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ABSTRACT 
In Smart City and Vehicle-to-Everything (V2X) systems, acquiring 
pedestrians’ accurate locations is crucial to trafc and pedestrian 
safety. Current systems adopt cameras and wireless sensors to 
estimate people’s locations via sensor fusion. Standard fusion al-
gorithms, however, become inapplicable when multi-modal data is 
not associated. For example, pedestrians are out of the camera feld 
of view, or data from the camera modality is missing. To address 
this challenge and produce more accurate location estimations for 
pedestrians, we propose a localization solution based on a Genera-
tive Adversarial Network (GAN) architecture. During training, it 
learns the underlying linkage between pedestrians’ camera-phone 
data correspondences. During inference, it generates refned posi-
tion estimations based only on pedestrians’ phone data that consists 
of GPS, IMU, and FTM. Results show that our GAN produces 3D 
coordinates at 1 to 2 meters localization error across 5 diferent 
outdoor scenes. We further show that the proposed model sup-
ports self-learning. The generated coordinates can be associated 
with pedestrians’ bounding box coordinates to obtain additional 
camera-phone data correspondences. This allows automatic data 
collection during inference. Results show that after fne-tuning 
the GAN model on the expanded dataset, localization accuracy is 
further improved by up to 26%. 

KEYWORDS 
Localization; Multi-modal; Computer Vision; WiFi FTM; IMU; GAN 
ACM Reference Format: 
Hansi Liu, Hongsheng Lu, Kristin Dana, and Marco Gruteser. 2023. ViFi-
Loc: Multi-modal Pedestrian Localization using GAN with Camera-Phone 
Correspondences. In INTERNATIONAL CONFERENCE ON MULTIMODAL 
INTERACTION (ICMI ’23), October 09–13, 2023, Paris, France. ACM, New 
York, NY, USA, 9 pages. https://doi.org/10.1145/3577190.3614119 
1 INTRODUCTION 
In V2V (vehicle to vehicle) and V2X (vehicle to everything) com-
munities, roadside units (RSU) are becoming more signifcant as 
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Figure 1: Motivation. The roadside unit collects user partic-
ipants’ multi-modal data using RGBD camera sensing and 
wireless communication. Can we provide the users with ac-
curate location estimations leveraging the multi-modal data 
that is not necessarily associated? 

they are deployed at a larger scale. Equipped with sensors such 
as RGBD cameras and wireless communication devices, RSUs can 
communicate with trafc participants in the vicinity, provide addi-
tional information, and enhance trafc mobility and safety. They 
are the common building blocks for outdoor edge computing appli-
cations ranging from smart city, trafc management, collaborative 
perception, self-driving, etc. In these applications, acquiring accu-
rate location estimations for vehicles and pedestrians is important. 
Standard localization solutions typically rely on GPS or other GNSS 
services. However, their accuracy degrades signifcantly in complex 
environments like urban-canyon. 

To provide a better location service when standard location ser-
vices can not be obtained, current systems leverage RSU’s vision 
and wireless sensing capabilities, and edge computing resources 
to estimate and share trafc participants’ locations. But the es-
timated pedestrian locations may not be accurate because each 
sensing modality has its own limitations. Camera RGBD sensing, 
while providing accurate depth information of the detected persons, 
is limited to non-line-of-sight (NLOS) scenarios and sufers from 
drastic illumination changes. Wireless sensing such as Fine-time-
measurement (FTM) [8] is more robust to NLOS conditions, but its 
ranging performance is degraded by multi-path and shadowing in 
a complex environment. It is desirable to combine both modalities 
to achieve better localization for pedestrians. The state-of-the-art 
multi-modal sensor fusion algorithms usually provide a state es-
timation that is more accurate than the measurement from every 
single modality. For example, fusing camera depth measurement 
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with FTM allows ranging measurement to be more accurate; Fusing 
GPS with IMU allows fne-grained localization that is robust to 
sensor noise and drifting. 

These standard data fusion approaches, however, are applicable 
only under the condition that measurements from both modal-
ities are available and data association is known. If a subject’s 
multi-modal data is not correctly associated, the fused measure-
ment would be inaccurate. Moreover, measurements of a pedestrian 
might not always include both modalities. For a situation depicted 
in Figure 1, when a person is out of the camera view or the detec-
tion algorithm fails to detect her and only phone data is available, 
it would be infeasible to leverage data from camera modality to 
improve the performance of wireless ranging and localization. This 
challenge motivates us to come up with a solution that accurately 
estimates a person’s location using information from both camera 
and phone modalities while not depending on pre-computed data 
association. 

When a pedestrian’s camera data contains bounding box coordi-
nates and phone data includes GPS, IMU measurements, and FTM, 
we can view the localization task as refning or correcting a person’s 
raw GPS data using his camera RGBD data, IMU measurements, and 
FTM. An important intuition lies in the fact that GPS localization 
error, afected by satellite constellation, tends to be correlated for 
pedestrians in the vicinity within a period of time [30]. Thus, if we 
can learn a cross-modal mapping between a group of pedestrians’ 
existing camera-phone data correspondences, we will be able to use 
the same mapping to localize other pedestrians in the same area, by 
translating their phone data into local camera spatial coordinates, 
even if they are out of the camera feld of view. 

