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Abstract—Given a simple polygon P, the minimum
convex cover problem seeks to cover P with the fewest
convex polygons that lie within P. The maximum hidden
set problem seeks to place within P a maximum cardinality
set of points no two of which see each other. We give con-
stant factor approximation algorithms for both problems.
Previously, the best approximation factor for the minimum
convex cover was logarithmic; for the maximum hidden set
problem, no approximation algorithm was known.

I. INTRODUCTION

In this paper we study two fundamental optimization
problems in a geometric setting. One is a set cover
problem: Cover a simple polygon P with the fewest
convex polygons (we denote that number cc(P)) that lie
within P; this is the convex cover problem for a simple
polygon. We also study a maximum independent set
problem: Pack into a simple polygon P as many points
as possible so that no two points see each other (points
p,q € P are visible, or see each other, if the segment pq
lies within P); this is the hidden set problem for a simple
polygon and we let hs(P) denote the maximum size of
a hidden set. The hidden set problem is the maximum
independent set problem in the “point visibility graph”
of P, whose nodes are all points (the continuum) in P
and whose edges link pairs of points that are visible to
each other.

Minimum convex cover has been studied for many
years, beginning with the early work of Pavlidis [27].
Most recently, Abrahamsen [1] has shown the prob-
lem to be dR-complete. In terms of approximation
algorithms to compute cc(P), the best result is an
O(log n)-approximation algorithm, with running time
O(n*logn) where n is the complexity of P, found
some decades ago by Fidenbenz and Widmayer [12],
who also show that the problem is APX-hard. As our

main result, we give the first constant-factor approxima-
tion algorithm for computing cc(P); we also drastically
improve the running time.

Finding hs(P) is APX-hard [11] and no prior approx-
imation algorithm has been known for computing hs(P)
in general. (Alegria, Bhattacharya and Ghosh gave a 1/4-
approximation [3] for finding a maximum hidden set of
vertices.) We give the first approximation algorithm for
computing hs(P); our approximation factor is constant.

Other Related Work: A related covering problem
that has been extensively studied is the guarding problem
[32, Chapter 33], in which we seek to cover a polygon
P with the fewest star-shaped polygons, each being a
visibility polygon of some point (a “guard”) within P.
This problem has long been known to be NP-hard and
has recently been shown to be JR-complete [2], [29].
There have been recent advances also in computing
approximately optimal guard sets [5], [10], [19]. The
problem of convex covering can be contrasted with the
problem of partitioning a simple polygon into a mini-
mum number of (interior-disjoint) convex polygons; the
convex partitioning problem is solvable exactly in poly-
nomial time, as partitioning allows one to use dynamic
programming to optimize, both in the case of partitioning
with diagonals (chords between two vertices of P) [23]
and in the case of general partitions, allowing Steiner
points [7]. (There is also a very simple 4-approximation
for convex partitioning of P that runs in linear time [22].)

The hidden set problem is a special case of a geomet-
ric maximum independent set problem: find a maximum
independent set in the (continuous, infinite) graph whose
nodes are the points within P and whose edges are
determined by interpoint visibility. Given the difficulty of
computing maximum independent sets in general graphs,
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even approximately [18], [24], geometric instances of
maximum independent set have attracted considerable
attention; e.g., there has been recent progress in com-
puting maximum independent sets among axis-parallel
rectangles in the plane, including new, constant-factor
approximation algorithms [17], [25].

II. PRELIMINARIES AND AN OVERVIEW

Let P be a simple polygon with n vertices, labeled
V1,2, ...,V, (ordered clockwise). The edges of P are
denoted e; = v;v;41, for 1 <7 < n, with v,,41 = v;. We
consider P to be a closed region, including the boundary,
denoted OP.

Two points p,q € P are said to be visible (or to
see each other) if the line segment pg lies within P.
A simple polygon P is said to be weakly visible from a
line segment o if every point of P sees at least one point
of 0. In this paper, whenever we say that a polygon P
is weakly visible we will mean that it is weakly visible
from an edge W of P that is also an edge of the convex
hull of P.

