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Significance

High-order interactions are a central element of complex systems, but existing network models
mostly focus on pairwise interactions. We develop a generalized statistical mechanics model to
reconstruct bidirectional, signed, and weighted hypernetworks that characterize how constituent
agents are influenced by their own strategies, the strategies of co-existing agents, and strategies of
interactions between other agents, as well as how directed pairwise interactions are influenced by
individual agents. We use GLMY homology, a newly developed theory in algebraic topology, to
dissect the topological architecture of hypernetworks in terms of nodes, links and hyperlinks. The
integration of statistical mechanics and GLMY homology provides a generic tool for unveiling

hidden patterns in complex systems across a wide spectrum of physical and biological scenarios.

Abstract

Interactions among the underlying agents of a complex system are not only limited to dyads, but can
also occur in larger groups. Currently, no generic model has been developed to capture high-order
interactions (HOI), which, along with pairwise interactions, portray a detailed landscape of complex
systems. Here, we integrate evolutionary game theory and behavioral ecology into a unified
statistical mechanics framework, allowing all agents (modeled as nodes) and their bidirectional,
signed, and weighted interactions at various orders (modeled as links or hyperlinks) to be coded into
hypernetworks. Such hypernetworks can distinguish between how pairwise interactions modulate a
third agent (active HOI) and how the altered state of each agent in turn governs interactions between
other agents (passive HOI). The simultaneous occurrence of active and passive HOI can drive
complex systems to evolve at multiple time and space scales. We apply the model to reconstruct a
hypernetwork of hexa-species microbial communities, and by dissecting the topological architecture
of the hypernetwork using GLMY homology theory, we find distinct roles of pairwise interactions
and HOI in shaping community behavior and dynamics. The statistical relevance of the
hypernetwork model is validated using a series of in vitro mono-, co-, and tri-cultural experiments

based on three bacterial species.
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Introduction

Complex systems are defined as those composed of large numbers of individual parts, which interact
in such a way that the global behavior of the system, i.e., emergent properties, is not equal to the sum
of the behavior of individual parts. An ecological community is an example of complex system, with
a multitude of interspecies interactions ranging from mutualism to antagonism, and internal
dynamics that underly the emergence of the communities'* community productivity, stability**, and
evolution across spatio-temporal scales®”’. However, existing models of complex systems assume
relatively simple dyadic (pairwise) interactions®!3, which, for ecological communities, means that
the per capita effects of any one species on any other species are not dependent on the abundance of
a tertiary species. This assumption is obviously violated by the omnipresent existence of HOI, where
three or more parts act together as a subgroup to shape system behavior®!42°, In the case of random
interactions in ecological communities, the emergence of HOIs can alter the established relationship

between diversity and stability®, leading to new evolutionary trajectories®”-?%.

In statistics, HOI are commonly defined as a deviation from the prediction of a null model, where
only up to pairwise interactions are included?’. Although this definition can test the presence/absence
of HOI*®3!, it fails to characterize their mechanistic role in detail. A main challenge to proposing a
quantitative, universally valid definition for HOI across different scenarios is that the relevance of
interactions, exemplified by their multifaceted physical properties, are difficult to fully capture with
existing theories?>%. For example, interspecies HOI are characteristic of their strength (how strongly
two parts are linked), causality (directionality of the interaction), sign (whether one part exerts a
favorable or detrimental effect on the other), and operating mode (whether the interaction between
two parts affects, or is affected by, the presence of the others). In ecological studies, interspecific
interactions are generally described and understood as the coarse-grained constitution of community
behavior and stability'>!%32, We are motivated by a dynamics-based approach to chart the fine-

grained details of interactions including HOI that operate in complex ecological communities.

Our model is mechanistic in the sense that it incorporates evolutionary game theory and behavioral
ecology principles into a unified statistical mechanics framework. Interspecific interactions can be
dynamically viewed as a game in which each species strives to maximize its payoff by applying an
optimal strategy in response to the strategies of other species®>. We expand this argument to

decompose the abundance of a species into three components, one due to its intrinsic capacity, the



second resulting from the influence of other species on it, and the third from the influence of
interactions between groups of other species on it. From an ecological perspective, one species
interacts with another species in a way that is determined by how energy flows within the
community**. The pattern of energy flow forms different types of interactions, including mutualism
(both species benefit from each other), altruism (one species offers a benefit to the other, with no
reward from the latter), aggression (one species is benefited at a cost to the second), and antagonism
(two species compete against each other)*>. More recently, we derived a series of biologically
justified mathematical descriptors for each of these interaction types*®*®. The combination of
evolutionary game theory and behavioral ecology through dynamic equations creates a statistical
mechanics model for defining a universal form of HOI and reconstructing hypernetworks filled with
a full set of interaction characteristics at different orders. This model, in conjunction with GLMY

homology theory, a topological theory of digraphs pioneered by S.-T. Yau and team**-*!

