspectral spectroscopy success in
plant phenotyping include the extraction of both structural
and physiological plant information (Li et al., 2020; Sari¢
etal., 2022), crop disease pathology (Nguyen et al., 2021), the
development of new spectral indices that are extremely sen-
sitive to specific material components of a target (Shu et al.,
2021), and plant stress and health (Costa et al., 2022).

44 | Thermal

Between the spectral wavelengths of 3 and 14 pm lies the
thermal imaging range of infrared radiation, with maxi-
mum atmospheric transmission occurring between 3-5 and
7-14 um. For plant phenotyping, thermal imaging or ther-
mography is particularly useful for understanding leaf surface
temperature, which relates to stomatal conductance and the
rate of evaporation or transpiration (Li et al., 2014). Changes
in leaf temperature have also been shown to indicate a plant’s
physiological status in response to environmental stressors.
This is significant for phenotyping, as water stress will trig-
ger stomatal closure to reduce leaf transpiration, and this
induces a decrease in plant growth and production. These ther-
mal measurements can be associated with plant performance
and, thus, yield (Tattaris et al., 2016). Thermography, how-
ever, is sensitive to factors like sensor characteristics, ambient
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meteorological conditions, and environmentally emitted
sources of thermal radiation, therefore requiring careful field
design and reference panel calibration (Gémez-Candén et al.,
2016). Several investigations into thermography on vegetal
surfaces have indicated that the values may not be suitable
for multitemporal analysis. This limitation arises from the
technology’s high sensitivity to various environmental factors
(Gémez-Candoén et al., 2016; Hou et al., 2019). Analysis of
water and drought stress with thermography is valuable not
only for agricultural phenotyping but also for climate change
research and vegetation analysis in noncrop and tree species
(Lapidot et al., 2019; Ludovisi et al., 2017).

4.5 | Light Detection and Ranging

Unlike the abovementioned passive sensors, LIDAR actively
emits infrared laser pulses (primarily 800-1000 nm), measur-
ing the return speed and intensity to determine target height
and material properties (Koenig et al., 2015). LiDAR data are
documented in full waveform datasets that record the detailed
3D geometric shape of targets and can be classified by the
pulse return intensity to reveal crop canopy layers and ground
measurements (Zhang, Chen, et al., 2003; Zhu et al., 2021).
These data are analyzed to assess crop growth and devel-
opment phenotypes throughout a growing season (Sankaran,
Khot, Espinoza, et al., 2015; Zhang & Kovacs, 2012), includ-
ing height and above-ground biomass. These crop phenotypes
are often used for modeling key yield traits (Jin et al., 2021;
Madec et al., 2017; Xie & Yang, 2020). For example, plant
height can be indicative of overall plant health and is often
predictive of final yield (Wang et al., 2018). LiDAR height
data are also useful for assessing plant lodging and stabil-
ity and related phenotypic traits governing yield potential
(Hassan et al., 2019; Yang et al., 2017).

4.6 | Radio Detection and Ranging

Radar is another active remote sensing system, operating in
a similar fashion as LiDAR but in the microwave spectrum
(0.3-300 GHz). Radar echo returns, called backscattered sig-
nals, are measured in amplitude and phase, and relate to the
physical (geometry, roughness) and electrical (permittivity)
properties of a target (Moreira et al., 2013). For plant phe-
notyping, radar represents a new frontier that has not yet
been explored extensively. Most radar applications in phe-
notyping come from satellites (Zhang et al., 2020), piloted
aircraft, and Ground Penetrating Radar (GPR) (Lombardi
et al., 2021). Recent advances in both radar instrumenta-
tion and UAV design have created new opportunities to pair
the technologies, but these tools remain in early commercial
application stages (Fasano et al., 2017; Schartel et al., 2018;
Wellig et al., 2018; Xing et al., 2009). Depending on the
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specific frequency and polarization used, radar data present
potential phenotyping applications for measurements of soil
moisture, root characteristics, and plant architecture (Araus &
Kefauver, 2018; Pauli et al., 2016). More research is required,
however, to realize the full potential of UAV-mounted radar
for robust plant phenotyping.

S | UAV DATA ACQUISITION AND
PROCESSING

5.1 | Data acquisition

UAV flight planning is a critical task to ensure good-quality
image acquisition. A UAV flight plan is the defined informa-
tion that indicates the GNSS coordinates of the waypoints,
drone altitude, speed, direction, camera activation frequency,
among others. Novel technologies for UAV-based vegetation
monitoring require continuously refined research on the opti-
mization of the UAV flight and sensor configuration and
data processing (Jiang et al., 2020). Drone flight parame-
ters and performance can have a significant impact on image
data quality and viability. Jiang et al. (2020) found that flight
parameters such as the drone altitude and time of flight had a
significant impact on normalized difference vegetation index
(NDVI) calculations at different paddy rice growth stages.
This study highlighted the importance of optimizing and
standardizing the operating parameters of UAVs for in-field
phenotyping and data collection. However, flight parameters
to be set up depend also on UAV category, sensor onboard,
and case of use. For instance, flight altitude above ground
level determines the pixel resolution in the recorded images,
flight duration, and covered surface. It is primary essen-
tial to define the orthomosaic spatial resolution requirement
(depending on the case study) to achieve the ideal pixel size
to be recorded by the sensor settings (Mesas-Carrascosa et al.,
2016). To optimize imaging resolution for discerning fea-
tures, a minimum of four pixels per unit is needed, aiding
in efficient sensor selection and flight altitude determination
for optimal ground sample distance (GSD). Data collections
are usually done with many sensors (RGB, MS, etc.) at the
same time because some sensors need other sensors to pro-
vide information for data processing. For example, some MS
or hyperspectral images are challenging to delimit plot bound-
aries and we need this information to be obtained from RGB
images.

5.2 | Data processing

5.2.1 | Photogrammetry

The steps for image processing begin after elaboration of
fly mission and taking photos. The acquired overlapping
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and high-quality georeferenced images undergo different
processing steps including radiometric calibration (MS), cam-
era alignment, use of ground control points (GCPs), dense
point cloud, digital elevation model (DEM), and ortho-
mosaic generation. The most common software algorithms
used in processing images are SfM algorithms that have
been extended and allow processing RGB, MS, and ther-
mal imagery, but may require optimization (Hoffmann et al.,
2016; Pech et al., 2013). In some cases, reduced information
in images complicates the identification of the common fea-
tures, and SfM is unable to align camera photos. In many
studies, GCPs positioned at fixed points in the field and sur-
veyed with a real-time kinematic system (RTK) are needed
for optimal georeferencing (Gano et al., 2021). These can be
helpful in carrying out geometric image correction to reduce
distortion (Boesch, 2017). Next, the image preprocessing step
includes the reduction of blurry images and transformation
into a file format with the same dynamic scale. Effective co-
registration is fundamental in image processing, facilitating
the optimization of alignment. The process involves aligning
multiple images to a common coordinate system, ensuring
accurate comparison and analysis. Tips for successful co-
registration include careful selection of a reference image with
distinct features, ensuring sufficient overlap between images,
using GCPs for accurate alignment, and employing appro-
priate transformation models. While co-registration plays a
major role in enhancing the reliability of images analyses,
improvement of this framework is necessary to accommo-
date evolving technologies, increase accuracy, and overcome
the challenges related to variations in sensor characteristics
and environmental conditions. Image alignment (orthorectifi-
cation), calibration, and correction considering atmospheric
conditions are needed for building high-quality orthomo-
saics (Khanal et al., 2017). Then, VIs are extracted using
both the orthomosaic and the plot’s shapefile. These steps
can be performed using QGIS, ArcGIS, and Pix4D software,
Raster and FIELDimageR packages, and so forth (Kassim
et al., 2022; Saravia et al., 2022). The background soil,
which can affect canopy reflectance, is generally removed
to reduce interference and improve data quality (Kassim
et al.,, 2022). From dense point clouds, the digital terrain
and surface models are generated to derive canopy traits,
including height (Bendig et al., 2013). RGB image-based
plant height retrieval of key crop phenotypes is most com-
monly used because of its high flexibility, recent advances
in resolution, and low cost of RGB cameras (Remondino &
El-Hakim, 2006; Remondino et al., 2014). Despite numerous
existing software, photogrammetry still needs improvement
to tackle common challenges regarding unpleasant defect
like stripey 3D model, discrepancies in mesh texture or
orthophoto, and noisy dense point cloud. Integrating pho-
togrammetry seamlessly with other technologies, such as
LiDAR, can be challenging. Establishing standardized work-
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flows and data formats for interoperability remains an ongoing
effort.

