



## Learning the hierarchical organization of the frontal lobe with differential causal effects

Kurt Butler <sup>a,\*</sup>, Duncan Cleveland <sup>c</sup>, Charles B. Mikell <sup>b</sup>, Sima Mofakham <sup>a,b</sup>, Yuri B. Saalmann <sup>c</sup>, Petar M. Djurić <sup>a</sup>

<sup>a</sup> Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA

<sup>b</sup> Department of Neurosurgery, Stony Brook University, Stony Brook, NY 11794, USA

<sup>c</sup> Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA

---

### ARTICLE INFO

**Keywords:**

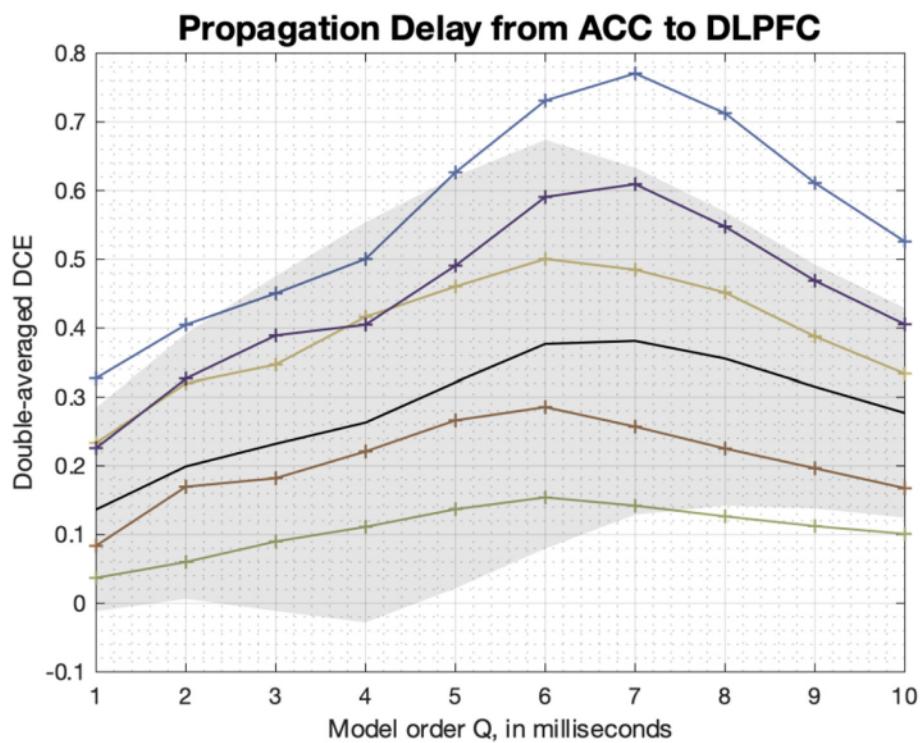
Brain  
Causal strength  
Gaussian process  
Medical signal processing  
Network  
Time series

---

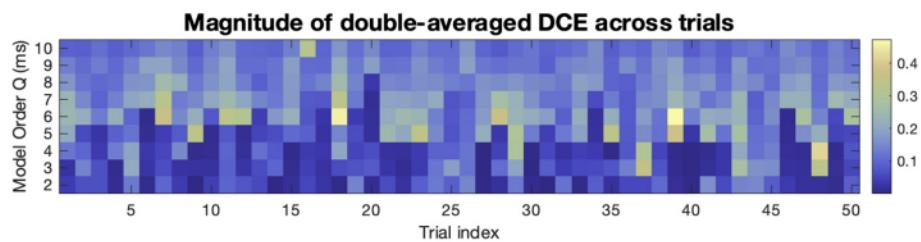
### ABSTRACT

In this video article, accompanying the paper “An approach to learning the hierarchical organization of the frontal lobe”, we discuss a data driven approach to learning brain connectivity. Hierarchical models of brain connectivity are useful to understand how the brain can process sensory information, make decisions, and perform other high-level tasks. Despite extensive research, understanding the structure of the prefrontal cortex (PFC) remains a crucial challenge. In this work, we propose an approach to studying brain signals and uncovering characteristics of the underlying neural circuitry, based on the mathematics of Gaussian processes and causal strengths. For discovering causations, we propose a metric referred to as double-averaged differential causal effect, which is a variant of the recently proposed differential causal effect, and it can be used as a principled measure of the causal strength between time series. We applied this methodology to study local field potential data from the frontal lobe, where the interest was in finding the causal relationship between the medial and lateral PFC areas of the brain. Our results suggest that the medial PFC causally influences the lateral PFC.