, provides a
generic tool to identify hidden patterns of community structure, organization and function at

different levels of organization and across fields.

A statistical mechanic formalism of evolutionary game theory and behavioral

ecology

Mixed interactive ordinary differential equations (miODE): Without loss of generality, we study
complex systems by considering ecological communities of multiple species. Game-theoretic
principles postulate that a species always strives to maximize its growth and fitness (payoff) by
adopting an optimal strategy in response to the strategies of its conspecifics*?. Evolutionary game
theory extends the Nash equilibrium*’, at which no species can gain more payoff by merely changing
its own strategy, to the notion of evolutionarily stable strategies (ESS)* and does not require a
“rationality” assumption given that the payoff to the species (as a whole) changes as a result of the
inherent dynamics of the system*. We derive a system of miODE’s to characterize the dynamic

change of strategies in the population*®. Let Y (t) denote the abundance of species j (j = 1, ..., p)

observed at time t in a community of p species. The miODE of Y (t) is described as,
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where the first term of equation (1) at the right side quantifies the independent payoff (abundance)
intrinsic to each species, the second term is the dependent payoft of this species arising from the
influence of other species (expressed as directed pairwise interactions), the third term is the
dependent payoff of this species due to the influence of pairwise interspecific interactions (expressed
as directed 3-way HOI), the fourth term is the dependent payoff of this species due to the influence
of 3-way interspecific interactions (expressed as directed 4-way HOI), and the last term is the
dependent payoff of this species due to the influence of (p — 1)-way interspecific interactions
(expressed as directed p-way HOI). The third term and its subsequent terms characterize how higher-
order interactions shape the emergent properties of the ecological community. As a first step of HOI

modeling, we consider the first three terms of equation (1), where Q s denotes the function of time-

varying abundance of relevant species or time-varying pairwise interspecific interactions. We use a
specific growth equation (see the Methods) to fit the independent abundance term and nonparametric
Legendre Orthogonal Polynomials (LOP) to construct the dependent abundance terms that may have

no explicit form.

Mathematical descriptors of ecological interactions: A critical issue is how to define the pairwise

interactions, Zj j, (t) in equation (1), which are crucial for characterizing HOI. In ecological

communities, while one species competes for resources with another species, these two species may
also cooperate with each other through some shared materials*’ or substrate. Competition and
cooperation are intertwined to determine community dynamics, implying that competition contains

cooperation, whereas cooperation includes competition®*. Thus, for any pair of co-existing species,



all possible types of ecological interactions, including mutualism, altruism, aggression, and
antagonism, may be interchangeable and occur simultaneously in communities. We derived four
mathematical descriptors for each type of interactions, expressed in a stationary status, based on
animal behavioral ecology theory*®3*. For example, two similar individuals in size, shape, and
appearance tend to mutually cooperate*®, thus the mathematical descriptor of mutualism is expressed
as the product of their corresponding trait values. The strength of mutualism is positively associated
with this product given that the sum of the two values (i.e., useful resources) is fixed. The biological
relevance of the mathematical descriptors has been validated by performing fish and microbial

experiments®’*8, The estimated Zjj, (t) functions with forms taken from the mathematical

descriptors are used to fit the third term of the miODE in equation (1), which describes how pairwise

interactions influence the abundance of the third species, defined as active HOI.

As opposed to active HOI, there also exists a form of passive HOI, i.e., the influence of a species j'

on the focal species j, denoted as Q i (yj,(t)), is determined by the abundance of the third species,

denoted as y ., (1) (j" = 1, ..., p;j"" # j' # j). In a dyad community only composed of two species j

and j", ij, (yjr(t)> is not affected by the third species, in which case Q i (yj, (t)) is expressed as

Q].Dj, (y j,(t)>. Thus, for a p-species community, we write Q i (y j,(t)) as,
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which suggests that Q I (y}.,(t)) in a multispecies community differs from Q]l.)j, (yj, (t)) by the
second term in the right-hand side of equation (2A); i.e., the cumulative influence of species j' on
the directed effect of species j’ on species j, specified as a function of Y (t). Equation (2B) states

that the directed pairwise interaction between species j and j' in a multi-species community is
decomposed into two components, one being the independent pairwise interaction component that

occurs under the assumption that no additional species is introduced, specified as a function of



Q I (yj, (t)), and the other being the dependent interaction component that results from the influence

of the third species j'' on the j-j'pairwise interaction. The dependent interaction component is called
passive HOL. It is also possible that active HOI in the hexad is determined by the third species,

forming a higher-order passive HOI, which is mathematically expressed as
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where the first term represents an independent active three-way HOI, i.e., one that occurs under the
assumption of the additional fourth species and the second term is four-way passive HOI, i.e., the
influence of the third species on the active HOI. Independent and dependent interaction components

involved in equations (2) and (3) may have no explicit form, but they can be smoothened by LOP.