We propose a cross-modal Generative Adversarial Network (GAN) 
architecture that learns the linkage between a person’s camera 
modal measurement and phone modal measurement. During train-
ing, a pedestrian’s multi-modal measurements within a time win-
dow will be fed into the network. Measurements from phone modal-
ity include FTM, IMU data, and smartphone GPS readings; Mea-
surements from camera modality include bounding box centroids 
coordinates and depth measurements. Although phone measure-
ments and camera measurements are not directly comparable, they 
both describe and encode the same pedestrian’s kinematic infor-
mation. To refect this linkage, the network extracts features from 
input measurements and enforces them to be close to each other 
in the hyper-space. A decoder is then applied to the feature vector 
of phone modality to generate a location estimation with respect 
to the camera coordinate frame. The generated coordinate will be 
examined by a discriminator to ensure that the produced coordinate 
is within the distribution of true locations. During inference, the 
proposed network is capable of generating a person’s estimated 
coordinates with respect to the local camera coordinate frame based 
on the person’s phone measurements. We evaluate our proposed 
methods on a large-scale real-world dataset and develop a pro-
cedure to estimate the RSU’s world-camera transformation and 
comprehensively evaluate our methods’ accuracy and ability to 
generalize. 

To facilitate real-world deployment and larger-scale training, 
we propose a self-learning mechanism that leverages the network 

output to automatically produce more multi-modal data correspon-
dences. Upon obtaining the estimated locations from the pedes-
trian’s phone measurement, we associate the GAN-produced co-
ordinates with the existing bounding box centroids 3D coordi-
nates. Since each GAN-produced location corresponds to a pedes-
trian’s phone measurement, associating the GAN-produced location 
with camera modality measurement is essentially acquiring addi-
tional camera-phone data correspondences. The semi-supervised 
approach allows us to easily obtain large-scale reliable training data 
without dedicated data collection and manual labeling. 

To the best of our knowledge, we are the frst to apply GAN to 
generate location measurements. Unlike existing works that use 
GAN to generate synthesized images [10, 17, 24], texts [16], or WiFi 
signals [31, 32], we focus on generating 3D locations from wireless 
ranging measurements, IMU measurements, and camera bounding 
box coordinates and depth. 

Summary of Contributions. As a summary, ViFi-Loc makes 
the following contributions: 
• Designing a GAN architecture that learns GPS correction models 
of diferent environments based on users’ multi-modal data. Dur-
ing inference it only requires phone modality data to produce 
accurate location estimations, not depending on pre-computed 
data association. 
• Developing a self-learning mechanism to facilitate real-world 
deployment and larger-scale data collection and training. The 
proposed mechanism associates the GAN-produced coordinates 
with pedestrians’ camera coordinates to automatically accumu-
late additional data during inference. 
• Systematically evaluating our proposed methods on a large-scale 
real-world dataset. We develop a procedure to estimate the RSU’s 
world-camera transformation and comprehensively evaluate our 
methods’ accuracy and ability to generalize. 

Artifact Availability: We plan to open-source our code implemen-
tation. For review purposes, all the source code can be found in the 
submitted supplementary materials. 

2 BACKGROUND AND RELATED WORK 
Vision-based localization There are many related works on 
pedestrian localization. These works can be categorized based on 
sensor types and modalities. In the vision domain, localization can 
be achieved by cameras or other optical sensors such as lidar. Using 
RGBD or 3D point cloud information and state-of-the-art human 
detectors, a person’s spatial location can be estimated. Of-the-shelf 
RGBD cameras with person detection and localization functionality 
such as ZED and RealSense ofer depth accuracy of 1% to 9% of the 
distance from near range to far range within 20 meters [1, 2]. 

GPS GPS is one of the typical localization solutions. With dif-
ferent chipset confgurations and services, they provide a varying 
range of localization granularity from meter level to sub-centimeter 
level. GPS-enabled smartphones are typically accurate within a 
5-meter radius under open sky [3]. However, their performances 
are usually degraded by factors including satellite constellation, 
poor weather conditions, environmental variation, and multipath 
due to tall buildings, bridges, and trees. Pocket-size GPS receivers 
with moderate prices ofer positioning accuracy around tens of 
meters [26]. The study in [34] suggests that the observation quality 
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of Android smartphone GNSS observations are difcult to achieve 
meter-level accuracy if using only pseudo-range observations. While 
survey-grade GPS equipment achieves sub-centimeter accuracy, it 
requires specialized equipment and expensive confgurations with 
extra subscription services such as Real Time Kinematics (RTK) 
and Real Time Diferential [15]. 

WiFi localization Another major category of studies on local-
ization focuses on WiFi signals. Received Signal Strength Indicator 
(RSSI) can be used in fngerprinting [13] and trilateration [20]. More 
recently, WiFi Fine Time Measurements (FTM) [8] has been exten-
sively explored in localization tasks. [18] confrms that the FTM 
protocol can achieve meter-level accuracy in open space environ-
ments although degrades in high multipath environments. 

