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We detail an approach to developing Stein’s method for bounding integral metrics on probability measures defined on a 

Riemannian manifold M. Our approach exploits the relationship between the generator of a diffusion on M having a target 

invariant measure and its characterising Stein operator. We consider a pair of such diffusions with different starting points, 

and through analysis of the distance process between the pair, derive Stein factors, which bound the solution to the Stein 

equation and its derivatives. The Stein factors contain curvature-dependent terms and reduce to those currently available 

for R
m

, and moreover imply that the bounds for R
m 

remain valid when M is a flat manifold.  
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1. Introduction  

The eponymous method to estimate integral metrics and semi-metrics on spaces of probability measures proposed 

by Charles Stein (Stein, 1972) has led to tremendous improvements in distributional approximation techniques. 

See, for example, the surveys by Barbour and Chen (2014) and Ross (2011). The method has mainly been 

developed for probability measures on R
m 

or N
m 

for m ≥1. The focus of this paper is on developing a version of the 

method that can be employed to approximate probability measures on an m-dimensional Riemannian manifold.  

Abstracting Stein’s method to a general space Xin a heuristic manner is useful for elucidating its key 

ingredients and the ensuing challenges in developing a corresponding version on manifolds. The goal is to 

bound an integral (semi-)metric  

∫ 

∫  
,dH(μ, ν):=  
hdμ − hdν 

sup  
h∈H  

between a probability measure ν and a target probability measure μ on Xwith respect to a class H of 

real-valued test functions on X. Stein’s method is centred around the construction and study of an operator L 

that maps functions f : X→R in a certain class F into mean-zero functions under μ:if X ∼μ, then E [Lf (X)]= 0 

for every f ∈F. The operator L thus encodes information about μ and, when F is sufficiently large, one may 

determine a function fh ∈F associated with every h ∈H that solves the Stein equation (or the Poisson equation 

in PDE literature)  

h(x)−E [h(X)]= Lfh(x).  

As a consequence, bounding dH(μ, ν)reduces to bounding the term sup
fh ∈F

E [Lfh(Z)], where Z ∼ν, achieved in 
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application-specific ways. An important implication, profitably used in some applications, is that the need to 

compute an expectation with respect to μ in dH is circumvented; an example is when  
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ν is the empirical measure based on points x1,...,xn on X and μ represents a conjectured limit probability 

measure. Upper bounds on dH then depend explicitly on the smoothness of the functions in F . Hence, integral 

to the success of Stein’s method in upper bounding dH are the following requirements:  

(a) construction of the operator L and identifying its domain F ; and, (b) determination of the solution fh and its 

regularity properties.  

An introductory account on choices of L satisfying requirement (a) for various probability measures μ on R (or 

some subset thereof) is available in Ross (2011). When X = R
m 

,m > 1, focus has mainly been restricted to the case 

when μ is a Gaussian measure (see Barbour (1988), Chatterjee and Meckes (2008), Meckes (2009)) although 

more recently results on extensions to non-Gaussian measures have appeared in Chen et al. (2019), Fang, Shao and 

Xu (2019), Mackey and Gorham (2016), Mijoule, Reinert and Swan (2019).  

An important observation by Barbour (1988) relates the operator L to the infinitesimal generator of a diffusion 

process on R
m 

that solves an SDE with invariant measure μ. This observation enables identification, and examination, 

of the solution to the Stein equation with the transition semigroup associated with L. The diffusion approach hence 

opens up the possibility of defining L for μ on a manifold M by considering an SDE on M whose solution is a 

diffusion with invariant measure μ.  

Broadly, this is the approach we adopt in this paper. On a complete Riemannian manifold (M,g)without 

boundary, we consider approximating probability measures of the form μφ with density, up to a normalisation 

constant, e
−φ 

with respect to the volume measure dvol for a smooth φ. Under some conditions on φ and the geometry 

of M, the diffusion with infinitesimal generator  

1 

Lφ := {Δ −�∇φ, ∇�}  

2  

has μφ as its invariant measure, where ∇ and Δ are the (Riemannian) gradient and Laplace-Beltrami operators, 

respectively. The operator Lφ generates mean-zero functions under μφ .  

We address requirement (b) for generalising Stein’s method to M by adapting the approach in Mackey and Gorham 

(2016) for log-concave measures μ on R
m 

to the manifold setting. In their paper, bounds on lower-order derivatives of the 

solution fh, known as Stein factors (see Röllin (2012)), were derived by studying the distance between a pair of coupled 

diffusions Xt and Yt with same invariant measure μ starting at distinct points. Analogously, we construct a pair of diffusions 

Xt,x and Yt,y on M starting at x and y with identical generator Lφ, and study the distance process ρ(Xt,x,Yt,y) around 

neighbourhoods of non-empty cut loci. In particular, when there is no first conjugate point contained in the cut locus to any 

given point in M we establish exponential pathwise contraction for trajectories of the two diffusions towards their initial 

points; on the other hand when first conjugate points are present, we establish a similar contraction property that holds on 

average.  

The study of the distance process enables the determination of Stein factors which bound the Lipschitz 

constants of the solution fh, and its first and second derivatives, where the geometry of M manifests itself 

through curvature-dependent terms in the factors. The derived bounds on fh,aswellas on its first and second 

derivatives, reduce to the ones of Mackey and Gorham (2016)for R
m

,which we show remain valid for complete, 

connected flat manifolds. The Stein factors are then used to construct upper bounds on integral (semi-)metrics between μφ 

and another probability measure on M for specific choices of the class of test functions H. In particular, using 

the first order bound on fh, we derive an upper bound on the Wasserstein distance between μφ and μψ. A related 

generalisation of Stein’s method to manifolds, based on the approach of Fang, Shao and Xu (2019), can be 

found in Thompson (2020).  

The paper is organised as follows. In Section 2.1 we define relevant quantities and introduce notation, and in 

Section 2.2 we describe assumptions on probability measures and diffusions under consideration, and the key 

condition (3) and assumption (A1) for the derivation of our results; the conditions are explicated with some 

examples. In Section 3 we describe the coupling of a pair of diffusions on M and analyse their distance 

process, when conjugate points are absent (Section 3.1) and present (Section 3.2). In Section 4 we consider the 

Stein equation and its solution and derive Stein factor bounds that depend on the curvature of M. In Section 5, 

using the Stein factors, we derive bounds for integral (semi-)metrics: in Section 5.1 we derive an upper bound 

on the Wasserstein distance between μφ and a probability measure of similar type, and in Section 5.2 we do the 

same for an integral semi-metric between μφ and an arbitrary probability measure on M.  



2. Preliminaries  

2.1. Notation and definitions  

We assume throughout that (M,g)is a complete and connected Riemannian manifold without boundary of 

dimension m and with covariant derivative D;by D
i 

,i >1 we then denote higher orders of D.We shall denote by 

ρ(x,y) the Riemannian distance between any two points x and y in M, and by dvol the Riemannian volume 

measure of (M,g). We denote by Tx(M) the tangent space to M at x ∈ M and by TM the tangent bundle of 

M.For k ≥ 1, C
k

(M) denotes the class of k-times continuously differentiable real-valued functions on M, C(M) 

denotes the set of continuous functions, and C0(M)denotes continuous functions vanishing at infinity. The 

Lipschitz constant C0(h)of a Lipschitz function h ∈C(M)is defined as  

|h(x)−h(y)| 
C0(h):= sup . x*y∈M  

ρ(x,y)  

Higher-order Lipschitz constants of a function depend on bounding tensor fields. Accordingly, for each x ∈ M 

define the operator norm at x for a tensor field T on M, based on n-fold tangent vectors at x,as  

|T(v1,···,vn)| 

IT Iop := sup .  

n 

n  
v1, ···,vn ∈Tx (M), |vi |*0  

|vi|i=1  

Then, if h ∈C
k

(M),for k ≥1, we may define  

ID
i

h(x)−Πγ
x ,y 

(D
i

h(y))IopCi(h):= sup , i = 1,...,k, (1) 

ρ(x,y) 
γx, y ,x*y∈M  

and call them the Lipschitz constants of D
i

h, where γx,y denotes any possible minimal geodesic from y to x and 

Πγ
x , y 

denotes the parallel transport from Ty(M) to Tx(M) along γx,y. Note that Dh = dh and that Hess
h 

= D
2

h, where 

Hess
h 

is the Hessian of h. Note also that sup
x∈M 

ID
i+1

h(x)Iop = Ci(h)for i = 0,···,k −1. Finally, if X and Z are two 

random variables on M with X ∼ μand Z ∼ν, abusing notation, we interchangeably use dH(ν,μ) and dH(Z,X) to 

denote the integral (semi-)metric between the two probability measures, where  

dH(Z,X):= sup |E [h(Z)]−E [h(X)]|  
h∈H  

with respect to a set of real-valued test functions H.  



2.2. Key assumptions  

On M, we consider probability measures of the form  

1 

dμφ = e
−φ 

dvol,  

c(φ) 
∫  

with c(φ)= e
−φ 

dvol <∞and with support on the entire space M. We assume that φ∈C
2

(M)is 

M  

such that ∇φis Lipschitz; specifically, we assume that Dφhas finite Lipschitz constant C1(φ). Throughout, X 

denotes a random variable with X ∼μφ.  