The combination of equations (1) — (3) establishes the mathematical basis of our statistical
mechanics model for characterizing both active and passive HOI. Indeed, they can not only fully
capture the emergent properties of interactions, but also represent a group of recursive equations, by

which the evolutionary trajectories of complex systems, driven by HOI, can be traced.

Disentangling microbial HOI organization: To validate the power of our miODE model to reveal
HOI at any order, we reanalyze a hexa-cultured bacterial species dataset collected in Hu et al.’s
ecological study®*. Any species in a six-species S1-S2-S3-S4-S5-S6 community is affected by five
co-existing species, 10 pairwise interspecific interactions, six three-way interspecific interactions,
three four-way interspecific interactions, and one six-way interspecific interaction. The six species
are grouped into two triads S1-S2-S3 and S4-S5-S6, which are tri-cultured, respectively. In bacterial
communities, four types of interactions, whose strength can be calculated using our mathematical
descriptors®®, may occur simultaneously. Assuming that a bacterial community starts from
mutualism, we build a group of miODE to estimate and code the independent components of each
species as nodes and the dependent components due to different orders of interspecific interactions

as links or hyperlinks into hypernetworks.



Figure 1 illustrates part of the hypernetwork of the hexa-species mutualistic community, covering
directed pairwise interactions, directed three-way active HOI, and directed four-way passive HOI.
We find that all mutualistic relationships assumed to occur in the original community (Fig, 1A)
become antagonistic or aggressive/altruistic under active HOI’s (Fig. 1B1). For example, active HOI
drive the S1-S2 interaction from mutualistic to antagonistic, whereas without active HOI, S1 and S5
are mutually cooperative, but with active HOI, S1 starts to repress S5 although S5 still promotes S1.
Mutualism between any pair of species affects the abundance of the third species, however to
different extents and with different signs (Fig. 1B2). While mutualism between S2 and S3, S2 and
S5, S3 and S5, S3 and S6, and S5 and S6 promotes the abundance of S1, mutualism between S2 and
S4, S2 and S6, S3 and S4, S4 and S5, and S4 and S6 inhibits the abundance of S1. The pattern and
sign of such active HOI’s on the abundance of the other species are detailed in the hypernetwork

(Fig. 1B2).

The impact of active HOI in a group of three species is quickly influenced by the fourth species
through passive HOI (Fig. 1C). The degree to which S2-S3 mutualism inhibits the abundance of S1
is negatively regulated by S4 and S6 but positively regulated by S5 to a larger extent. We find that
S5 also promotes the active HOI of S1-S3 mutualism on S2 and the active HOI of S1-S2 mutualism
on S3. The detailed pattern of the role of passive HOI in mediating hypernetwork structure can be
seen from Fig. 1C. We reconstruct hypernetworks for two triads S1-S2-S3 and S4-S5-S6, from
which to chart the decomposition curves of each species, in comparison with those in the hexad (Fig.
2). In triad S1-S2-S3, the abundance level of S1 is influenced by its coexisting S2 (in a negative
sign) and S3 (in a positive sign) and their mutualism (in a negative sign). The negative cumulative
effect of these influences compromises the independent abundance of S1, making its observed
abundance reduced. In the hexad, the abundance of S1 is affected not only by the abundance of S2 —
S6 but also by pairwise interspecific interactions among these species. We find that the influence of
S2 and S3 on S1 differs in the hexad than in the triad S1-S2-S3 possibly because of the existence of
additional species S4-S6. For the same reason, the influence of the S2-S3 interaction on S1 changes
from the triad to the hexad. The abundance of the other species in the hexad is also affected by co-
existing species and their interspecific interactions, but with the pattern and extent differing

dramatically from the those observed in the triads (Fig. 2).

Why does the influence of one species on its co-existing species changes when new species are
added to the community? This can be explained by passive HOI, i.e., the influence of additional

species on the independent component. We have identified the existence of passive HOI (Fig. 1), and
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using equation (3), we characterize how active HOI are determined by additional species (Fig. 3). In
the hexad, the influence of the S2-S3 interaction on S1 (expressed as S2S3—S1) is consistently
small over time, but this influence is virtually very large in the S1-S2-S3 triad (no additional
species). This difference can be explained to be due to the negative regulation of this active HOI by
S4 and S6, despite with a much smaller positive regulation by S5. Four-way passive HOI are
compromised due to the latter three species, shifting the active HOI from negative to slightly
positive. We also identify a striking four-way passive HOI that affects active HOI involving S2 — S6,
respectively (Fig. 3). It is interesting to see that independent active HOI for each species estimated
from the hexad data under the assumption of no additional species are broadly in agreement with
those observed in the triads, suggesting that the mixed ODE of equation (3) is biologically relevant
and justifiable.