Inertial aided localization Inertial Measurement Units (IMU) 
are often adopted as auxiliary sensors due to their easy accessibly 
and cheap prices. IMU provides kinematic information at a higher 
sample rate than GPS and WiFi message exchange rates. Localiza-
tion based on IMU dead-reckoning alone, however, sufers from 
cumulative error in the long term. Standard approaches to reduce 
cumulative error include fltering techniques that incorporate IMU 
with GPS and WiFi measurements. For example, [12] fuses WiFi 
RSSI fngerprinting, GPS, and IMU using an Extended Kalman Filter. 
Wi-Go [19] fuses WiFi FTM, GPS, and vehicle odometry information 
using a particle flter and achieves an outdoor vehicular localization 
error of 1.3 m median. 

Multi-modal sensor fusion/association Vision-based local-
ization and wireless-based localization have complementary char-
acteristics. Camera sensing provides more accurate spatial infor-
mation in the near feld through RGBD sensing, but they sufer 
from occlusion, appearance, and illumination variation; wireless 
sensing, on the other hand, can work in non-line-of-sight and poor 
illumination conditions. But its ranging performance can be de-
graded by complex environments with multi-path and shadow 
fading. Combining vision and wireless sensing in a localization 
system has gained more attention recently as it combines both 
modalities’ advantages. Related work in the cross-feld includes 
Simultaneous Localization and Mapping (SLAM), where a mobile 
agent relies on vision and wireless data to locate itself while cre-
ating a representation of the surrounding. SLAM can be achieved 
using vision only [27], vision+IMU [11, 29], WiFi+IMU [9, 19], etc.. 
Compared with traditional Filtering approaches such as EKF and 
particle flters, Bundle Adjustment, pose graph, or factor graph 
optimization [14, 23] provides better performance on a larger scale. 

The above-mentioned sensor fusion approaches have a limitation 
in that vision and wireless data need to be available and associated 
at the same time during inference. In our task, however, a person’s 
camera data could be unavailable due to a limited feld of view. 
As a result, typical Kalman flter or SLAM approaches become 
inapplicable. A novel approach is needed to fully exploit pedestrians’ 
camera data and phone data. 

3 MULTI-MODAL LOCATION ESTIMATION 
Figure 2 presents an overview of our methodology. The model 
is frst trained with a manually labeled dataset that consists of 
camera-phone data correspondences of multiple pedestrians. Dur-
ing inference, the network produces location estimations based 
only on pedestrians’ phone data. The produced coordinates are 

Our
Proposed

GAN model

Alice’s
Phone Data

Alice’s
Camera Data

Alice’s
es�mated
loca�on

Camera3D

Associa�on

Combine

Expanded
dataset

Addi�onal camera-phone
data correspondences

Ini�
al

Tra
inin

g

Inference

Limited
dataset

MoreTraining

1

2

3

4

5

Figure 2: Method overview. A GAN model is trained on an 
initially limited dataset that contains pedestrians’ camera-
phone data correspondences. During inference, the model 
generates a location estimation for the user based only on 
her phone data. The generated coordinates can be used to 
associate with camera bounding box coordinates to produce 
additional camera-phone data correspondences, which al-
lows the dataset to expand automatically. More training and 
fne-tuning on the expanded dataset improve the model’s 
localization accuracy. 

then associated with bounding box coordinates from the camera 
modality. Then the associated data correspondences are combined 
with the original dataset to form a larger-scale training set that can 
be used to further train the network. This feedback loop enables 
our network to achieve self-learning — using the network’s output 
to produce more training data during inference. Next, we introduce 
our GAN architecture, how it is trained, and how the generated 
locations are associated with camera observations to obtain more 
training data. 

3.1 GAN Architecture 
Figure 3 shows the proposed GAN architecture. The network takes 
as input a pedestrian’s sequential multi-modal data within a time 
window � . For every timestamp � , the vision data �� takes the form 

�� = 
� 
�, �, �, �, �, � 

� 
∈ R6 , (1) 

where � is the depth value of the pedestrian’s bounding box cen-
troid; [� , �] is the pixel coordinate of the bounding box centroid; 
[� , � , � ] is the bounding box centroid’s 3D coordinate with respect 
to the camera coordinate frame. 

For wireless data, the input at timestamp � takes the form � � 
∈ R14�� = �ftm, stdftm, Acc, Gyr, Mag, GPS . (2) 

It contains FTM range �ftm, FTM standard deviation stdftm, 9-axis 
IMU data (accelerometer [�acc, �acc, �acc], gyroscope [�gyr, �gyr, �gyr], 
and magnetometer [�mag, �mag, �mag]) as well as GPS coordinates 
[�gps, �gps, �gps] with respect to the local camera coordinate frame. 

The synchronized vision and wireless sequential data are ren-
dered into feature embeddings �� and �� by two independent bi-
directional LSTM modules. The embeddings contain spatial and 
temporal cues of the person’s camera modality input and phone 
modality input. We adopt LSTM units as feature extractors for the 
multi-modal input considering they ofer signifcant advantages 
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Figure 3: Proposed GAN architecture. The input includes pedestrians’ camera-phone data correspondences. Camera domain 
input consists of the person’s bounding box centroid and depth information. Phone domain input contains FTM range, standard 
deviation, 9-axis IMU, and GPS coordinates w.r.t. local camera 3D coordinate frame. The input goes through two independent 
bi-directional LSTM units. The output embeddings �� and �� encode spatial and temporal cues of the person’s camera data 
and phone data. They are constrained by the embedding loss because they come from the same pedestrian. A Generator G 
renders the phone modality embedding �� into a coordinate �∧ . A discriminator D is used to examine whether �∧ is genuine or 
fake. The detailed confgurations of G and D are listed in Table 1 and 2. Training the network uses data from both modalities. 
Inference only requires phone data as input, as shown in the yellow-shaded region. 

over other vanilla multi-layer network architectures when extract-
ing features from sequential or time-series data. Because these fea-
ture vectors represent the same pedestrian, we use the Embedding 
Loss to force them to be close to each other in the high-dimensional 
space. The Embedding Loss takes the form �emb = ∥�� − �� ∥2. It 
ensures the linkage between vision modality and wireless modality. 