A hidden set in P is a set S of points in P such that no
two points in .S see each other. A convex cover of P is a
set of convex polygons whose union equals P. Let hs(P)
and cc(P) denote the cardinalities of a maximum hidden
set and a minimum convex cover of P, respectively.
Since there is at most one hidden point within any convex
subset of P, we must have the following basic inequality:

hs(P) < cc(P) (n

Overview of Results and Methods: Our main results
are as follows:

(1) We give a polynomial-time 6-approximation al-
gorithm for computing cc(P) for a simple polygon P;
see Theorem 11 of Section IV. We do this in two
parts: First, we give a polynomial-time 2-approximation
algorithm (Theorem 5, Section III) for computing cc(P)
in the case that P is weakly visible (from a convex hull
edge, W = e, = v,v1, of P). Second, we utilize a
decomposition of P into weakly visible subpolygons,
the window partition of P, and argue (Lemma 10(1))
that any convex body within P intersects at most 3 sub-
polygons. The 2-approximation result in weakly visible
P is obtained by formulating the coverage of the edges
e; (for 1 <7 <n—1)of P as a problem of computing a
minimum path cover in a directed acyclic graph (DAG)
whose nodes correspond to edges of P and whose arcs
correspond to pairs of “strongly visible” edges whose
convex hull lies within P. Each path 7 in the DAG
corresponds to a convex polygon, P,, within P. We
then show (Lemma 4) that for any set of k paths in a
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path cover, there is a convex cover of size 2k. One can
compute a minimum path cover of a DAG in polynomial
time; if it has k paths, then, by Dilworth’s theorem, there
is an “antichain” of size k, which corresponds to a set
of k£ edges of P that are “independent” in the sense
that no two of them are strongly visible. Finally, we
argue (Lemma 6) that there are in fact k points, one on
each edge of the antichain, that form a hidden set in
P, showing that hs(P) > k, so cc(P) > k, implying
that our set of 2k convex polygons covering P is a 2-
approximation (Theorem 8).

(2) We give a polynomial-time (1/8)-approximation
for computing hs(P) (see Theorem 11). This is again ob-
tained in two parts, first obtaining a (1/2)-approximation
(Theorem 9) in weakly visible polygons (utilizing the
antichain result for an optimal path cover), and then
using the fact (Lemma 10(2)) that a general polygon P
can be decomposed (using the window partition) into 4
classes of weakly visible subpolygons, with the property
that no point in a polygon of one class can see any point
within another polygon of the same class.

III. WEAKLY VISIBLE POLYGONS

In this section, we assume that P is a weakly visible
polygon, weakly visible from the edge W = v,,v1, which
is an edge of the convex hull of P. Without loss of
generality, we assume that W is horizontal and that P
lies above W see Fig. 1. Let C' denote the polygonal
chain, with vertices (vy,vs,...,v,), that comprises the
boundary of P except for the one edge W. For two points
a,b € C the portion of C' between a and b is denoted
C(a,b), and for a,b € P the shortest path within P from
a to b is denoted SP(a,b).

A basic property of weakly visible polygons is that
for checking the visibility between two points a,b € C
it suffices to check that the visibility is not blocked by
C(a,b). Formally:

Fact 1. [Chord property] If abN C(a,b) = {a, b}, then
a and b see each other.

Proof. 1t is known that, for a weakly visible polygon
P, SP(a,b) bends only on vertices of C(a,b) [15,
Lemma 1]; in particular, if the shortest path does not
touch any vertex of C(a,b), the shortest path has no
bends, i.e., is a segment. O

A. Edges as a Poset

Consider the directed graph GG, whose nodes are the
edges, e1,e0,...,¢e,_1, of C. The (directed) arcs of GG
are ordered pairs (e;, e;) such that ¢ < j and the convex
hull of the edges e;,e; lies within P (Fig. 1). For a
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(directed) path m = (e;;,€4y,...,€4,,) in G let P be
the convex hull of the edges e;,,...,e;, ; we define
the base of the convex polygon P; to be the segment
Vi, Vi, +1. As shorthand, we refer to the first vertex of
the base, v;,, as a, (or a,) and the last vertex v;, 41 as b
(or, respectively, b,). We observe that paths in G define
convex polygons in P:

Lemma 2. P, C P.

