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We detail an approach to developing Stein’s method for bounding integral metrics on probability measures defined on a
Riemannian manifold M. Our approach exploits the relationship between the generator of a diffusion on M having a target
invariant measure and its characterising Stein operator. We consider a pair of such diffusions with different starting points,
and through analysis of the distance process between the pair, derive Stein factors, which bound the solution to the Stein
equation and its derivatives. The Stein factors contain curvature-dependent terms and reduce to those currently available
for R", and moreover imply that the bounds for R" remain valid when M is a flat manifold.
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1. Introduction

The eponymous method to estimate integral metrics and semi-metrics on spaces of probability measures proposed
by Charles Stein (Stein, 1972) has led to tremendous improvements in distributional approximation techniques.
See, for example, the surveys by Barbour and Chen (2014) and Ross (2011). The method has mainly been
developed for probability measures on R"or N" for m =1. The focus of this paper is on developing a version of the
method that can be employed to approximate probability measures on an m-dimensional Riemannian manifold.

Abstracting Stein’s method to a general space Xin a heuristic manner is useful for elucidating its key
ingredients and the ensuing challenges in developing a corresponding version on manifolds. The goal is to
bound an integral (semi-)metric j

]

JAH(W, v):=
hdp = hdv

sup
heH

between a probability measure v and a target probability measure pu on Xwith respect to a class H of
real-valued test functions on X. Stein’s method is centred around the construction and study of an operator L
that maps functions f': X—R in a certain class F into mean-zero functions under p:if X ~p, then E [Lf (X)]= 0
for every f €F. The operator L thus encodes information about p and, when F is sufficiently large, one may
determine a function fh €F associated with every 4 €H that solves the Stein equation (or the Poisson equation
in PDE literature)

h(x)=E [A(X)]= Lfn(x).

As a consequence, bounding dH(u, v)reduces to bounding the term sup, ¢E [LM(2)], where Z ~v, achieved in
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application-specific ways. An important implication, profitably used in some applications, is that the need to
compute an expectation with respect to p in dH is circumvented; an example is when
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v is the empirical measure based on points x1,....xn on X and p represents a conjectured limit probability
measure. Upper bounds on dH then depend explicitly on the smoothness of the functions in F . Hence, integral
to the success of Stein’s method in upper bounding dH are the following requirements:

(a) construction of the operator L and identifying its domain F ; and, (b) determination of the solution fi and its
regularity properties.

An introductory account on choices of L satisfying requirement (a) for various probability measures p on R (or
some subset thereof) is available in Ross (2011). When X = R",m > 1, focus has mainly been restricted to the case
when p is a Gaussian measure (see Barbour (1988), Chatterjee and Meckes (2008), Meckes (2009)) although
more recently results on extensions to non-Gaussian measures have appeared in Chen et al. (2019), Fang, Shao and
Xu (2019), Mackey and Gorham (2016), Mijoule, Reinert and Swan (2019).

An important observation by Barbour (1988) relates the operator L to the infinitesimal generator of a diffusion
process on R"that solves an SDE with invariant measure p. This observation enables identification, and examination,
of the solution to the Stein equation with the transition semigroup associated with L. The diffusion approach hence
opens up the possibility of defining L for p on a manifold M by considering an SDE on M whose solution is a
diffusion with invariant measure p.

Broadly, this is the approach we adopt in this paper. On a complete Riemannian manifold (M,g)without
boundary, we consider approximating probability measures of the form pe with density, up to a normalisation
constant, e ' with respect to the volume measure dvol for a smooth @. Under some conditions on ¢ and the geometry
of M, the diffusion with infinitesimal generator

1

Lo:={A -@V¢, V}
2

has pe as its invariant measure, where V and A are the (Riemannian) gradient and Laplace-Beltrami operators,
respectively. The operator Lo generates mean-zero functions under Lo .

We address requirement (b) for generalising Stein’s method to M by adapting the approach in Mackey and Gorham
(2016) for log-concave measures p on R" to the manifold setting. In their paper, bounds on lower-order derivatives of the
solution fh, known as Stein factors (see Rollin (2012)), were derived by studying the distance between a pair of coupled
diffusions Xtand Yt with same invariant measure p starting at distinct points. Analogously, we construct a pair of diffusions
Xix and Yiy on M starting at x and y with identical generator L, and study the distance process p(Xtx,Ytiy) around
neighbourhoods of non-empty cut loci. In particular, when there is no first conjugate point contained in the cut locus to any
given point in M we establish exponential pathwise contraction for trajectories of the two diffusions towards their initial
points; on the other hand when first conjugate points are present, we establish a similar contraction property that holds on
average.

The study of the distance process enables the determination of Stein factors which bound the Lipschitz
constants of the solution fh, and its first and second derivatives, where the geometry of M manifests itself
through curvature-dependent terms in the factors. The derived bounds on fh,aswellas on its first and second
derivatives, reduce to the ones of Mackey and Gorham (2016)for R",which we show remain valid for complete,
connected flat manifolds. The Stein factors are then used to construct upper bounds on integral (semi-)metrics between Lo
and another probability measure on M for specific choices of the class of test functions H. In particular, using
the first order bound on fh, we derive an upper bound on the Wasserstein distance between pe and py. A related
generalisation of Stein’s method to manifolds, based on the approach of Fang, Shao and Xu (2019), can be
found in Thompson (2020).

The paper is organised as follows. In Section 2.1 we define relevant quantities and introduce notation, and in
Section 2.2 we describe assumptions on probability measures and diffusions under consideration, and the key
condition (3) and assumption (A1) for the derivation of our results; the conditions are explicated with some
examples. In Section 3 we describe the coupling of a pair of diffusions on M and analyse their distance
process, when conjugate points are absent (Section 3.1) and present (Section 3.2). In Section 4 we consider the
Stein equation and its solution and derive Stein factor bounds that depend on the curvature of M. In Section 5,
using the Stein factors, we derive bounds for integral (semi-)metrics: in Section 5.1 we derive an upper bound
on the Wasserstein distance between Lo and a probability measure of similar type, and in Section 5.2 we do the
same for an integral semi-metric between L and an arbitrary probability measure on M.



2. Preliminaries
2.1. Notation and definitions

We assume throughout that (M,g)is a complete and connected Riemannian manifold without boundary of
dimension m and with covariant derivative D;by D',i >1 we then denote higher orders of D.We shall denote by
p(x,y) the Riemannian distance between any two points x and y in M, and by dvol the Riemannian volume
measure of (M,g). We denote by Tx(M) the tangent space to M at x € M and by TM the tangent bundle of
M.For k21, Ck(M) denotes the class of k-times continuously differentiable real-valued functions on M, C(M)
denotes the set of continuous functions, and Co(M)denotes continuous functions vanishing at infinity. The
Lipschitz constant Co(/)of a Lipschitz function 2 €C(M)is defined as
[A(x)=h(y)]|
Co(h):= sup . x*yeM

p(x,y)

Higher-order Lipschitz constants of a function depend on bounding tensor fields. Accordingly, for each x € M
define the operator norm at x for a tensor field 7 on M, based on n-fold tangent vectors at x,as

|7(v1, ", vn)|
[T lop := sup .
n
n
v, *-+,vn €Tx (M), |vi [*0
[vili=1

Then, if & ECk(M),for k=1, we may define

ID'n(x)=Tly_ (D'n(y))lopCi(h):= sup , i = 1,...k, (1)

p(x.y)
V%, y ,X*yEM

and call them the Lipschitz constants of Dih, where yx,y denotes any possible minimal geodesic from y to x and
Ily_ denotes the parallel transport from 7y(M) to 7x(M) along yx,y. Note that D = dh and that Hess'= D'h, where

Hess'is the Hessian of /. Note also that sup.,, ID"'h(x)lop = Ci(h)for i = 0,k 1. Finally, if X and Z are two

random variables on M with X ~ pand Z ~v, abusing notation, we interchangeably use dH(v,u) and dH(Z,X) to
denote the integral (semi-)metric between the two probability measures, where

dH(Z.X):= sup |E [A(Z)]-E [(X)]|

heH

with respect to a set of real-valued test functions H.



