
Development of a Mobile Ad-Hoc Network
Testbed: Modular Implementation of Ad-Hoc

On-Demand Distance Vector Routing

Gage Gailbreath, Andre Koka, Mohammed Gharib, Alireza Ebrahimi, Fatemeh Afghah
Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, USA

E-mail:{ggailbr, arkoka, alghari,alireze, fafghah}@clemson.edu

Abstract—It is widely acknowledged that real implementa-
tion stands out as the most accurate performance evaluation
technique, surpassing simulation-based and analytical-based ap-
proaches. However, the inherent challenges and costs associ-
ated with real implementation pose significant barriers to its
widespread adoption. While several testbeds have successfully
navigated these challenges for ad-hoc communication, existing
solutions often come with drawbacks, such as high costs, ded-
ication to specific protocols or hardware, and limitations in
terms of mobility and AI compatibility. This paper introduces a
novel, versatile testbed designed for the performance evaluation
of mobile ad-hoc networks (MANETs). Noteworthy for its cost-
effectiveness, modularity, mobility, and AI compatibility, this
testbed supports non-homogeneous nodes and operates seamlessly
on any system with a Linux operating system (OS). It is com-
plemented by a user-level Application Programming Interface
(API) that facilitates the implementation of various protocols on
the testbed by separating the implementation from the OS func-
tionality1. To demonstrate its practicality, we implemented the
Ad hoc On-Demand Distance Vector (AODV) routing protocol, a
complex and well-known example, and compared its results with
those obtained from the network simulator ns-3.

Index Terms—Testbed, MANET, AODV, Routing Protocol,
Wireless Communications.

I. INTRODUCTION

In communication systems, wireless ad-hoc networks op-
erate on a communication topology devoid of infrastruc-
ture, unlike more conventional network structures that rely
on deployed infrastructure, such as cellular networks. While
infrastructure-based topologies typically exhibit superior per-
formance, the importance of ad-hoc networks becomes
paramount in situations where infrastructure is non-existent,
compromised, or impractical to establish. Such networks are
especially vital in mission-critical scenarios, including military
operations in hostile environments and natural and man-made
disasters. These environments, where rapid deployment and
flexibility are key, highlight the indispensable role of ad-hoc
networks.

One specific category of ad-hoc network is the Mobile Ad-
Hoc Network (MANET), wherein nodes possess unrestricted
mobility in three-dimensional space and communicate with
each other in a peer-to-peer manner. MANETs hold particular

This material is based upon work supported by the National Science
Foundation under Grant Numbers CNS-2120485, CNS-2318726 and CNS-
2232048.

1The project is publicly available at https://github.com/ggailbr/
MANET-Testbed

significance in the realm of Internet-of-Things (IoT) applica-
tions. The U.S. Army’s unmanned aircraft system roadmap
for the years 2010-2035 explicitly underscores the strategic
priority of considering infrastructure-free networking [1].

On one hand, the performance of each algorithm proposed
to be used in MANET is required to be carefully evaluated,
where the most reliable and accurate method for evaluating
performance is through real-world measurements. Such mea-
surements provide concrete insights into how the algorithms
will function in actual MANET environments, where variables
and conditions can be considerably different from theoretical
or simulated scenarios. On the other hand, enabling com-
munication in MANETs demands the use of sophisticated
algorithms to discover, maintain, and update routes within
the network as nodes dynamically relocate [2]. Deploying
these complex algorithms into a physical system is particularly
challenging, as it involves modifying the networking stack
of the node’s underlying operating system to establish and
utilize routes. Such deployment requires not only a deep
understanding of the operating system’s architecture but also
a meticulous approach to ensure that the newly integrated
algorithms interact seamlessly with the existing system com-
ponents, all while maintaining the stability and efficiency of
the network. Factors including different operating systems, OS
updates, and signal propagation characteristics contribute to
the complexity of physical MANET network implementations.
One approach to simplify this process is to implement such
algorithms at the application layer, using techniques like socket
programming. While this pragmatic solution significantly re-
duces implementation complexity compared to lower-layer
approaches, it introduces a considerable delay in basic network
operations, as demonstrated in Section (IV).