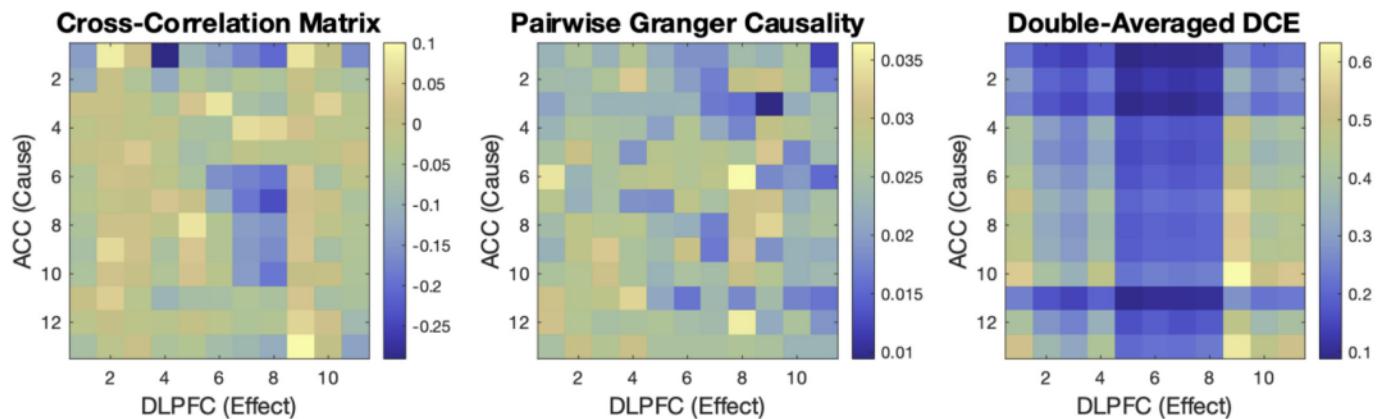
---


Video to this article can be found online at <https://doi.org/10.1016/j.sctalk.2024.100329>.

---


\* Corresponding author.

E-mail address: [kurt.butler@stonybrook.edu](mailto:kurt.butler@stonybrook.edu) (K. Butler).


## Figures and tables



Double-averaged Differential Causal Effect (DCE) vs. the model order parameter  $Q$ . In black, we show the average across all pairs of channels and trials, with one standard deviation in the shaded region. In each pair, one channel is from the anterior cingulate cortex (ACC) and the other from dorsolateral prefrontal cortex (DLPFC). The colored curves correspond to the results for fixed pairs of channels, but we still average over trials to produce each curve. The strongest influence appears when the model order (interpreted as a window length) is around 6 to 8 ms.



Heatmap illustrating how the double-averaged Differential Causal Effect (DCE) varies from trial to trial, for a fixed pair of channels (one from anterior cingulate cortex (ACC) and one from dorsolateral prefrontal cortex (DLPFC)). For clarity, we only show 50 trials here. There is noticeable variability from trial to trial. However, mostly all trials show the behavior that the causal strength is small for small  $Q$ , and the measured causal strength of the ACC on the DLPFC increases significantly when  $Q$  passes some trial-dependent threshold.



Comparison of the cross-correlation, pairwise Granger causality [1], and the double-averaged Differential Causal Effect (DCE) across pairs of channels from the anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC), respectively. The cross-correlation and Granger causality analyses are suggestive of a relationship between ACC and DLPFC, but the resulting plots do not show recognizable spatial structure across channels. The double-averaged DCE detected causal strength which was more spatially organized than the two linear measures. In all three plots, the matrices were computed using 212 trials of the hierarchical rule task, where each channel recorded 1000 samples of data per trial.

#### CRediT authorship contribution statement

**Kurt Butler:** Conceptualization, Formal analysis, Methodology, Software, Validation, Visualization, Writing – original draft. **Duncan Cleveland:** Data curation, Investigation, Resources, Writing – original draft. **Charles B. Mikell:** Conceptualization, Funding acquisition, Methodology, Project administration, Supervision. **Sima Mofakham:** Conceptualization, Funding acquisition, Investigation, Methodology, Resources, Writing – original draft. **Yuri B. Saalmann:** Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Writing – review & editing. **Petar M. Djurić:** Conceptualization, Formal analysis, Funding acquisition, Methodology, Project administration, Supervision, Writing – review & editing.

#### Data availability

The authors do not have permission to share data.

#### Acknowledgments

This work was supported by NSF Awards 2021002 and 2212506, by NIH Grant R01MH110311, and Seed Grant funding from the Office of the Vice President for Research at Stony Brook University. The work of Kurt Butler was supported by the USDE under the GAANN Fellowship.

#### Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

#### References

[1] S.L. Bressler, A.K. Seth, Wiener–Granger causality: a well established methodology, *Neuroimage* 58 (2) (2011) 323–329.