2.2. Key assumptions

On M, we consider probability measures of the form

1
due = e " dvol,

(o)
)

with ¢(¢)= e *dvol <«and with support on the entire space M. We assume that p€C’(M)is

M
such that Vois Lipschitz; specifically, we assume that Dohas finite Lipschitz constant Ci(¢). Throughout, X
denotes a random variable with X ~p.

The uniformly elliptic operator Lo = 1/2 {A —@Vo,Vlthen is the infinitesimal generator of a Feller
diffusion process that solves the Itd stochastic differential equation

1
dxi= dB" -ve(Xi)ds, 2)

t
2

where B is a Brownian motion on M. If there is a constant k>0 such that

t

Ric(x)+ Hess' (x)=—kg(x), Vx EM, 3)

where Ric is the Ricci curvature tensor, then the corresponding semigroup Pt = ¢"is conservative (see Bakry
(1986)), i.e., Ptl =1 for all £ >0 or, equivalently, Xt will, with probability one, not leave M in finite time. For a
successful development of the Stein’s method on M, we need the Bakry-Emery curvature criterion: there is a
constant k>0 such that,

(A1): Ric(x)+ Hess'(x)22xg(x)Vx EM .
Evidently, assumption (A1) implies the condition in (3).

Remark 1. When M = R”, (A1) simplifies to v Hess"v 22«for any unit (column) vector v in R" where, as usual,
Hess' is treated as an m Xm matrix. Hence, (A1) reduces to the requirement in Mackey and Gorham (2016) that
—@is 2x-strongly concave, noting that in their notation, ¢here is —log p,up to a constant. This is also true if the
Ricci curvature of M is always non-positive. In general, (Al) is weaker than the requirement that —@is
c-strongly concave for some ¢ >0.

Example 1. In order to elucidate condition (3) and assumption (A1) we look at a few example manifolds and
probability measures L.

(i) M is the standard sphere S of dimension m. The function ¢(x) corresponding to the von Mises-Fisher
distribution Mm(xo0,c)takes the form @(x)= —c cos(r(x)),with r(x)= p(xo,x)for ¢ >0 and a fixed point xo
€ M. Since D’f (r)= f (#)dr xdr + f (r)D’r on general manifolds and since D'r = cot(r)}{g —dr xdr}on
S" (see Greene and Wu (1979)), it follows that

Hess' (x)= -cD’ cos(r(x))= ¢ cos(r(x))g(x);
this ensures that
Ric(x)+ Hess'(x)2{(m —1)-c}g(x),

and condition (3) holds for the von Mises-Fisher distribution with k>max{—(m —1)+ ¢,0}. However, if



there is a k>0 such that assumption (A1) holds, then we must have 0 <c¢ <m —1. This requires in
particular m >1, and thus any von Mises-Fisher distribution on the circle fails to satisfy (Al).



ii) M is hyperbolic space H" with sectional curvature —1. For ¢(x) = cp(o,x * where ¢ >0 and
(i) yp P ® p

]

o is a fixed point in M,wehave e * dvol <« as, in terms of normal coordinates at o,

M
dvol = sinh(p)""dpdd. On the other hand, Hess"(x)2 2cg(x) by the Hessian Comparison Theorem and
Ric(x) = —(m —1)g(x). Hence condition (3) holds with k>max{(m —1)—2¢,0}or such a ¢. Moreover, if
¢ >(m —1)/2, then there is a k>0 such that assumption (A1) holds.

(iii) M is the complex projective space cP" equipped with the Fubini-Study metric. This is also the Kendall
shape space of configurations in R with m + 1 labelled landmarks. Let A be an (m + 1)x(m + 1)
Hermitian matrix, i.e. 4 = 4 and ¢(z) = =z "dz,for z = x + iy € C"" (column vectors) and |z| = 1, where
A’ denotes the complex conjugate transpose of 4. Without loss of generality, we may assume that the
smallest eigenvalue of 4 is zero. The corresponding g is the complex Bingham distribution on CS" =
™" Since ¢(z) = (p(eiez), o can be regarded as a distribution on M (see Kent (1994)). It can be shown
that Hess"(w,w) = 2{¢(z)-¢(w)} = =2Amax for a horizontal (with respect to the projection from §™" to

m m+ . .
CP ) unit vector w € 7% (S™"), where Amax >0 is the largest eigenvalue of 4.
The complex projective space CP" equipped with the Fubini-Study metric is an Einstein manifold with its
Ricci curvature tensor equal to 2(m2 + 1) times the metric tensor. Thus,

Ric + Hess 22 {m + 1 — Amax} g,

and so, for the complex Bingham distribution on CP", condition (3) holds with > 2max{Amax —(m +
1),0} and assumption (A1) holds if Amax <m + 1.

1
(iv) M is the rotation group SO(m) with the bi-invariant metric determined by g(E1,E2) := =, tr(E1E2) for

skew-symmetric E1,E2, where m >2. Assume that, for S € M, ¢(S) = —c tr(SoS) with So € SO(m) and a
constant ¢ >0. Then, the corresponding pe is a von Mises-Fisher distribution on SO(m). It can be
shown that Hess'2-c g.

Recall that the Killing form of M is B(E1,E2) = (m — 2)tr(E1E2) and the Ricci curvature Ric(E1,E2)

m-2
= —;B(E 1,E2) = g(E1,E2). Thus, in this case,

2

m=—72
. 0
Ric + Hess - cg,

2

and so, for the von Mises-Fisher distribution on SO(m), condition (3) holds with x>max{c — (m —
2)/2,0} and assumption (A1) holds if ¢ <(m — 2)/2.

3. The distance between coupled diffusions

Our approach to define the Stein equation on M and analyse properties of its solution rests on the construction
of a pair of diffusions (Xt,Yt), and handling of the distance process p(Xt,Yt) between the pair. In particular, we
prove exponential contraction of p(Xi, Y1) towards the initial points, and thus extend the approach used by
Mackey and Gorham (2016)on R"to the manifold setting. In contrast to the Euclidean setting, since the distance
function (x,y) — p(x,y) is not in C’(M x M) if the cut locus of a point in M is not empty, analysis of the



distance process p(Xi, Yt ) requires additional care.



3.1. When no conjugate points are present in cut loci

We first consider the relatively simple situation where there is no conjugate point in the cut locus of any given
point in M. In this setting, by modifying the arguments in Kendall (1986a) and Kendall (1986b), we are able to
establish exponential pathwise contraction of distance between the diffusions, aided by a key result given in
Lemma 3 in Appendix A of Supplementary Material (Le et al., 2024), which expresses the distance function in
terms of finitely many smooth functions in neighbourhoods of cut point, despite it not belonging to C'(M x
M).

Note first that, in terms of a Brownian motion Bton R starting from the origin, the Ito differential equation (2)
with initial condition X0 = x0 is equivalent to

)
ds Xi= Etds Bi— | Vo(Xt) dt, Xo = xo; dsZt = Hz ds X, (X0) = Eo,

where ds denotes the Stratonovich differential, H the horizontal lift from 7' M to the tangent bundle of the
orthonormal frame bundle O(M), where &o sits above xo0. For an introduction to horizontal lifts and
orthonormal frame bundles, see for example, Kobayashi and Nomizu (1963).