In response to the mentioned challenges, this paper in-
troduces a MANET testbed designed to facilitate physical
implementations of MANET networks. The testbed offers a
user-friendly API that interfaces with the Linux operating
system entirely from the user-space, leveraging built-in Linux
modules such as Netfilter and Netlink, along with the Linux
command-line utility iptables. This testbed serves as a practical
platform, enabling the real-world testing and refinement of
MANET algorithms and configurations, thereby bridging the
gap between theoretical research and tangible application in
MANET environments. Incorporating a robust design, the
API within this testbed heavily leverages the Linux modules
mentioned earlier, employing them for tasks such as sending,

497

2024 20th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT)

2325-2944/24/$31.00 ©2024 IEEE
DOI 10.1109/DCOSS-IoT61029.2024.00079

20
24

 2
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
is

tri
bu

te
d

C
om

pu
tin

g
in

 S
m

ar
t S

ys
te

m
s a

nd
 th

e
In

te
rn

et
 o

f T
hi

ng
s (

D
C

O
SS

-I
oT

) |
 9

79
-8

-3
50

3-
69

44
-1

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

D
C

O
SS

-I
oT

61
02

9.
20

24
.0

00
79

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on October 01,2024 at 12:12:03 UTC from IEEE Xplore. Restrictions apply.

capturing, queuing, and filtering packets as defined by the rout-
ing protocol. This involves the modification of Linux routing
tables and seamless communication between the user-space
and kernel-space through Netlink. Section (III) delves into the
intricacies of the MANET testbed’s design, highlighting the
API functions and their diverse capabilities.

As discussed in Section II, prior work primarily focused on
non-generalized implementations, rendering the reuse of these
designs for new performance evaluations either impractical or
prohibitively expensive. Furthermore, many implementations
resorted to manual restrictions through firewalls and packet-
dropping rules to limit node connections in testing scenarios
which is considered a limitation of physical implementations
and deviates from real-world scenarios. While several MANET
testbed implementations exist in the literature, they often lack
modular designs, leading the test to be impractical for the
implementation of alternative protocols [3]–[10]. Even when
modularity is present, they frequently fall short in providing
users with an API or other tools to create fully customized
routing protocols for use with the testbed. This paper con-
tributes to the field by presenting a modular MANET testbed
that remains agnostic to both the routing protocol under test
and the underlying Linux OS. The testbed is not only portable
and distributable as a software package but also offers users an
API to implement custom MANET protocols. This versatility
empowers researchers to operate heterogeneous MANETs
comprising various node types, showcasing both mobility and
compatibility with AI. The testbed stands out for its cost-
effectiveness, as the APIs can be employed on any devices
with Linux OS, which are available at a low cost, starting as
low as $20 per node.

To validate the efficacy and practicality of the testbed,
this study includes the implementation of the Ad-Hoc On-
Demand Distance Vector (AODV) routing protocol using the
provided APIs, on several Raspberry PI 400 nodes. AODV,
a sophisticated MANET routing protocol outlined in RFC
3561, heavily relies on control-plane messages circulating
throughout the MANET network. Despite the existence of
other MANET routing protocols that surpass AODV’s perfor-
mance, AODV is still considered a benchmark general-purpose
route discovery algorithm. Hence, it serves as an apt choice
for evaluating the MANET testbed’s functionality. Although
further extensive testing is warranted, initial qualitative results
affirm the operational efficiency of the testbed, exemplified
by the successful implementation of AODV through the API
functions. Additionally, to underscore the significance of real-
world implementations, we replicated the same scenarios on
the ns-3 network simulator for comparative analysis. This
comparison illuminates how performance evaluation results,
even for seemingly simple scenarios, can vary between sim-
ulations and real-world implementations. Key performance
indicators (KPIs) such as routing traffic, route discovery time,
network throughput, and the time required to transfer a large
file in the network were considered pivotal for this evaluation
[3], [11].