5.2.2 | Hyperspectral

Hyperspectral image preprocessing steps include the removal
of drone motion effects and the flat terrain adjustments of
surface reflectance spectra. This is processed using specific
software such as ENVI image processing and analysis soft-
ware (NV5 Geospatial Solutions). Hyperspectral data cubes
are commonly collected using pushbroom style cameras that
collect spectroscopic data along track, keeping a narrow aper-
ture open while the camera moves along the target. These
data cubes represent multiband strips that can be georecti-
fied and combined with other georectified data cubes from
the same collection to recreate a larger scene (Fang et al.,
2019). After all data cubes are combined together, high-
ground-resolution images close to 1 cm or less are obtained.
The whole hyperspectral images are geocoded into WGS84
coordinate system using ground control points that increase
correspondence between the location of ground points and
the pixel positions (Fang et al., 2019). The band range should
be selected to get the best combination of spectral bands for
computing the average canopy spectral reflectance of each
plot. Another important preprocessing step is the reflectance
calibration using spectrally known reflectance target to nor-
malize the data cube, overcome the light source influence,
and enable comparable measurements for time series within
the same measurement setup, under different illumination
conditions (Paulus & Mahlein, 2020; Saric et al., 2022). Nev-
ertheless, hyperspectral data processing confronts numerous
challenges, encompassing the delicate balance between band-
width and spatial resolution, the overwhelming data volume,
its intricacy dictated by the laws of physics, and commercial-
ization issues. To address these limitations, the industry is
exploring sophisticated approaches such as leveraging cloud
computing, onboard data processing, and implementing arti-
ficial intelligence to effectively handle the substantial influx
of data.

5.2.3 | Light Detection and Ranging

The use of LiDAR has significantly evolved in recent years
and represents an additional and valuable tool for UAV-based
plant phenotyping (Hoffmeister et al., 2016). With the capac-
ity of the LiDAR laser beam to penetrate crop vegetation,
LiDAR mapping techniques allow the acquisition of high-
quality crop surface models that correspond to canopy height,
in addition to providing information about background sur-
face altitude or digital terrain model (DTM) (Madec et al.,
2017). LiDAR preprocessing involves creation of a Smoothed
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Best Estimate Trajectory (SBET) file in software such as
POSPac, if using Applanix equipment, from trajectory data
from the onboard IMU-GNSS to build an automated flight
line and carry out a LiDARsnap process that compares the
geometric characteristics of overlapped flight lines to adjust
and correct alignment factors and offsets from several flights
(Maimaitijiang, Sagan, Erkbol, et al., 2020). LiDAR data can
be postprocessed using cloud-based LiDAR postprocessing
platform applications such as the LIDARMIill. Point clouds
generated from LiDAR sensors are processed for the extrac-
tion of key crop traits like plant height and biomass, and
there are a number of studies reporting LiDAR scan accu-
racy equivalent to photogrammetry techniques (Deery et al.,
2014; Virletet al., 2017). While LiDAR stands as a formidable
tool, processing LiDAR data comes with inherent challenges
and limitations. A prevalent issue is data noise, where vari-
ous factors such as atmospheric conditions, sensor noise, and
reflections off nonterrain objects can introduce errors into the
data, posing difficulties in accurately modeling the terrain
and other features. Additionally, occlusions present another
challenge, as LIDAR systems may struggle to penetrate dense
foliage, hampering accurate terrain and feature modeling in
these areas. Future research should identify the most effective
angular resolution, laser beam footprint, scan window, and
other techniques for acquiring high-resolution images from
LiDAR data. Subsequent investigations could concentrate on
designing a cost-effective LIDAR-based system that stream-
lines data acquisition, employs efficient data analysis methods
for accurate information extraction, and ensures user-friendly
operation.

5.2.4 | Synthetic aperture radar

The prime function of radar sensors is to collect information
about the environment surrounding the drone, and a popu-
lar radar technology, commonly used in aircrafts, is synthetic
aperture radar (SAR) (Moreira et al., 2013). SAR is an active
microwave radar sensor used to process echo obtained from
different locations to generate imagery. They are sensitive
to operating parameters including frequency, polarization,
and incidence angle, and these factors impact the ability of
their transmitted microwaves to penetrate into plant vegetation
(McNairn & Shang, 2016).

SAR interferometry is often used for remote sensing, and
its primary application is to compare many radar images
collected at different locations and times. SAR image pix-
els contain accurate information about object range and
allow the detection and measurement of small length vari-
ations with centimetric accuracy (Moreira et al., 2013).
The Sentinel Application Platform (SNAP) method is gen-
erally used to preprocess SAR sensor data using a boxcar
filter, reducing speckle noise and increasing the number
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of looks. SAR channels are created in a slant range, and
terrain correction is carried out by the Range Doppler algo-
rithm (Jiao et al., 2021). Thus, SAR parameters (radar VIs
and others) can be extracted and used for crop identifi-
cation, classification, and monitoring. However, challenges
in radar-based crop phenotyping may persist in improving
resolution and managing costs, while future trends include
advancements in radar technologies, increased integration
with other sensing methods, and the growing influence of
machine learning (ML) for data analysis and interpretation.
The industry may also see efforts in miniaturization for
wider accessibility and a focus on global collaboration and
standardization.

6 | APPLICATION IN FIELD
PHENOTYPING

UAV-based field phenotyping has become a common method
to estimate crop phenotypes due to the platform’s capacity
to capture and/or directly measure field traits with one or
more sensors. Figure 2 shows a schematic overview of how
to extract spatial information from plants throughout a grow-
ing season, highlighting the different sensors that can be used
for target phenotypes at a specific growth stage. However, the
integration/fusion of these sensor modalities is key to extract
the highly entangled traits.

A survey was conducted in Google Scholar and Dimension
Al (app.dimension.ai) to identify the number of publications
(articles, books, chapter, proceeding, preprint, etc.) related to
each UAV application including canopy height; stand count;
growth, biomass, and yield prediction; crop physiology; leaf
nitrogen content (LNC); soil properties; and pest disease and
management. Figure 3 shows that the number of publications
has increased year after year for each application, with LNC
recording the highest number of related publications, while
pest disease and management recorded the lowest number of
publications.