Theorem 1. Assume that M has the property that there is no conjugate point to any given point in M, and that
the Bakry-Emery curvature criterion (A1) holds for a constant «>0. Then, for any x0,y0 € M, there is a pair of
coupled diffusions (Xt,Yt) starting from (x0,y0) such that both Xt and Yt satisfy (2) and, for any e 1,

-kt

p(Xt, Y1) < p(x0,y0)e, £ 2 0. (5)
Proof. Consider the map

Exp: TM — M x M; (x,v)—(x,exp(v)).

X

For any (x,v)ET M, this map provides an intervening geodesic s — exp(sv),0 < s < 1, connecting x

X
and exp(v). The length of this geodesic is at least the distance between x and exp(v). If the interior

XX

of this geodesic does not intersect the cut locus of x, then it is also a minimal geodesic between its two end
points. Denote by IT"(x,v) the parallel transport along this intervening geodesic from x to exp(v)

X
where, for our purpose, H~(x,v) is taken to be the identity map on 7x(M) if x = exp(v) even though this

X

may imply a discontinuity. For any given (x0,y0)€ M xM,wetake vo € Tx (M) such that

exp(vo) = yo and |vo| = p(x0,y0). (6)

X0

Under the given assumptions, yo is not conjugate to x0. Then, if yo is a cut point of x0, a consequence of the
proof of Lemma 3 in Appendix A of Supplementary Material is that there is a neighbourhood N of (x0,y0) such
that Exp_'(N) is a disjoint union of a finite number of open sets on TM and, restricted to each such set, Exp is a
diffeomorphism from that set onto N.If yo is not a cut point of xo0, then vo is uniquely determined by vo =
exp (yo) and a similar result holds with just one component in Exp '(N).

X0



Hence, in particular, TM is locally a covering space of M x M. Within such a neighbourhood N of a given
(x0,y0), we can determine a continuous process (Xt,Vt )€ TM starting from (xo,v0) associated with (2), by
solving the following coupled diffusions Xtand Yi= exp_(V1):



—_—— + . — .
ds)(l_ ‘_'tdsgl_ %V(P()(t )dt’ X’O_ Xp>
dSYl: YldsB'_ 12 V(P(Yt)dt’ Yuz Yy

tdsEt= H= ds Xt, 2(X0)= &o; (7)
dsYt= Hy dsTt, Y(YO)= no;

a =y~ ! =B,
il
tt Xt,Vt

where, similarly to Z and &o for X, Y and no are respectively a lift of Y to the orthonormal frame bundle
O(M)and no sits above yo. Since B is also a Brownian motion on R",both Xt and Yt are diffusions

t
satisfying (2) before they leave N.

When (Xi,Yt ) hits the boundary of N, we can find a neighbourhood N of (Xi,Yt ) satisfying the above
properties of N. Then, allowing Vi to move discontinuously without altering (Xt,Yt) such that, after the jump, it
satisfies (6), we can continue to run (X, Yt )within N so defined. Note that, if Xt = ¥t for some 7020, then Xt= Yt for

t 210.
For (Xi,Yt) constructed as above, denote by p™(Xi,Yi ) the length of the intervening geodesic exp, (sVt

)between Xcand Yi= exp, (V1); and write yt for the unit speed intervening geodesic from Xito Yt, that is, vt (s)=
exp, (sVi/|[Vt]). Note that “p(Xi,Yt )depends implicitly on the choice of vo,which is not unique when yois a cut

point of x0. On the other hand, for any given vo which satisfies (6), “p is a smooth function of (x, y) within the
neighbourhood N chosen as above. However, the change of neighbourhood from N to N usually results in a
discontinuity for the process “p(Xt, Yt ). Nevertheless, p(Xt, Yt )is always continuous and

p(XL,Y1)s p™(Xi, 1), £ 20,

where the latter becomes an equality immediately after the jump. Hence, to find an upper bound for p(X,Yt), it
is sufficient to find an upper bound for ~p(Xt, 11 ).

To bound “p(Xt,Yt) we may assume, without loss of generality, that (Xt,Yt) lies in N for all # 20. Write uo,u1,
---,um-1 for an orthonormal base in R" such that Ztu0 = v/t (0), and, for i = 0, 1, ---,m =1, let vi= (Yfll'l(xt 2V )Et
Jui. Then, the It6 formula for “p(Xi, Y1 )is given by

dp(Xt,Y1)= (Ztu0)p™ (X, Yt )d uo, B+ (Yivo)p™(Xi, Yt )d vo, B

tm-1

2
i=0 1
+ {@Vo(Xt),/y (0)@-Vo(Y1),y/t (p"(Xi,Y1))@ }dr.
2

Since 10, Bt = vo, B , since (2t u0)p™(Xt, ¥t )= —(Yt vo)p~(Xz, Y1 Jand since

t



(Eruo) p (X, Y1 )= (Yevo) p™(Xe, Yt )= (Bt uo0)(Yivo)p™(Xi, Y1 )= 0,
(8) simplifies to

1

m

2d°p(Xi, Y1 )= (Beui+ Yevi) p (X, Yi )de

i=1
+ {@Vo(Xxt )yl
0)@-Vo(Yt )yt (p (X1t

ovv

—~ O™~ A~



Denote by J the Jacobi vector field along yt with J(0) = Etuiand J(1) = Ytvi. Then, since “p is

ttt

smooth under the assumption that (Xt,Yt) lies in a given neighbourhood of (x0,y0), using the second-variation
formula (see Cheeger and Ebin (1975)), a modification of the argument by Kendall (1986a) shows that the
right hand side of (9)isgiven by

]

P (Xt,Yt) m—1

m
1Dyt (9 () =@ R ()71t (5)) 1yt (s).7 (s)4pds dt
ttt
0(10)
i=1

+{@Vo(X1 ),y (0)@~Vo(X1).v/i (p"(Xt. 1))@ di}

where the integral is along ytand R denotes the curvature tensor of M. To analyse the first term
of (10), we use a modified form of the argument in Cheeger and Ebin (1975), the proof of
Lemma 1.21. It shows that, for eachi = 1,...m — 1,

]
(XY Dy () @ R (s)v1: (5)) e (5).) (s)@pds

. ttt

[
pT(Xt,Yt)
2
<Dy ((V(5))|-€ R(V(5):v1: (s)) Iy (s),V (5)@ds,
. ttt

where V(s) := (IT(x sV /v |)Et Jui. Now, since V'is parallel along ¥t , it follows that Dyl (s)( V(s)) =

ttt
0. As a consequence, since {/yt (s),V'(s),...,”’" (s)} forms an orthonormal base of 7 v (s)(M) and

tt
R(Myt (s),y/t (s)) Fye (s),y/t (s)€= 0, we have
I "m-1
p(x.Y0) M Dyl (9(J ()] =€ R (5):¥1t () Pyt (5).] (s)@ds

ttt

i=lj m—1

an
N

(XY m <= R(V(s)y/t (s)) Iy (s), V (s)€p d

tt



Op*(Xl Yi) = = Ric(yt ())( Ayt (s),y/t () ds.