Proof. Since any two consecutive edges e;, ,e;,, in 7
are connected by an arc of G, the convex hull of the
edges ¢e;, , ¢;, ., belongs to P; in particular, the subchain
C(v;y,, vi,,,) of the boundary of P does not intersect
P, implying overall that the subchain C(v;,,v;,, +1)
does not intersect the base v;, v;,, +1. Thus, by the chord
property (Fact 1), v;, and v;,_ 41 see each other, implying
that the boundary of P does not intersect the boundary
of Py.

Fig. 1. A weakly visible polygon. Arcs of the graph G connect pairs
of edges whose convex hull is in P; some arcs are shown in purple,
forming the path 7. The convex polygon P/ is the union of P (red)
and the blue triangle abp,y,.

For every arc (e;,e;) of G we have i < j; thus,
the graph G is a directed acyclic graph (DAG), whose
transitive closure defines a partially ordered set (poset).
In fact, Lemma 2 implies that GG is its own transitive
closure: if (e;,e;) and (ej,er) are arcs of G, then
(e;,ex) is also an arc of G. A path cover of a directed
graph is a set of directed paths such that every node
of the graph belongs to (at least) one of the paths; an
antichain is a set of nodes such that no two nodes in the
set are connected by a directed path. Since G is a DAG,
both a minimum path cover, I, of G and a maximum
antichain, I, can be computed in polynomial time by
the folklore reduction to a maximum bipartite matching
[13]. By Dilworth’s theorem, the number |II| of paths
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equals the number |I| of nodes (edges of P) in Gj let
k=[] = |1,

For each path 7 € II, we define below (Section III-B)
two associated convex polygons within 7. We then prove
(Lemma 4) that these 2k convex polygons cover P. In
Section III-C we show how to obtain a set H of k£ hidden
points in P. Thus, using inequality (1), we get that
k < hs(P) < ce(P) < 2k, showing that the 2k convex
polygons and the & hidden points that we compute yield
approximations, with factor 2, for the minimum convex
cover and the maximum hidden set of P. This is our
main technical result.

B. A Convex Cover Based on Path Cover

For any point p € P, we let {,r, C W be the subset
of W that is seen by p, with ¢, (resp., 7)) the left (resp.,
right) endpoint. We define the polygon, P. O Py, to
be the union of P, and the triangle, abp,y, pap is the
point where the segments b¢, and ar, cross (see Fig. 1).
(They must cross, since ar, contains a chord, av, that
separates b from WW.) An easy observation is:

Claim 3. Polygon P! is convex.

Proof. Points along the edge, e;, = (a = v;,,0;,41),
incident on a, must see W (since P is weakly visible
from W), implying that the extension of e;, into P
cannot pass above the segment av (which contains pgy),
as this segment separates ab from W. Thus, the vertex
a is convex in polygon P.. The same argument applies
to b. O

While the convex polygons P corresponding to paths
7 in a path cover II will necessarily cover the edges of
C, and the polygons P. will cover even more of the
interior of P, they need not cover all of P; see Fig. 2
(top and middle). However, by adding as well a triangle,
blyry, for each base ab, we do obtain a covering of P
(see Fig. 2, bottom), as our next lemma shows.

Lemma 4. For any set 11 of paths 7 that form a path
covering of the edges e;, 1 = 1,2,...,n—1, of a weakly
visible polygon P, the polygon P is covered by the
union, over © € 1I, of the polygons P. together with
the triangles b0y 1.

Proof. Since we assume that IT is a path covering, all of
the edges e;, for 1 < ¢ < n—1, of P are covered by the
convex polygons P, and thus by the (superset) convex
polygons P.. It remains to argue that the interior of P,
as well as TV, is covered by the polygons P. and the
specified triangles.
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Fig. 2. Top: The convex polygons Py for paths w € {71, m2,..., 75}
in a path cover of C. Middle: The convex polygons P, obtained by
augmenting Py with the blue triangle abp,p; note that some (white)
portions of P are uncovered. Bottom: The covering using polygons
P! and the (green) triangles blpry,.

Let p € P be any point interior to P or interior to
W. Let £}, (resp., 7,,) be the point on the boundary of P
first hit by a ray from p in the direction away from ¢,
(resp., rp), along the line through p and ¢, (resp., rp).
Note that it could be that ¢, = vy or that r, = v, or
both. (If p lies on W, then 7, = v; and £}, = v,,.) Refer
to Fig. 3.