6.1 | Canopy height estimation

Red, green, blue (RGB) sensors are commonly used to mon-
itor crop height dynamics. These sensors allow the creation
of DEMs through a photogrammetric SfM process. There
are two types of DEMs used to derive crop height—DTM,
which provides information about the altitude of the earth sur-
face obtained from a flight shortly after sowing or bare soil
patches at late growth stage, and the digital surface model
(DSM), which represents the altitude of the vegetation surface
that is first encountered by the UAV system. Therefore, crop
height calculation is obtained by deriving DTM from DSM
(De Souza et al., 2017; Gano et al., 2021; Hu et al., 2018).
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FIGURE 2 Schematic overview of the different ways to extract spectral information from plants throughout a growing season, highlighting the

different sensors that can be used for target phenotypes at specific growth stages (e.g., emergence, vegetative stage, flowering, and maturity). RGB,

red-green-blue; Hyper, hyperspectral; MS, multispectral.

Due to the variation in the structure of the plant canopies, the
highest point in the point cloud is not usually the best way
to extract crop height. Therefore, the phenotyping platform is
split in grid cells of certain size, and the average plant height
is derived by including a certain number of top-of-canopy
points. RGB sensors are flexible, cheap, and easy to use, and
they do not require a high-skill calibration setup, unlike MS,
thermal, and hyperspectral sensors. For these reasons, they are
appropriate sensors for measuring canopy height. A number
of research studies have developed and assessed methods for
rapidly measuring plant height and growth using multitempo-
ral UAV datasets to create DSMs (Han et al., 2018; Hassan
et al., 2019).

After comparing UAV SfM-modeled crop heights to
ground truth field measurements measured by a ruler, some
UAV-derived surface models achieve high accuracy with a
root mean squared error (RMSE) of 0.03 m (Murcia et al.,
2021) and 0.05 m (Hassan et al., 2019) in wheat (Triticum aes-
tivum) and 0.01 m in sorghum (Sorghum bicolor) (Han et al.,
2018). We may also point out that the type of crop can affect
the accuracy in crop height estimate. While plant height esti-
mation works well in sugar beet (R* =0.7, RMSE = 7.4 cm)
and winter wheat (R? = 0.78, RMSE = 3.4 cm), in potato
(Solanum tuberosum), it proved to be less reliable (R?=0.5,
RMSE = 12 cm) due to the complexity of its canopy structure
(Murcia et al., 2021). The UAV-based orthoimage quality can
degrade due to the effect of motion blur, especially when a

high-speed drone is used. During image acquisition, camera
movement in a windy environment increases image motion
blur, posing a significant challenge to automating data analy-
sis of drone images (Sieberth et al., 2014). Several computer
processing steps, including co-registration, orthoimage, and
point cloud generation, are complicated by image motion
blur (Boracchi, 2009). Another potential obstacle is obtaining
enough tie point correspondence for good image matching,
essential for generating usable 3D models with PhotoScan
or Pix4D mapper software. Tie-point matching is difficult
to carry out in a flat terrain due to the uniformity of pixels
(Boracchi, 2009). Ultimately, plant height is a key agronomic
trait for which measurement accuracy is particularly impor-
tant as it is highly correlated to plant health, growth, yield,
and adaptation to environmental stresses.

6.2 | Stand count

Crop yield in a given field can be calculated by multiplying the
number of established plants by individual plant yield. Thus,
a key approach for estimating potential yield is through plant
counting (Shahid et al., 2024). The assessment of the num-
ber of plants, that is, digital counting of individual plants, has
been carried out in a number of studies using RGB sensors
with convolutional neural network (CNN) models to detect
plants at early developmental stages (Lu et al., 2024; Xu et al.,
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management.

2018). These CNN models were successful despite the pres-
ence of weeds and blurry images. Similarly, Guo et al. (2018)
demonstrated the potential of UAV image analysis for detect-
ing and quantifying sorghum panicles, with a precision of 0.87
and an R” of 0.84 between the UAV-based and manual count-
ing methods. Error was primarily attributed to variability in
plant morphology and field design; panicles from plants in
one plot would grow into adjacent plots and were counted in
the total panicle counts of neighboring plots. In all of these
studies, the final field emergence estimates of plants and the
number of heads were able to be rapidly assessed and allowed
for more accurate assessments of the final yield parameters.
The main challenges encountered are related to ML models
that rely heavily on costly labeled training image datasets.

6.3 | Plants growth, biomass, and yield
prediction

Breeding efforts for crop improvement are primarily geared
toward the development of high-performance varieties that

respond well to agronomic inputs, are tolerant to environment
stressors, and are resistant to pests and disease. The devel-
opment of high-performing varieties often involves the study
of growth traits that are related to production capacity. UAV-
based sensing is appropriate for assessing these plant growth
and yield traits, including vigor, leaf area index (Gano et al.,
2021; Shafian et al., 2018), and biomass (Anchal et al., 2021;
Zhang et al., 2017). VIs based on spectral reflectance values
exported from MS sensors have been used to develop pre-
diction models of growth traits in sorghum, including leaf
area index (LAI) and biomass (Gano et al., 2021). Calcu-
lated with spectral reflectance, VIs (Table 2) have widely
been implemented to evaluate crop growth traits (Li et al.,
2018; Potgieter et al., 2017; Yang et al., 2020; Zhang & Zhou,
2019). Xue and Su (2017) reviewed the utilization of 100 key
VIs, showing that some VIs captured robust information for
growth traits, biomass, and yield prediction. VI-based yield
prediction models are challenging for a complete growing
season, as complex yield traits are highly affected by many
variables including environment, genotype, and crop manage-
ment practices (Rotili et al., 2020). Interactions between these
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TABLE 2 Commonly used vegetation indices for plant traits.
Index Formula

Normalized difference vegetation index (NDVI)
Normalized difference red edge (NDRE)

Red edge soil-adjusted vegetation index (RESAVI)
Difference vegetation index (DVI)

Soil-adjusted vegetation index (SAVI)

Red edge ratio vegetation index (RERVI)

Red edge difference vegetation index (REDVI)
Ratio vegetation index (RVI)

Red edge wide dynamic range vegetation index
(REWDRVI)

Transformed chlorophyll absorption reflectance index
(TCARI)

Optimized soil-adjusted vegetation index (OSAVI)
Reflection in red edge (RRE)

Photochemical reflectance index

(NIR — R)/ (NIR + R)
(NIR — RE) / (NIR + RE)

1.5 % [(NIR — RE) / (NIR + RE + 0.5)]
NIR - R
(1+L)(NIR—R)/(NIR + R +L); L=0.5
NIR / RE

NIR — RE

NIR /R

(ax NIR — RE)/ (a X NIR + RE); a = 0.12

3[(R700 — R670) — 0.2 (R700 — R550)
(R700 / R670)]

(NIR — R) / (NIR + R + 0.16)
(NIR +R) /2

(R531 — R570) / (R531 + R570)
NIR/RE — 1
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Traits associated

LAI AGB, GY, CC
LAI AGB, GY, CC
LAI AGB, GY, CC
LAIL AGB, GY, CC, Ns
LAI AGB, GY, CC
Chl., PhiPSII, AGB, Ns
LAIL AGB, GY, CC, Ns
LAIL AGB, GY, CC
LAI AGB, GY, CC, Ns