For the remaining two terms of (10), we note that

d
OVo(v:(9))./t ()9 = Dyl ()(Vo(yt (5))):v/t (s)@ + @V(yt (5)).Dv (syv/t (s)@

ds
= Dl ()(Ve(y ())):v/t ()€

= Hess (/yt (s),y/t (s)),
as ytis a geodesic. From this, we deduce that
]

() 5. (12 p (Xt Y )@V Y1), v/t (p™(X1, Y1 ) )@ — Vo(Xt),v/t (0)€p = Hess'(/yt
s),y/t (s . 0



Thus, under the Bakry-Emery curvature criterion (A1) condition, (10), (11) and (12) together give that

p(Xt,Yt)

2d7p(Xt, Yt )<= Ric(fyt (s).y/t (s))+Hess (/yt (s),y/t (s)) ds dz 0 (13)
<=2Kkp” (X, Vi )de.

Now, for any e 21, it follows from (13) that
dp” (X, Yt )S—exp™(Xi, Y1) de,

't

so that
Kt Ks
ep(Xt, Y1) = p~(X0,Y0) + eex p~(Xs,Ys) ds + dp™(Xs, Ys)
< p"(X0,Y0) . '

Finally, by recalling that “p(X0,Y0)= p(Xo,Y0),wehave

-kt

p(X,Yt)< p™(Xi, Yt )<p(X0,Y0) e

as required.

3.2. When conjugate points are present in cut loci

When conjugate points are present in cut loci in M, the construction of a pair of diffusions in the proof of
Theorem 1 fails at such points. More precisely, if yo is a (first) conjugate point of xo0 along the geodesic
exp(sv), which also lies in the cut locus of xo0, then D exp(v)is singular. This means that

X0 X0

it would be impossible to find a neighbourhood N of (x0,yo)that has the properties described above following
(6). In particular, it would be impossible to find a subset of TM, as specified there, such that Exp is a
diffeomorphism from that subset onto N. It is evident from the proof of Theorem 1 that the existence of such a
diffeomorphism offers a way to couple (Xx.t,Yy,t )at, and beyond, cut points.

Nevertheless, we now show that it is still possible to construct a pair of diffusions on M with properties that
(i) they both satisfy (2) and (ii) the expected distance between them contracts at least exponentially. This relies
on a generalisation of the technique used in Theorem 5 of Kendall (1986b)to deal with the presence of
conjugate points. In the non-conjugate part of the cut locus of M analysis proceeds as with Theorem 1. To
warn us of when the diffusions get close to the first conjugate locus, we use the operator Lo, and monitor the
value of its action on the distance function p; this value decays towards —ewhen the points approach the first
conjugate locus. Effectively, we determine a neighbourhood N2s € M xM of the first conjugate locus in M XM
for a constant & that depends on k and the injectivity radius of M. Once the coupled diffusions enter V25, the
closure of V25, we decouple them,

“run independent diffusions until
they hit M \\s , where Ns DN25 , and then return to coupling again. We first need two
preliminary results before stating and proving the main result in this section. Observethattheset

E:= {(x,v)ETM | the geodesic exp(sv), 0 <s <1,
X

contains no conjugate point of x} is an open set in TM. The map



Exp: (x, v)—(x, exp(v))maps Emsurjectively to its image



X

(14)
E:= {(x, y)EM XM |there is a geodesic from x to y containing no conjugate point}.

Then, the construction (7)of (Xt, Yt )can be applied to the case when the starting point (xo, yo)is in E and it
remains valid until the first exit of (Xt, V't )from E . We now modify the construction by Kendall (1986b): combine
the coupled diffusions (X, Yt )defined by (7), while the corresponding (Xt,Vt )is not too close to the boundary of
E ,with Xt, Ytevolving independently.

For this, we first need a result on the distance function of two independent diffusions on M specified by (2).
Lemma 3 in Appendix A of the Supplementary Material ensures the following property of p(x, y)on
neighbourhoods of the cut locus

C:={(x, y)EM xM |y lies in the cut locus of x}

of M xM: there is a set Co cCsuch that

(i) Co contains the (first)-conjugate part of C;
(ii) for any (x, y)€C\Co, there is a neighbourhood N of (x, y)in M XM and two smooth functions e1 and e2 on N
such that

p(x,y)=min{ei(x,y ),e2(x,y )}, V(x,y )EN.

Since the (first)-conjugate part of C has co-dimension 2 in M xM (see Barden and Le (1997)), the result of that
Lemma also implies that Co can be chosen to have co-dimension 2. Also, similarly to the argument at the

beginning of the proof of Theorem 1, N in (ii) above can be chosen such that Exp_l(N)is a disjoint union of two
open sets V1, V2in TM and, restricted to each Vi, Exp is a diffeo

morphism from that set to N. Then, the smooth function ei(x , y )constructed in the proof of Lemma

3 in Appendix A of the Supplementary Material is in fact the length of the geodesic from x ‘and y , the initial
tangent vector vito which lies in Vi. That is, using our notation for the length of intervening

geodesics, we have ei(x , y )= p~(x ,exp(vi)). This leads to the following generalisation of Theorem

X
5of Kendall (1986b) and of Theorem 3 of Barden and Le (1997). The proof of this generalisation is a slight

modification of the proof for Theorem 3 of Barden and Le (1997)(seealso Le and Barden (1995) for more
detailed derivations), and we hence omit it here.

Lemma 1. Suppose that Xt and Yt are independent diffusions on M, both satisfying (2). Then, the distance
p(Xt, Yt )is a semimartingale and, before the first time that Xi= Y,

\/
1
dp(X, Y )= 2dBi+ Lot p(Xi, Yt )+ Lo2 p(Xe, Y1) df —dL,
2

where Btis a Brownian motion on R; L is a non-decreasing process that is locally constant outside C, and, for

fixed x0 and x * xo, {
(T 1L
Lo.1 p(x, x0):=

2

0 if (x, x0)€Co; 1



{Lo p~(exp(v1), x0)+ Lo p~(exp(v2), x0)}if (x, x0)eC\Co;

X0X0
Lo p(x, x0) otherwise,

and L2 p is similarly defined with respect to the second argument of p, and where the operator Lo is
1

defined by Lo= {A -~@Vo, V@}.



To detect that the coupled (Xt,Yt ), constructed by (7), is close to the boundary of E and to control the
independent diffusions Xtand Yt, we need the following generalisation of a geometric description (see Kendall
(1986b)), wherein we replace the Laplacian operator considered there with Lo, and replace the lower bound
constant ¢ determining the set Oc (which was denoted by Uec by Kendall (1986b)) by cp(x,y). Since @is in
CZ(M), the proof for our result is analogous to that for the lemma in Kendall (1986b), and we omit it here.

Lemma 2. For any ¢ >0,

Oc cOc CE~,

where
Oc:= {(x,v)EEIL g1 p™(r.exp, (v)) + L2 p(x.exp (v)) >=2cp(x.exp, (v))}

and, as before, p~(x,expx (v)) denotes the length of the intervening geodesic y(t) = exp(tv), 0S¢ < 1.

X

We are now ready to prove the following result for Riemannian manifolds M with non-empty conjugate
locus (e.g., spheres), which is weaker than Theorem 1 in that the exponential contraction between the
diffusions towards their initial points is in expectation and not pathwise.

Theorem 2. Assume that the Bakry-Emery curvature criterion (A1) holds for a constant «>0. Then, for any e
1 and for any x0,y0 € M, there is a pair of diffusions (X, Yt) starting from (x0,y0) such that both Xt and Yt
satisfy (2) and

- xt

Ep(Xt,Yt)< p(xo,y0) e, 2 0. (15)
Note that, unlike the result of Theorem 1,the (Xt,Yt) constructed here will depend on e.

Proof. Let k>0 be the constant in Bakry-Emery curvature criterion (Al). For given e€[l,n],fix n >0
sufficiently large such that

2

(i) dn>x+ 4(n —1)/r, where r0>0 is the minimum of the injectivity radius and a fixed positive
0

'

constant 7 say;
(if) Os o{(x,y)E M x M | p(x,y) <ro/2}, where Os = Exp (Os) and where Oc is the subset of TM as defined
in Lemma 2 above.