GLMY homology dissection of hypernetworks

The 6-node microbial hypernetwork, reconstructed by equations (1) — (3), is composed of pairwise
interactions, 3-way active HOI, and 4-way passive HOIL. We develop and apply the GLMY theory to
dissect the topological architecture of this hypernetwork based on positive interactions, negative
interactions and a mix of positive and negative interactions (Fig. 4A). We identify the 2-dimensional
cycles (holes) in positive and negative hypernetworks, showing their architectural complexity. The
hypernetwork architecture is especially complex, with 2-, 3-; and 4-dimensional homological
features, when both positive and negative interactions are considered. This complexity is mainly
derived from the existence of HOI. Three sets of 3-way active HOI among S4, S5, and S6 form 3-
dimensional homological features (voids) (Fig. 4B). There are four 4-dimensional homological
features each produced by four sets of four-way passive HOI involving five species, with the first
homological feature composed of S1, S2, S3, S4, and S5, the second composed of S1, S2, S4, S5,
and S6, the third composed of S1, S3, S4, S5, and S6, and the fourth composed of S1, S3, S4, S5,
and S6. Note that no 3- and 4-dimensional homological features are formed purely based on positive

or negative interactions.

We further analyze the GLMY persistent homology of the microbial hypernetwork based on the
order of interspecific interactions (Fig. S1). Both positive and negative interactions occur pairwise,
among three species, and among four species. At dimension 1, we identify five positive-driven

homological features for pairwise interactions (composed of S1, S3, S4, S5, and S6), with one



subnetwork (corresponding to dimension 1) being persistent, suggesting that the sub-networks of
pairwise interactions (excluding S2) converge into one network as a whole (Fig. S1) with a single
one-dimensional network. At dimension 2, we also identify five positive-driven homological features
for pairwise interactions at a higher level of complexity, derived from {S5—S4, S4—S3, S5—»>S3},
{S4—-S5, S4—-S83, S5-583}, {S6—-S3, S6>S5, S5-5S3}, {S6—>S3, S4—>S6, S4—>S3}, and
{S6—>S3, S5—->S6, S5—>S3}. At dimension 2, we identify two positive-driven homological features
for 3-way interactions, corresponding to two sub-networks S4-S6 and S5 of {(S4-S6)—S5}. For 4-
way positive interactions, we identify five 1-dimensional homological features, corresponding to S5,
S6, {(S4-S6)—>S5}, S1, S3, respectively, the first three of which become three persistent independent
networks, and one 2-dimensional homological feature from {S1—{(S4-S6)—S5} and {S3—{(S4-
S6)—>S5}. We can also identify homological features at different dimensions based on negative

networks (Fig. S1) and mixed positive and negative networks (Fig. S1).

We calculate persistent 2-layer homological features of sub-hypernetworks for each species based on
positive, negative and mixed positive and negative interactions (Fig. S2). For negative
hypernetworks, we identify no 1-dimensional homological features for species 2, two for species S1
and S4, three for species S5 and S6, and four for species S3 (Fig. S2A). For positive hypernetworks,
we identify two 1-dimensional homological features for species S3, four for species S5 and S6, five
for species S1 and S4, and six for species S2 (Fig. S2B). As can be seen, both positive and negative
1-dimensional homological features divide the six species into four groups, S1 and S4, S2, S3, and
S5 and S6. These four groups differ in the complexity of their positive and negative hypernetworks.
Except for S2, all species converge in 1-dimensional homological features into one single

subnetwork.

Experimental validation of statistical hypernetworks

Ecological experiment of microbial culture: We design and conduct an ecological experiment to
validate the biological value of the model. We randomly match three bacterial strains each from a
different species, Escherichia coli (E), Staphylococcus aureus (S), and Pseudomonas aeruginosa (P),
and mix-culture them in a medium-loaded flask. We obtain and grow 100 such unrelated E-S-P
triads. We use our statistical hypernetwork model to estimate and code the independent component,
first-order dependent component (due to individual species) and second-order dependent component

(due to interspecific interactions) into bidirectional, sign, and weighted hypernetworks for each triad
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(see Fig. SA for an example from a triad composed of CYH-D12 from E, CYH-S12 from S, and
CYH-P13 from P). In a mutualistic community, the cooperation of any pair of species would
seriously affect the growth of the third species (active HOI, P < 0.05). For example, cooperation
between species S and P consistently promotes species E during all phases of growth, whereas the
cooperation between species E and P and between species E and S may promote or inhibit the third
species, depending on the phase of growth (Fig. 5B). We also find that antagonism, altruism, and
aggression influence the growth of the third species, although the sign and strength of active HOIs
vary from case to case. In all situations, active HOI cyclically change in strength and/or sign over

time, suggesting that they play a role in adjusting community stability and dynamics.