Pn, Chl., Tr, C

Pn, Chl., Tr, C
LAI AGB, GY, CC, Ns
Pn, Chl., Tr, C, PhiPSII

Red edge chlorophyll index (Clgg)
Canopy chlorophyll content index (CCCI)
Health-index (HI)

(NDRE — NDREmin) / (NDREmax — NDREmin)
(R739 — R402) / (R739 + R402) — 0.5R403

Chl., PhiPSII
Chl., PhiPSII
PM, YR, A

Abbreviations: A, aphids; AGB, above ground biomass; C, stomatal conductance; CC, canopy cover; Chl., chlorophyll content; GY, grain yield; LAI, leaf area index; NIR,
near-infrared; Ns, nitrogen status; PhiPSII, PSII photochemistry efficiency; PM, powdery mildew; Pn, photosynthesis rate; Tr, transpiration rate; YR, yellow rust.

variables, in addition to variation between VIs and crop traits
that present at different phenology stages, contribute to rel-
atively high levels of uncertainty in the data-driven yield
prediction model generated by UAV-collected data (Zhou
et al., 2017). For example, the link between NDVI and grain
yield is so indirect and unstable and impacted by the harvest
index (HI), specific leaf area (SLA), leaf angle, and soil back-
ground optical properties. Nevertheless, rice yield has been
accurately estimated from spectral images acquired from an
unmanned helicopter (Swain et al., 2010). In this study, NDVI
was highly correlated with yield. Ultimately, data from these
and related studies indicate that MS sensors on board aerial
platforms can greatly facilitate phenotype quantification in
field plots and estimation of crop yield potential.

6.4 | Crop physiology

The assessment of crop physiological traits, such as photosyn-
thesis, chlorophyll fluorescence, leaf temperature, stomatal
conductance, leaf transpiration, and so forth, is impor-
tant for understanding and optimizing crop growth and
canopy reflectance properties (Feng et al., 2021). Plant leaf
reflectance in the VIS light range is influenced by concentra-
tions of chlorophyll, carotene, and lutein, while reflectance in
the NIR bands is linked to cell structure. Physiology research
implementing UAV-based phenotyping is primarily focused
on chlorophyll concentration and crop temperature. MS and

hyperspectral cameras are commonly used for monitoring
physiological parameters based on vegetation index-derived
regression models to estimate traits. Studies have demon-
strated the ability of photochemical reflectance index (PRI)
normalized by NDVI and red-edge chlorophyll ratio to accu-
rately reflect field measurements of stomatal conductance
(Zarco-Tejada et al.,, 2013). Hunt et al. (2018) estimated
chlorophyll content in potatoes through UAV-derived NDVI
and green normalized differential vegetation index (GNDVI).
Zhu et al. (2020) used UAV-collected hyperspectral images
to estimate maize (Zea mays) and wheat leaf chlorophyll
concentration. The evolution of narrow-band imagery has
diminished the sensitivity to structural effects, particularly
when using chlorophyll indices like the chlorophyll absorp-
tion in reflectance index (CARI), optimized soil adjusted
vegetation index (OSAVI), and associated indices (TCARI
and MCARI) (Haboudane et al., 2002). However, additional
progress is needed to elucidate the dynamic variation of
PRI pixels that accurately reflect different concentrations of
pigments (e.g., xanthophyll, chlorophyll, anthocyanins, and
carotenoids) (Zarco-Tejada et al., 2013). UAV-based thermal
imagery is primarily used to monitor water stress due to its
ability to measure canopy surface temperature reflecting plant
transpiration and water status (Poblete et al., 2018; Santeste-
ban et al., 2017; Zarco-Tejada et al., 2012). Crop water stress
index (CWSI) obtained with thermal imaging systems has
also demonstrated high correlations with leaf temperature.
However, a major concern about thermal imaging remains the
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camera calibration and the need to correct temperature calcu-
lated by the camera’s software, which makes the processing
very challenging. Future progress on a range of challenges
and opportunities is expected, including the advent of various
software package.

6.5 | Leaf nitrogen content

Leaf nitrogen measured from a canopy can accurately indicate
the current nutritional state of the crop, facilitating improved
nitrogen fertilization management (Fitzgerald et al., 2010).
While conventional methods for measuring leaf nitrogen are
laborious and usually require field measurements and lab
testing, UAV-based sensor systems offer nondestructive alter-
native methods for in-field crop nitrogen assessment. ML
methods have been shown to be effective in predicting LNC
using VIs and spectral imagery from UAV-based systems (Liu
etal., 2017). UAV system and ML methods have been used to
assess canopy accumulation and determine nitrogen levels at
various phenology stages, and in 2017, LNC was calculated
with a UAV-mounted hyperspectral system in wheat (Liu
et al., 2017). Nitrogen-use efficiency has also been measured
using UAV-mounted, RGB, MS, and thermal sensing systems
(Kefauver et al., 2017). However, it is crucial to acknowl-
edge the indirect nature of these quantifications. The models
rely on correlations between spectral features and LNC, but
factors such as environmental conditions, plant health, and
genetic variations can influence these relationships. Thus, pre-
dictions may be affected by external variables, highlighting
the need for caution in interpreting results and considering
potential limitations in the robustness of predictions across
diverse conditions.

Abiotic stressors such as nutrition deficiencies can dras-
tically drop crop yield and quality. These stresses induce
variations in the physiology, morphology, and also reflectance
of the plant that can be potentially surveyed using sensors
onboard a UAV (Ollinger, 2011). Therefore, UAV-mounted
sensors (RGB and MS) are suited for monitoring abiotic stress
(e.g., nitrogen deficiency). Such work, however, requires the
ability to detect fine changes that may occur in leaf pigments.
Improving nitrogen fertilization efficiency through the appli-
cation of precision nitrogen is key to avoiding its overuse
and limiting its cost and environmental impact (Bushong
et al., 2018). Overall, UAV-based VIs assessing crop nitro-
gen status have been shown to be as reliable as ground
truth measurements carried out with laboratory and in-field
instruments.

6.6 | Soil properties

Soil variability contributes a significant proportion of the total
environmental variability impacting crop growth and devel-
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opment in a field setting. Clay content, soil organic matter
(SOM), and soil organic carbon (SOC) are key soil traits
associated with crop growth and yield potential impacting
nutrient uptake and water retention (Zhang et al., 2021). Sev-
eral remote sensing studies have attempted to monitor SOC,
SOM, and electrical conductivity, which are highly related
to clay content, for a better understanding of soil types and
quality in the field (Chen et al., 2021). Zhang et al. (2021)
explored the potential of a UAV spectral imagery for assess-
ing SOC levels in bare cropland. In recent years, UAV-based
remote sensing has been used to estimate SOM or detect soil
properties, and help manage salinity effect (Ma et al., 2020;
Wang et al., 2020) that negatively affects the SOC content
(Gong et al., 2021; Wong et al., 2010), and plant nutrient
uptake (potassium, phosphorus, etc.) is affected by sodium
competition (Hurtado et al., 2019). Surveying soil reflectance
is another option to study soil features, and this method is
often based on hyperspectral remote sensing for soil attribute
monitoring.