Next, the wireless modality feature vector e� goes through a 
generator G that consists of a series of fully connected layers, batch 
normalization layers, and dropout units. The detailed architecture 
is listed in Table 1. The generator renders the feature vector e� 
into a coordinate �∧ in the camera’s 3D local coordinate frame. The 
generated coordinate and the network input are then examined by 
a discriminator D whose detailed architecture is listed in Table 2. 
G’s purpose is to generate valid coordinates that are within the dis-
tribution of true location; D’s purpose is to stringently discriminate 
or examine if a generated coordinate is good enough, i.e., within 
the distribution of the pedestrian’s true coordinates. The output 
of the discriminator D is 0 or 1 indicating whether the examined 
coordinate is unrealistic (fake) or realistic (true). We use the Gener-
ative loss to train the generator and discriminator. The Generative 
Loss ��∗ takes the form 

��∗ = min max �LSGAN (G, D) + � (�gnd, �∧), (3)
G D 

where �LSGAN (.) is the standard Least Squares GAN Loss [25] 

�LSGAN (G, D) = E[ (D (�, �, �gnd ) − 1)2 ] + E[D (�, �, G(�� ) )2 ], (4) 

and �(.) is the regularization term 

�(�gnd, �∧) = |�gnd − �∧| + ∥�gnd − �∧∥2 . (5) 

�(.) penalizes the reconstruction loss of the predicted coordinate 
�∧ and the ground-truth coordinate �gnd. The total loss is the sum 
of the Embedding Loss and the Generative Loss 

� = �emb + ��∗ . (6) 

During training, both G and D will improve as they combat 
with each other. G will be better at predicting valid coordinates, 
and D will be better at determining fake generated coordinates. 

Table 1: Detailed confguration of G. 

Input � ∈ R6×10 � ∈ R14×10 

Feature 
extractor LSTM� (6, 64) LSTM� (14, 64) 
Extracted 
feature ∈ R64×1�� ∈ R64×1�� 

FC1 (64, 64), BatchNorm1D 
Leaky-ReLU, Dropout 

Layers 
of G 

FC2 (64, 64), BatchNorm1D 
Leaky-ReLU, Dropout 

FC3 (64, 64), BatchNorm1D 
Leaky-ReLU, Dropout 

FC4 (64, 32), BatchNorm1D 
Leaky-ReLU 
FC5 (32, 3) 

Output �∧ ∈ R3×1 

Table 2: Detailed confguration of D. 

Input � ∈ R6×10 � ∈ R14×10 �∧ ∈ R3×1 

LSTM� (6, 8) LSTM� (14, 8) 

Layers 
of D 

FC1 (19, 8), BatchNorm1D 
Leaky-ReLU 

FC2 (8, 4), BatchNorm1D 
Leaky-ReLU 
FC3 (4, 1) 

Output � ∈ R 

Eventually, an equilibrium is achieved during training, and the 
generated coordinates will be used as location estimations. 

We implement the network architecture using PyTorch [28] – the 
detailed confgurations of the network layers are listed in Table 1 
and 2. We train the network with an NVIDIA 1080-Ti GPU with 
a batch size of 32 and a learning rate of 0.001 (0.0001 after 100 
epochs). 

3.2 Self-learning with association 
Training the proposed network architecture requires a large amount 
of labeled vision-phone data correspondences. Obtaining sufcient 
data correspondences requires collecting multi-modal data from 
multiple pedestrians in various outdoor scenarios. Moreover, a 
large amount of extra efort is needed to determine and label the 
vision-phone correspondences from the collected multi-modal data 
so that they can be used in the training process. Although there 
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exists available labeled muti-modal datasets that are of reasonable 
scale for us to initially train the proposed network, it is always a 
challenge to bring in more training data to improve the network’s 
performance. 

To address this challenge, we propose a self-learning mechanism 
for our network to acquire more vision-phone data correspondences 
during inference. We associate pedestrians’ camera domain coor-
dinates with our GAN output coordinates. Since the input of the 
GAN during inference is pedestrians’ phone data, solving the as-
sociation problem is equivalently fnding the correct vision-phone 
correspondences in the test data. The network is frst trained with a 
limited portion of the labeled data correspondences. During the test 
phase, suppose at a timestamp in the test data there are � camera 
detected bounding boxes and � available phone data sequences. 
Using RGBD information, we can obtain � camera 3D coordinates 
{�camera}; using our GAN to perform inference on these phone
data sequences, we have � generated coordinates {�phone} that
are with respect to the camera local 3D coordinate frame. Because 
the GAN is trained to produce realistic coordinates that are close to 
the pedestrian’s true camera coordinates, for a true camera-phone 
data correspondence, the distance between its camera coordinates 
and its GAN-generated coordinates should be smaller than that of 
non-correspondences. 