The uniformly elliptic operator Lφ = 1/2 {Δ −�∇φ,∇�}then is the infinitesimal generator of a Feller 

diffusion process that solves the Itô stochastic differential equation  

1 

dXt = dB
M 

−∇φ(Xt)dt,  (2) 

t 
2 

 

where B
M 

is a Brownian motion on M. If there is a constant κ>0 such that  

t  

Ric(x)+ Hess
φ 

(x)≥−κg(x), ∀x ∈M,  (3)  

where Ric is the Ricci curvature tensor, then the corresponding semigroup Pt = e
tLφ 

is conservative (see Bakry 

(1986)), i.e., Pt1 ≡1 for all t >0 or, equivalently, Xt will, with probability one, not leave M in finite time. For a 

successful development of the Stein’s method on M, we need the Bakry-Emery curvature criterion: there is a 

constant κ>0 such that,  

(A1): Ric(x)+ Hess
φ

(x)≥2κg(x)∀x ∈M .  

Evidently, assumption (A1) implies the condition in (3).  

Remark 1. When M = R
m

, (A1) simplifies to v
T

Hess
φ 

v ≥2κfor any unit (column) vector v in R
m 

where, as usual, 

Hess
φ 

is treated as an m ×m matrix. Hence, (A1) reduces to the requirement in Mackey and Gorham (2016) that 

−φis 2κ-strongly concave, noting that in their notation, φhere is −log p,up to a constant. This is also true if the 

Ricci curvature of M is always non-positive. In general, (A1) is weaker than the requirement that −φis 

c-strongly concave for some c >0.  

Example 1. In order to elucidate condition (3) and assumption (A1) we look at a few example manifolds and 

probability measures μφ.  

(i)  M is the standard sphere S
m 

of dimension m. The function φ(x) corresponding to the von Mises-Fisher 

distribution Mm(x0,c)takes the form φ(x)= −c cos(r(x)),with r(x)= ρ(x0,x)for c >0 and a fixed point x0 

∈ M. Since D
2 

f (r)= f 
''

(r)dr ×dr + f 
'

(r)D
2

r on general manifolds and since D
2

r = cot(r){g −dr ×dr}on 

S
m 

(see Greene and Wu (1979)), it follows that  

Hess
φ 

(x)= −cD
2 

cos(r(x))= c cos(r(x))g(x);  

this ensures that  

Ric(x)+ Hess
φ

(x)≥{(m −1)−c}g(x),  

and condition (3) holds for the von Mises-Fisher distribution with κ>max{−(m −1)+ c,0}. However, if 



there is a κ>0 such that assumption (A1) holds, then we must have 0 <c <m −1. This requires in 

particular m >1, and thus any von Mises-Fisher distribution on the circle fails to satisfy (A1).  



(ii)  M is hyperbolic space H
m 

with sectional curvature −1. For φ(x) = cρ(o,x)
2 

where c >0 and  

∫  

o is a fixed point in M,wehave e
−φ 

dvol <∞ as, in terms of normal coordinates at o, 

M  

dvol = sinh(ρ)
m−1

dρdθ. On the other hand, Hess
φ

(x)≥ 2cg(x) by the Hessian Comparison Theorem and 

Ric(x) = −(m −1)g(x). Hence condition (3) holds with κ>max{(m −1)−2c,0}for such a φ. Moreover, if 

c >(m −1)/2, then there is a κ>0 such that assumption (A1) holds.  

(iii)  M is the complex projective space CP
m 

equipped with the Fubini-Study metric. This is also the Kendall 

shape space of configurations in R
2 

with m + 1 labelled landmarks. Let A be an (m + 1)×(m + 1) 

Hermitian matrix, i.e. A = A
∗ 
and φ(z) = −z 

∗
Az,for z = x + iy ∈ C

m+1 

(column vectors) and |z| = 1, where 

A
∗ 

denotes the complex conjugate transpose of A. Without loss of generality, we may assume that the 

smallest eigenvalue of A is zero. The corresponding μφ is the complex Bingham distribution on CS
m 

= 

S
2m+1

. Since φ(z) = φ(e
iθ 

z), μφ can be regarded as a distribution on M (see Kent (1994)). It can be shown 

that Hess
φ

(w,w) = 2{φ(z)−φ(w)} ≥ −2λmax for a horizontal (with respect to the projection from S
2m+1 

to 

CP
m

) unit vector w ∈ Tz (S
2m+1

), where λmax >0 is the largest eigenvalue of A.  

The complex projective space CP
m 

equipped with the Fubini-Study metric is an Einstein manifold with its 

Ricci curvature tensor equal to 2(m + 1) times the metric tensor. Thus,  

Ric + Hess
φ 

≥ 2 {m + 1 − λmax} g,  

and so, for the complex Bingham distribution on CP
m 

, condition (3) holds with κ> 2max{λmax −(m + 

1),0} and assumption (A1) holds if λmax <m + 1.  

(iv)  M is the rotation group SO(m) with the bi-invariant metric determined by g(E1,E2) := −
1

2 
tr(E1E2) for 

skew-symmetric E1,E2, where m >2. Assume that, for S ∈ M, φ(S) = −c tr(S0S) with S0 ∈ SO(m) and a 

constant c >0. Then, the corresponding μφ is a von Mises-Fisher distribution on SO(m). It can be 

shown that Hess
φ 

≥−c g.  

Recall that the Killing form of M is B(E1,E2) = (m − 2)tr(E1E2) and the Ricci curvature Ric(E1,E2) 

= −
4

1 

B(E1,E2) = 
m−2 

g(E1,E2). Thus, in this case,  

2  

   

m − 2 

Ric + Hess
φ 

≥− cg, 

2  

and so, for the von Mises-Fisher distribution on SO(m), condition (3) holds with κ>max{c − (m − 

2)/2,0} and assumption (A1) holds if c <(m − 2)/2.  

3. The distance between coupled diffusions  

Our approach to define the Stein equation on M and analyse properties of its solution rests on the construction 

of a pair of diffusions (Xt,Yt ), and handling of the distance process ρ(Xt,Yt ) between the pair. In particular, we 

prove exponential contraction of ρ(Xt,Yt ) towards the initial points, and thus extend the approach used by 

Mackey and Gorham (2016)on R
m 

to the manifold setting. In contrast to the Euclidean setting, since the distance 

function (x,y) → ρ(x,y) is not in C
2

(M × M) if the cut locus of a point in M is not empty, analysis of the 



distance process ρ(Xt,Yt ) requires additional care.  



3.1. When no conjugate points are present in cut loci  

We first consider the relatively simple situation where there is no conjugate point in the cut locus of any given 

point in M. In this setting, by modifying the arguments in Kendall (1986a) and Kendall (1986b), we are able to 

establish exponential pathwise contraction of distance between the diffusions, aided by a key result given in 

Lemma 3 in Appendix A of Supplementary Material (Le et al., 2024), which expresses the distance function in 

terms of finitely many smooth functions in neighbourhoods of cut point, despite it not belonging to C
2

(M × 

M).  

Note first that, in terms of a Brownian motion Bt on R
m 

starting from the origin, the Itô differential equation (2) 

with initial condition X0 = x0 is equivalent to  

ds Xt = Ξt ds Bt − 
2

1 

∇φ(Xt ) dt, X0 = x0; dsΞt = HΞ ds Xt, Ξ(X0) = ξ0, 
(4) 

 

where ds denotes the Stratonovich differential, H the horizontal lift from T M to the tangent bundle of the 

orthonormal frame bundle O(M), where ξ0 sits above x0. For an introduction to horizontal lifts and 

orthonormal frame bundles, see for example, Kobayashi and Nomizu (1963).  

Theorem 1. Assume that M has the property that there is no conjugate point to any given point in M, and that 

the Bakry-Emery curvature criterion (A1) holds for a constant κ>0. Then, for any x0,y0 ∈ M, there is a pair of 

coupled diffusions (Xt,Yt ) starting from (x0,y0) such that both Xt and Yt satisfy (2) and, for any e≥ 1,  

− κt 

ρ(Xt,Yt )
 

≤ ρ(x0,y0)
 

e, t ≥ 0. (5)  

Proof. Consider the map  

Exp : T M → M × M; (x,v)→(x,exp(v)). 

x  

For any (x,v)∈T M, this map provides an intervening geodesic s → exp(sv),0 ≤ s ≤ 1, connecting x 

x 

and exp(v). The length of this geodesic is at least the distance between x and exp(v). If the interior  

xx 

of this geodesic does not intersect the cut locus of x, then it is also a minimal geodesic between its two end 

points. Denote by Π˜(x,v) the parallel transport along this intervening geodesic from x to exp(v) 

x 

where, for our purpose, Π
˜
(x,v) is taken to be the identity map on Tx(M) if x = exp(v) even though this  

x 

may imply a discontinuity. For any given (x0,y0)∈ M ×M,wetake v0 ∈ Tx
0 
(M) such that  

exp(v0) = y0 and |v0| = ρ(x0,y0). (6) 

x0  

Under the given assumptions, y0 is not conjugate to x0. Then, if y0 is a cut point of x0, a consequence of the 

proof of Lemma 3 in Appendix A of Supplementary Material is that there is a neighbourhood N of (x0,y0) such 

that Exp
−1

(N) is a disjoint union of a finite number of open sets on TM and, restricted to each such set, Exp is a 

diffeomorphism from that set onto N.If y0 is not a cut point of x0, then v0 is uniquely determined by v0 = 

exp
−1

(y0) and a similar result holds with just one component in Exp
−1

(N). 