We now construct diffusions Xtand Yt, both satisfying (2), as follows. For given (x0,y0)€ M x M,if there is
a minimal geodesic between them which contains no conjugate point, we construct diffusions Xt and Yt by
solving (7) beginning at (x0,y0). By allowing the corresponding (Xt,/t) to jump if necessary, as commented
following the construction (7), we continue such a construction for (Xt,Yt) until thefirsttimethat (Xt,Vt) leaves
O25 . Suppose that (Xt,Vt) leaves O25 at time 1. We then consider all minimal geodesics between Xt and Yr

containing no conjugate point and, if possible, choose one

for which the corresponding (Xz,77) lies in Os . We then repeat the construction as before with the

chosen new starting point. This iterated construction continues until the choice of such (Xz,Vz) in O3 is no
longer possible. If it is not possible initially to choose a minimal geodesic containing no conjugate point, or if at some



stage a choice of the above (Xt,/x) in Os is impossible, then we continue the construction of Xt and Yt by evolving
them independently until (Xt,1t) hits Os .

“To show that the required result holds for (Xt,Yt)

constructed in such a way, it is sufficient by Theorem 1 to restrict to the case when Xtand Ytevolve
independently. Then, (Xt,Yt) is not in Os . Recalling

" that a co-dimension 2
set in M xM is a polar
set of a non-degenerate
diffusion on M xM it
follows from Lemmas
1 and 2 and from the
choice of on that



Kt
P(Xl,Y t )

Kt
p(X.Yy) de
<dM: + exe
1

e p(X, Y1) Lot p(Xe, Yt )+ Lo2 p(Xi, Y1) dr

Ki 2
ele —1)e tp(X[,Y() dr

2

<dMi+ ee” p(X, Y1) k =n+ (e —1)p(Xy, Y1) dt
<dMi+ ee” p(Xi, Yt ) k =n+ 4(n —1)/r'dt
<dM.,
where Mt is a martingale. Hence, we have E p(Xt, Yt )<p(x0,y0) e " as required.

Remark 2. In the literature, there are several ways to construct couplings for proving the existence of
contractivity. For example, in the curvature setting, the framework of weighted Riemannian manifolds is now
part of a broader one for CD-spaces (see e.g., Sturm (2006a,b)). In this context, the existence of contractive
couplings was treated by Kuwada (2010), von Renesse and Sturm (2005). In particular, the Kuwada duality
theorem (see Kuwada (2010), Theorem 2.2), in conjunction with the implication of contractivity of the heat
flow under Curvature-Dimension condition, implies the existence of a contractive coupling such as in the proof
of Corollary 1 in von Renesse and Sturm (2005). The coupling we construct here, in addition to proving the
required contractivity, will also be employed in the Supplementary Material to study certain stochastic vector
fields along the paths Xx,tand Yy,t, which play important roles in obtaining the Stein factors.

4. Solution to the Stein equation and Stein factors
We are now ready to turn our attention to the Stein equation
h(x)=E [A(X)]= Lo fa(x), (16)
where 7 belongs to a suitable class of real-valued test functions on M. Using the distance process p(Xxt,Yy.t )

forapairofdiffusions (Xx.,Yyt ) constructed above, in this Section we determine the solution fh to the Stein
equation (16) and examine its properties.

4.1. The solution fh

Let

Ho:= {i €Co(M)|A is Lipschitz with Co(/)< «}. (17)



Proposition 1. Let M be a complete and connected Riemannian manifold. Assume that the Bakry-Emery
curvature criterion (A1) holds for a constant «>0 and that X is a random variable on M with distribution po
such that E [p(X,x)]<e=for some x EM. For every h €Ho the function

[ w
Ji(x):= E [M(X)]-E h(Xxt) dt (18) 0
is (i) well-defined; (ii) Lipschitz with constant Co(fh)<Co(h)/x.

Remark 3. If M = R" Ric(u,u )+ Hess (u,u )= Hess (u,u ). Thus, Proposition 1(ii) recovers the corresponding
result in Mackey and Gorham (2016), as the constant 2khere corresponds to constant k there. Moreover, the
result of Proposition 1(ii) is equivalent to that of Proposition 6.1 in Thompson (2020).

Proof. Let (Xx.t,Yy.t ) be the pair of diffusions in Theorem 2 with e= 1, starting from (x,y). Then, both Xx,tand
Yy.tsatisfy (2). Since po is the invariant measure for Yt, using the Lipschitz property of 4 and Theorem 2,

[«
E [h(X)]-E h(Xx:) dt

0
[ [=E h(Yyt)-E h(Xxt) due (y)dt
oM
[ _[<Co(h) E p(Xx.t,Yy.t) dpe (y)ds
oM
[« <Co(h)E [p(X.x)] e " dt
<00

0
This proves that fi is well-defined. Now, for any x,y €M,
[ - fa(y)= fa(x)IS E A(Yy.)=E h(Xxt) d
[ = <Co(h) B p(Xxt, Yy.t) dt
0 J‘ 3}
1
<Co(h)p(x,y) e " dt = Co(h)p(x.y).

K

The next result shows that the function fh defined by (18) solves the Stein equation for the probability
measure Wo .

Theorem 3. Assume that M is a complete and connected Riemannian manifold and that Bakry-Emery
curvature criterion (A1) holds for a constant «>0. Let X be a random variable on M with distribution pe such
that E [p(X,x)]<e for some x € M.For h €Ho, the function fain (18) solves the Stein equation (16).



Remark 4. When M = R" this result recovers the result by Mackey and Gorham (2016); in particular, E Lo fa(X) = 0.
On the other hand, the Bakry-Emery curvature criterion (A1) implies certain restrictions on the probability measures
to which we can apply Theorem 3. For example, as noted in Example 1(i), one cannot apply it to von Mises-Fisher
distributions on the circle. In this case, using direct integration by parts, for probability measures po with X ~pe on
Sl, the function

]

X o(x)

(h(y)=E [1(X)])dpo (y) , -

for a constant a, solves the Stein equation 4(x)—E [A(X)]= g (x)—¢ '(x)gh(x)associated with first-
h

order Stein operator Ao g —0g =g —¢ ' g (see Lewis (2021)).

Proof. Let Xxtbe a diffusion starting from x and satisfying (2). Since the corresponding semigroup {Pt |t 20}is
strongly continuous on Co(M)and Lg is the infinitesimal generator of Xx,t ,wehave

f

t (Pth)(x)—h(x)= LoE
h(Xxs) ds

for 1 €Co(M)(Ethier and Kurtz, 1986, Prop. 1.5). However, for h~(x)= h(x)*+ a where a €R, h(x)—"

E h(X) = h(x)—E [A(X)]. Then, by taking a = FT [A(X)]and noting L (a)= 0, we can also write the above as
(Pt h)(x)—h(x)= —LeE [A(X)]-E h()t(x,s) ds. (19) 0

Now, take (Xxt, Yyt )to be the pair of diffusions, starting from (x, y), as Theorem 2 with e = 1. Since 1t
satisfies (2), the fact that e is the invariant measure of Yt gives that

]

E [A(X)]- (Pt hﬁX) = E h(Yy1)=E h(Xxr) duo ()

-kt

=Co(h) E p(Yy.t, Xxt) duo(y)<Co(h)E [p(X, x)]e,
M

where the last inequality follows from Theorem 2 and where Co(4)is the Lipschitz constant for 4. Thus,

lim (P h)(x)= E [A(X))

t—

On the other hand, the result of Theorem 2 implies that we may apply the Dominated Convergence Theorem to
obtain that, as ¢ —<0, the right hand side of (19) tends to =L fa(x), so that

h(x)=E [A(X)]= Lo fn(x)

as required.