Using this heuristic, we choose the camera observation whose 
bounding box coordinate has the smallest Euclidean Distance to the 
GAN-produced coordinate as the associated identity from camera 
modality for every identity in the phone modality: 

phone − �cameraAssociatedID� = argmin ∥� ∥2 . (7)
� � 

� ∈[1,� ] 

In this way, we obtain good quality camera-phone correspondences 
as additional training samples without the dedicated efort of data 
collection or manual labeling. Then we combine the associated data 
with the initial labeled data to form a larger dataset that can be used 
to retrain or fne-tune the network. The feedback loop in Fig. 2 indi-
cates that the pipeline of train-association-retrain can be executed 
in multiple iterations, with each iteration the association can bring 
in more new data correspondences. This allows the network to 
evolve on its own after it is initially trained with a limited amount 
of labeled data correspondences. 

4 EVALUATION 
Dataset We adopt the multimodal dataset in Vi-Fi [22] to train the
network. The dataset contains pedestrians’ camera data and their 
smartphone’s wireless measurements. There are 3 user participants 
carrying smartphones and up to 12 passerby pedestrians in the 
camera view simultaneously. Camera data includes bounding box 
centroid and depth measurements; wireless measurements contain 
smartphone GPS readings, FTM ranging, and IMU measurements. 
The setup of dataset collection contains a roadside unit (RSU) that 
consists of an RGBD camera and WiFi access point that are placed 
together. A mounted Stereolabs ZED2 [4] (RGB-D) camera is set at 
the height of 2.4 to 2.8 meters with a proper feld of view to record 
video at 10 fps, which collects depth information from 0.2 m to 20 m 
away from the camera. The smartphones are set to exchange FTM 
messages at 3 Hz frequency with a Google Nest WiFi Access Point 
anchored beside the camera. Each smartphone also logs its IMU 

Algorithm 1: Pseudo-code of the Particle Filter baseline
1 � = ENUcoord(RSU.���, RSU.���) ; /* the RSU’s position */ 
2 foreach GPSdata in GPSdataStream do 
3 ΣGPS = CovMat(GPSdata.𝑟𝑎𝑑𝑖𝑢𝑠 ) ;
4 FTMrange, FTMstd = fetchFTMdata(GPSdata.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ) ;
5 for 𝑖 = 0, 1, 2, ...𝑁 − 1 do
6 � = ENUcoord(GPSdata.���, GPSdata.���) ; 
7 𝑝𝑖 ∼ N(𝜇,ΣGPS ) ; /* a particle’s position */ 
8 �� = 1 ;

/* Update the particle’s weight */ 
9 �� ← �� * N ( ∥�� − � ∥2, FTMstd) .pdf(FTMrange);

10 end Í
11 � ←  � / �

�=1 �� ; /* normalize weights */ 
/* weighted average as final estimation */ 

1 Í
12 est =  � 

 �=1 ���   �� ;
13 end 

sensor data at 50 Hz and GPS readings at 1 Hz (in Dataset B only). 
The smartphones and the camera are connected to the Internet to 
achieve synchronization. 

The dataset contains in total 79 3-minute video sequences across 
5 outdoor scenarios. We randomly choose 1 sequence from each sce-
nario and use the vision-phone data correspondences from multiple 
pedestrians to construct the test set. We use the data from the rest 
74 sequences to construct the training set. To match the timestamps 
of multi-modal data that have diferent sample rates (camera frames 
at 10 fps, FTM measurements at 3 Hz, IMU data at 50 Hz, and GPS 
readings at 1 Hz), we upsample the GPS readings with repetition 
and downsample the camera frames and IMU stream to 3 Hz. As 
discussed in Section 3.1, each data entry contains multi-modal data 
within a time window that contains data from � timestamps. In the 
evaluation, we empirically set � = 10. As a result, each data entry 
contains a pedestrian’s multi-modal data whose duration is about 
3 seconds. The rationale for setting � = 10 is that we want the time 
window to contain sufcient information about the pedestrians 
while not consuming too much memory. Maintaining a 3-second 
time window is feasible if the system needs to run in real-time. The 
total number of training entries is 110141 and the total number of 
testing entries is 6951. 

Particle flter baseline Since the problem of cross-modal
coordinate generation has not been specifcally addressed in the 
literature, there are no of-the-shelf model architectures to com-
pare against. Common solutions to localization adopt flter-based 
approaches to fuse measurements from multiple sources to ob-
tain better estimations. In our context, however, the multi-modal 
data from pedestrians are not associated. When the camera data 
is not available, we can only rely on pedestrians’ phone data to 
estimate their locations. Therefore, we use a particle flter as our 
baseline. It fuses phone GPS with FTM. The phone GPS data is 
obtained by an Android API function that returns the standard 
GNSS observations [5]. The particle flter approach corrects each 
GPS measurement with the RSU’s FTM ranging information. 

The particle flter contains two phases: prediction and update. 
In the prediction phase, the algorithm adopts the phone’s GPS 
reading to construct a group of particles within a circle whose center 
position is the GPS reading and radius is the GPS’s lateral error. 
Each particle is assigned the same weight, suggesting that the true 
position could be anywhere within the circle. When corresponding 
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FTM data arrives, the algorithm enters the update phase. Here, we 
update each particle’s weight based on the diference between the 
FTM range and the particle’s distance to the roadside unit position. 
The larger the diference, the smaller the weight is. In other words, 
we penalize the weights of those particles that are far from the 
FTM range circle. Finally, a pedestrian’s location is computed as the 
weighted average of all the particles. A more detailed pseudo-code 
of the algorithm is presented in Algorithm 1. 