x0  



Hence, in particular, TM is locally a covering space of M × M. Within such a neighbourhood N of a given 

(x0,y0), we can determine a continuous process (Xt,Vt )∈ TM starting from (x0,v0) associated with (2), by 

solving the following coupled diffusions Xt and Yt = exp
Xt 

(Vt ):  



d
s 
X

t 
= Ξ

t 
d

s 
B

t 
− 

1

2 
∇φ(X

t 
)dt; X

0 
= x

0
;  

ds
Y

t 
= Υ

t ds 
B'− 1

2 

∇φ(Y
t 
)dt, Y

0 
= y

0
; 

t dsΞt = HΞ ds Xt, Ξ(X0)= ξ0; (7)  

dsΥt = HΥ dsYt, Υ(Y0)= η0;  

dB
' = (Υ−1˜

Ξt )dBt,
 

tt 
Π

Xt ,Vt  

where, similarly to Ξ and ξ0 for X, Υ and η0 are respectively a lift of Y to the orthonormal frame bundle 

O(M)and η0 sits above y0. Since B
' 

is also a Brownian motion on R
m

,both Xt and Yt are diffusions  

t  

satisfying (2) before they leave N.  

When (Xt,Yt ) hits the boundary of N, we can find a neighbourhood N
' 

of (Xt,Yt ) satisfying the above 

properties of N. Then, allowing Vt to move discontinuously without altering (Xt,Yt ) such that, after the jump, it 

satisfies (6), we can continue to run (Xt,Yt )within N
' 

so defined. Note that, if Xt
0 
= Yt

0 
for some t0 ≥0, then Xt = Yt for 

t ≥t0.  

For (Xt,Yt ) constructed as above, denote by ρ˜(Xt,Yt ) the length of the intervening geodesic exp
Xt 

(sVt 

)between Xt and Yt = exp
Xt 

(Vt ); and write γt for the unit speed intervening geodesic from Xt to Yt , that is, γt (s)= 

exp
Xt 

(sVt /|Vt |). Note that ˜ρ(Xt,Yt )depends implicitly on the choice of v0,which is not unique when y0 is a cut 

point of x0. On the other hand, for any given v0 which satisfies (6), ˜ρ is a smooth function of (x, y) within the 

neighbourhood N chosen as above. However, the change of neighbourhood from N to N
' 

usually results in a 

discontinuity for the process ˜ρ(Xt,Yt ). Nevertheless, ρ(Xt,Yt )is always continuous and  

ρ(Xt,Yt )≤ ρ˜(Xt,Yt ), t ≥0,  

where the latter becomes an equality immediately after the jump. Hence, to find an upper bound for ρ(Xt,Yt ), it 

is sufficient to find an upper bound for ˜ρ(Xt,Yt ).  

To bound ˜ρ(Xt,Yt ) we may assume, without loss of generality, that (Xt,Yt ) lies in N for all t ≥0. Write u0,u1, 

···,um−1 for an orthonormal base in R
m 

such that Ξt u0 = γ/t (0), and, for i = 0, 1, ···,m −1, let vi = (Υ
−1

Π(X
t 
,V

t 
)Ξt 

)ui. Then, the Itô formula for ˜ρ(Xt,Yt )is given by  

˜ 
t  

d˜ρ(Xt,Yt )= (Ξt u0)ρ˜(Xt,Yt )d u0, Bt + (Υt v0)ρ˜(Xt,Yt )d v0, B
' 

 

t m−1 

m 

1  

+ 
(Ξ

t 
u
i 

+ Υ
t 

v
i
)
2 

ρ˜(X
t
,Y

t 
)dt 

(8) 

2  

i=0 1  

+ {�∇φ(Xt ),/γt (0)�−∇φ(Yt ),γ/t (ρ˜(Xt,Yt ))� }dt. 

2  

Since u0, Bt = v0, B
' 

, since (Ξt u0)ρ˜(Xt,Yt )= −(Υt v0)ρ˜(Xt,Yt )and since  

t  



(Ξt u0)
2 

ρ˜(Xt,Yt )= (Υt v0)
2 

ρ˜(Xt,Yt )= (Ξt u0)(Υt v0)ρ˜(Xt,Yt )= 0,  

(8) simplifies to  

m

−

1 

m
  

2d˜ρ(Xt,Yt )= (Ξt ui + Υt vi)
2 

ρ˜(Xt,Yt )dt  

(

9

) 
i=1  

+ {�∇φ(Xt ),γ/t 

(0)�−∇φ(Yt ),γ/t (ρ˜(Xt,Yt 

)
)

�
 
}
d

t

.

  



Denote by J
i 

the Jacobi vector field along γt with J
i

(0) = Ξt ui and J
i

(1) = Υt vi. Then, since ˜ρ is 

t tt  

smooth under the assumption that (Xt,Yt ) lies in a given neighbourhood of (x0,y0), using the second-variation 

formula (see Cheeger and Ebin (1975)), a modification of the argument by Kendall (1986a) shows that the 

right hand side of (9)isgiven by  

∫  

ρ˜(Xt ,Yt ) m−1  

m   

|Dγ/
t 
(s)(J

i

(s))|
2

−� R(J
i

(s),γ/t (s)) /γt (s),J
i

(s)�ds dt 

tt t  

0 (10)  

i=1 

+ {�∇φ(Xt ),γ/t (0)�−∇φ(Yt ),γ/t (ρ˜(Xt,Yt ))� dt} ,  

where the integral is along γt and R denotes the curvature tensor of M. To analyse the first term 

of (10), we use a modified form of the argument in Cheeger and Ebin (1975), the proof of 

Lemma 1.21. It shows that, for each i = 1,...,m − 1,  

∫  

ρ˜(Xt ,Yt )   |Dγ/
t 
(s)(J

i

(s))|
2 

−� R(J
i

(s),γ/t (s)) /γt (s),J
i

(s)�ds 

tt t  

0 

∫  

ρ˜(Xt ,Yt )    
2 

≤|Dγ/
t 
(s)(V

i

(s))|−� R(V
i

(s),γ/t (s)) /γt (s),V
i

(s)�ds, 

tt t  

0 

where V
i

(s) := (Π˜(X
t 
,sV

t 
/|V

t 
|)Ξt )ui. Now, since V

i 

is parallel along γt , it follows that Dγ/
t 
(s)(V

i

(s)) =  

tt t  

0. As a consequence, since {/γt (s),V
1

(s),...,V
m−1

(s)} forms an orthonormal base of Tγ
t 
(s)(M) and 

tt  

R(/γt (s),γ/t (s)) /γt (s),γ/t (s)�≡ 0, we have  

∫ ˜m−1   

ρ(Xt ,Yt ) m |Dγ/
t 
(s)(J

i

(s))|
2 

−� R(J
i

(s),γ/t (s)) /γt (s),J
i

(s)�ds 

tt t  

0  

i=1∫ m−1 

ρ˜(Xt ,Yt ) m ≤− R(V
i

(s),γ/t (s)) /γt (s),V
i

(s)� ds 
(11) 

 

tt  



0  

i=1 

∫  

ρ˜(Xt ,Yt ) = − Ric(γt (s))( /γt (s),γ/t (s)) ds.  
0  

For the remaining two terms of (10), we note that  

d  

�∇φ(γt (s)),γ/t (s)� = Dγ/
t 
(s)(∇φ(γt (s))),γ/t (s)� + �∇φ(γt (s)),Dγ/

t 
(s)γ/t (s)� 

ds  

= Dγ/
t 
(s)(∇φ(γt (s))),γ/t (s)�  

= Hess
φ

(/γt (s),γ/t (s)),  

as γt is a geodesic. From this, we deduce that  

∫  

ρ˜(Xt ,Yt )�∇φ(Yt ),γ/t (ρ˜(Xt,Yt ))� − ∇φ(Xt ),γ/t (0)� = Hess
φ

(/γt 

(s),γ/t (s)) ds. (12) 0  



Thus, under the Bakry-Emery curvature criterion (A1) condition, (10), (11) and (12) together give that  

∫  

ρ˜(Xt ,Yt ) 

2d˜ρ(Xt,Yt )≤− Ric(/γt (s),γ/t (s))+Hess
φ

(/γt (s),γ/t (s)) ds dt 0 (13)  

≤−2κρ˜(Xt,Vt )dt.  

Now, for any e ≥1, it follows from (13) that  

   
dρ˜(Xt,Yt )≤−eκρ˜(Xt,Yt ) dt,  

so that  

∫ t     

κt 
˜
 κs 

eρ(Xt,Yt ) = ρ˜(X0,Y0) + eeκ ρ˜(Xs,Ys) ds + dρ˜(Xs,Ys) 
0  

≤ ρ˜(X0,Y0) .  

Finally, by recalling that ˜ρ(X0,Y0)= ρ(X0,Y0),wehave  
− κt 

ρ(Xt,Yt )≤ ρ˜(Xt,Yt )≤ρ(X0,Y0) e 

as required.  