If p lies within one of the convex polygons P, we
are done (since P, D Py). Otherwise, we know that the
segment pr]g (as well as the segment p%) must intersect
at least one base, a,b;, of a convex polygon P, for
7 € 11, since its endpoint r; lies on the boundary of P,
and the convex polygons P cover all of the edges e;
(1 <i<n—1). There are two cases:

(1) There is a base ab = a,b, (of some P, for m €

IT) that intersects both prj, and pfj,. In this case,
we claim that p must lie within the (blue) triangle
abpgp- The point ¢ and the edge W lie on the same
side of the chord vr;; thus, ar, cannot cross the
chord vry, implying that the chord vr), (and thus
the point p) must lie above the line through a and

rq. Similarly, p must lie above the line through b

and ¢p. Thus, p lies within the triangle abp,, and

thus within P.. See the figure on the top in Fig. 3.

(2) There is not a base a,b, that intersects both prz’)

and pégg. Then, there must be a base ab = a,b,

(of some P;) that is crossed by the segment pr;,

with the endpoint b € C(r,,,[;,). We distinguish two

subcases:

(a) Point p sees b. In this case, p is covered
by the corresponding triangle b¢,r;, since the ray
from b through p hits W.

(b) Point p does not see b. Then, the (unique)
shortest path in P from p to b is not a line
segment; let pv; be the edge of this shortest path
that is incident to p, with v; a (reflex) vertex of P.
Note that v; € C(b, v,,). Therefore, the two edges
incident to v; both lie to the right of the ray from
p to v;. Then the chord, v;q;, that arises from
extending the edge v;_1v; beyond v; to a point
«; € 0P must have its endpoint «; on the edge
W the path v;pr,, within P separates the interior
of v;a; from the boundary C(v;,v,), and o
cannot lie on the boundary portion C'(v1, v;—1),
since this would imply that points interior to
v;_1v; cannot see W (since the chord v;«; would
then separate v;_jv; from W). This implies that
the out-degree of e;_1 = v;_1v; in G is zero,
so in the path cover, the vertex v; = b, must
be the base endpoint for the path 7’ that covers
edge e;_1. We conclude that point p is covered
by the triangle b4y 1y _, .

Thus, every point p € P is covered. O

The following theorem is a consequence of the lemma
and the fact that optimal path covers for a DAG can be
computed in polynomial time:

Theorem 5. For a weakly visible polygon P, there is a
polynomial-time algorithm to compute a set of at most
2k convex polygons within P that cover P, where k is
the size of an optimal path cover of G.

C. A Hidden Set from an Antichain

Let I be an antichain in GG. We show how to place a
set H of |I| points such that no two points from H see
each other.
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Fig. 3. Proof of the Lemma. Top: Case (1); Middle: Case (2a); and
Bottom: Case (2b).

Lemma 6. Given an antichain I in G, we can compute
in polynomial time a set H of |I| points, each interior
to one of the edges of I, such that H is a hidden set (no
two points of H are visible to each other).

Proof. Let [ = {62‘1,61‘2, .. .,e,-m}, with 1 <77 <9 <

- < iy < n— 1. We will place our hidden set at
points s, € e;, or t; € e;,, for £ =1,...,m (note that
¢ enumerates the edges in I, not in C' — this way we
use fewer double subscripts), which are points “close”
to the vertices of the edges e;, € I (but not equal to
the vertices), defined as follows. Compute the visibility
graph (VG) of P: the graph edges connect mutually
visible vertices of P; in particular, each edge of P is an
edge of VG. Extend each edge of VG until the extension
hits the boundary of P (and further extension would
enter the exterior of P), and let Y, C e;,,¢/ =1...m,
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denote the set of points where extended visibility graph
edges hit the edge ¢;, (Fig. 4, top left). In addition, for all
1 <j <k < m, compute shortest paths SP(v;, 11, v, )
between the closest (along C) endpoints of the edges
ei;eqy, € I3 if SP(v;;41,v4,) has exactly one vertex
u between v;, 11 and v;,, and if both edges e;,,e;,
lie below v;; +1v;, (Fig. 4, top right), then add to Y
(resp. Y},) the points where the line through u parallel to
V;;+10j, intersects (the supporting line of) e;; (resp. e;),)
if they exist. On each edge ¢;, € I we keep only the two
extremal points s, t, from Yy (s, € Yy Ne;, is closest
to v;,, and ¢, € Y; Ne;, is closest to v;,11). Finally, s,
(resp. ty) is the midpoint of sjv;, (resp. tjv;,+1).