4.1 Localization accuracy 
The coordinates from the camera modality input are with respect 
to the local camera 3D coordinate frame; the coordinates from the 
phone modality input are with respect to the world’s GPS system. 
To train our network and evaluate the accuracy of the predicted 
coordinates, the coordinates from multi-modal input need to be 
in the same reference system. We choose the camera’s local 3D 
coordinate system as the reference frame. To convert pedestrians’ 
GPS readings into coordinates with respect to the camera’s 3D coor-
dinate frame, we need to frst obtain the coordinate transformation 
between the world and the camera. 

Consider a reference point’s coordinate in GPS format (lati-
tude, longitude, altitude), it’s coordinate can be converted into 
3D world Cartesian format � = [�� , �� , �� ] using the WGS84 
model [6, 7, 33]. Its corresponding pixel coordinate on the im-
age is � = [�, �]. The corresponding 3D world Cartesian coor-
dinate and pixel coordinate have the relationship [�, 1]⊤ = K · 
� T� · [�, 1]⊤, where K ∈ R3×3 represents the camera’s intrin-
sics. � T� = [� R� 

� t� ] is the transformation matrix from the 
world to camera 3D coordinate frame. It contains a rotation matrix 
� R� ∈ R3×3 and a translation vector � t� ∈ R3×1. 

We adopt the AP3P [21] algorithm to estimate this transforma-
tion. It takes as input 4 pairs of 3D-2D point correspondences with 
minimal measurement noise and outputs the estimated transforma-
tion matrix. As shown in Figure 4, we collect 6 reference points’ 
GPS coordinates at each experimental feld using a survey-grade 
Trimble-R2 GPS receiver (meter-level accuracy). We collect the 
reference points’ corresponding 2D pixel coordinates with a pixel 
information tool that displays pixel coordinates in an image that 
the mouse pointer is positioned over. 

We implement the AP3P algorithm using OpenCV’s “solvePnP” 
method. For each scene that has 6 pairs of 3D-2D reference points, 
we iterate through all 4-point subsets and evoke AP3P to compute 
the transformation matrix multiple times. We choose the transfor-
mation matrix that has the lowest re-projection error as our fnal 
estimation. Once the world-camera transformation � T� is esti-
mated, the camera-world transformation � T� can be derived as � �

� R⊤ −� R⊤� T� = · � t� . From the estimated camera-world 
� �

transformation matrix, we can directly obtain the estimated RSU 
location �RSU by fetching the last column of the � T� . 

To evaluate the quality of the transformation matrix, we compare 
the estimated RSU location �RSU with the surveyed RSU location 
� ∗ RSU measured by Trimble R2 and compute their Euclidean distance 
as the RSU position error ���RSU = ∥�RSU − � ∗ RSU ∥2 . 

We also examine the reprojection error by projecting the refer-
ence points’ 3D coordinates back into the image plane using the 
estimated transformation matrix and compare the projected pixel 

Table 3: Roadside unit position error and reprojection error 
for the estimated transformation matrix in each scene. 

RSU position error (m) Reprojection error (pixel) 
avg std 

Scene 1 1.455 36.3 46.3 
Scene 2 1.876 31.0 21.8 
Scene 3 0.886 27.1 31.2 
Scene 4 1.077 25.6 28.7 
Scene 5 1.864 33.5 38.7 

coordinates with their original 2D pixel coordinates. We compute 
the average and the standard deviation for all reference point’s 

1 Í� reprojection error ���reproject = � T� · �� − �� ∥, where 
� �=1 ∥K · 

�� and �� are the �-th reference point’s pixel coordinate and 3D 
world coordinate, respectively. 

Table 3 shows the RSU localization error and reprojection error 
for 5 scenes’ world-camera transformation matrices. The small mag-
nitudes of reprojection error and RSU position error suggest that 
the estimated transformation matrices are qualitatively satisfactory. 

We use the above transformation matrices to convert baselines’ 
GPS coordinates into the local camera coordinate system and com-
pare them with our GAN-produced coordinates. The ground truth 
locations for pedestrians are their camera 3D coordinates which 
are derived from their bounding boxes’ centroid and depth value. 

We frst present the localization results in a visual way for the 5 
test scenes. As Figure 5 shows, diferent users’ locations are high-
lighted by markers of diferent colors. We project each user’s esti-
mated 3D coordinates (with respect to the RSU’s camera) into image 
pixel coordinates and highlight them using diferent markers of the 
same color. The solid squares represent the ground truth location 
of the users; the hollow squares represent raw GPS measurements; 
the hollow circles represent the FTM-fused GPS locations; the solid 
circles represent our GAN-generated location estimations. Com-
pared to raw GPS measurements and the FTM-fused GPS location 
estimated by the particle flter, our method’s estimated locations 
are the closest to the ground truth. 