II. RELATED WORK

To evaluate the performance of the MANET protocols, there
has long been a recognized need to move beyond the realm of

simulation. As such, several other previous works have used
the idea of a testbed to evaluate MANET networks in various
forms. We discuss these previous works in three different
categories, testbeds developed for a specific protocol, modular
testbeds, and application-specific testbeds.

Testbeds for Specific Protocols: Previous research has
largely focused on the implementation and evaluation of
specific MANET protocols, often overlooking the potential
for modularity in a MANET testbed. In [9], Maltz et al.
creates an ad-hoc testbed to implement the dynamic source
routing (DSR) protocol, sharing their experiences in the cre-
ation of their DSR implementation. This testbed provides
impressive features including seamless internet integration, but
does not focus on modular routing protocol implementation,
and provides no API to make routing protocol implemen-
tation simpler for a user. In [12], Brown et al. create a
modular MANET testbed and use it to evaluate another DSR
implementation, evaluating latency and network traffic. This
testbed uses the Click Modular Router to implement routing
protocols modularly, but requires a Click implementation of
a particular routing protocol to be used with the testbed.
Weber et al. present a novel testbed in [10] that deploys
stationary ad-hoc testbed nodes within public spaces in Dublin,
which can be further improved with mobile nodes like laptops
and smartphones. This work provides no actual evaluation,
however, of any routing protocols and provides relatively little
detail regarding the design and use of the testbed. Zola et al.
implement AODVv2, which is a well-known optimization of
AODV, on ARM-based devices in [8]. They found that their
implementation of AODVv2 was fully operational and intend
to provide their code to the research community, but does
not consider any other routing protocols besides AODVv2.
Finally, Biagioni presents a testbed implementation of the All-
net routing protocol in [7], evaluating All-net on metrics such
as transmission time and success rate. Biagioni’s work does
not include modular routing protocol implementation and lacks
a rigid evaluation scenario.

Modularly Implemented Testbeds: The need for modu-
lar implementation of various ad-hoc protocols in a robust
MANET testbed is well-recognized. In [13], Maltz et al.
provides quantitative results for the same DSR implementation
that is discussed in [9]. The testbed developed for DSR
implementation is designed with intention to facilitate testing
of additional routing protocols in the future. However, it
currently lacks an API that would allow users to implement
their own custom routing protocols. In [14], Nordstrom et
al. present a powerful testbed that takes advantage of kernel
and user-space Linux applications to provide a modular and
interactive testbed for users. Despite the powerful capabilities
of the present ”test choreography” scripts in [14], the user is
still not given complete freedom to develop a fully-custom
protocol, as the test choreography scripts are limited in terms
of the number of actions they support. In [15], Biswas et
al. present a testbed for virtual ad-hoc networks, which takes
advantage of emulated networks that behave like real wireless
networks. However, such work still relies on simulation, which
cannot accurately reflect real-world wireless networks, making

498

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on October 01,2024 at 12:12:03 UTC from IEEE Xplore. Restrictions apply.

TABLE I: An Overview of Related Works

Related Work
Modular
Protocols

General
Purpose

Specialization Hardware-based Node Cost
Heterogeneous
Node Support

Mobility AI Support Drawbacks

Maltz et al. [9] � N/A � $200 � � Difficult to implement multiple protocols
Brown et al. [12] � � N/A � $60 � � Requires a Click Monitor Router protocol implementation
Weber et al. [10] � N/A � Unknown � � Requires external hardware to enable limited mobility

Zola et al. [8]
Benchmark for AODVv2

on ARM devices
� $500 � � Lack of mobility and modular routing protocols

Biagioni [7]
Testing AllNet

routing protocol
� $25 � � � Only supports AllNet protocol

Maltz et al. [13] � � N/A � $30 � Does not provide API for custom routing protocols
Nordstrom et al. [14] � � N/A � $500 � � Does not provide API for custom routing protocols