4.2. Stein factors

In the literature, Stein factors refer to bounds on solutions fh of the Stein equation (16). A direct consequence



of Proposition 1 and Theorem 3 is that fh defined by (18) is differentiable and Dfh is bounded.



Proposition 2. Under the conditions of Theorem 3,Dfh exists and

sup |th(x)|0p SCO(h)/K XEM
where fi is defined by (18).

We will see later in Section 5.1 that the bound on Dfi given above suffices to bound the Wasserstein
distance between the probability measure i and another py e . However, for bounding more general integral
(semi-)metrics, bounds on first-and second-order derivatives of fh, known as Stein factors, are needed.

!
Accordingly, denote by Ric the tensor equivalent to Ric + Hess' in the sense that, for any x €M,

and for any wu,u ' €Tx(M)
Ricte (u), u* = Ric(u,u ' )+ Hesso(u,u ). (20)
Recall that (see O’Neill (1983))

Hesso(u,u ' )= Du(Vo),u (1)

and that, in terms of a (local) frame field e1, -+, em,

mMm
Ric(u,u ' )= i=1 R(u, ei)ei, u ",
Stein’s method on manifolds 1095
I ©0
E Dh(Yyt)(Cvxt—  dt

+ 0
Vyt)

!
where R denotes the Riemannian curvature tensor. Thus, it is possible to express Ric explicitly in

0
terms of the frame field as
m

m
Ric!(u)= R(u, ei)ei + Du(Vo). (22)

¢

i=1

!
We can define the Lipschitz constant for Ric in a similar way to the definition of the Lipschitz constant

0
given in (1). Let
1

Hi:= {h €Co(M)NC(M)|Co(h)< =, C1(h)< *}. (23)

!
Proposition 3. Assume that the conditions of Theorem 3 hold. Assume further that Ric is Lipschitz

®
with finite Lipschitz constant L(Ric). For every h €H1 with fu defined in (18),Dfh is Lipschitz with

¢
constant

L(Ric! )N o
C1(fm)=C1(h) + Co(h) .
2K 2«



Remark 5. As noted in Remark 3,if M = R”, Ric (u), u = Hess' (u,u ). Then, since Hess'=
(p !
D2<p, L(Ric )= C2(¢). Thus, Proposition 3 recovers the corresponding result in Mackey and Gorham

¢

(2016). On the other hand, the result of Proposition 3 differs from the corresponding Proposition 6.2 in
Thompson (2020): in theirs, the relationship between the constant c1 obtained and those given in the
assumptions is not specified; using our notation, the upper bound for Ci(fh)there would depend only on
Co(h)while ours depends on both Co(#)and C1().



Proof. The proof uses Lemmas 4 and 5 given in Appendix B of Supplementary Material. For any

X

X € M and v € Tx(M), consider the vector field valong the path Xx,t which solves the differential

t

equation
X
Dvll .
= — Ric (v) (24)
de2”
X

with V=Y, where Xx.tis the solution to (2). It is known that, for any fixed > 0 and under the given x

condition for 4, Ns= D E h(XX__t-s)(v) is a local martingale for 0 < s < # (see Thalmaier (1997)).

S

Since
XX

[Ns|<ID E /’I(XXH,t—s)|0p|VS|S CO(h)lVJ,

using Lemma 4 (Appendix B of Supplementary Material) with ¢ = 1, we see that E [|Ns|] < <. Hence, Nsis in
fact a martingale on [0,7], and so E [No] = E [Nt], which in turn gives

D E h(Xx)(v) = E Dh(Xx)(v ) .

(See also Thompson (2020, Theorem 11.2), where the Z there corresponds to —2V¢ here.) Thus, from the
definition of fh, the Dominated Convergence Theorem and Theorem 2, it follows that, for any v € Tx(M),

[w]
Dfi(x)(v) = D E h(Xxt)(v) dt = E Dh(Xxt)(v ) dz. (25)

00

Now, consider the pair of diffusions (Xx.,Yy,), starting from (x, y), in Theorem 2 with ¢ = 2. First, by
applying the Holder inequality, Theorem 2 and Lemma 4 (Appendix B of Supplementary Material), we have
that

EDh(Xx,t)— HVDh( Yy.0)(v)
Xt 'Yy, £(26)
X

< C1(h) B p(Xxt, Yya)| VIS CL(h)p(x, y)|v] €.

t
y

Moreover, writing vfor the solution of (24) with the underlying path Xx.t replaced by Yy,t and with
tyxx
the initial condition v=Tly_(v), and denoting Hy(v) by “v,wealsohave

0tt



and for any wu,u ' €Tx(M)

Ricte (u), u' = Ric(u,u ' )+ Hesso(u,u ). (20)
Recall that (see O’Neill (1983))
Hesso(u,u ' )= Pu(V(p), u - 1)
Xx .Yy, t
L(Ric )
o
Xy Xy —kt

EDh(Yy.t)(v'= v)S Co(h) E v'= v< Co(h) p(x, y)|v] e, (27)

ttt
2K

where the second inequality follows from Lemma 5 (Appendix B of Supplementary Material) with ¢ = 1.
Finally, noting that [Ty (Df(y))(v) = Dfa(y)(Ily_ (v)), together with (25), (26) and (27), implies that

|(Dfs(x)= Ty, D(Y))(V)] = IDf(x)(vV)= Dfs(y)(Tly, (V)] [ =

Xy
< E Dh(Xxt)(v )= Dh(Yy.1)(v) dt

t
0

< EDh(Xx,t)— Hth(Yy,t)(V )dt

Xx,t,Yy,t

(II%IIK

L(Ric)
lo
C1(h) + Co(h)
21 2K VI }

p(xr Wl’

i.e. Dfiis Lipschitz with the required constant.

The argument in Remark 5 regarding the case when M = R" can be extended to the case when M has constant
Ricci curvature, which implies that the bounds in Mackey and Gorham (2016) continue to hold for such M.
This gives the following corollary.

Corollary 1. Assume that the conditions of Theorem 3 hold. Assume further that M is Ric flat and ¢ has finite
Lipschitz constant C2(¢). Then, for every h €H1 and fh as defined in (18),Dfnis Lipschitz with constant

1 C2(o)
C1( fa) C1(h) + Co(h) .

2k 2’ The curvature of the manifold plays a more explicit role in the

Lipschitz constant for D fh.Tosee this, define the tensor d R by d*R(u, v) = =trD. R(-,u)v. Then d R satisfies d



R(V1, v2), V3= Q(DVKRiC!)(Vl), V2 O—O(szRic!)(w), v1. Noting that R(V)(u, v) = R(Ve,u)v, to simplify
Lo !
notation, we also define R = d R + DRic + R(Vo). (28)
?9

The bound on Dfh requires restriction to the smaller and smoother class H1; the same is required when
bounding D’ fLet
H2:={h ECO(M)ﬂCz(M)| Co(h) < e, C1(h) < e, C2(h) < =}. (29)

sume that the conditions of Theorem 3 hold and that y, = sup lop(x) and X, = msup Op(x)
IR'IRF
XEM xEM

! ro
are both finite, where R is defined by (28). Further, assume that Ric ,R and R are all Lipschitz with

9 9P
! !
finite Lipschitz constants L(Ric ),L(R ) and L(R) respectively. For every h €H2 with fi defined in

¢P

(18):
a) If x,= 0D’ fh exists and is Lipschitz with constant

1313
2

Ca( fo)s Ca(h) + Ci(h)C2(o) + Co(h) C3(0) + C2(g).