3.2. When conjugate points are present in cut loci  

When conjugate points are present in cut loci in M, the construction of a pair of diffusions in the proof of 

Theorem 1 fails at such points. More precisely, if y0 is a (first) conjugate point of x0 along the geodesic 

exp(sv), which also lies in the cut locus of x0, then D exp(v)is singular. This means that  

x0 x0  

it would be impossible to find a neighbourhood N of (x0,y0)that has the properties described above following 

(6). In particular, it would be impossible to find a subset of TM, as specified there, such that Exp is a 

diffeomorphism from that subset onto N. It is evident from the proof of Theorem 1 that the existence of such a 

diffeomorphism offers a way to couple (Xx,t,Yy,t )at, and beyond, cut points.  

Nevertheless, we now show that it is still possible to construct a pair of diffusions on M with properties that 

(i) they both satisfy (2) and (ii) the expected distance between them contracts at least exponentially. This relies 

on a generalisation of the technique used in Theorem 5 of Kendall (1986b)to deal with the presence of 

conjugate points. In the non-conjugate part of the cut locus of M analysis proceeds as with Theorem 1. To 

warn us of when the diffusions get close to the first conjugate locus, we use the operator Lφ , and monitor the 

value of its action on the distance function ρ; this value decays towards −∞when the points approach the first 

conjugate locus. Effectively, we determine a neighbourhood N2δ ⊂ M ×M of the first conjugate locus in M ×M 

for a constant δ that depends on κ and the injectivity radius of M. Once the coupled diffusions enter N2δ , the 

closure of N2δ , we decouple them,  

¯run independent diffusions until 

they hit M \Nδ , where Nδ ⊃N2δ , and then return to coupling again. We first need two 

preliminary results before stating and proving the main result in this section. Observethattheset  

˜ 

E:= {(x,v)∈TM | the geodesic exp(sv), 0 ≤s ≤1, 

x 

contains no conjugate point of x} is an open set in TM. The map 



Exp: (x, v)→(x, exp(v))maps E
˜
surjectively to its image  



x 

E:= {(x, y)∈M ×M |there is a geodesic from x to y containing no conjugate point}. 
(14) 

 

Then, the construction (7)of (Xt,Yt )can be applied to the case when the starting point (x0, y0)is in E and it 

remains valid until the first exit of (Xt,Vt )from E
˜
. We now modify the construction by Kendall (1986b): combine 

the coupled diffusions (Xt,Yt )defined by (7), while the corresponding (Xt,Vt )is not too close to the boundary of 

E
˜
,with Xt , Yt evolving independently.  

For this, we first need a result on the distance function of two independent diffusions on M specified by (2). 

Lemma 3 in Appendix A of the Supplementary Material ensures the following property of ρ(x, y)on 

neighbourhoods of the cut locus  

C:= {(x, y)∈M ×M |y lies in the cut locus of x}  

of M ×M: there is a set C0 ⊂Csuch that  

(i) C0 contains the (first)-conjugate part of C;  

(ii) for any (x, y)∈C\C0, there is a neighbourhood N of (x, y)in M ×M and two smooth functions e1 and e2 on N 
such that  

 
'' '''' ''  

ρ(x , y )= min{e1(x , y ),e2(x , y )}, ∀(x , y )∈N.  

Since the (first)-conjugate part of C has co-dimension 2 in M ×M (see Barden and Le (1997)), the result of that 

Lemma also implies that C0 can be chosen to have co-dimension 2. Also, similarly to the argument at the 

beginning of the proof of Theorem 1, N in (ii) above can be chosen such that Exp
−1

(N)is a disjoint union of two 

open sets V1, V2 in TM and, restricted to each Vi, Exp is a diffeo 
'' 

morphism from that set to N. Then, the smooth function ei(x , y )constructed in the proof of Lemma  
' 

3 in Appendix A of the Supplementary Material is in fact the length of the geodesic from x 
' 

and y , the initial 

tangent vector vi to which lies in Vi. That is, using our notation for the length of intervening  
'' ' 

geodesics, we have ei(x , y )= ρ˜(x ,exp'(vi)). This leads to the following generalisation of Theorem  

x  

5of Kendall (1986b) and of Theorem 3 of Barden and Le (1997). The proof of this generalisation is a slight 

modification of the proof for Theorem 3 of Barden and Le (1997)(seealso Le and Barden (1995) for more 

detailed derivations), and we hence omit it here.  

Lemma 1. Suppose that Xt and Yt are independent diffusions on M, both satisfying (2). Then, the distance 

ρ(Xt,Yt )is a semimartingale and, before the first time that Xt = Yt ,  

√  

1 

dρ(Xt,Yt )= 2dBt + Lφ,1 ρ(Xt,Yt )+ Lφ,2 ρ(Xt,Yt ) dt −dLt, 

2  

where Bt is a Brownian motion on R; L is a non-decreasing process that is locally constant outside C; and, for 

fixed x0 and x * x0,  

⎧⎪⎪⎪⎨ ⎪⎪⎪⎩  
Lφ,1 ρ(x, x0):=  

2  

0 if (x, x0)∈C0; 1  



{Lφ ρ˜(exp(v1), x0)+ Lφ ρ˜(exp(v2), x0)}if (x, x0)∈C\C0; 

x0x0 

Lφ ρ(x, x0) otherwise,  

and Lφ,2 ρ is similarly defined with respect to the second argument of ρ, and where the operator Lφ is  
1 

defined by Lφ = 
2 
{Δ −�∇φ, ∇�}.  



To detect that the coupled (Xt,Yt ), constructed by (7), is close to the boundary of E and to control the 

independent diffusions Xt and Yt , we need the following generalisation of a geometric description (see Kendall 

(1986b)), wherein we replace the Laplacian operator considered there with Lφ, and replace the lower bound 

constant c determining the set Oc (which was denoted by Uc by Kendall (1986b)) by cρ(x,y). Since φis in 

C
2

(M), the proof for our result is analogous to that for the lemma in Kendall (1986b), and we omit it here.  

Lemma 2. For any c >0,  

¯  

Oc ⊂Oc ⊂E
˜
,  

where  

Oc := {(x,v)∈E|L
˜
φ,1 ρ˜(x,exp

x 
(v)) + Lφ,2 ρ˜(x,exp

x
(v)) >−2cρ(x,exp

x 
(v))}  

and, as before, ρ˜(x,expx (v)) denotes the length of the intervening geodesic γ(t) = exp(tv), 0 ≤ t ≤ 1. 

x 

We are now ready to prove the following result for Riemannian manifolds M with non-empty conjugate 

locus (e.g., spheres), which is weaker than Theorem 1 in that the exponential contraction between the 

diffusions towards their initial points is in expectation and not pathwise.  

Theorem 2. Assume that the Bakry-Emery curvature criterion (A1) holds for a constant κ>0. Then, for any e≥ 

1 and for any x0,y0 ∈ M, there is a pair of diffusions (Xt,Yt ) starting from (x0,y0) such that both Xt and Yt 

satisfy (2) and  

   
− κt 

Eρ(Xt,Yt )≤ ρ(x0,y0) e, t ≥ 0. (15)  

Note that, unlike the result of Theorem 1,the (Xt,Yt ) constructed here will depend on e.  

Proof. Let κ>0 be the constant in Bakry-Emery curvature criterion (A1). For given e∈[1,n],fix δn >0 

sufficiently large such that  

2 

(i) δn >κ+ 4(n −1)/r, where r0 >0 is the minimum of the injectivity radius and a fixed positive  

0  

'  

constant r
0 
say;  

(ii) Oδ
n 
⊃{(x,y)∈ M × M | ρ(x,y) <r0/2}, where Oδ = Exp (Oδ) and where Oc is the subset of TM as defined 

in Lemma 2 above.  

We now construct diffusions Xt and Yt , both satisfying (2), as follows. For given (x0,y0)∈ M × M,if there is 

a minimal geodesic between them which contains no conjugate point, we construct diffusions Xt and Yt by 

solving (7) beginning at (x0,y0). By allowing the corresponding (Xt,Vt ) to jump if necessary, as commented 

following the construction (7), we continue such a construction for (Xt,Yt ) until thefirsttimethat (Xt,Vt ) leaves 

O2δ
n 
. Suppose that (Xt,Vt ) leaves O2δ

n 
at time τ. We then consider all minimal geodesics between Xτ and Yτ 

containing no conjugate point and, if possible, choose one  

¯ 

for which the corresponding (Xτ,Vτ) lies in Oδ
n 
. We then repeat the construction as before with the ¯ 

chosen new starting point. This iterated construction continues until the choice of such (Xτ,Vτ) in Oδ
n 
is no 

longer possible. If it is not possible initially to choose a minimal geodesic containing no conjugate point, or if at some ¯ 



stage a choice of the above (Xτ,Vτ) in Oδ
n 
is impossible, then we continue the construction of Xt and Yt by evolving 

them independently until (Xt,Yt ) hits Oδ
n 
.  