Biswas et al. [15] � Virtual Ad-Hoc Network
(VAN) testbed

Unknown � � Focuses primarily on simulation

Plestys et al. [16] � � N/A � $146 Uses physical cables to emulate wireless connections
Hussain et al. [17] � � N/A � $250 � � Does not provide API for custom routing protocols

Tabrizi [18] � � N/A � $2,100 Difficult to add new routing protocols
Karygiannis [19] � � N/A � Unknown No actual testbed implementation provided, only design

Desai [20] � video transmission � $2,100

Panaousis et al. [6]
security analysis of

OSLR protocol
� $500 � Lack of mobility and modular routing protocols

Muchtar et al. [5]
Investigates best robots

for testbed mobility
� N/A � No actual testbed development presented

Muchtar et al. [4] N/A � N/A � No actual testbed development presented

Bouachir et al. [3]
AI for drone

swarm communication
� Unknown � �

This Work � � N/A � $20 � � � Requires static IPv4 addresses for nodes

[15] an imperfect representation of physical MANET imple-
mentations. Plestys and Zakarevicius present a unique modular
testbed in [16] which employs physical cable connections
that imitate real wireless connections through precise cable
attenuation. Despite this approach, the reliance on cable at-
tenuation does not fully replicate a genuine physical MANET,
and [16] still provides no API to users for the creation of
routing protocols. Karygiannis and Antonakakis discuss an in-
progress MANET testbed in [19], which utilizes mNet, mDog,
and mSignal tools to create arbitrary network topologies and
change transmission powers in a physical MANET network,
rather than a simulation. However, [19] provides no evaluation
results or routing protocol implementations, only the design of
the testbed that has yet to be used for experimental results. In
[18], Tabrizi uses Software-Defined Radios (SDRs) to create
a flexible and reconfigurable MANET testbed, which is then
used to implement open-source versions of Optimized Link
State Routing Protocol (OLSR) and Babel routing protocols
and evaluated them between each other. Tabrizi’s testbed has
the novel ability to support open-source implementations of
various routing protocols. However, it does not provide the
portability feature and lacks an API, unlike our proposed
work. [20] implements a testbed for multi-hop wireless ad-
hoc networks which uses SDR to implement live video feed.
Unlike our paper, [20] does not discuss the modular implemen-
tation of different ad-hoc routing protocols. Finally, Hussain
et al. [17] discuss their design for a MANET testbed that has
similar advantages to our work. Like our work, Hussain et al.
implement the testbed fully in user-space, and can test routing
protocols modularly, but do not offer an API to the user for the
creation of fully custom routing protocols for use with their
testbed.

Application-Specific Testbeds: The last section of this lit-
erature review considers recent works that have used MANET
testbeds and communication protocols and further specialized
them with other fields. In [6], Panaousis et al. use a testbed
implementation of OLSR to evaluate various cryptographic
schemes that can be used to secure the MANET network
as a whole. They demonstrated the variations of several
communications metrics such as bit rate as a function of
encryption protocols, but do not focus on testbed development
and modular implementation. In [5], Muchtar et al. perform

an investigation of which physical robots are best used in
physical MANET networks for providing mobility. Similarly,
Muchtar et al. [4] investigated different MANET testbeds that
use robots to provide mobility and discussed whether or not the
mobility provided by these robots is successful and necessary.
Lastly, Bouachir et al. [3] create a testbed for use with multi-
drone systems utilizing deep learning to meet the quality-
of-service demands of all drones. Their work is a powerful
MANET network that has specialized in deep learning but
does not extend to facilitating broader research and imple-
mentation in the MANET domain. Table (I) summarizes the
state-of-the-art and compares them with our developed testbed.