3k 44 a



(ii) If x>0 and «>1/2, then D’ exists and is Lipschitz with constant

| (|m’f||}

L(Ric )
o
2K2
+
4
12
2y
2
1
Ca(fh)<Ca(h) with
+ Ci(h)
U
2
+ Co(h)
2x-1
where
123
, B B P
=+ +
12
1+6y
2
Bi=2mL(R) + L(R ) + L(Ric ),
2%+ 1"
X
1
! !
B2= L(Ric )L(R ),
?9
K
2
o X
1
K2
1 +2yL(Ric)
2o

Remark 6. Note that, = 0 corresponds to M being a flat manifold, such as a Euclidean space, a cylinder or a flat

torus. Consequently, y= L(Ric )= C2(¢) and L(R )= C3(¢). Our result thus



L oo
recovers the corresponding bound given in Mackey and Gorham (2016)for R", where Li, Mi(/)and k in Mackey
and Gorham (2016) correspond respectively to Ci-1(¢), Ci-1(h)and 2«xhere. Our result establishes that their
upper bound also holds for general complete and connected flat manifolds.

On the other hand, if M is locally symmetric, we have DR = 0. Then, it follows from (21) and (22) that
L(Ric )= L(Du(Vo))= C2(¢) and L(R )= L(D(Ric ))= C3(¢). As symmetric manifolds are

PP
locally symmetric, this will hold for a class of familiar manifolds, such as spheres, hyperbolic spaces,
projective spaces and the space of positive definite symmetric matrices. Pertinently, the upper bound for
C2(fn)in Proposition 4 when y2 = 0 is not the limit, as y2 —0, of that for x2 >0. In addition, we need an extra
requirement for kwhen x2 >0.

Proof. The proof uses Lemmas 4, 5, 6 and 7 given in Appendix B of Supplementary Material. Consider the
vector field V" along the path Xx,t which satisfies the stochastic covariant Itd equation

t

1
DV =R(EdBuu)v =R (u v')* Ric (V") dt (30)

ttt Qtot
,Pre

with V"= 0, where E is defined in (4), R and Ric are defined by (28) and (20) respectively, and

090

X

where u' and vare the solutions of (24) both with the underlying path Xx.tand with the initial

tx'

conditions unx= u and V =V respectively. It is known that, for h satisfying the given conditions, N =

X
D'E h(XX_t=s)(u v)* D E h(XX__t-s)(V")is a local martingale for 0 <s <, for any fixed

SS S

t >0(Thompson, 2020, Lemma 11.3). Since

XX

INISIED h(XX__t=s)loplae [IV. |+ 1B DA(XX__t=s)lop |V | xx

<Ci(h)lullv [+ Co(m)|V,

SS S



Stein’s method on manifolds

it follows from Lemmas 4 and 6 (Appendix B of Supplementary Material) that E |N] < « so that

S

Nis in fact a martingale for 0 < s < ¢. Thus E NO = E N, which implies that, for any fixed >0

st

and u, v € Tx(M),

D'E h(Xxt )(u, v) = E D' h(Xxt (1, v ) + E Dh(Xat )(V) .

t

Then, the definition of fh, the Dominated Convergence Theorem and Theorem 2 together ensure that D'fa
exists and that, for any u, v € Tx(M),

[ e

D’ fox)(u,v) = E D h(Xxt ue, v ) + E Dh(Xxa )(V ) dt. (31)

tt
0

Now, we construct a pair of diffusions (Xx,t, Yy, ), starting from (x, y), as in Theorem 2. Since we need to
apply Lemmas 5 and 7 (Appendix B of Supplementary Material) to the processes related to (Xxt, Yy,t) in the
following proof, it is necessary to take the parameter e in the construction of (Xx.t, Yyt )

vy

to be 6. As in the proof of Proposition 3, write vand vfor the solutions of (24) with the underlying

tt
Yy

path Xx.replaced by Yy.tand with the respective initial conditions u= Tly_ (u) and v=Tly_ (v).
00

y

X X . . ~ y
Also, let "u denote I ('), and similarly for "vand V™ . Then,

tttt
Xx,t,Yyt

}(szh(X)- Ty, D" f(y)) V)|

XX yy

SE D h(Xxa ), v,)= D h(Yya ), v) dt o)
0
j o]

+ E Dh(Xx )(V )= Dh(Yva )(V) dt.

tt
0

Under the given conditions on /4, the first term on the right hand side of (32) can be estimated as

[ w

XXyy



E D h(Xa )(u,, v )= D h(Yya ), v) di

t
0

[ e

XX

S E D h(Xt )= TLD (Y )1, v ) di

Xx,t,Yy,t
[=]w
XyX yXy
+ E D h(Yy )™= u,v) de + E D h( Yyt )(u, v'= V) di

tttt
00

fole

XX XyX yXy
< C2(h) E p(Xxt, Yyt )|ul||v | dt + C1(h) E | ul|V7| + |u||v™= v| dz.

Lt tee tet
00

Similarly, for the second term on the right hand side of (32), we have that

[« E Dh(Xxt )(V )= Dh(Yy.t )(V) dt

tt
0

J = =< E Dh(Xxt)= TLDR(Yya (V") di + E Dh(Yya) V= V' at

ttt
Xx,t,Yyt
00
[ o] < C1(h) E p(Xet, Yo )|V | de + Co(h) E |7 - V| dt.

ttt
00



By the Holder inequality, Theorem 2 and Lemmas 4, 5, 6 and 7 (Appendix B of Supplementary Material), it
follows from the above estimations and from (32) that, if X, >0,

1
(szh(X)‘Hvx,yszh(y))?urVI){(x,y)lu IIv]

! 12
L(Ric )2 y+ %

21

\II}

2B71 4
<Ca(h)
+ Ci(h) + Co(h)
3 4t 18k—1 2x—1

when k>1/2, as required.
If x= 0, we need to modify the above application of Lemmas 6 and 7 (Appendix B of Supplementary Material). This

results in
1
(D" h(x)=Tly_ D’ fh(y))(u,v)
pley)ul[v]
1313
2
< C2(h)+ Ci(h)C2(o)+ Co(h) C3(9)+ C2Ao).

3k dicaca

This shows that Ddfh is Lipschitz with the required constant.

5. Application to bounding integral (semi-)metrics
A key application of Stein’s method is in obtaining upper bounds on an integral (semi-)metric dH(X,Z), with
respect to some function class H, for an arbitrary random variable Z ~v. Exploiting the characterising property
of the operator Lo,

E [A(Z)]-E [W(X)]= E Lo fo(Z) , Vh €H,
the task then reduces to obtaining a uniform upper bound on E L¢ fa(Z) over functions fh using the Stein

factors. The quantity dH is clearly a semi-metric and is a metric only if H separates points in the set of signed
measures on M.