¯To show that the required result holds for (Xt,Yt ) 

constructed in such a way, it is sufficient by Theorem 1 to restrict to the case when Xt and Yt evolve 

independently. Then, (Xt,Yt ) is not in Oδ
n 
. Recalling  

¯that a co-dimension 2 

set in M ×M is a polar 

set of a non-degenerate 

diffusion on M ×M it 

follows from Lemmas 

1 and 2 and from the 

choice of δn that  



κt 
ρ(Xt,Yt )

 

d e 

 κt 
ρ(Xt,Yt ) dt

 

≤dMt + eκe 

1  

 ee
 κt 

ρ(Xt,Yt )
−1 

Lφ,1 ρ(Xt,Yt )+ Lφ,2 ρ(Xt,Yt ) dt 

 
e(e −1)e

 κt 
ρ(Xt,Yt )

−2
dt 

 

 
2 

≤dMt + ee
 κt 

ρ(Xt,Yt ) κ −δn + (e −1)ρ(Xt,Yt )
−2

dt  

≤dMt + ee
 κt 

ρ(Xt,Yt ) κ −δn + 4(n −1)/r
2

dt 

0  

≤dMt,  

where Mt is a martingale. Hence, we have E ρ(Xt,Yt )≤ρ(x0,y0) e
− κt 

as required.  

Remark 2. In the literature, there are several ways to construct couplings for proving the existence of 

contractivity. For example, in the curvature setting, the framework of weighted Riemannian manifolds is now 

part of a broader one for CD-spaces (see e.g., Sturm (2006a,b)). In this context, the existence of contractive 

couplings was treated by Kuwada (2010), von Renesse and Sturm (2005). In particular, the Kuwada duality 

theorem (see Kuwada (2010), Theorem 2.2), in conjunction with the implication of contractivity of the heat 

flow under Curvature-Dimension condition, implies the existence of a contractive coupling such as in the proof 

of Corollary 1 in von Renesse and Sturm (2005). The coupling we construct here, in addition to proving the 

required contractivity, will also be employed in the Supplementary Material to study certain stochastic vector 

fields along the paths Xx,t and Yy,t , which play important roles in obtaining the Stein factors.  

4. Solution to the Stein equation and Stein factors  

We are now ready to turn our attention to the Stein equation  

h(x)−E [h(X)]= Lφ fh(x), (16)  

where h belongs to a suitable class of real-valued test functions on M. Using the distance process ρ(Xx,t,Yy,t ) 

forapairofdiffusions (Xx,t,Yy,t ) constructed above, in this Section we determine the solution fh to the Stein 

equation (16) and examine its properties.  

4.1. The solution fh  

Let  

H0:= {h ∈C0(M)|h is Lipschitz with C0(h)< ∞}. (17)  



Proposition 1. Let M be a complete and connected Riemannian manifold. Assume that the Bakry-Emery 

curvature criterion (A1) holds for a constant κ>0 and that X is a random variable on M with distribution μφ 

such that E [ρ(X,x)]<∞for some x ∈M. For every h ∈H0 the function  

∫ ∞  

fh(x):= E [h(X)]−E h(Xx,t ) dt (18) 0  

is (i) well-defined; (ii) Lipschitz with constant C0(fh)≤C0(h)/κ.  

''' 

Remark 3. If M = R
m

,Ric(u,u )+ Hess
φ

(u,u )= Hess
φ

(u,u ). Thus, Proposition 1(ii) recovers the corresponding 

result in Mackey and Gorham (2016), as the constant 2κhere corresponds to constant k there. Moreover, the 

result of Proposition 1(ii) is equivalent to that of Proposition 6.1 in Thompson (2020).  

Proof. Let (Xx,t,Yy,t ) be the pair of diffusions in Theorem 2 with e= 1, starting from (x,y). Then, both Xx,t and 

Yy,t satisfy (2). Since μφ is the invariant measure for Yt , using the Lipschitz property of h and Theorem 2,  

∫ ∞  

E [h(X)]−E h(Xx,t ) dt  
0  

∫ 
∞
∫ = E h(Yy,t )−E h(Xx,t ) dμφ (y)dt  

0 M  

∫ 
∞
∫ ≤C0(h) E ρ(Xx,t,Yy,t ) dμφ (y)dt  

0 M  

∫ ∞ ≤C0(h)E [ρ(X,x)] e
−κt 

dt 

<∞.  
0  

This proves that fh is well-defined. Now, for any x,y ∈M,  

∫ ∞ |fh(y)− fh(x)|≤ E h(Yy,t )−E h(Xx,t ) dt  
0  

∫ ∞ ≤C0(h) E ρ(Xx,t,Yy,t ) dt  
0  

∫ ∞  

1  

≤C0(h)ρ(x,y) e
−κt 

dt = C0(h)ρ(x,y).  

κ 
0  

The next result shows that the function fh defined by (18) solves the Stein equation for the probability 

measure μφ .  

Theorem 3. Assume that M is a complete and connected Riemannian manifold and that Bakry-Emery 

curvature criterion (A1) holds for a constant κ>0. Let X be a random variable on M with distribution μφ such 

that E [ρ(X,x)]<∞ for some x ∈ M.For h ∈H0, the function fh in (18) solves the Stein equation (16).  



Remark 4. When M = R
m 

this result recovers the result by Mackey and Gorham (2016); in particular, E Lφ fh(X) = 0. 

On the other hand, the Bakry-Emery curvature criterion (A1) implies certain restrictions on the probability measures 

to which we can apply Theorem 3. For example, as noted in Example 1(i), one cannot apply it to von Mises-Fisher 

distributions on the circle. In this case, using direct integration by parts, for probability measures μφ with X ∼μφ on 

S
1

, the function  

∫  

x φ(x) 

gh(x)= c(φ)ea + (h(y)−E [h(X)])dμφ (y) , −π  

' 

for a constant a, solves the Stein equation h(x)−E [h(X)]= g (x)−φ 
'

(x)gh(x)associated with first- 

h 

' 

order Stein operator Aφ g −φg = g −φ 
' 

g (see Lewis (2021)).  

Proof. Let Xx,t be a diffusion starting from x and satisfying (2). Since the corresponding semigroup {Pt |t ≥0}is 

strongly continuous on C0(M)and Lφ is the infinitesimal generator of Xx,t ,wehave  

 ∫   

t (Pt h)(x)−h(x)= LφE 

h(Xx,s) ds 

0  

˜ 

for h ∈C0(M)(Ethier and Kurtz, 1986, Prop. 1.5). However, for h
˜
(x)= h(x)+ a where a ∈R, h(x)−˜ 

E h(X) = h(x)−E [h(X)]. Then, by taking a = E [h(X)]and noting Lφ (a)= 0, we can also write the above as  

 ∫   

t  

(Pt h)(x)−h(x)= −LφE [h(X)]−E h(Xx,s) ds. (19) 0  

Now, take (Xx,t,Yy,t )to be the pair of diffusions, starting from (x, y), as Theorem 2 with e = 1. Since Yt 

satisfies (2), the fact that μφ is the invariant measure of Yt gives that  

∫  
E [h(X)]−(Pt h)(x) = E h(Yy,t )−E h(Xx,t ) dμφ (y) 

M  

∫  
−κt 

≤C0(h) E ρ(Yy,t, Xx,t ) dμφ(y)≤C0(h)E [ρ(X, x)]e,  

M  

where the last inequality follows from Theorem 2 and where C0(h)is the Lipschitz constant for h. Thus,  

lim (Pt h)(x)= E [h(X)].  
t→∞ 

On the other hand, the result of Theorem 2 implies that we may apply the Dominated Convergence Theorem to 

obtain that, as t →∞, the right hand side of (19) tends to −Lφ fh(x), so that  

h(x)−E [h(X)]= Lφ fh(x)  
as required.  

4.2. Stein factors  

In the literature, Stein factors refer to bounds on solutions fh of the Stein equation (16). A direct consequence 



of Proposition 1 and Theorem 3 is that fh defined by (18) is differentiable and Dfh is bounded.  



Proposition 2. Under the conditions of Theorem 3,Dfh exists and  

sup IDfh(x)Iop ≤C0(h)/κ x∈M  

where fh is defined by (18).  

We will see later in Section 5.1 that the bound on Dfh given above suffices to bound the Wasserstein 

distance between the probability measure μφ and another μψ ∝ e
−ψ

. However, for bounding more general integral 

(semi-)metrics, bounds on first-and second-order derivatives of fh, known as Stein factors, are needed.  

Accordingly, denote by Ric
!

the tensor equivalent to Ric + Hess
φ 

in the sense that, for any x ∈M, 

φ  

 

where R denotes the Riemannian curvature tensor. Thus, it is possible to express Ric
!

explicitly in  

φ  

terms of the frame field as  
m 

m  

Ric
!

(u)= R(u, ei)ei + Du(∇φ). (22) 

φ 

i=1  

We can define the Lipschitz constant for Ric
!

in a similar way to the definition of the Lipschitz constant  

φ  

given in (1). Let  
1 

H1:= {h ∈C0(M)∩C(M)|C0(h)< ∞, C1(h)< ∞}. (23)  

Proposition 3. Assume that the conditions of Theorem 3 hold. Assume further that Ric
!

is Lipschitz  

φ  

with finite Lipschitz constant L(Ric
!

). For every h ∈H1 with fh defined in (18),Dfh is Lipschitz with  

φ  

constant  

L(Ric
! 