Active HOI not only affect community growth, but also bring about dramatic changes in interaction
structure within communities. Active HOI shift the mutualism of species E with S and P to
altruism/aggression, with S and P inhibiting E but E promoting S and P (to a lesser extent), driving
species S and P from mutualism to amensalism; i.e., P inhibits S but S has a trivial influence on P
(Fig. 5B). Because of the collective effects of active HOI and altered pairwise interaction patterns,
species E and S display reduced growth compared to their independent growth, whereas species P
increases its growth when it relocates from a socially isolated environment to a socialized
environment (Fig. 5B). Strong active HOI and their influences on pairwise interactions are also
detected when the communities are filled with antagonistic, altruistic or aggressive interactions (Fig.

5B).

We further characterize how newly formed directed interactions due to active HOI are affected by
the growth of the third species (passive HOI). In a triad, species P influences the interaction between
E and S, but in different ways depending on whether S affects E or E affects S (Fig. 5C). The
inhibition of species E by S is strengthened by species P since this inhibition is stronger when P co-
exists with E and S than when P is assumed to be absent. The influence of species P on the
promotion of S by E changes its sign during ecological time; in the first 8-9 hours, this influence is
negative whereas it becomes increasingly positive after this time, making the influence of E on S

sharply different between cases with P and without P.

It is interesting to note that species S obstructs both the inhibition of P for E and the promotion of E
for P, making the negative impact (predation) of P on E, as seen in the dyad, much smaller in extent
(Fig. 5C). The influence of the same species E on the inhibition of S by P and the semi-inhibition of

P by S is very different, which leads to distinct patterns of dyadic S-P interactions in the triad.
11



Likewise, we can also illustrate the pattern of how pairwise interactions are altered by active HOI to
form various passive HOI patterns, initiated from antagonism, altruism, and aggression in the

community (Fig. 5C).

Model validation: The central theme of our model is to divide the growth of a species in a social
community (i.e., community growth) into its independent and dependent components. The
independent component is this species’ growth (fitted by a growth equation) that is supposed to be
expressed in isolation (isolation growth), whereas the dependent component, i.e., the deviation of
community growth from independent growth, reflects the extent to which this species is influenced
by its co-existing species. If our model is logically correct, then the independent component
estimated from it should be consistent with isolated growth. We perform an additional experiment to
cultivate individual strains from each species in socially isolated monocultures (singletons) and

individual strain pairs each from a different species in socialized co-cultures (dyads).

Figure 6A illustrates the goodness-of-fit of the growth equation (4) for isolation growth data for each
species at different time points in monoculture. We find that the independent growth curve of a pair
of species estimated from a dyad is in remarkable agreement with the isolation growth curve from
their corresponding singletons (Fig. 6A). For example, the growth trajectory of species E from a
singleton can well be approximated by its independent growth trajectories from dyads E-S and E-P.
We also find that the independent growth curves of each species from a triad are consistent with their
respective isolation growth curves, even if different types of pairwise interactions are initially
assumed (Fig. 6B). These two types of consistency hold for all triads. Taken together, our model that
decomposes community growth into independent and dependent components in accordance with

evolutionary game theory is logically reasonable and powerful.

The directed interaction between two species estimated from a triad includes the independent
interaction component that occurs when these two species are assumed not to co-exist with any other
species and the dependent interaction component due to the influence on this interaction by the third
species. Thus, if the independent component estimated from the triad is consistent with the
dependent component estimated from the corresponding dyad, then this suggests that our model can
be biologically justified. As illustrated in Fig. 6C, all six possible directed interactions under each
type of pairwise interactions exhibit such consistency, confirming the relevance and robustness of

our statistical hypernetwork model.
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Discussion

The pervasive occurrence of nonlinear interactions at various orders as a fundamental ingredient of
complex systems has fostered an increasing interest in reconstructing hypernetworks that are
encapsulated by nodes, links, and hyperlinks. In the field of ecological communities, both empirical
and theoretical studies show that the introduction of HOI gives rise to new emergent physical
phenomena, which cannot be understood by limiting the analysis of structured properties to simple
low-order dyads’!2141349-52 T this article, we propose a universal statistical hypernetwork theory to
define, quantify, and estimate complex HOI. This theory, derived from the interdisciplinary
combination of evolutionary game theory and behavioral ecology, can leverage existing pairwise
interaction models to include HOI at any order and expand their applications to complex

communities.