III. DESIGN AND IMPLEMENTATION

To the best of our knowledge, this testbed stands out as the
first modular MANET testbed developed on Linux kernel 5.14
or newer, enabling the utilization of Linux kernel modules not
previously included by default. The design of the MANET
testbed was influenced by various considerations. While the
initial inspiration was drawn from the first implementation of
AODV-UU [21], the widely adopted physical implementation
of AODV for Linux devices, our MANET testbed operates
entirely in user space. This design decision offers several
advantages; i) User-space development facilitates the use of
common C libraries and network programming; ii) Debugging
user-space code is notably more straightforward compared to
kernel development; iii) User-space development enhances
portability and abstracts the routing protocol from the un-
derlying OS, aligning with a key design goal; iv) Deploying
code updates is streamlined in user space, eliminating the need
to recompile the Linux kernel on multiple nodes. However,
user-space development has its drawbacks as well. The most
notable disadvantage is the need to queue network traffic,
transfer packets to user space, and then wait for a verdict to
be issued for the packet. This manual packet handling is less
efficient than the operating system’s packet handling capabili-
ties. In this section, we review the design and implementation
of the testbed from three perspectives, the Linux modules, the
developed APIs, and the implementation of the AODV routing
protocol for testbed verification.

499

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on October 01,2024 at 12:12:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: MANET Testbed Architecture

A. Linux Modules

Due to MANET testbed development remaining in user-
space, a way to communicate with the Linux kernel was
mandatory. In addition, the MANET testbed needs to perform
actions like modifying routing tables, queuing packets, and
retrieving wireless interface information while still provid-
ing the user control over when these tasks are completed.
To accomplish this, the MANET testbed takes advantage
of several Linux kernel modules that are standard for any
Linux installation of kernel 5.14 or newer. Table II shows the
Linux modules or applications that were used. Each module’s
interaction with the Linux kernel and Linux networking stack
is also shown in Figure 1.

TABLE II: Linux kernel Modules Required for MANET
Testbed Operation

Linux Module or Tool Purpose

UDP Sockets Used to communicate between nodes, allowing the
user to send control plane messages as needed.

Netlink
Used to communicate between kernel and user space.

Important for retrieving a specific node’s IPv4
address, or any other wireless interface information.

RTNetlink An extension of Netlink, used exclusively to retrieve
or modify the kernel routing table.

Netfilter

Used to filter packets and eventually send them to
user-space. To avoid creating a custom queue

structure, the libnetfilter_queue library was
utilized.

iptables Used to establish packet filtering rules and queue
packets as needed by the testbed.

B. Developed API

To use the MANET testbed, the user is provided with a sim-
ple API consisting of nine currently implemented functions.
While internal implementation of these functions involves the
use of smaller helper functions, the entirety of the MANET
testbed’s functionality can be found within the main developed
API functions. The MANET testbed is designed to abstract the
OS details away from the user. Therefore, each API function
implements some kind of OS communication and completes
the appropriate task, with the user providing nothing but the
appropriate inputs. For example, the implementer of the rout-
ing protocol can use the AddUnicastRoutingEntry()
function to modify the Linux routing table with a new route,
rather than creating, formatting, and sending a Netlink mes-
sage as part of the routing protocol implementation code.

The nine API functions each play a pivotal role in providing
the testbed with enough functionality to implement multiple
different MANET routing protocols. These functions are:

• InitializeAPI() - Performs some required setup for the
library, and must be the first function called by the user.

• AddUnicastRoutingEntry() - Adds a unicast route to the
main Linux routing table using Netlink.

• DeleteEntry() - Deletes a route from the main Linux
routing table using Netlink.

• SendUnicast() - Sends a unicast message to a given
destination using Linux User-Datagram Protocol (UDP)
sockets.

• SendBroadcast() - Broadcasts a message to the entire
MANET network using Linux UDP sockets.

• GetInterfaceIP() - Retrieves the Internet Protocol (IP)
address of a particular interface using Netlink.

• RegisterIncomingCallback() - Registers the provided
function as the callback function for queued incoming
packets using Netfilter.

• RegisterOutgoingCallback() - Registers the provided
function as the callback function for queued outgoing
packets using Netfilter.

• RegisterForwardCallback() - Registers the provided
function as the callback function for queued forwarded
packets using Netfilter.