)1 φ 

C1(fh)≤C1(h) + C0(h) . 

2κ 2κ
2 

 

and for any u,u ' ∈Tx(M)  
Ric!φ (u), u '  = Ric(u,u ' )+ Hessφ(u,u ' ).  (20)  

Recall that (see O’Neill (1983))   
Hessφ(u,u ' )=  Du(∇φ), u 

'  
,  (21)  

and that, in terms of a (local) frame field e1, ···, em,   

mm   
Ric(u,u ' )= i=1  R(u, ei)ei, u ' ,   
Stein’s method on manifolds     1095  

 ∫ ∞     

 +  0

  

E  Dh(Yy,t)(˜v x t − 
vy t )  

dt   



Remark 5. As noted in Remark 3,if M = R
m 

, Ric
!

(u), u 
' 

= Hess
φ 

(u,u 
'

). Then, since Hess
φ 

=  

φ 

D
2

φ, L(Ric
!

)= C2(φ). Thus, Proposition 3 recovers the corresponding result in Mackey and Gorham  

φ  

(2016). On the other hand, the result of Proposition 3 differs from the corresponding Proposition 6.2 in 

Thompson (2020): in theirs, the relationship between the constant c1 obtained and those given in the 

assumptions is not specified; using our notation, the upper bound for C1(fh)there would depend only on 

C0(h)while ours depends on both C0(h)and C1(h).  



Proof. The proof uses Lemmas 4 and 5 given in Appendix B of Supplementary Material. For any  
x 

x ∈ M and v ∈ Tx(M), consider the vector field valong the path Xx,t which solves the differential  

t  

equation  
x 

Dv
t 
1 

x 
 

= − Ric
! 

(v ) (24) 

dt 2 
φ t 

 

x 

with v
0 
= v, where Xx,t is the solution to (2). It is known that, for any fixed t > 0 and under the given x 

condition for h, Ns = D E h(XX
x, s 

,t−s)(v) is a local martingale for 0 ≤ s ≤ t (see Thalmaier (1997)). 

s  

Since  
xx 

|Ns|≤ID E h(XX
x , s 

,t−s)Iop|v
s 
|≤ C0(h)|v

s 
|,  

using Lemma 4 (Appendix B of Supplementary Material) with q = 1, we see that E [|Ns|] < ∞. Hence, Ns is in 

fact a martingale on [0,t], and so E [N0] = E [Nt], which in turn gives  

x 

D E h(Xx,t)(v) = E Dh(Xx,t)(v ) . 

t  

(See also Thompson (2020, Theorem 11.2), where the Z there corresponds to −2∇φ here.) Thus, from the 

definition of fh, the Dominated Convergence Theorem and Theorem 2, it follows that, for any v ∈ Tx(M),  

∫ ∞ ∫ ∞  

x 

Dfh(x)(v) = D E h(Xx,t)(v) dt = E Dh(Xx,t)(v ) dt. (25) 

t  

00  

Now, consider the pair of diffusions (Xx,t,Yy,t), starting from (x, y), in Theorem 2 with e = 2. First, by 

applying the Hölder inequality, Theorem 2 and Lemma 4 (Appendix B of Supplementary Material), we have 

that  

   
x 

EDh(Xx,t)− Π
γ
Dh(Yy,t)(v) 

t 
X

x,t 
,Y

y, t (26)  
x 

≤ C1(h) E ρ(Xx,t,Yy,t)|v|≤ C1(h)ρ(x, y)|v| e
−2κt 

. 

t  

y 

Moreover, writing vfor the solution of (24) with the underlying path Xx,t replaced by Yy,t and with  

t y xx 

the initial condition v= Πγ
x, y 

(v), and denoting Π
γ
(v) by ˜v,wealsohave  

0 tt 



Xx ,t ,Yy, t  

L(Ric
! 

) 

   
φ 

xy xy −κt 

EDh(Yy,t)(v˜− v)≤ C0(h) E v˜− v≤ C0(h) ρ(x, y)|v| e, (27)  

tt tt  

2κ  

where the second inequality follows from Lemma 5 (Appendix B of Supplementary Material) with q = 1.  

Finally, noting that Πγ
x, y 

(Dfh(y))(v) = Dfh(y)(Πγ
x, y 

(v)), together with (25), (26) and (27), implies that  

|(Dfh(x)− Πγ
x ,y 

Dfh(y))(v)| = |Dfh(x)(v)− Dfh(y)(Πγ
x ,y 

(v))| ∫ ∞  

xy 

≤ E Dh(Xx,t)(v )− Dh(Yy,t)(v) dt 

tt  

0  

∫ 
∞ 

   

x 

≤ EDh(Xx,t)− Π
γ
Dh(Yy,t)(v )dt 

t  
Xx , t ,Yy,t 

0  

 
≤  

⎧⎪⎪⎨ ⎪⎪⎩  

L(Ric
! 

) 

1 φ 

C1(h) + C0(h) 

2κ 2κ
2 

 

⎫⎪⎪⎬  

ρ(x, y)|v|,  

⎪⎪⎭  
i.e. Dfh is Lipschitz with the required constant.  

The argument in Remark 5 regarding the case when M = R
m 

can be extended to the case when M has constant 

Ricci curvature, which implies that the bounds in Mackey and Gorham (2016) continue to hold for such M. 

This gives the following corollary.  

Corollary 1. Assume that the conditions of Theorem 3 hold. Assume further that M is Ric flat and φ has finite 

Lipschitz constant C2(φ). Then, for every h ∈H1 and fh as defined in (18),Dfh is Lipschitz with constant  

1 C2(φ) 

C1( fh)≤ C1(h) + C0(h) . 

2κ 2κ
2 
The curvature of the manifold plays a more explicit role in the 

Lipschitz constant for D
2 

fh.Tosee this, define the tensor d
* 

R by d
* 

R(u, v) = −trD. R(·,u)v. Then d
* 

R satisfies d
* 

and for any u,u ' ∈Tx(M)  
Ric!φ (u), u '  = Ric(u,u ' )+ Hessφ(u,u ' ).  (20)  

Recall that (see O’Neill (1983))   
Hessφ(u,u ' )=  Du(∇φ), u 

'  
,  (21)  

and that, in terms of a (local) frame field e1, ···, em,   

mm   
Ric(u,u ' )= i=1  R(u, ei)ei, u ' ,   
Stein’s method on manifolds     1095  

 ∫ ∞     

 +  0

  

E  Dh(Yy,t)(˜v x t − 
vy t )  

dt   



R(v1, v2), v3 = �(Dv
3
Ric

!

)(v1), v2 �−�(Dv
2
Ric

!

)(v3), v1 . Noting that R(∇φ)(u, v) = R(∇φ,u)v, to simplify 

notation, we also define R
! 

= d
*

R + DRic
! 

+ R(∇φ). (28) 

φφ  

The bound on Dfh requires restriction to the smaller and smoother class H1; the same is required when 

bounding D
2 

fh.Let  

H2:= {h ∈C0(M)∩C
2

(M)| C0(h) < ∞, C1(h) < ∞, C2(h) < ∞}. (29)  

Proposition 4. Assume that the conditions of Theorem 3 hold and that χ
1 
= sup Iop(x) and χ

2 
= m sup 

op
(x) 

IR
! 

IRI
2 

 

φ  

x∈M x∈M  

are both finite, where R
! 

is defined by (28). Further, assume that Ric
! 

,R
! 

and R are all Lipschitz with  

φ φφ  

finite Lipschitz constants L(Ric
! 

),L(R
! 

) and L(R) respectively. For every h ∈H2 with fh defined in  

φφ  

(18):  

(i) If χ
2 
= 0,D

2 

fh exists and is Lipschitz with constant  

13 13  
2 

C2( fh)≤ C2(h) + C1(h)C2(φ) + C0(h) C3(φ) + C2(φ). 

3κ 4κ
2
4κ

2
4κ

3 
 



(ii) If χ>0 and κ>1/2, then D
2 

fh exists and is Lipschitz with constant  

2  

� 1/2 

⎧⎪⎪⎨ ⎫⎪⎪⎬ 

L(Ric
! 

) 

φ  

2κ2  

+  
4  

χ2  

1 
+ 2 χ 

2 

1 

C2(fh)≤C2(h)  
+ C1(h) 

3κ 8κ−14κ+ 1 

⎪⎪⎩ ⎪⎪⎭  

2β
˜
 

+ C0(h) 
2κ−1  

where  
123 

β˜
2 

= 
β

+ 
β

+ 
β

, 

4

κ

+
 
1

3

κ

+
 
1

2

κ

+
 
1 

with  

χ2 

1
1 
+ 6 χ 

2 

β1 = 2mL(R)
2 

+ L(R
! 

)
2 

+ L(Ric
! 

)
2 

, 

2 
φ 

4κ+ 1 
φ 

 

χ 

1 

β2 = L(Ric
! 

)L(R
! 

), 

φφ 

κ  

�

2

χ 

1  

κ
2
2  

1 + 2 χL(Ric
! 

)
2 

 

2 φ 

β= 

3  

.  

Remark 6. Note that, χ
2 
= 0 corresponds to M being a flat manifold, such as a Euclidean space, a cylinder or a flat 

torus. Consequently, χ= L(Ric
! 