Soil properties and crop growth and health are deeply inter-
connected, and most of earth’s land surfaces are covered by
vegetation. For these reasons, the majority of soil studies
with UAV remote sensing systems examine the interaction
between plant reflectance and soil for indirectly mapping soil
traits (Chi et al., 2018). Generally, these studies often focus
on developing prediction models between soil properties and
UAV-derived VIs. The UAV-derived indices can be used as
proxies for local soil properties and inform irrigation rate
management practices; they can also aid in the identifica-
tion and management of crop stress. In precision phenotyping,
quick assessments of comprehensive soil properties, including
proxies and indicators for soil fertility, are critical for agro-
nomic management. However, drone-based soil monitoring
presents unique challenges, contributing to potential errors in
assessing soil properties. Several factors make this task diffi-
cult, including changes in surface roughness, wetness, limited
penetration depth, soil moisture influence, and resolution and
scale issues.

6.7 | Pest and disease management

Precision phenotyping of disease prevalence and severity and
effects on crop output quality and yield is critical for produc-
tion agriculture and breeding. Plant disease mitigation is also
a significant topic of both basic and applied plant research
(Mahlein, 2016). Plant pathogens affecting crop health have
been found to decrease global production by approximately
40% (Oerke, 2006). Conventional methods globally used to
diagnose and detect crop diseases include visual scoring
with a manual rating and/or a ranking system, morphology
study using a microscope to identify pathogens, and several
molecular diagnostic technologies (Bock et al., 2010).

ASUROITT suoWWo)) 2Anear) a[qedrdde oy Aq pauroa0d are sa[oNIE YO SN JO $A[NI J0J A1eIqIT dulfuQ KI[IA\ UO (SUONIPUOD-PUB-SULI)/Wod K3[im KIeIqijourjuo//:sdiy) suonipuo)) pue suLd ], oy 32§ *[+707/60/0¢] uo Kreiqr auruQ L3ip ‘00102 2fdd/z001°01/10p/wos Kapim: Kreqiaurjuossasoe//:sdny woiy papeoumod ‘I 4702 ‘€0LISLST



GANO ET AL.

Ye et al. (2020) developed a novel method based on UAV-
based MS sensing to map Fusarium wilt in bananas. In this
study, the binary logistic regression (BLR) model was applied
to derive the spectral relationship between eight VIs and
Fusarium wilt infestation. Their investigations found that the
green chlorophyll index (Clg., ), red-edge chlorophyll index
(Clgg), NDVI, and normalized difference red edge (NDRE)
indices allowed them to distinguish disease presence and dis-
tribution in trees. The Clgg index exhibited a significant
correlation, attesting to the role of the red-edge spectral band
in the discrimination of infested plants (Ye et al., 2020). Dis-
eases that have been identified through UAV-based sensing
methods include rust infection (Huang et al., 2014), Fusar-
ium head blight (Mahlein et al., 2019), and powdery mildew
(Mahlein et al., 2019; Yuan et al., 2016; Zhao et al., 2018)
in wheat, bacterial leaf blight in rice (Oryza sativa) (Ahsan
etal., 2021; Liu, Shi, et al., 2020; Ullah et al., 2020), gray leaf
spot in maize (Dhau et al., 2018), and late blight infection in
tomato (Solanum lycopersicum) (Jones et al., 2010; Zhang,
Qin, et al., 2003).

Detecting plant disease in advance is critical for agri-
cultural sustainability and global food security, and the
innovative advance of drone and computer vision such as deep
learning algorithms to identify disease at the early stage has
been reviewed by Bouguettaya et al. (2021). Early disease
detection allows for timely intervention, reducing crop loss
and ensuring a stable food supply. UAVs play a pivotal role in
advancing early disease detection through their ability to pro-
vide real-time and large-scale crop monitoring (Arjoune et al.,
2022). When plants are infected, there is often significant
changes that occur in their biophysical and biochemical pool
(e.g., pigments, leaf water content, and internal structures);
these changes are subsequently reflected in the spectral prop-
erties of the infected plant (Zheng et al., 2018). However, in
the field, plants encounter numerous pathogens, and many of
these manifest similar symptoms. The accurate identification
of plant diseases represents a fundamental, yet intricate, chal-
lenge and a great limitation of UAV-based disease detection.
This drives scientists to program software capable of visu-
ally assessing every plant for disease detection, but challenges
persist in achieving programming accuracy due to issues like
background noise, adverse field conditions, sensor limita-
tions, variations in symptoms, and discrepancies in training
validation.

7 | ML FOR PLANT PHENOTYPING

ML algorithms are a critical addition to newly developed
high-throughput phenotyping methods with UAV-based sens-
ing (Angel & McCabe, 2022). Incorporation of novel ML
algorithms in different phenotype extraction methods has
accelerated the practices of precision agriculture (GaSparovic¢
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et al., 2020; Niu et al., 2020) and crop breeding (Castro et al.,
2020; Selvaraj et al., 2020) significantly in recent years. By
leveraging ML models in conjunction with UAV-based sens-
ing, researchers have been able to make significant strides
in automating data analysis and interpretation, thereby facil-
itating informed decision-making and resource allocation in
precision agriculture and crop breeding (Matese et al., 2023).
The integration of ML has enabled the extraction of valuable
insights from complex datasets derived from UAV imagery,
leading to improved predictive modeling and enhanced crop
management strategies. The purpose of an ML model is to
learn a mapping function for a target variable (or pheno-
type) from a given series of UAV images. The learning of
the function can be done in three ways—supervised, unsuper-
vised, and semi- or self-supervised. In the plant phenotyping
domain, fully supervised ML has gained more traction over
the other two (Nagasubramanian et al., 2022; Tsaftaris et al.,
2016). In supervised ML, a predictive model is trained by
using ground truth data for a given phenotype. For exam-
ple, if plant height is the target variable, then both UAV data
and corresponding sample plant height values are manually
collected as ground truth for the model. Alternatively, unsu-
pervised models aim to find underlying patterns within the
UAV-derived dataset and classify the dataset into different
clusters or ranges for inference, which is often used for clas-
sification within crop phenotyping (Al-Shakarji et al., 2018).
More recently, the semisupervised or self-supervised learning
mechanism has gained popularity within the plant phenotyp-
ing community as these methods rely on little to no ground
truth data while training (Giildenring & Nalpantidis, 2021;
Yan & Wang, 2022; Zapata et al., 2020). Here, we describe in
more detail the general methodologies involved in supervised
ML, which is currently the more established ML approach for
plant phenotyping.

A typical workflow of supervised ML for plant pheno-
typing tasks is illustrated in Figure 4. The workflow can be
divided into data collection (including both UAV and ground
truth), data splitting, feature engineering, ML training (either
classical ML or deep learning), and evaluation.

7.1 | Feature engineering

Feature engineering is a task that selects, manipulates, and
turns raw data into features required for supervised learning.
It is one of the most important steps of remote-sensing-
based ML. UAV sensors produce a multitude of information,
including RGB, MS, and hyperspectral data, point clouds,
radio intensities, and so on. Spectral reflectance can be
extracted from well-calibrated MS and hyperspectral sensors
and defines VIs (Yousfi et al., 2022). The reflective spec-
tral signature can provide information associated with the
biological state and biochemical composition of plant leaves
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and canopy (Boyd & Danson, 2005). In a typical vegetation
reflectance spectrum, the VIS spectral region (400-700 nm)
is dominated by leaf pigment absorption (e.g., chlorophylls,
carotenoids, and xanthophylls), absorption by water is mod-
erate in the SWIR region (1300-2100 nm), and absorption
by plant leaves is low in the NIR region (700-1300 nm).
Unique characteristics of different plants are captured within
the reflective spectra, and VIs can be calculated to highlight
certain plant traits (Ollinger, 2011). Therefore, when a certain
ML model is being trained for plant phenotyping, instead of
feeding direct reflectance data from different wavelengths, it
is a common practice to use the VIs as the independent vari-
ables (Di Gennaro et al., 2018; Koh et al., 2022; Wang et al.,
2021; Xu et al., 2019).