An advantage of using this high-level API is that it allows
the routing protocol to be detached from how it interacts
with the hardware. This abstraction allows upgrading and
optimization independent of each other. A similar API can
then be made in kernel space or a simulator and the routing
protocols would not need to be adjusted. This benefits future
protocols as they will not need to be rewritten by each
researcher and unifies the platforms they are working with.
If a researcher wants to focus on the optimization of the
API, they can use the already written protocols as a point of
comparison. Additionally, researchers can compare multiple
protocols, written using the same API, without having to re-
implement the protocols themselves, unifying the comparisons.

C. AODV Implementation

AODV is a standard routing protocol that has been used as
a benchmark to evaluate other MANET routing protocols. To
prioritize assessing the implemented testbed, a stripped version
of AODV was created. AODV is a reactive routing protocol,
meaning it only performs route discovery when a packet needs
to be sent. When an outgoing packet is received, it is processed
in the order of Algorithm (1).

For each node nearby in the network, it will receive the
RREQ and either: forward it if the TTL allows, send back a
RREP if it is the destination, or send back a RREP if it has
a valid route to the destination. This process ensures traffic is
only created when establishing routes and maintaining active
routes. Nodes do not know the whole route themselves, only
the next valid hop towards the destination. The operations of
AODV are implemented using the API described in Section
(III-B). This provides a protocol to assess the testbed and the
performance of its various functions.

500

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on October 01,2024 at 12:12:03 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: AODV

A route toward destination node is needed
if Current and active route exists then

Send the packet from the path.
else

condition ← true
Create a Route Request packet (RREQ)
TTL=1,{Time-To-Live (TTL)}
Route Discovery():
while condition do

Broadcast RREQ
TTL++
if reached(maximum TTL) or Received (RREP) then

condition ← false,{Route Reply (RREP)}
end if

end while
Drop or send the packet depending on the result of the
route discovery

end if

(a) (b)

Fig. 2: Different Test Scenarios

IV. TEST SCENARIOS

To evaluate both the testbed and the AODV implementation,
we conducted multiple test scenarios involving varying node
counts, mobility patterns, and data transfer scenarios, as illus-
trated in Fig. (2). These scenarios were also replicated in the
ns-3 network simulator for comparative purposes. While we
used Raspberry PI 400 to test our testbed, Table (III) represents
the ns-3 simulation parameters. Our findings indicate that the
real implementation is notably more sensitive to environmen-
tal conditions, even in free space, in contrast to simulation
results. To ensure a fair comparison, we established a multihop
scenario with nodes aligned in a straight line. Each adjacent
node is within communication range of one another but out
of range of the next farther node, as depicted in Fig. (3). For
each scenario, we increment the nodes by one and initiate a
file transfer of 106 Bytes from the first node (n0) to the last
node (ni).

In scenarios involving more than two nodes, we introduced
mobility tests. Specifically, we moved the second node (n1)
upward with a fixed velocity, concurrently moving the third

TABLE III: Simulation Setting

Simulator version ns-3 3.37
Number of nodes [1 6]
Transmission power 7.5 dBm
File Size 106 Bytes
Packet Size 1448 Byte
Transmission Rate 72.2 Mbps
Speed range [0 0.4]m/s
Traffic type TCP NewReno
Wireless communication standard IEEE 802.11n
Propagation loss model Free-space propagation loss
Propagation delay model Constant speed propagation delay

’s
Communication

Range

’s
Communication

Range

…

Fig. 3: Network Topology

node (n2) toward n0. This action leads to a temporary discon-
nection and a reroute from n0 → n1 → n2 to n0 → n2, i.e.
restoring the communication route to the destination. To make
the mobility smooth and steady, we utilized Leo Rovers, as
represented in Fig. (2b).