)= C2(φ) and L(R
! 

)= C3(φ). Our result thus  



1 φφ 

recovers the corresponding bound given in Mackey and Gorham (2016)for R
m

, where Li, Mi(h)and k in Mackey 

and Gorham (2016) correspond respectively to Ci−1(φ), Ci−1(h)and 2κhere. Our result establishes that their 

upper bound also holds for general complete and connected flat manifolds.  

On the other hand, if M is locally symmetric, we have DR = 0. Then, it follows from (21) and (22) that 

L(Ric
! 

)= L(Du(∇φ))= C2(φ) and L(R
! 

)= L(D(Ric
! 

))= C3(φ). As symmetric manifolds are  

φφφ 

locally symmetric, this will hold for a class of familiar manifolds, such as spheres, hyperbolic spaces, 

projective spaces and the space of positive definite symmetric matrices. Pertinently, the upper bound for 

C2(fh)in Proposition 4 when χ2 = 0 is not the limit, as χ2 →0, of that for χ2 >0. In addition, we need an extra 

requirement for κwhen χ2 >0.  

Proof. The proof uses Lemmas 4, 5, 6 and 7 given in Appendix B of Supplementary Material. Consider the 

vector field V 
x 

along the path Xx,t which satisfies the stochastic covariant Itô equation  

t  

1 

DV 
x 

= R(Ξ dBt,u
x

)v 
x 

− R
! 

(u
t

x 

,v 
x

)+ Ric
! 

(V 
x

) dt (30) 

t tt 
2 

φt φ t  

with V 
x 

= 0, where Ξ is defined in (4), R
! 

and Ric
! 

are defined by (28) and (20) respectively, and  

0 φφ  

x 

where u
x 

and vare the solutions of (24) both with the underlying path Xx,t and with the initial  

tt x ' 

conditions u
0 

x 

= u and v
0 
= v respectively. It is known that, for h satisfying the given conditions, N =  

s  

x 

D
2

E h(XX
x, s 

,t−s)(u
x 

,v)+ D E h(XX
x , s 

,t−s)(V 
x

)is a local martingale for 0 ≤s ≤t, for any fixed  

ss s  

t >0(Thompson, 2020, Lemma 11.3). Since  

  

  
' xx 

|N
s
|≤IED

2

h(XX
x , s 

,t−s)Iop|u
s 
||v

s 
|+ IE Dh(XX

x, s 
,t−s)Iop |V

s

x

| xx 

≤C1(h)|u||v |+ C0(h)|V 
x

|, 

ss s  



Stein’s method on manifolds  
' 

it follows from Lemmas 4 and 6 (Appendix B of Supplementary Material) that E |N| < ∞ so that  

s  

' '' 

Nis in fact a martingale for 0 ≤ s ≤ t. Thus E N
0 
= E N , which implies that, for any fixed t > 0 

st  

and u, v ∈ Tx(M),  
xx 

D
2

E h(Xx,t )(u, v) = E D
2

h(Xx,t )(u
t 
, v ) + E Dh(Xx,t )(V 

x

) . 

tt  

Then, the definition of fh, the Dominated Convergence Theorem and Theorem 2 together ensure that D
2 

fh 

exists and that, for any u, v ∈ Tx(M),  

∫ ∞  

xx 

D
2 

fh(x)(u,v) = E D
2

h(Xx,t )(u
t 
, v ) + E Dh(Xx,t )(V 

x

) dt. (31)  

tt  

0  

Now, we construct a pair of diffusions (Xx,t,Yy,t ), starting from (x, y), as in Theorem 2. Since we need to 

apply Lemmas 5 and 7 (Appendix B of Supplementary Material) to the processes related to (Xx,t,Yy,t ) in the 

following proof, it is necessary to take the parameter e in the construction of (Xx,t,Yy,t ) 
yy 

to be 6. As in the proof of Proposition 3, write uand vfor the solutions of (24) with the underlying  

tt  

yy 

path Xx,t replaced by Yy,t and with the respective initial conditions u= Πγ
x , y 

(u) and v= Πγ
x , y 

(v). 

00  

y 

Also, let ˜u
x 

denote Π
γ
(u

x

), and similarly for ˜vand V˜
y

. Then,  

t ttt 

Xx , t ,Yy,t  

|(D
2 

fh(x)− Πγ
x, y 

D
2 

fh(y))(u,v)| 

∫ ∞  

xx yy 

≤ E D
2

h(Xx,t )(u
t 
, v

t 
)− D

2

h(Yy,t )(u
t 
, v

t 
) dt 

(32)
 

0 

∫ ∞  

+ E Dh(Xx,t )(V 
x 

)− Dh(Yy,t )(V
y

) dt. 

tt  

0  

Under the given conditions on h, the first term on the right hand side of (32) can be estimated as  

∫ ∞  

xx yy 



E D
2

h(Xx,t )(u
t 
, v )− D

2

h(Yy,t )(u
t 
, v) dt 

tt  

0  

∫ ∞  

xx 

≤ E D
2

h(Xx,t )− Π
γ
D

2

h(Yy,t )(u
t 
, v ) dt 

t  
Xx,t ,Yy,t 

0  

∫ ∞ ∫ ∞  

xyx yxy 

+ E D
2

h(Yy,t )(u˜− u
t 
,v˜) dt + E D

2

h(Yy,t )(u
t 
, v˜− v) dt 

tt tt  

00  

∫ ∞ ∫ ∞  

xx xyx yxy 

≤ C2(h) E ρ(Xx,t,Yy,t )|u||v | dt + C1(h) E |u˜− u||v˜| + |u||v˜− v| dt. 

tt ttt ttt  

00  

Similarly, for the second term on the right hand side of (32), we have that  

∫ ∞ E Dh(Xx,t )(V 
x 

)− Dh(Yy,t )(V
y

) dt 

tt  

0  

∫ ∞ ∫ ∞ ≤ E Dh(Xx,t )− Π
γ
Dh(Yy,t )(V 

x 

) dt + E Dh(Yy,t ) V˜
x 

− V
y 

dt 

t tt 

Xx , t ,Yy,t 

00  

∫ ∞ ∫ ∞ ≤ C1(h) E ρ(Xx,t,Yy,t )|V 
x 

| dt + C0(h) E |V˜
x 

− V
y 

| dt. 

t tt  

00  



By the Hölder inequality, Theorem 2 and Lemmas 4, 5, 6 and 7 (Appendix B of Supplementary Material), it 

follows from the above estimations and from (32) that, if χ
2 
>0,  

1  

(D
2 

fh(x)−Πγ
x, y 

D
2 

fh(y))(u,v)ρ(x,y)|u||v|  

⎧⎪⎪⎨ 

L(Ric
! 

) 2 χ+ χ
2
1/2 

 

φ 

21  

2κ
2 
+  

⎫⎪⎪⎬ 

2β˜1 4  

≤C2(h)  

+ C1(h) + C0(h) 

3κ 4κ+ 18κ−1 2κ−1 

⎪⎪⎩ ⎪⎪⎭  

when κ>1/2, as required.  

If χ
2 
= 0, we need to modify the above application of Lemmas 6 and 7 (Appendix B of Supplementary Material). This 

results in  

1  

(D
2 

fh(x)−Πγ
x, y 

D
2 

fh(y))(u,v) 

ρ(x,y)|u||v|  

13 13  
2 

≤ C2(h)+ C1(h)C2(φ)+ C0(h) C3(φ)+ C2(φ). 

3κ 4κ
2
4κ

2
4κ

3 
 

This shows that Ddfh is Lipschitz with the required constant.  

5. Application to bounding integral (semi-)metrics  

A key application of Stein’s method is in obtaining upper bounds on an integral (semi-)metric dH(X,Z), with 

respect to some function class H, for an arbitrary random variable Z ∼ν. Exploiting the characterising property 

of the operator Lφ,  

E [h(Z)]−E [h(X)]= E Lφ fh(Z) , ∀h ∈H,  

the task then reduces to obtaining a uniform upper bound on E Lφ fh(Z) over functions fh using the Stein 

factors. The quantity dH is clearly a semi-metric and is a metric only if H separates points in the set of signed 

measures on M.  

5.1. Wasserstein distance between μφ and μψ  

The result of Theorem 3 in conjunction with the first-order bound in Proposition 2 can be used to obtain an 



upper bound on the 1-Wasserstein distance between certain types of random variables. For this we consider the 

function class  

H
≤

1

1 
:= {h ∈C(M)|h is Lipschitz with C0(h)≤1},  

under which dH is a bonafide metric. The 1-Wasserstein distance between two random variables Z1 and Z2 on 

M is then defined as  

dW(Z1,Z2):= sup |E [h(Z1)]−E [h(Z2)]|.  

h∈H
≤

1

1 
 



Theorem 4. Assume that the conditions of Theorem 3 hold. Let Z ∼ μψ such that E [ρ(Z,x)] <∞ for some x ∈ M, 

where ψsatisfies (3) with some constant κ 
' 

>0. Then  

1 

dW(Z,X)≤ E [|∇(ψ− φ)(Z)|]. 

2κ  

Proof. The proof pursues a similar argument to that of Proposition 4.1 of Mijoule, Reinert and Swan (2019). 