Currently, most networks inferred from complex systems, such as gene regulatory networks,

metabolic networks, and ecological networks, are co-occurrence networks or probabilistic networks,
in which the links of different agents are identified without capturing their full properties, including
causality, sign, strength, and feedback cycle. We attempt to circumvent these drawbacks by viewing
agent-agent interactions as an evolving game. Evolutionary game theory decomposes the abundance
of individual agents into their independent and dependent components which are distinguished from

3646 whose asymptotic properties have been found and proved®. We

one another by miODE models
encode independent components of individual agents as nodes, the first-order dependent components
of individual agent pairs as links, and the high-order dependent components of individual agent sets
(containing more than two agents) as hyperlinks to construct bidirectional, signed, and weighted
hypernetworks. Thus, compared to existing models, our hypernetwork model should be more
effective for studying the topological architecture and functionality of interspecies interactions that

underlie community behavior.

We postulate that a community evolves along eco-evolutionary times, starting from state 1,
constituted by pairwise interactions (Fig. 7). As predicted by equation (1), the emergence of active
HOI will lead to various changes in the growth dynamics of each species, implying that all species
are reshuffled, and the dynamics move towards state 2, in which community diversity and interaction
differ from that in state 1. The altered growth of each species will in turn affect how the other two

species interact with each other, a phenomenon called passive HOI. A passive HOI can be explained

13



as the alteration of any directed interactions occurring in a species-rich community when compared
to those in a comparatively species-poor community, resulting from the additional species and their
resulting interactions. Driven by passive HOI, the growth of individual species will change again,
moving the community to state 3 (Fig. 7). The process of state transition continues, forming a driving
force for community dynamics and evolution, which can be predicted by the statistical mechanics
model composed of recursive HOI equations (1) — (3). We mathematically proved that the
emergence of HOI can lead to the creation of a subcritical Hopf bifurcation and consequently an

unstable limit cycle, a kind of behavior that cannot occur in pairwise replicators®’%,

One of the most salient parts of our study lies in the seamless integration of hypernetworks and
GLMY homology theory***!. GLMY theory has proven to be powerful for dissecting the topology of
digraphs, and its application to the analysis of real data has provided new insights into the

3455 and metabolic interaction-driven human

mechanisms underlying molecular interactions
diseases>®. In this study, we leverage GLMY theory to reveal the topological architecture of
hypernetworks, under which a fundamental question of how HOI play a distinctive role from
pairwise interactions in mediating the emergent behavior of complex systems can be addressed. We
argue that the GMLY dissection of hypernetworks should become an essential procedure for
dissecting extremely complex communities, such as the gut microbiota®’ because these systems

include an enormous number of pairwise and and higher-order interactions at various orders.

Reconstructing hypernetworks may encounter computational burden when considering a large
number of entities. We circumvent this issue by classifying these entities into distinct modules, in
each of which entities are connected more tightly with each other than with those from other
modules. If the number of entities within a module is still large, we further classify this module into
distinct submodules. This process of classification may repeat until the number of entities within a
unit follows Dunbar’s number, the maximum size of social groups in which each individual can
establish a stable social relationship with every other individual®. It is computationally feasible to

reconstruct hypernetworks from Dunbar’s number of entities.

Many coarse-grained approaches attempt to study community behavior by formulating a few key
parameters, such as the number of species and the distribution of pairwise interaction strength.
Alternatively, the theory proposed in this article is based on fine-grained thinking and can
characterize the detailed internal workings and functionality of complex systems at multiple levels of

interaction. To our knowledge, our theory is among the first to systematically map and model how
14



the collective actions of individual agents through physical laws could explain and predict state
transition in complex systems. This theory may find immediate implications for unveiling general
principles underlying a range of biological processes from macroscopic ecosystems to microscopic

cellular and molecule circuits.

Materials and Methods

Bacterial in vitro culture experiment. We collected 100 bacterial strains of each species,
Escherichia coli (E), Staphylococcus aureus (S), and Pseudomonas aeruginosa (P), from the
National Infrastructure of Microbial Resources, China. These strains were pre-cultivated with a
procedure as described in He et al.>. The cultural experiment includes 300 monocultures for each
strain, 300 co-cultures for each pair of strains (dyad) in a 1:1 ratio, each from a different species, and
100 tri-cultures for each set of three strains (triad) in a 1:1:1 ratio, each from a different species. To
assure the independence of dyads and triads, none of the same strains were used in any two co-
cultures or any two tri-cultures. All cultures were taken in flasks of the same size, filled with 25 mL
of two-times diluted brain heart infusion medium (OXOID, Basingstoke, England). The flasks were
incubated at 30 °C and shaken at 130 rpm.