We monitored all communications in the testbed using the
tcpdump tool and saved the outputs as pcap files. The same
procedure was followed in the simulations to ensure consis-
tency of results. We evaluated four key parameters for both the
simulations and testbed implementations, encompassing two
factors specific to the AODV routing protocol and two rep-
resenting general network metrics. For AODV, we measured
the route discovery time, which represents the time duration
from the initial file transfer attempt to the establishment of a

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 1.5 2 2.5 3 3.5 4 4.5 5

R
ou

te
 D

is
co

ve
ry

 T
im

e
(S

ec
)

Number of Hops

Testbed

ns-3

(a) Route Discovery Time

 0

 50

 100

 150

 200

 250

 1 1.5 2 2.5 3 3.5 4 4.5 5

A
O

D
V

 T
ra

ffi
c

(P
ac

ke
t)

Number of Hops

Testbed

ns-3

(b) Routing Traffic

Fig. 4: AODV Performance Evaluation

501

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on October 01,2024 at 12:12:03 UTC from IEEE Xplore. Restrictions apply.

 0

 5

 10

 15

 20

 25

 30

 1 1.5 2 2.5 3 3.5 4 4.5 5

Fi
le

 T
ra

ns
fe

r T
im

e
(S

ec
)

Number of Hops

ns-3

Testbed

(a) File Transfer Time

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

Th
ro

ug
hp

ut
 (M

bp
s)

Number of Hops

Testbed

ns-3

(b) Network Throughput

Fig. 5: Network Performance Evaluation

route. Additionally, we assessed routing traffic, quantified as
the number of AODV packets exchanged within the network
to determine the optimal path. Regarding network parameters,
we measured the time required for transferring an entire file
from the source node to the destination and determined the
network throughput for this file transfer operation.

Fig. (4a) compares AODV route discovery times between
the simulation and the testbed, while Fig. (4b) illustrates the
corresponding traffic. It is important to note that our objective
is not to draw definitive conclusions about superiority of
AODV implementation in the testbed versus ns-3, as results are
contingent on various factors such as hardware specifications
and environmental conditions. Our primary goal is to showcase
the capability of the developed testbed in implementing diverse
network protocols. We would also like to emphasize that,
while simulations offer valuable insights, they have limitations
in replicating real-world scenarios as real-world experiments
depend on numerous factors that simulations may simplify or
overlook for the sake of simplicity or generality.

Finally, Fig. (5a) illustrates the time required for the en-
tire file transfer from the source node to the destination in
scenarios with varying numbers of intermediate hops. Addi-
tionally, Fig. (5b) depicts the network throughput for the file
transfer process. In addition to the mentioned scenarios, we
implemented a basic version of AODV using Python socket
programming. Although the results are not presented here, we
observed that the route discovery time using socket program-
ming is an order of magnitude higher than that required by
the developed API, which is illustrated in Fig. (4a).

V. CONCLUSION AND FUTURE WORK

This paper presents a MANET testbed, which boasts the
ability to implement any MANET protocol on Linux devices
running kernel 5.14 or newer while abstracting the operating
system details away from the implementer of the routing

protocol through user-friendly API. This work also uses a
custom implementation of AODV to evaluate the testbed.
Results show that all API functions are fully operational. This
work can be extended in several ways, but the most important
is to implement more MANET protocols with the testbed,
implement a mobility manager for testbed nodes, and perform
comparisons between the real implementation of protocols and
their simulated versions, through tools such as ns-3.

REFERENCES

[1] U.S. Army UAS Center of Excellence ”Eyes of the Army”, “U.s.
army unmanned aircraft systems roadmap 2010-2035,” Tech. Rep.
ATZQ-CDI-C, 2010. [Online]. Available: https://fas.org/irp/program/
collect/uas-army.pdf

[2] A. Rovira-Sugranes, A. Razi, F. Afghah, and J. Chakareski, “A review
of ai-enabled routing protocols for uav networks: Trends, challenges,
and future outlook,” Ad Hoc Networks, vol. 130, p. 102790, 2022.

[3] O. Bouachir, M. Aloqaily, F. Garcia, N. Larrieu, and T. Gayraud,
“Testbed of qos ad-hoc network designed for cooperative multi-drone
tasks,” ser. MobiWac ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 89–95.