There has been a significant amount of VI development for
different types of plant phenotype correlations. Typically, VI
is calculated as the ratio of two wavelength bands in order
to contrast two features (the absorbing and nonabsorbing)
(Huete, 2012). However, the use of multiple wavelength bands
and VIs has proven to be even more effective in signifying cer-
tain traits (Anderson et al., 2011; Zarco-Tejada et al., 2003).
Table 2 shows a list of commonly used VIs for specific plant
traits.

While VIs can identify certain spectral characteristics
of plants, structural characteristics are also important for
understanding the physical properties of a plant canopy.
Phenotyping from only VIs is hampered by the asymptotic

saturation of optical sensors in the dense vegetation of late
plant development stages (Greaves et al., 2015; Rischbeck
et al., 2016). Structure features often are calculated from the
crop height model (CHM) generated by either high-resolution
UAV RGB cameras or LiDAR point clouds. Usually, the plot-
level descriptive statistics of CHM (e.g., mean, median, mode,
entropy, coefficient of variation, and different percentiles
of height) are used as structural features. Fusing structural
information with VIs has improved estimation accuracy for
different plant phenotypes, including crop biomass (Li et al.,
2015; Maimaitijiang et al., 2019), LAI (Maimaitijiang et al.,
2017), and yield (Bendig et al., 2015). In addition to structure
features, texture features are also found to be highly effec-
tive in distinguishing the spatial heterogeneity in the canopy
(Mutanga & Skidmore, 2004). Texture information captures
the spatial difference in pixel intensities in a given image,
which highlights the structural and geometric features of plant
vegetation (De Grandi et al., 2009). Usually, texture features
are obtained by calculating gray-level co-occurrence matrix
or GLCM and then determining different texture statistics,
such as mean, variance, contrast, homogeneity, heterogeneity,
entropy, second moment, and correlation, from the plot-level
data. More information about texture features can be found in
Nichol and Sarker (2011).

Feature selection is another important component of fea-
ture engineering. Since there can be hundreds or even
thousands of features from UAV-based sensors, it is often
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difficult for the ML model to learn from such a multitude of
features. This is often known as the “curse of dimensional-
ity,” where the number of independent features is more than
the training sample (Salimi et al., 2018). Where hyperspectral
sensors are concerned, principal component analysis (PCA)
or linear discriminant analysis (LDA) can be used to reduce
the number of independent features into a few key compo-
nents (Fang et al., 2019). Additionally, Pearson’s correlation
coefficient (Fang et al., 2019; Pooja et al., 2020), partial
least squares (PLS) regression-based variance importance in
the projection (Maimaitijiang et al., 2017; Peerbhay et al.,
2014), and random forest (RF)-based mean decrease impurity
score (Behnamian et al., 2017; Packalén et al., 2012; Ped-
ergnana et al., 2013) are also often used to select the most
important features. Therefore, the use of appropriate feature
selection before training is a good practice in ML-based plant
phenotyping.

7.2 | Classical ML algorithms

Classical ML algorithms have experienced a resurgence in the
realm of UAV-based plant phenotyping, owing to their robust
performance and versatile applications. The basis of these
algorithms was highly concentrated on advanced statistics
and probabilistic reasoning. In supervised learning, the com-
monly used classical ML algorithms such as support vector
machine (SVM), RF, PLS, extreme learning machine (ELR),
and Gaussian processes (GP) play a pivotal role in overcoming
various challenges associated with nonlinear regression, time-
series forecasting, and data classification. SVM is a highly
used ML algorithm in the plant phenotyping community. It
has the capacity to overcome forecasting issues in nonlin-
ear regressions and time series (Thissen et al., 2003). SVM
reduces the generalization error and avoids model overfit-
ting (Tay & Cao, 2001). RF uses decision-tree frameworks
for either classification or regression with noncorrelated and
independent training data, thus relieving the artifacts of bias
and sensitivity (Genuer et al., 2017; Shi & Horvath, 2006).
PLS is another popular ML algorithm used mostly in regres-
sion problems, and it works well with hyperspectral data, as
there exist hundreds of independent features in a spectrum.
These classical ML algorithms, versatile in their application,
can be seamlessly integrated into various regression and clas-
sification problems, with the prerequisite of comprehensive
feature engineering and rigorous testing to ensure accurate
and reliable inferences.

7.3 | Deep neural networks

Deep neural networks or deep learning is a part of the
broader ML paradigm. In general, deep neural networks
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can be divided into three different types in the context
of plant phenotyping—artificial neural networks (ANNSs),
CNNSs, and recurrent neural networks (RNNss). Although there
are other types of neural networks for different purposes,
these three types are the most common networks used in plant
phenotyping applications.

The ANN is the simplest form of neural network. Here, sev-
eral neurons try to learn weights and biases from ground truth
data to map a nonlinear function from the input variables and
predict a certain output trait. Simple ANN uses a backprop-
agation algorithm to optimize the complex nonlinear models
and requires several iterations to complete the training (Pang
etal., 2020). Features extracted from UAV imagery are gener-
ally used as the input for the ANN (Chew et al., 2020). When
a phenotyping problem involves plot-level statistical informa-
tion as the input, ANN has been shown to accurately estimate
the phenotype (Maimaitijiang, Sagan, Erkbol, et al., 2020;
Zhang et al., 2019). ANN, however, cannot utilize images
directly into the network, which led to the development of the
CNN.

CNNs have revolutionized computer vision tasks as they
use convolution and pooling layers to contemplate the inher-
ent spatial characteristics of images for inference (Kattenborn
etal., 2021; Maggiori et al., 2016). Instead of having neurons,
it has kernels where the weights and biases are trained. CNNs
learn spatial patterns and can be directly used with UAV
imagery without the requirement of feature engineering (Pang
et al., 2020). Many studies have utilized direct imagery-based
CNNs in predicting different phenotypes and achieved sig-
nificant improvement over traditional ML algorithms and/or
ANNSs (Tang, Qiu, et al., 2023; Tang, Zhou, et al., 2023; Wu
etal., 2022, 2023). The phenotyping use case, however, drives
the type of CNN that can be used. For example, custom-made
CNN architectures involving multiple building blocks often
are used for simple regression or classification problems.
OD algorithms (e.g., YOLO and Faster-RCNN), however, are
often used in tassel detection (Liu, Shi, et al., 2020), dis-
ease identification (Karthik et al., 2020), and segmentation of
different leaf traits (Kolhar & Jagtap, 2021; Xu et al., 2018).

RNN is another type of deep neural network that leverages
sequential data to learn certain patterns. In crop phenotyp-
ing, the different growth stages of plants provide interesting
data collection and analysis opportunities through multitem-
poral UAV observations. Many studies have implemented
RNN units such as long short-term memory (LSTM) (Shen
et al., 2022; Zhou et al., 2021) and gated recurrent unit
(GRU) (Mahlein, 2016) in understanding the temporal aspect
of plant growth. Additionally, the use of both RNN units with
CNN has proven to be highly efficient in structuring spa-
tial, spectral, and temporal characteristics from UAV-based
data.