VY

S I
S 0y
b 1 \/5‘3

Vipyq Uiy,

Fig. 4. Defining sg,t; on edges from I (red). Top Left: Some
of the points added on edge e € I. Top Right: Points added if
SP(vi;41,vi,) = Vi;41 — u — v;;,. Bottom: C(tg,u) is visibly
obstructed from C(u, sp/) by vertex u.

Fact 7. For any 1 < { < {' < m, there exists a vertex
u € C such that no point in C(ty,u) (excluding u) sees
any point in C(u, sp) (excluding w).

Proof. The shortest path SP(vi,41,v;,) follows VG
and makes only left turns at vertices of C' [15, Lemma 2].
If the shortest path has internal vertices, then u is any
such internal vertex (see ¢/ = f1 or ¢’ = /5 in Fig. 4,
bottom, for an example). If v;, 1 and v;,, see each other,
then at least one of the two edges ¢;,,¢;, (say, ¢;,) lies
above (the supporting line of) v;,11v;,,, for otherwise, by
the chord property (Fact 1) every point on e;, would see
every point on e;,,, meaning that the convex hull of the
edges would lie within P, so they would be connected
by an arc in G. Then u = v;,41 (see point s,, in Fig. 4,
bottom for an example) O

Now, for |[I| = m =1 the lemma is trivially true. We
prove that for m > 2 we can choose a set [ of m hidden
points, one per edge in I, from the following 2m — 2
points: 1 U {S@,tg}znzal U s,,. That is, t1,s,, € H (we
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do not place hidden points at s; or t,,), and each other
edge ey contributes either s, or t,.

The proof is by induction on m. The base (m = 2)
follows from Fact 7: the points ¢; and s, = s are
visibly obstructed from each other by the vertex u (refer
to Fig. 4, top right). For m > 2, also apply Fact 7,
and let u be a vertex that (visually) separates C'(t1,u)
from C(u, s,,). Let I; C I be the edges of I that lie in
C(viy+1,u), together with the edge e;,; note that Iy is
a proper subset of I (|I1] < m) because the last edge
e;,, 1s not in [y, and thus we can compute the hidden set
H, (with |Hy| = |I1]) for it by the inductive hypothesis.
Similarly, compute the hidden set Hy (with |Hs| = |I3])
for the edges I = I\ I; that lie in C(u,v;,,) plus the
edge e; . By Fact 7, the union H; U Hy is the required
hidden set H with |H| = |Hy| + |H2| = |1, O

See Fig. 5 for an example illustrating an antichain of
edges, the convex polygons P., a hidden set on P, and
a convex cover of P, for a weakly visible polygon P.

D. Resulting Approximations for cc(P) and hs(P) in
Weakly Visible Polygons

Theorem 8. For a weakly visible polygon P, a con-
vex cover B such that |B| < 2 - cc(P) (ie, a 2-
approximation) can be found in polynomial time.

Proof. Theorem 5 shows that we can find a convex
cover, B, which has at most twice as many pieces as
the size of the minimum path cover of the poset of the
edges of P. Let k be this size, so at most 2k pieces. From
Lemma 6, we know there exists a hidden set H that is at
least as large as the longest antichain in the poset of the
edges of P. By Dilworth’s theorem [9, Theorem 1.1],
we know that size of the longest antichain is equal to
the size of the minimum path cover, therefore |H| = k.
This gives us the following inequality:

k=|H| <hs(P)<ce(P)<|B|=2k (2

which implies that the convex cover found in Theorem
5 is a 2-approximation. O

Theorem 9. For a weakly visible polygon P, a hid-
den set H such that |H| > 1 - hs(P) (ie, a 1/2-
approximation) can be found in polynomial time.