[4] M. Farkhana and A. Abdul Hanan, “Mobility in mobile ad-hoc network
testbed using robot: Technical and critical review,” Robotics and
Autonomous Systems, vol. 108, pp. 153–178, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0921889018302458

[5] F. Muchtar, H. Abdullah, M. H. Abd Wahab, R. Ambar, H. Hanafi,
and S. Ahmmad, “Mobile ad hoc network testbed using mobile robot
technology,” Journal of Physics: Conference Series, vol. 1019, 06 2018.

[6] E. A. Panaousis, G. Drew, G. P. Millar, T. A. Ramrekha, and C. Poli-
tis, “A testbed implementation for securing OLSR in mobile ad hoc
networks,” CoRR, vol. abs/1010.4986, 2010.

[7] E. Biagioni, “A network testbed for ad-hoc communications using
raspberry pi and 802.11,” 01 2019.

[8] E. Zola, I. Martin-Escalona, F. Barceló-Arroyo, and S. Machado,
“Implementation and analysis of the aodvv2 routing protocol in arm
devices,” in 2021 International Symposium on Networks, Computers and
Communications (ISNCC), 2021, pp. 1–6.

[9] D. Maltz, J. Broch, and D. Johnson, “Experiences designing and building
a multi-hop wireless ad hoc network testbed,” 10 2000.

[10] S. Weber, V. Cahill, S. Clarke, and M. Haahr, “Wireless ad hoc network
for dublin: A large-scale ad hoc network test-bed,” 04 2003.

[11] M. Gharib, A. Owfi, and S. Ghorbani, “Kpsec: Secure end-to-
end communications for multi-hop wireless networks,” CoRR, 2019.
[Online]. Available: http://arxiv.org/abs/1911.05126

[12] T. Brown, S. Doshi, S. Jadhav, D. Henkel, and R.-g. Thekkekunnel, “A
full scale wireless ad hoc network test bed,” 01 2005.

[13] D. Maltz, J. Broch, and D. Johnson, “Quantitative lessons from a full-
scale multi-hop wireless ad hoc network testbed,” in 2000 IEEE Wireless
Communications and Networking Conference. Conference Record (Cat.
No.00TH8540), vol. 3, 2000, pp. 992–997 vol.3.

[14] E. Nordstrom, P. Gunningberg, and H. Lundgren, “A testbed and
methodology for experimental evaluation of wireless mobile ad hoc
networks,” in First International Conference on Testbeds and Research
Infrastructures for the DEvelopment of NeTworks and COMmunities,
2005, pp. 100–109.

[15] P. K. Biswas, C. Serban, A. Poylisher, J. Lee, S.-C. Mau, R. Chadha,
C.-Y. J. Chiang, R. Orlando, and K. Jakubowski, “An integrated testbed
for virtual ad hoc networks,” in 2009 5th International Conference on
Testbeds and Research Infrastructures for the Development of Networks
Communities and Workshops, 2009, pp. 1–10.

[16] R. Plestys and R. Zakarevicius, “A testbed for performance evaluation
of mobile ad hoc network,” in 32nd International Conference on
Information Technology Interfaces, 2010, pp. 155–160.

[17] A. Hussain, A. Khan, A. R. Qaiser, M. M. Akhtar, O. Khalid, and
M. F. Khan, “Design and implementation of a testbed for mobile adhoc
network protocols,” International Journal of Wireless Communications
and Mobile Computing, vol. 2, no. 4, pp. 42–51, 2014. [Online].
Available: https://doi.org/10.11648/j.wcmc.20140204.11

[18] N. Tabrizi, “An ad hoc networking testbed using software-defined
radios,” Master’s thesis, Middle East Technical University, 2019.

[19] A. Karygiannis and E. Antonakakis, “mlab: An ad hoc network test
bed,” in CCNC 2006. 2006 3rd IEEE Consumer Communications and
Networking Conference, 2006., vol. 2, 2006, pp. 1312–1313.

[20] J. K. Desai, “Testbed implementation of multihop wireless ad-hoc
networks,” 2019.

[21] E. Nordström, “aodv-uu,” https://github.com/erimatnor/aodv-uu, 2011.

502

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on October 01,2024 at 12:12:03 UTC from IEEE Xplore. Restrictions apply.