Table 4 provides more detailed quantitative results on localiza-
tion error for the 5 test scenes. For baseline approaches, the phone’s 
GPS readings have an average localization error of 7.443 m; the 
fused locations estimated by the particle flter have an average 
localization error of 5.339 m. In comparison, the estimated coordi-
nates generated by our proposed GAN have an average localization 
error of 1.554 m. Moreover, for baseline approaches, the phone 
GPS readings and particle flter estimated locations exhibit large 
deviations across diferent scenes. In scene 5, specifcally, where 
GPS performance degrades signifcantly due to tall buildings, the 
localization errors for baseline approaches are more than 10 meters. 
In contrast, our method produces consistent location estimations 
with errors varying between 1 to 2 meters. These comparisons sug-
gest that our method is capable of producing location estimations 
that are consistently better than fused GPS location for diferent 
surrounding environments. 

4.2 Perturbation on coordinate transformation 
Readers might argue that the transformation matrix obtained by 
AP3P with reference points inevitably contains errors due to the 
measurement noise of the GPS collector. The true transformation 
could result in diferent localization errors, which might increase 
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Figure 5: Showcasing localization results for fve test scenes. Each user’s estimated 3D coordinates with respect to the RSU’s 
camera are projected into the image and highlighted by diferent markers of the same color. The solid squares represent the 
ground truth location of the users; the hollow squares represent raw GPS measurements; the hollow circles represent the 
FTM-fused GPS locations; the solid circles represent our GAN-generated location estimations. Our method’s estimated locations 
are the closest to the ground truth (Best viewed zoomed). 
Table 4: Localization error (m) in average and standard devi-
ation for diferent scenes in the test set. 

Phone GPS Phone GPS + FTM Ours 
avg std avg std avg std 

Scene 1 3.460 1.897 2.030 1.092 1.620 0.951 
Scene 2 7.314 4.509 6.055 2.468 1.822 1.581 
Scene 3 3.899 2.439 3.807 2.398 1.678 1.331 
Scene 4 3.728 1.552 2.940 2.289 1.432 0.927 
Scene 5 16.96 6.263 10.76 4.429 1.351 0.849 
Overall 7.443 6.727 5.339 4.366 1.554 1.143 

Table 5: Perturbation Study results. 

Perturbation Phone GPS Phone GPS + FTM Ours 
�� (°) �� (m) avg std avg std avg std 
0 0 7.443 6.727 5.339 4.366 1.554 1.143 
5 0.5 7.869 6.930 5.777 4.538 1.584 1.110 
10 1.0 7.720 6.508 5.502 4.268 1.688 1.242 
15 1.5 8.220 6.399 6.243 4.211 1.702 1.236 
20 2.0 7.692 5.141 5.956 3.450 1.930 1.423 
25 2.5 9.582 6.361 7.830 4.298 1.915 1.495 
30 3.0 9.487 5.530 7.559 4.055 2.224 1.842 

the GAN estimated localization error and reduce the original GPS 
error. To address this concern, we conduct a perturbation study on 
the transformation matrix and evaluate how small perturbations 
afect pedestrians’ localization errors. 

We perturb the camera-world transformation by applying a 
small rotation R� and a small translation t� to the original trans-
formation. The perturbation rotation R� ∈ R3×3 consists of rota-
tions with respect to the world’s X, Y, and Z axis. The rotation 
angles �� , �� , and �� are randomly drawn from a zero-mean 
Gaussian distribution with standard deviation �� . The perturba-
tion translation t� ∈ R3×1 is a zero-mean Gaussian random vector 
with covariance matrix I · �� 2. We vary the perturbation to the 
transformation matrix � �� by changing the value of �� and �� . 
In the evaluation, we choose �� = {5°, 10°, 15°, 20°, 25°, 30°} and 
�� = {0.5 m, 1 m, 1.5 m, 2 m, 2.5 m, 3 m} respectively. For each per-
turbed transformation matrix, we re-train our network and compute 
the average localization error across 5 scenes. 

The results are shown in Table 5. Despite the fact that perturbing 
the World-Camera Transformation matrix will change localization 

errors for both the original GPS and our GAN method, the relation-
ship between them stays the same. Our proposed method always 
provides more than 70% less localization error compared to smart-
phone’s GPS readings. This suggests that the performance gain of 
our method is independent of the uncertainty of the transformation 
matrix. Considering the perfect World-Camera transformation is 
nearly impossible to derive, the perturbation study on the transfor-
mation matrix substantiates the argument that under reasonable 
evaluation metrics, our proposed GAN-estimated positions have 
lower localization errors than the baseline approaches. 
4.3 The ability to generalize 
Unseen Participants To evaluate if the network can generalize 
to unseen participants, we train the network using 2 users’ data 
and test the network using the 3rd user’s data that is not seen in the 
training set. In Figure 6, we see that our method produces better 
location estimations than baseline approaches. These results sug-
gest that the network can be used to generate accurate locations for 
other unseen pedestrians at the same place. This is consistent with 
our previous argument that the GPS error for multiple pedestrians 
at a specifc scene is correlated, and the learned GPS correction 
mapping can be applied to others. In real-world scenarios, there 
are many pedestrians walking across the intersections every day 
and it is infeasible to collect multi-modal data for everyone. But 
our network does not require to be trained on everyoneâ€™s data. 
We can just train the network using a reasonable amount of data 
from a group of pedestrians and let it do the work for others. We 
will leverage this characteristic in the evaluation of self-learning. 