Proof. The chain of inequalities (2) implies k = |H| >
% - hs(P). O
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Fig. 5. An example weakly visible polygon, P, in which we show
a hidden set and a convex cover. Top Left: An antichain in G. Top
Right: All P/ for a path cover in G. Bottom Left: A hidden set in P.
Bottom Right: A convex cover of P.

IV. GENERAL SIMPLE POLYGONS

In this section, P is an arbitrary simple polygon, with
n vertices. We utilize concepts related to “link distance”
within P, so we begin with a brief review of these
concepts and terminology.

A minimum-link path between points s,t in P is an
s-t path with a minimum number of edges (links); that
number is the link distance between s and t. Algorithms
for computing link distance [14], [21], [30] employ the
“staged illumination” paradigm (see, e.g., the handbooks
[28, Chapter 12] and [32, Chapter 31.3]): at the first
stage, a light source at s illuminates the visibility poly-
gon of s — this is the set of points with link distance 1
from s; at the beginning of any subsequent stage, the
boundary between the illuminated and the dark portions
of P consists of a set of windows, each being a segment
(a chord of P), with one endpoint being a reflex vertex
of P and the other endpoint on 9P, which bounds the
weak visibility polygon of the region illuminated at the
previous stage (we assume that the window is part of
the cell that created it, i.e., that the illuminated region
is closed while the dark region does not include its
boundary with the illuminated region); see Fig. 6 (top).

The link distance map, denoted LDM(s), with respect
to the source point s € P is the decomposition of P
into cells such that the link distance from s to any point
within one cell is the same. The LDM is a by-product
of the staged illumination: the edges of the map are the
windows (because the windows are pairwise-disjoint, the
LDM is also called a “window partition” [4], [31]). Each
cell of the map is labeled with the link distance of its
points to s. The cells are naturally organized into a (dual)
tree T, so that the path from s arrives to a cell through
the window from its parent. Further, the windows (and
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253]4

Fig. 6. Top: Staged illumination in a simple polygon (Figure 3 from
[26]): The windows are yellow. Bottom: Right (red) and left (blue)
windows of the weak visibility polygon (gray) of the yellow window.

hence the cells) can be classified as being left or right
[3], depending on whether the child face is on the left
or right of the window (Fig. 6, bottom). Let R; be the
left cells on even levels of T7; let Ro, R3, R4 be the right
cells on even levels, left cells on odd levels, and right
cells on odd levels, respectively.

We take an arbitrary convex vertex s of P and
compute LDM(s), which can be done in O(n) time [31].
The following properties of the LDM are important for
us:

Lemma 10. (/) Any convex polygon K C P intersects
at most 3 cells of LDM(s).

(2) For any 1 = 1,2,3,4, no point in one cell from R;
sees a point in another cell from R;, i.e., if f,f € R;
are two cells and p € f,p' € [’ are two points in the
cells, then p does not see p'.

(3) Every cell of LDM(s) is a weakly visible polygon.

Proof. (1) Among the cells of LDM intersected by K,
let f be a face with minimum associated link distance
from s; let ¢ denote this distance (the number of links
in a minimum-link path from s to any point in f).
Then K cannot intersect the parent face of f (since
its link distance is ¢ — 1). Since K is convex, it can
intersect at most one left window and at most one right
window of f, for otherwise the intersection of K and the
supporting line of a window would consist from more
than 1 connected component. Further, K cannot intersect
any grandchild face, f’, of f, as this would imply, by the
convexity of K, that there is a point in f” at link distance
¢+ 1 from s— contradiction to the fact that the distance
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from s to points in f’ is ¢ + 2. Thus, K intersects at
most 3 faces: f, at most 1 left child of f, and at most 1
right child of f.

(2) This is proved in [3] with respect to the vertices
but applies more generally to all points in P; the proof
is similar to the proof of (1) above: the segment between
mutually visible points spans at most two levels of the
tree T (as level is equal to link distance from s), and
points in two right cells (or two left cells) of the same
level cannot see each other. Therefore, no point in a cell
of R; can see a point in a different cell of R; for any
1=1,2,3,4.