#### Further reading

[1] M.M. Botvinick, Hierarchical models of behavior and prefrontal function, *Trends Cogn. Sci.* 12 (5) (2008) 201–208.  
 [2] K. Butler, G. Feng, P.M. Djuric, A differential measure of the strength of causation, *IEEE Signal Process. Lett.* 29 (2022) 2208–2212.

[3] P. Domenech, E. Koechlin, Executive control and decision-making in the prefrontal cortex, *Curr. Opin. Behav. Sci.* 1 (2015) 101–106.  
 [4] E. Koechlin, C. Ody, F. Kouneiher, The architecture of cognitive control in the human prefrontal cortex, *Science* 302 (5648) (2003) 1181–1185.  
 [5] C.E. Rasmussen, C.K. Williams, *Gaussian Processes for Machine Learning*, MIT Press, 2006.  
 [6] A. Shenhav, M.M. Botvinick, J.D. Cohen, The expected value of control: an integrative theory of anterior cingulate cortex function, *Neuron* 79 (2) (2013) 217–240.  
 [7] E. Solak, R. Murray-Smith, W. Leithad, D. Leith, C. Rasmussen, Derivative observations in Gaussian process models of dynamic systems, *Adv. Neural Inf. Proces. Syst.* 15 (2002).



Kurt Butler received his B.E. degree in electrical engineering and mathematics from Stony Brook University in 2019. He is currently working toward the Ph.D. degree in electrical engineering at Stony Brook University with professor Petar Djurić. His research interests include the theory of machine learning, dynamical systems, and the detection and modeling of causality with time series.



Duncan Cleveland received his B.A. in psychology from St. Olaf College in 2014. He is currently a Ph.D. candidate in the psychology department at the University of Wisconsin-Madison, working under Dr. Yuri Saalmann. He studies the neural correlates of cognitive control, mind-wandering, and self-generated thought.



Charles B. Mikell received his M.D. from the Columbia University College of Physicians and Surgeons. He completed his residency at the Columbia University Medical Center - NY Presbyterian. He is currently a Clinical Associate Professor in the Department of Neurosurgery at the Renaissance School of Medicine at Stony Brook University, and a co-director of the Stony Brook Movement Disorders Center. He specializes in the surgical treatment of Parkinson's Disease, essential tremor, dystonia and epilepsy. His expertise includes brain tumor surgery and spine surgery with a strong emphasis on minimally invasive techniques and patient comfort. He has published papers in the *Journal of the American Medical Association, Brain and Stroke*.



**Dr. Mofakham**'s background is in Physics and Computational Neuroscience. She joined Stony Brook in 2018. She has worked to build a translational multidisciplinary laboratory that bridges basic science and clinical research. Their lab, Mofakham-Mikell Lab, integrates theoretical and experimental work and studies human consciousness by combining intracranial recording and stimulation with computational neuroscience, machine learning, and artificial intelligence. These methods are combined to develop novel models and next-generation neuromodulatory approaches to understand and facilitate recovery of consciousness after traumatic brain injury.



**Yuri B. Saalmann** received his B.S.(Hons) from the University of Queensland, and Ph.D. in neuroscience from the Australian National University. He completed postdoctoral work at Royal Holloway University of London and Princeton University. He is currently an Associate Professor in the Department of Psychology at the University of Wisconsin – Madison and Core Scientist at the Wisconsin National Primate Research Center. His research focuses on the neural bases of cognitive control and consciousness, using electrophysiology and neuroimaging techniques in animal models and epilepsy patients.



**Petar M. Djurić** obtained his B.S. and M.S. degrees in Electrical Engineering from the University of Belgrade and his Ph.D. degree in Electrical Engineering from the University of Rhode Island. Following the completion of his Ph.D., he joined Stony Brook University, where he currently holds the position of SUNY Distinguished Professor and serves as the Savitri Devi Bangaru Professor in Artificial Intelligence. Djurić also held the role of Chair of the Department of Electrical and Computer Engineering from 2016 to 2023. His research has predominantly focused on machine learning and signal and information processing. In 2012, Djurić received the EURASIP Technical Achievement Award whereas in 2008, he was appointed Chair of Excellence of Universidad Carlos III de Madrid-Banco de Santander. He has actively participated in various committees of the IEEE Signal Processing Society and served on committees for numerous professional conferences and workshops. He was the founding Editor-in-Chief of the IEEE Transactions on Signal and Information Processing Over Networks. In 2022, he was elected as a foreign Member of the Serbian Academy of Engineering Sciences. Furthermore, Djurić holds the distinction of being a Fellow of IEEE and EURASIP.