Unseen environments Unlike unseen participants, we don’t 
expect the network trained in one place to produce accurate loca-
tions for pedestrians in a new environment without any fne-tuning, 
because our model is scene-dependent. For a specifc scene, it es-
sentially learns the GPS error correction model that is determined 
by environmental factors such as satellite constellation. We observe 
from experiments that if a pre-trained network is deployed at a 
new scene (where the satellite constellation is diferent and the GPS 
error model changes), our method’s localization error is no longer 
signifcantly less than, but similar to the raw GPS readings. 
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User A User B User C

Figure 6: Generalization to unseen participants. For each sub-
fgure, the network is trained with 2 users’ data and tested 
on the 3rd user’s data across all scenes. 
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Figure 7: Self-learning results. Each sub-fgure shows the 
efect of self-learning when a specifc user’s data is used as 
the initial training set. 

4.4 Self-learning with associated data 
If we deploy the network at a new scene, we will have to train the 
network with the new sceneâ€™s data. But collecting new data 
and labeling the correspondences at each new scene is exhausting 
and sometimes infeasible. Fortunately, our proposed self-learning 
approach alleviates this problem and allows the network to work 
at a larger scale without excessive manual data collection. 

We evaluate the self-learning mechanism by comparing the lo-
calization error under three diferent confgurations. In Figure 7, 
each sub-fgure shows the improvement of self-learning when a 
specifc user’s data is used as the initial training set. The test set 
contains 5 video sequences, each taken at 5 diferent scenes. They 
are treated as unseen environments. The frst confguration is with-
out self-learning (w/o SL). We train the network using data from 4 
locations and test it on the data from the 5th location. We do this 
fve times for 5 diferent scenes and plot the overall localization er-
ror in the left part of all three sub-fgures. The second confguration 
is self-learning with initial training (w/ SL initial training). Here, we 
obtain 3 initially trained models, each trained on a diferent user’s 
data. We test these initially trained models on the test set and plot 
their localization errors in the middle part of the three sub-fgures. 
The last confguration is fne-tuning after self-learning’s association 
(w/ SL train after association). We deploy the initially trained model 
(in the second confguration) to make inferences for other users 
and run the association to automatically accumulate additional data 
correspondences for the other two users. We then fne-tune the 
network using the expanded dataset. We then compute and plot 
the localization error on the same test set on the right part of the 
three sub-fgures. From these results, we see that self-learning can 
further improve localization accuracy. 

Table 6 shows the association precision and compares the lo-
calization error before and after training on the additional data 
correspondences that are obtained autonomously by association. 
The association precision measures how many associated camera-
phone data pairs are true correspondences. Our association method 

Table 6: Average localization (m) before and after training 
on additional data produced by the association. 

User A 

Train on one 
person’s data 

2.577 

Association 
precision 

78.7% 

Train on 
associated 
data 
2.176 

Localization 
accuracy 
gain 
15.6% 

User B 2.300 82.2% 1.857 19.3% 
User C 2.954 71.2% 2.181 26.2% 

produces a majority of good-quality data correspondence. The gain 
in localization accuracy varies from 15.6% to 26.2%. This suggests 
that the additional data correspondences obtained by the associa-
tion are helping the GAN to learn a better GPS correction model. 
It is worth mentioning that the improvement in localization does 
not require perfect association. The precision of association is 70 
â€“ 80 percent, meaning that there are false-positive matches in the 
auto-generated dataset. But our mechanism is tolerable to these 
wrong associations. Because 1), most of the association is correct, 
so the data from true association plays a dominant role in the train-
ing phase; 2), for the camera bounding boxes that are incorrectly 
associated, their coordinates are not too far from the true locations. 
So they wonâ€™t signifcantly degrade the error correction model 
that the network tries to learn. These results provide a promising 
semi-supervised direction as the proposed association mechanism 
allows the network to use its output to generate more training data 
and improve on its own. 

We can leverage the network’s ability to generalize on unseen 
participants and the self-learning mechanism to make ViFi-Loc 
adapt to new environments. When we deploy the network at a new 
place, we can frst train the network using a small dataset that is 
easy to obtain, then use the self-learning approach to automatically 
accumulate additional data and further reduce the localization error 
through subsequent training and fne-tuning. 

5 CONCLUSION 
In this paper, we propose a network architecture that can be used 
in V2X applications to improve pedestrian and trafc safety. It is 
trained with multi-modal data including camera bounding boxes 
information and smartphone IMU, GPS, and FTM measurements. 
During inference, no camera data or multi-modal data association 
is required. The network produces accurate location estimations 
based only on pedestrians’ phone data sequences. Our method 
outperforms the phone GPS and a particle flter baseline with an 
average localization error of 1.5 m. To alleviate manual labeling 
and data collection and enable the network to be deployed on a 
larger scale, we propose a self-learning approach that allows the 
network to use its output to generate more training data during 
test phases. By associating the produced coordinates with the coor-
dinates from the camera-observed pedestrians, more vision-phone 
data correspondences can be obtained autonomously. Trained on 
the additional data correspondences, the localization accuracy of 
the generated coordinates is further improved by up to 26%. Ex-
tensive evaluation shows a promising direction for our proposed 
method to be deployed in large-scale real-world scenarios. 
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