(3) By definition, any cell is what is seen from a
window w (the cell illuminated at stage 1 is the visibility
polygon of s, which may be viewed as a degenerate,
length-0 window) and is thus weakly visible from w. A
cell illuminated at any stage k > 1, is on one side of the
window and is thus a weakly visible polygon. Stage 1
starts from a convex vertex s; hence, one can draw a line
through s so that P is on one side of the line: s is thus a
degenerate edge whose visibility polygon is on one side
of the supporting line of the edge. 0

Lemma 10(1) implies that if we separately cover each
cell of LDM(s) with convex polygons, we lose only a
factor of 3. Lemma 10(2) implies that we can separately
find the hidden sets in each cell of the LDM (our hidden
set algorithm from Lemma 6 places hidden point only
in the relative interior of the edges of the chain C' of
a weakly visible polygon) and then choose the largest
among the hidden sets in Ry, Ro, R3, R4, losing only a
factor of 4 (this is the same idea that was used in [3]
to give a 1/4-approximation to the maximum hidden set
of vertices). Combining these with Lemma 10(3) and
the constant-factor approximations for convex cover and
hidden set for weakly visible polygons (Section III), we
obtain our main result:

Theorem 11. A 6-approximate convex cover and a 1/8-
approximate hidden set in a simple polygon can be found
in polynomial time.

Our algorithms run in O(n?+°()) time.

o Computing the visibility graph VG of P and deter-
mining where the extensions of the visibility graph
edges intersect edges of P takes O(|VG|) = O(n?)
time [20].

Minimum path cover of a DAG and a largest
antichain in the poset can be found in O(n?*°(1)
time: the problems reduce to maximum matching
in a bipartite graph [13], which can be found by
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computing a maximum flow, for which the fastest
known algorithm [8] runs in O(n?+°()) time.

o Finally, computing the O(n) shortest paths for
placing hidden points takes O(n?) time overall; a
shortest path in a simple polygon can be computed
in linear time [16], [32, Chapter 31].

Note that we do convex cover and hidden set sepa-
rately in every cell of the LDM: the work is charged to
the complexity of each cell, and the total complexity of
the cells is O(n).

Remark: ~ We can improve the running time for
computing hs(P) to O(n?), with a slightly different
approach: using arguments as we did for placing points
sy and ty interior to edges of P, we can obtain, in time
O(n?) a set of O(n) points on the boundary of P that
form a sufficient set for searching for a hidden set of
the same size as an antichain. Then, considering these
boundary points as vertices of the polygon P, we can
apply the quadratic time algorithm of [15] to compute an
optimal hidden subset of vertices within a weakly visible

polygon.
V. CONCLUSION

We gave the first constant-factor approximation al-
gorithms for convex cover and hidden set in simple
polygons. As a by-product of our algorithms, we obtain
a combinatorial result (confirming a conjecture from
[6]) that cc(P) < 8hs(P) for a simple polygon P;
for weakly visible simple polygons, we establish that
cc(P) < 2hs(P). These combinatorial bounds may be
of independent interest; improving them or demonstrat-
ing their tightness is an open problem.

Perhaps the most intriguing open problem is whether
our techniques can be extended to find an approximately
optimal cover with star-shaped polygons, also known
as the guarding problem or the Art Gallery Problem.
One stumbling block is devising a lower bound stronger
than the “witness number” of P (the maximum number
of points having pairwise-disjoint visibility polygons):
contrary to the inequality hs(P) < cc(P) < 8hs(P)
established in this paper, it is easy to provide examples
in which the ratio of the number of guards to wit-
nesses reaches €2(n). Nevertheless, our results may be
encouraging in the sense that FR-completeness does not
preclude approximation.

In polygons with holes, maximum hidden set cannot
be n®-approximated for some € > 0, unless P=NP [11];
thus, our methods do not extend to approximating convex
cover in polygons with holes. The only known lower
bound for the problem is APX-hardness and the best
approximation ratio remains logarithmic [12].
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Finally, an obvious open question is improving the
approximation ratios. We believe that there are two
possible fronts to achieve this, either by placing hidden
points in the interior of the weakly visible polygons or by
showing that only a fraction of the additional triangles
are needed for the convex cover (note that, as can be
seen from Fig. 2, just taking maximal extensions of our
polygons P is not enough to cover P). It may also be
interesting to improve the running time of our solutions
or to give computational lower bounds.
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