While deep neural networks consistently exhibit enhanced
accuracy and efficiency compared to classical ML
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algorithms, their performance heavily relies on the avail-
ability of extensive ground truth training datasets (Atanbori
et al., 2020). Various tools have emerged to aid in generating
training datasets for deep neural network applications in
plant phenotyping. Researchers have developed Ladder and
ROOSTER, software solutions offering intuitive graphical
interfaces to streamline labeling, training, and deployment
of OD models, with Ladder focusing on simplifying labeling
and ROOSTER integrating labeling and prediction for
enhanced efficiency in human labeling and machine vision
system development (Tang & Zhang, 2023; Tang, Hu,
et al., 2023). Despite potential constraints such as logistical,
personnel, financial, and technological limitations, concerted
efforts by global crop breeders and scientific communities
to gather comprehensive phenotypic and environmental
datasets have the potential to accelerate the progress of
deep learning training. In this context, the accessibility of
open-source and standardized datasets in plant phenotyping
could significantly alleviate the challenges inherent in crop
breeding and precision agriculture.

8 | OPEN ISSUES AND RESEARCH
CHALLENGES

8.1 | Suitable UAV platform for phenotyping
applications

When selecting a drone, one should first examine the appli-
cation in order to select between a fixed or rotary wing type.
The wing category has a significant effect on drone endurance
and maneuverability. For example, a fixed-wing UAV is rel-
atively easy to pilot, but it is not able to hover as well as a
rotary-wing drone (Cuaran & Leon, 2021). The fixed-wing
UAVs are also subject to controlled landings that may dam-
age the drone and its cameras. Another essential characteristic
to consider is endurance due to a wide range of flight times
across drone types. While some UAVs can sustain flight
for a few dozen minutes, others can fly for several hours
depending on the aerodynamic efficiency and performance
(Panagiotou et al., 2020). A drone’s endurance may be influ-
enced by wing category (fixed-wing drones support higher
flight duration) and climate conditions. Moreover, it is rec-
ommended to consider the drone’s payload capacity as they
are built to support certain weights (for carrying tools, cam-
eras, sensors, etc.). They are also often able to be modified to
carry other objects, documents, or even liquid to be sprayed
(AUAY, 2022).

If one’s goal is to obtain a small UAV and camera, col-
lecting phenotype data for short periods, a multi-rotor setup
should be the best solution. Multi-rotors are also easy to
fly, cost little, and provide appropriate control and framing
for aerial imagery (Maddikunta et al., 2021). Disadvantages
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include decreased durability and speed and the requirements
for significant energy to move against gravity. Single-rotor
drones have one rotor and a tail rotor that guides the drone’s
heading; they are generally gas powered and allow for longer
flight times. Fixed wings help the drones lift and move in
a forward direction, but they do not stay up against grav-
ity. Drawbacks of fixed wings include their bigger GSD,
which has negative impact for acquiring comprehensive UAV
imagery (Yang et al., 2017). The hybrid type is a UAV that
has the advantages of a fixed wing and can hover like a rotary
system (AUAYV, 2022).

8.2 | Efficient UAV sensors for phenotyping
applications

Electro-optic sensors are commonly used for plant pheno-
typing applications; however, their performance is strongly
impacted by weather conditions (e.g., cloudy environments)
(Chand et al., 2017). Table 3 provides an overview of differ-
ent UAV sensors and applications that are suitable and highly
suited for crop phenomics. MS sensors are very appropriate
for UAV-based plant phenotyping as they provide spatially
high-resolution images and reflectance values in the NIR
range (Smith et al., 2015). These sensors can be very effec-
tive tools for scientists through the use and interpretation
of MS bands for phenotyping crop health traits and plant
growth. Analyses of MS data collected from UAVs are cur-
rently among the few methods available for the early detection
of crop diseases and pests, weeds, and the estimation of plant
biomass (Maddikunta et al., 2021). RGB cameras globally
have higher spatial resolution than other sensors, including
MS sensors; however, in agricultural fields, MS sensors have
greater benefits than RGB in terms of information quantity
and quality and their capacity to survey plant physiological
status (Shu et al., 2022).

Hyperspectral cameras are heavy and large, and they
require integration with several other devices in UAV setups,
such as a frame grabber, battery, and a data storage device.
These features and requirements for support equipment have
traditionally made hyperspectral systems challenging to use
in agricultural settings (Matese et al., 2023). However, the
technology needed for miniaturizing hyperspectral sensors is
advancing and will enhance integration into UAV-based field
phenotyping platforms and increase their applications in agri-
culture (Adamopoulos & Rinaudo, 2020). Thermal sensors
allow measurements of canopy temperature and crop water
stress indices (Boesch, 2017). They can convert into an image
the detected electromagnetic energy released by an object
in the infrared range. However, some factors such as varia-
tion in environmental conditions and the possibility of having
different targets that emit or reflect thermal infrared radia-
tion can decrease the accuracy of thermal infrared camera
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TABLE 3 Overview of unmanned aerial vehicle (UAV) sensor applications in plant phenotyping.
Applications RGB Lidar Multispectral Hyperspectral Thermal Radar
Plant/stand count HS HS S - - -
Height HS HS S - - -
Biomass S S HS - -
Yield S S HS - -
Crop physiology S S HS HS HS -
Leaf nitrogen content S S HS HS S -
Soil properties S S HS HS - HS
Pest and disease management HS S HS HS HS -

Abbreviations: HS, highly suited; S, suited.

measurements; these systems also require periodic calibration
(Pech et al., 2013).

Unlike electro-optic sensors, radar and LiDAR sensors
are less sensitive to unfavorable environmental conditions.
LiDAR sensors operate by illuminating a targeted object
and analyzing the reflected light. They cover wide land-
scapes providing accurate digital terrain and surface models
(Adamopoulos & Rinaudo, 2020). However, the larger size
and weight of LiDAR systems can be problematic with cer-
tain UAV payload restrictions (Balestrieri et al., 2021). As
UAVs fly at low altitudes, obstacles such as birds, buildings,
trees, and so forth can also represent a critical challenge.
Some sensors such as radar can detect obstructions in the local
environment by continuously emitting electromagnetic waves
(Chand et al., 2017). LiDAR has a short detection range com-
pared to radar; however, it has the advantage of providing
higher accuracy and detail (Chand et al., 2017).

8.3 | Challenges on ML-based phenotyping
Plant phenotype data can be expensive and time consuming to
collect, and there may be limited availability of high-quality
data. This can make it challenging to train accurate ML mod-
els. Despite the development of advanced software and tools
to generate training datasets for ML (Tang & Zhang, 2023;
Tang, Hu, et al., 2023), they still have several limitations
including lack of accuracy, subjectivity and bias, difficulty in
generating and validating complex data, limited domain cov-
erage, and adaptability to model changes. There is a need for
more open-access datasets and standardized data collection
protocols to facilitate ML research on plant phenotypes.