Note first that  

sup |E [h(Z)]−E [h(X)]| = sup |E [h(Z)]−E [h(X)]|. h∈H
1 

h∈H
≤

1

1
∩C0(M) 

≤1  

For h ∈H
≤

1

1 
∩C0(M), we have by Theorem 3 that E [h(Z)]−E [h(X)]= E Lφ fh(Z) . On the other hand, the given assumption that Z ∼ μψ , where ψ 

satisfies (3), also implies that E Lψ fh(Z) = 0for h ∈H
≤

1

1 
∩C0(M). Noting that 1 

Lφ fh(x)= Lψ fh(x)+ �∇ψ(x)−∇φ(x),fh(x)� , 

2 we obtain 1 

E [h(Z)]−E [h(X)]= E [�∇ψ(Z)−∇φ(Z),∇fh(Z)�], 

2 so that the result follows from Proposition 2. Example 2. 

Assume that M = S
m 

and that all probability measures μϕ involved satisfy the condition Hess
ϕ 

≥(2κ−(m −1))g, for 

some κ>0.  

(i) The functions φ and ψ corresponding to von Mises-Fisher distributions M(x1,c1) and M(x2,c2) are 

respectively −c1 cos ρ(x1,x) and −c2 cos ρ(x2,x). Then,  

∗ ∗ ∗∗∗  

|∇(ψ− φ)(x)| = c |sin ρ(x ,x)| ≤ c 
∗ 

ρ(x ,x)≤ c {ρ(x ,x2)+ ρ(x2,x)},  

where c 
∗ 
= |c2 x2 −c1 x1| and x 

∗ 
= (c2 x2 − c1 x1)/c 

∗
. From the symmetry between φand ψ,it follows that 

the Wasserstein-1 distance dW between M(x1,c1) and M(x2,c2) is bounded:  
2 

m 
|c2 x2 −c1 x1|  
∗ 

dW(X1,X2)≤ (ρ(x ,xi)+ E [ρ(xi,Xi)]) , 

4κ  
i=1  

where Xi ∼ M(ci,xi).  

(ii) The function ψcorresponding to the Fisher-Watson distribution  

2 

c1 x1,x +c2 x2,x 

W(x1,x2,c1,c2)∝edvol(x),  



where x1,x2 = 0, is −c1 cos ρ(x1,x)− c2 cos
2 

ρ(x2,x).If μφ is the von Mises-Fisher distribution M(x1,c1), 

then  

|∇(ψ− φ)(x)| = c2| sin(2ρ(x2,x))|.  

Hence, for X ∼ M(x1,c1) and Z ∼ W(x1,x2,c1,c2),  

c2 

dW(X,Z)≤ E [| sin(2ρ(x2,Z))|] . 

2κ  

(iii) Let m >2 and M = SO(m) with the bi-invariant metric determined by g(E1,E2)=−
1

2
tr(E1E2)for 

skew-symmetric E1,E2. Assume that, for S ∈ M, φ(S) = −c tr(S0S) with S0 ∈ SO(m) and that constant c 

>0. Then, μφ is a von Mises-Fisher distribution on SO(m). Since for any skew-symmetric matrix E  

φ(Se
tE

)− φ(S) 

lim = −c tr(S0SE),  

t→0 t  

c 

we have that ∇φ(S) = √ S{(S0S)
T 

− S0S}. This implies that  

2  

2  

|∇φ(S)|
2 

= S{(S0S)
T 

− S0S},S((S0S)
T 

− S0S)� S  

c2 = �(S0S)
T 

− S0S,(S0S)
T 

− S0S I  

22 

= −tr ((S0S)
T 

− S0S)= 2(m − tr((S0S))).  

If c ∈(0,(m − 2)/2), there is a κ>0 such that the Bakry-Emery curvature criterion (A1) holds, as seen 

in Example 1(iv). Then, if Z is a uniform random variable on SO(m), S0 Z is also a uniform random 

variable and so  

  
c 

dW(Z,X)≤ Em − tr(Z
2
) . 

2κ  

5.2. Integral semi-metrics for general distributions  

If h ∈H2, the result of Theorem 3, together with Propositions 3 and 4, enable us to bound E [h(Z)] − E [h(X)] 

for a more general random variable Z on M as follows, where H2 is as defined in (29).  

Corollary 2. Assume that the conditions of Proposition 4 hold. Assume further that φis Lipschitz with Lipschitz 

constants Ci(φ),i = 0,1. Then for every h ∈H2  

| E [h(Z)] − E [h(X)]|≤ ηE [ρ(Z,X)],  

where  



η= mC2( fh) + C0(φ)C1( fh) + C1(φ)C0( fh)  

and where Ci( fh) are bounded as in Propositions 3 and 4.  



Proof. It follows from a direct estimation of |E Lφ (fh)(Z)|that  

|E Lφ(fh)(Z)|= |E Lφ(fh)(Z)−Lφ(fh)(X)|  

≤|E [(Δ(fh)(Z)−Δ(fh)(X))]|  

+|E [�∇φ(Z),∇fh(Z)�−∇φ(X),∇fh(X)� ]|  

≤mC2(fh)E [ρ(Z,X)]  

+ E �∇φ(Z),∇fh(Z)�− Π
γ
∇φ(X),∇fh(Z)� 

X , Z  

+ E �∇φ(X),Π
γ
∇fh(Z)�−∇φ(X),∇fh(X)� 

Z , X  

≤{mC2(fh)+ C0(fh)C1(φ)+ C1(fh)C0(φ)}E [ρ(Z,X)]  

as required.  

A further simplification occurs when M is compact.  

Corollary 3. If M is compact then, for any Lipschitz function on M with C0(h)≤1, any fixed E>0 and s >0, there 

exists a g ∈C
2

(M)with Lipschitz constants Ci(g),i = 0,1,2, such that C0(g)≤1 + s and  

|E [h(Z)]−E [h(X)]|≤2E + mC2(fg)+ C0(fg)C1(φ)+ C1(fg)C0(φ) E [ρ(Z,X)].  

Proof. Since M is compact, any g ∈C
∞

(M)has bounded derivatives, and thus possesses finite Lipschitz constant 

Ci(g),i = 0,1,2,...,k for every k. This ensures that Lipschitz constants Ci(fg),i = 0,1,2 of the Stein equation 

solution fg are finite.  

The existence of the requisite g ∈C
2

(M) is guaranteed by the result in Azagra et al. (2007)on existence of a 

C
∞ 

Lipschitz approximation of a Lipschitz function. By Theorem 1 in Azagra et al. (2007), for every Lipschitz 

function h on M with Lipschitz constant 1 and for every E,s >0, there exists a g ∈C
∞

(M)such that sup
x ∈M 

|g(x)−h(x)|<E with C0(g)≤1 + s. Thus, by applying Corollary 2 to g,wehave  

|E [h(Z)]−E [h(X)]|  

≤|E [h(Z)]−E [g(Z)]|+ |E [g(X])−E [h(X)]|+ |E [g(Z)]−E 

[g(X)]|  

≤2E+ |E [g(Z)]−E [g(X)]|  

≤2E+ mC2(fg)+ C0(fg)C1(φ)+ C1(fg)C0(φ) E [ρ(Z,X)],  

as required.  

Consider 

the 

function 

class  

H
≤

2

1 
= {h ∈C

2

(M)|h is Lipschitz with C0(h)≤1,C1(h)≤1,C2(h)≤1}.  

Since  

sup |E [h(Z)]−E [h(X)]|= sup |E [h(Z)]−E [h(X)]|,  

h∈H
2 
h∈H

≤

2

1
∩C0(M) 

≤1  



from Propositions 1, 3 and 4, as well as Corollary 2, the following result on the bound for the integral 

(semi-)metric  

dI (Z, X) := sup |E[h(Z)] − E[h(X)]| ,  

h∈H
≤

2

1 
 

is immediate.  

Theorem 5. Assume that the conditions of Proposition 4 hold, and that φ is Lipschitz with Lipschitz constants 

Ci(φ),i = 0,1. Then, for any random variable Z on M,  

dI (Z, X)≤ η 
∗ 

E [ρ(Z, X)],  

where, if χ
2 
= 0,  

11 3  

η ∗  

= m + (3C2(φ) + C3(φ)) + C2(φ)
2 

 

3κ 4κ
2
4κ

3 
1 C2(φ) 1  

+

C

0

(

φ

)

 

+

+

 

C

1

(

φ

) 

2κ 2κ
2 
κ  

w

hi

le, 

if 

χ
2 

> 

0,  

1 
L(Ric

! 
) 
42 χ

2 
+ χ

2
1/2

2β˜ 

1  

+ 
φ 

+ l +  

2κ2  

⎧⎪⎪⎨ ⎫⎪⎪⎬  
η ∗  

= m  



3κ 8κ − 14κ + 1 2κ − 1 

⎪⎪⎩ ⎪⎪⎭ ⎧⎪⎪⎨ ⎫⎪⎪⎬ 

L(Ric
! 

)1 φ  

+ 2κ2  

1  

+C0(φ) + C1(φ)  
, 

2κ  

κ 

⎪⎪⎩ ⎪⎪⎭  
and where the constants χ

1 
, χ

2 
and β˜are as in Proposition 4.  
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