5.1. Wasserstein distance between pe and py

The result of Theorem 3 in conjunction with the first-order bound in Proposition 2 can be used to obtain an



upper bound on the 1-Wasserstein distance between certain types of random variables. For this we consider the
function class

1 A N
H_ ,:= {h EC(M)|h is Lipschitz with Co(h)<1},

under which dH is a bonafide metric. The 1-Wasserstein distance between two random variables Z1 and Z2 on
M is then defined as

dW(Z1,22):= sup |E [h(Z1)]-E [h(Z2)]].

hEHS |



Theorem 4. Assume that the conditions of Theorem 3 hold. Let Z ~ py such that E [p(Z,x)] < for some x € M,
where ysatisfies (3) with some constant k >0. Then

1

dW(Z,X)S E [[V(y= ¢)(2)I]-
2K

Proof. The proof pursues a similar argument to that of Proposition 4.1 of Mijoule, Reinert and Swan (2019).
Note first that

sup |E [#(Z)]-E [A(X)]| = sup |E [A(Z)]-E [A(X)]|. heH'heH_,NCo(m)

<1

have by Theorem 3 that E [4(Z)]-E [#(X)]= E Lo fa(Z) . On the other hand, the given assumption that Z ~ py, where y

satisfies (3), also implies that E Ly fa(Z) = Ofor & EHSI1 NCo(M). Noting that 1
Lo fu(x)= Ly fu(x)+ @Vy(x)~Vo(x) /o(x)€ .

2 we obtain 1

E [W(Z)]-E [1(X)]= E [@Vy(2)-Vo(2).V/h(2)@].

2 so that the result follows from Proposition 2. Example 2.
Assume that M = S" and that all probability measures p¢ involved satisfy the condition Hess' 2(2x—(m —1))g, for

some «>0.

(i) The functions ¢ and y corresponding to von Mises-Fisher distributions M(x1,c1) and M(x2,c2) are
respectively —c1 cos p(x1,x) and —c2 cos p(x2,x). Then,

* K kokok

[V(y=@)(x)| = ¢ [sin plx x)| < ¢ "plx x)< ¢ {p(x x2)+ p(x2.x)},

where ¢ "= |c2x2 —c1 x1| and x "= (c2x2 = c1x1)/c ". From the symmetry between @and it follows that
the Wasserstein-1 distance dw between M(x1,c1) and M(x2,c2) is bounded:

m

c2x2=clxl

*

dw(X1,X2)< (p(x xi)+ E [p(xi,Xi)]) ,

i=1
where Xi ~ M(cixi).
(i1) The function ycorresponding to the Fisher-Watson distribution

2
cl X1,x +¢2 x2,X

W(x1,x2,c1,c2)cedvol(x),



where x1,x2= 0, is —c1 cos p(x1,x)= c2 cos p(x2,x).If no is the von Mises-Fisher distribution M(x1,c1),
then

[V(y= @)(x)| = c2| sin(2p(x2,x))|-
Hence, for X ~ M(x1,c1) and Z ~ W(x1,x2,c1,c2),
2

dW(X.Z)< E [| sin(2p(x2,2))[] -
2K

1
(iii) Let m >2 and M = SO(m) with the bi-invariant metric determined by g(£1,£2)== tr(E1E2)for
skew-symmetric E1,E2. Assume that, for S € M, ¢(S) = —c tr(SoS) with So € SO(m) and that constant ¢

>0. Then, po is a von Mises-Fisher distribution on SO(m). Since for any skew-symmetric matrix £
(Se")- (S)

lim = —c tr(SoSE),
t—0t

C

we have that Vo(S) = AJ-S{(SOS)T - S0S}. This implies that
2
2

IVo(S)| = 5{(S0S) - S0S},S((S0S)" - SoS)€ s

2= €)(50S)' - S0S,(S0S) - SoS 1
22

= —tr ((S0S)' = S0S)= 2(m — tr((S0S))).
If ¢ €(0,(m — 2)/2), there is a k>0 such that the Bakry-Emery curvature criterion (A1) holds, as seen

in Example 1(iv). Then, if Z is a uniform random variable on SO(m), So Z is also a uniform random
variable and so

c
dw(Z,X)< Em - tr(Z)) .
2K

5.2. Integral semi-metrics for general distributions

If i €H2, the result of Theorem 3, together with Propositions 3 and 4, enable us to bound E [#(Z)] — E [A(X)]
for a more general random variable Z on M as follows, where H2 is as defined in (29).

Corollary 2. Assume that the conditions of Proposition 4 hold. Assume further that ¢is Lipschitz with Lipschitz
constants Ci(9),i = 0,1. Then for every h €H2

| E [(2)] = E [A(X)]|< nE [p(Z.X)],

where



n=mC2( fa) + Co()C1( fh) + Ci(@)Co( fh)

and where Ci(_fn) are bounded as in Propositions 3 and 4.



Proof. It follows from a direct estimation of |E Le (fa)(Z)|that

[E Lo(a)(Z)|= |E Lo(/a)(Z)~Lo(/n)(X)|
S|E [(AGR)Z)-AF))
+|E [@Vo(2).V/n(2)@-Vo(X).V/n(X)@ ]|
<mC2(fh)E [p(Z.X)]

+ E @Vo(2),V/n(2)@~ 11 Vo(X),V/i(2)@
+ E @Vo(X).I1 V/o(2)@~Vo(X),V/h(X)@

zZ.X

s{mCa(fa)+ Co(fa)Ci(@)+ Ci(fa)Co(@)}E [p(Z,X)]

as required.
A further simplification occurs when M is compact.

Corollary 3. If M is compact then, for any Lipschitz function on M with Co(h)<1, any fixed E>0 and s >0, there
exists a g €C’(M)with Lipschitz constants Ci(g),i = 0,1,2, such that Co(g)<1 + s and

|E [A(Z)]-E [A(X)]|S2E + mCa(fe)+ Co(fe)C1(e)+ C1(fe)Co(9) E [p(Z,X)].

Proof. Since M is compact, any g €C"(M)has bounded derivatives, and thus possesses finite Lipschitz constant
Ci(g),i = 0,1,2,....k for every k. This ensures that Lipschitz constants Ci(fg),i = 0,1,2 of the Stein equation
solution fg are finite.

The existence of the requisite g ECz(M) is guaranteed by the result in Azagra et al. (2007)on existence of a
C’ Lipschitz approximation of a Lipschitz function. By Theorem 1 in Azagra et al. (2007), for every Lipschitz
function 4 on M with Lipschitz constant 1 and for every E.s >0, there exists a g €C (M)such that sup_,

|g(x)—A(x)|<E with Co(g)<1 + s. Thus, by applying Corollary 2 to g,wehave
|E [A(2)]-E [A(X)]|

Consider
<[E [H(Z2)]-E [g(2]I* |E [g(X))-E [AX)]+ |E [g(Z)]-E the
[l |
2B+ |E [g(2)]-E [g(X)]l function
S2E+ mC2(fg)+ Co(f)Ci(o)+ Ci(fz)Co(o) E [p(Z,X)], class

as required.

H_’ = {h €C’(M)|h is Lipschitz with Co(h)<1,C1(h)S1,C2(h)<1}.

Since
sup |E [A(Z)]-E [A(X)]|= sup |E [A(Z)]-E [A(X)]|,
heH heH_*, NCo(M)

<1



from Propositions 1, 3 and 4, as well as Corollary 2, the following result on the bound for the integral
(semi-)metric

di(Z, X) 1= sup |E[h(Z)] = ETA(X)]]
heH,_ |

is immediate.

Theorem 5. Assume that the conditions of Proposition 4 hold, and that ¢ is Lipschitz with Lipschitz constants
Ci(¢),i = 0,1. Then, for any random variable Z on M,

di(Z, X)<n E[p(Z, X)),

where, ifx2= 0,
113 w
hi
mn* le,
) if
=m+ (3C(p) + C3(9)) + C2A(o) X,
>
3k 44 1 o) 1 0,
+
C
0
(
¢
)
+
+
C
1
(
¢
)
2k 2K’ K
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.
Qo
+ +/+
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e
L(Ric )1 ¢

1
+Co() + Ci(p)

El

2K

11011

and where the constants X, X, and B~are as in Proposition 4.
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