Each strain in flasks was sampled once every 0.5 h during the first 2 h of cultivation, followed by
once every 2 h after 2 h and once every 4 h after 12 h, with a total culture period of 36 h.
Quantitative PCR (qPCR) measurements of E. coli and S. aureus were performed according to the
previous protocol’!
subunit A were amplified by forward primer CAAGCCCTACAAGAAATCCG and reverse primer

TCCACCGAACCGAAGTTG. The qPCR counts of each strain at a time point, averaged over three

. To detect P. aeruginosa strains, 159 bp of the gyrA gene encoding DNA gyrase

replicates, were used as the time-varying abundance level of this strain.

In joint-cultural experiments of different strains from bacterial species isolated from terrestrial
environments, Hu et al.>* measured abundance levels of each species at the end of each of 10 daily
cycles during growth. To generalize our model to more complex communities, we chose their eight
hex-cultures of six different species grown in low nutrient concentrations to analyze HOI, in
comparison with the same HOI in the tri-cultures using three of these six species. The procedures of

sampling and inoculating these strains are described in ref 30.
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Modeling microbial growth. The growth of a microbial species in a monoculture does not depends

on the influence of any other species. Let Y (t) denote the growth of a strain from a species j in the

monoculture at time 7 (1, ..., p; t =1, ..., t7). We model the growth trajectory of the strain by a

logistic equation®, expressed as,

dv: (EO\Y
yi() y](t)> @

it —“j}’j(t)<1— K

where a; is the growth rate of a species j in the absence of limited resources, Kj is the carrying
capacity of a species, i.¢., the asymptotic growth this species can achieve, and 4; is the exponent that

describes how quickly the species reaches the asymptotic growth. We use this growth equation to fit
the independent growth Q f (yj(t)) of the miODE in equation (1), which represents the virtual growth

of strain j in the hexa-culture under the assumption of no influence from any co-existing species.
This equation is also used to model the independent growth of strain j in the co-culture and tri-

culture.

Solving miODEs. Consider a p-species community in which the abundance of each speciesj (j =

1, ..., p) is measured at a series of time points (¢4, ..., t7), denoted as y; = (yj (1), s y].(tT)). The

likelihood of time-varying abundance of all three species is formulated as,

L) = f(yp s ¥y by oo 13 E) (5)

where f{-) is a multivariate longitudinal normal density probability function with time-varying mean

vector,

u= (Ml! ""”p) = (H’l(tl)J '"lﬂl(tT)i ...,‘Llp(tl), ,‘Llp(tT)) (6)

and time-varying covariance matrix,

r=( : (7)
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with X; on diagonal being a (7' % T)-covariance matrix for species j and Zj]/ off diagonal being a (7 x

T)-covariance matrix among species j and species j' (j <j' =1, ..., p).

We integrate miODEs to model the mean vector of equation (6) and the first-order structured
antedependent (SAD(1)) process®!*? to model the autocorrelative structure of the matrix in equation
(7). We implemented a fourth-order Runge-Kutta algorithm for miODE solving while maximizing
the likelihood function (5). The maximum likelihood estimates (MLE) of the independent and
dependent components are encoded into weighted mathematical graphs as a network dissection of

the ecological communities.

Data and code availability. The datasets generated in this study are available from the
corresponding authors on reasonable request. The code used for all analyses in this study is available

on GitHub (https://github.com/CCB-HyperNetwork). All other code is available on reasonable

request.
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Figure Legends

Figure 1 State change a hexad hypernetwork. (A) State 1 in which six species (S1- S6) are
assumed to cooperatively interact with each other to form a six-node mutualistic network. Grey
bidirectional arrows represent the mutualism between a pair of species, with the thickness of lines
proportional to the strength of mutualism. (B) Interactions operate in the six-species community both
in a dyadic manner (B1) and through active HOI (B2). Each species (indicated by an ellipse) is
promoted (red line) or inhibited (blue line) by every other species and every possible pair of species
involving no focal species, moving the community towards state 2. Plus represents the simultaneous
occurrence of all these interactions with a focal species in the community. (C) Altered abundance in
a species promotes (red line) or inhibits (blue line) the active HOI to produce a four-way passive
HOI by which the community enters state 3. In each case, the thickness of lines is proportional to the
strength of the active or passive HOI. Note that only those high-order passive HOI that act on the
active HOI, which can also be observed in triads S1-S2-S3 and S4-S5-S6, are shown.