The quality of the plant phenotype data used to train ML
models is critical for accurate predictions. However, the qual-
ity of the data can be affected by various factors such as
environmental conditions, measurement error, and human
bias. It is essential to develop more reliable and accurate data
collection methods to ensure high-quality data for ML (Gano
et al., 2023). For plant phenotype analysis, it can be chal-

lenging to determine which features are most informative for
predicting the traits of interest. Future research should focus
on developing more advanced feature selection methods and
tools to improve the accuracy of the models.

Moreover, ML models are often considered ‘“black boxes”
because it can be difficult to interpret how they make pre-
dictions. This is particularly problematic for plant phenotype
research, where understanding the underlying biology of the
plant is critical. There is a need for more transparent and inter-
pretable ML models that can be easily understood by plant
biologists. There is a requirement for more generalized ML
models that can be applied to a wide range of plant phenotype
datasets and species. Finally, as ML models are increasingly
used in plant phenotype research, ethical considerations such
as data privacy and bias need to be addressed. It is imperative
for more ethical guidelines and standards to ensure that ML is
used in a responsible and fair manner.

8.4 | Complexities in data processing
Developing “plug and play” analytical solutions for UAV-
based phenotyping is crucial for enabling breeders and
researchers to easily extract relevant information from the
captured imagery. These solutions should be user-friendly,
with intuitive interfaces and automated workflows that can
handle diverse data types and formats. They should also pro-
vide accurate and reliable trait extraction algorithms that
can account for variability in environmental conditions, crop
types, and growth stages (Yang & Zhai, 2022). Many image
processing steps are time consuming, and coding for auto-
matic and repetitive tasks is a critical requirement. For
example, manually drawing polygons on image mosaics for
adjacent plot delimitation is a time-consuming activity that
requires collaboration between the computer scientists car-
rying out the image analysis and the field agronomists that
designed the experiment. Therefore, it is important to enhance
communication and develop a “shared vocabulary” between
both parties (Shi et al., 2016).
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Research groups and companies around the world are
also rapidly developing software to automate the critical
steps necessary for successful UAV-based plant phenotyping,
including identification of individual plots, radiometric cal-
ibration, and high-speed image processing. The analysis of
hyperspectral and LiDAR images remains computationally
challenging, and there is a growing demand for the devel-
opment of high-speed software to improve efficiency and
accuracy in the data processing pipeline for these systems.
Additionally, there is a need for more efficient data manage-
ment systems that can effectively store, organize, and analyze
the large volumes of data collected by UAVs.

8.5 | Regulatory issues and additional
challenges

The regulatory requirements in the United States and globally
pose a significant obstacle for the use of UAVs in agronomic
research and crop production. A less restrictive regulatory
environment will be necessary for the full realization of this
technology’s potential (Shi et al., 2016). In the United States,
current Federal Aviation Administration (FAA) rules request
a certificate of authorization or Part 107 remote pilot per-
mit for legally holding flight missions over field trials (Shi
et al.,, 2016). FAA legislation also requests registration of
UAV operators, in addition to pilot training. Globally, UAV
flights should cohere with local and national regulations.

Additional challenges limiting the global adoption of UAV's
in plant phenotyping include significant data loss due to
lighting and environmental effects, airspace restriction, UAV
battery and payload constraints, UAV-related safety con-
cerns, and birds and other wildlife (Olson & Anderson, 2021;
Tsouros et al., 2019). With further advancements in sensor
technology and ML algorithms, UAV-based phenotyping is
likely to become an essential tool for crop breeding pro-
grams in the future. The highlighted research issues and
challenges will enable researchers to identify the problem
domain quickly.

9 | FUTURE TRENDS AND EMERGING
TECHNOLOGIES

As the field of UAV-based plant phenotyping continues to
evolve, several key trends and emerging technologies are
expected to shape the future of agricultural research and
crop production. This section aims to provide insights into
the most promising technologies and research directions that
researchers can consider for future investigations and resource
allocation.
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9.1 | Anticipated trends

The future of UAV-based plant phenotyping is expected to
witness innovative remote sensing technologies, a heightened
integration of advanced ML algorithms for improved data
analysis and prediction of complex plant phenotypes. More-
over, there will be a continued focus on the development
of standardized protocols and open-access datasets to foster
collaborative research and data sharing in the field.

9.2 | Promising technologies for future
research

In the coming years, advancements in hyperspectral imaging
techniques are anticipated to enhance crop health assess-
ment and disease detection. Further exploration of LiDAR
technology will enable high-resolution 3D mapping of crop
vegetation and more accurate biomass estimation. Addition-
ally, the integration of unmanned ground vehicles (UGVs)
and UAVs will facilitate synergistic data collection and anal-
ysis in precision agriculture. The implementation of onboard
and real-time data transmission and processing using edge
computing capabilities, along with the integration with deci-
sion support systems, is also in development and will allow
breeders to receive instant feedback on crop traits. Addi-
tionally, the development of modular UAV system that can
be customized based on specific crop types, environmen-
tal conditions, or research objectives is underway. While
increasing flight duration became a primary concern, some
companies (such as Harris Aerial) are already working on
integrating power generator (electric or solar) into the UAV
platform.

9.3 | Practical guidance for researchers

To effectively contribute to the field of UAV-based plant
phenotyping, researchers should prioritize the implementa-
tion of standardized data collection protocols and robust
validation methods (Shu et al., 2022). Encouraging collab-
oration and data sharing within the research community
will be instrumental in the development of open-access
datasets and the advancement of UAV-based plant pheno-
typing. Furthermore, investments in interdisciplinary research
collaborations and user-friendly software tools for stream-
lined data processing and analysis will be critical in enabling
efficient decision-making for crop management and breeding
programs.
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10 | CONCLUSIONS

With rapid advancements in sensor technology and ML algo-
rithms, UAV-based phenotyping is poised to become a crucial
tool for crop breeding programs in the future. The primary
objectives of this review were to explore and describe the
current frameworks and applications of UAVs in agriculture,
specifically in plant phenotyping for faster and improved data
acquisition in crop breeding. Among the various drone-based
platforms, the multi-rotor UAV is the most commonly utilized
platform, providing a compelling alternative to the tradition-
ally employed time-consuming and labor-intensive ground
truth methods for in-field crop phenotyping. With customized
approaches for acquisition, processing, and analysis of data
collected from UAV-mounted RGB, MS, hyperspectral, ther-
mal, and/or LiDAR sensors, recent studies have successfully
achieved accurate and robust high-throughput phenotyping of
biophysical, physiological, and biochemical plant traits.

However, a significant challenge in utilizing UAVs and sen-
sors for crop phenotyping is the requirement for validation
data, which may not always be feasible to obtain. Another
limitation is the reduced or nonsignificant correlations when
complex crop phenotypes are not directly related to canopy
spectral information. Despite these challenges, the large vol-
ume of data generated from UAV systems can be harnessed
for new ML approaches to extract and predict plant pheno-
types. Selecting suitable ML approaches and adhering to best
practices are crucial for obtaining high-quality phenotype data
necessary for measuring and enhancing genetic gain.

From a perspective standpoint, the integration of physically
based radiative transfer models and process-based crop mod-
els into phenotyping studies marks a noteworthy stride in the
realm of remote sensing applications for agriculture. This shift
away from conventional reliance on classical methods, partic-
ularly those focused on Vls, introduces fresh opportunities for
a more intricate and process-driven comprehension of plant
traits. Nevertheless, a thorough examination of these alterna-
tive approaches unveils a landscape rich in both advantages
and challenges.
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