Figure 2 Abundance trajectory of each species (S1-S6) fitted by observed data (blue dots) from
a hexad S1-S2-S3-S4-S5-S6 and two triads S1-S2-S3 and S4-S5-S6. This fitted trajectory of each
species is decomposed into its independent growth curve (red line), first-order independent growth
curves (green line) due to the influence on this focal species by the other five species, and second-
order dependent growth curves (orange line) due to the influence on this focal species of pairwise
mutualism among the other five species. At two sides of the hexad curves are the abundance
trajectory of each species (blue line) fitted by observed data (blue dots) from triads S1-S2-S3 and S4-
S5-S6, respectively. The fitted trajectory of a species in the triad is decomposed into its independent
growth curve (red line), first-order dependent growth curve (green line) due to the influence of the
other two species on this focal species, and second-order dependent growth curves (orange line) due
to the influence on this focal species of the mutualism between the other two species. For
comparison, the same type of the second-order dependent growth curves is indicated between the

hexad and triads.

Figure 3 The detection of high-order passive HOI from a hexad S1-S2-S3-S4-S5-S6. The
trajectory of the active HOI (blue line) involving a set of three species from triad S1-S2-S3 (A) and
S4-S5-S6 (B), fitted by time-dependent estimation values (blue dots) from the hexad data, is

decomposed into its independent component that is assumed to occur in a condition without the
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existence of any additional species (red line) and dependent components arising from the existence
of additional species (green line). The broken line represents the trajectory of the active HOI
detected in a triad (with no fourth species in this case), whose consistency with the above
independent component estimated from the hexad suggests the biological interpretation of our

ecological statistical mechanics theory for more complex communities.

Figure 4 The GLMY homology dissection of microbial hypernetworks. (A) Homology barcodes
(HR) based on positive interaction, negative interaction and mixed (positive and negative) interaction
hypernetworks. The homologies are calculated at dimension 1, 2, 3, and 4. (B) Homological
networks for mixed positive and negative interactions at dimension 4. (C) Homological networks for

negative and mixed interactions at dimension 3, respectively.

Figure 5 The detection of active and passive HOI in a three-species (E-S-P) community. (A)
Hypernetworks as a collection of nodes (E, S, P), pairwise edges (E-S, S-P, P-E), and HOI edges
(SP—E, EP—S, ES—P) under mutualism (black bidirectional arrow line), antagonism (black
bidirectional T-shaped line), altruism (black directed arrow line), and aggression (black directed T-
shaped line). Red and blue directed arrows represent the promotion and inhibition of active HOI for a
focal species, respectively, with the strength of influence proportional to the thickness of lines. (B)
Time-dependent abundance trajectory (blue line) of each species (E, S, P) observed in the triad
decomposed into its independent component (red line) due to this species’ intrinsic capacity and
dependent component (green line) resulting from the influence of the other two species and their
interaction. Black dots denote abundance observations of a species at different time points in the
triad, fitted by the miODE of equation (3). (C) Driven by active HOI, the abundance of each
interactive species is shifted to a new state, which in turn influences the directed interactions of the
other pair of species. Passive HOI includes the influence of P on E—S and S—E interactions, the
influence of S on E—-P and P—E interactions, and the influence of E on S—P and P—S interactions
under mutualism, antagonism, altruism, and aggression. In each case, the influence of one species on
the second observed in the triad (blue line) is decomposed into the same type of influence assumed to

occur in a dyad (red line) and passive HOI curve (green line).

Figure 6 Experimental validation of the statistical hypernetwork model as an ecological
statistical mechanics theory. (A) Independent growth component curves of each species estimated

from two dyads involving this species (thin blue line), in comparison with the fitted growth curve
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(thick blue line) of this species’ abundance data (blue dots) in its monoculture. (B) Independent
growth component curves of each species estimated from the triad under different types of pairwise
interactions (green, red, purple and orange lines for mutualism, antagonism, altruism, and
aggression, respectively), in comparison with the fitted growth curve (blue line) of this species’
abundance data (blue dots) in its monoculture. (C) Dependent growth component curves of each
species affected by its coexisting species estimated from the triad when no third species is assumed
to exist, under different types of pairwise interactions (green, red, purple and orange lines for
mutualism, antagonism, altruism, and aggression, respectively), in comparison with the same type of

dependent growth component curves (blue line) estimated from the dyads.

Figure 7 Structural change of an ecological community over time. Three constituent species (E,
S, P) establish a co-occurrence network in state 1. Under active HOI, the community enters state 2,
in which new interactive relationships are formed. Newly formed interspecific interactions in turn
affect the growth of individual species through passive HOI. The species are then reshuffled to
comprise state 3 of the community. This process is iterated to drive the community to diversify and
evolve over ecological time. Red and blue arrowed lines represent promotion and inhibition,

respectively, with the thickness of lines proportional to the strength of interaction.
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