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Abstract—Given a simple polygon P , the minimum
convex cover problem seeks to cover P with the fewest
convex polygons that lie within P . The maximum hidden

set problem seeks to place within P a maximum cardinality
set of points no two of which see each other. We give con-
stant factor approximation algorithms for both problems.
Previously, the best approximation factor for the minimum
convex cover was logarithmic; for the maximum hidden set
problem, no approximation algorithm was known.

I. INTRODUCTION

In this paper we study two fundamental optimization

problems in a geometric setting. One is a set cover

problem: Cover a simple polygon P with the fewest

convex polygons (we denote that number cc(P )) that lie

within P ; this is the convex cover problem for a simple

polygon. We also study a maximum independent set

problem: Pack into a simple polygon P as many points

as possible so that no two points see each other (points

p, q ∈ P are visible, or see each other, if the segment pq

lies within P ); this is the hidden set problem for a simple

polygon and we let hs(P ) denote the maximum size of

a hidden set. The hidden set problem is the maximum

independent set problem in the “point visibility graph”

of P , whose nodes are all points (the continuum) in P

and whose edges link pairs of points that are visible to

each other.

Minimum convex cover has been studied for many

years, beginning with the early work of Pavlidis [27].

Most recently, Abrahamsen [1] has shown the prob-

lem to be ∃R-complete. In terms of approximation

algorithms to compute cc(P ), the best result is an

O(log n)-approximation algorithm, with running time

O(n29 log n) where n is the complexity of P , found

some decades ago by Eidenbenz and Widmayer [12],

who also show that the problem is APX-hard. As our

main result, we give the first constant-factor approxima-

tion algorithm for computing cc(P ); we also drastically

improve the running time.

Finding hs(P ) is APX-hard [11] and no prior approx-

imation algorithm has been known for computing hs(P )
in general. (Alegrı́a, Bhattacharya and Ghosh gave a 1/4-

approximation [3] for finding a maximum hidden set of

vertices.) We give the first approximation algorithm for

computing hs(P ); our approximation factor is constant.

Other Related Work: A related covering problem

that has been extensively studied is the guarding problem

[32, Chapter 33], in which we seek to cover a polygon

P with the fewest star-shaped polygons, each being a

visibility polygon of some point (a “guard”) within P .

This problem has long been known to be NP-hard and

has recently been shown to be ∃R-complete [2], [29].

There have been recent advances also in computing

approximately optimal guard sets [5], [10], [19]. The

problem of convex covering can be contrasted with the

problem of partitioning a simple polygon into a mini-

mum number of (interior-disjoint) convex polygons; the

convex partitioning problem is solvable exactly in poly-

nomial time, as partitioning allows one to use dynamic

programming to optimize, both in the case of partitioning

with diagonals (chords between two vertices of P ) [23]

and in the case of general partitions, allowing Steiner

points [7]. (There is also a very simple 4-approximation

for convex partitioning of P that runs in linear time [22].)

The hidden set problem is a special case of a geomet-

ric maximum independent set problem: find a maximum

independent set in the (continuous, infinite) graph whose

nodes are the points within P and whose edges are

determined by interpoint visibility. Given the difficulty of

computing maximum independent sets in general graphs,
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even approximately [18], [24], geometric instances of

maximum independent set have attracted considerable

attention; e.g., there has been recent progress in com-

puting maximum independent sets among axis-parallel

rectangles in the plane, including new, constant-factor

approximation algorithms [17], [25].

II. PRELIMINARIES AND AN OVERVIEW

Let P be a simple polygon with n vertices, labeled

v1, v2, . . . , vn (ordered clockwise). The edges of P are

denoted ei = vivi+1, for 1 ≤ i ≤ n, with vn+1 = v1. We

consider P to be a closed region, including the boundary,

denoted ∂P .

Two points p, q ∈ P are said to be visible (or to

see each other) if the line segment pq lies within P .

A simple polygon P is said to be weakly visible from a

line segment σ if every point of P sees at least one point

of σ. In this paper, whenever we say that a polygon P

is weakly visible we will mean that it is weakly visible

from an edge W of P that is also an edge of the convex

hull of P .

A hidden set in P is a set S of points in P such that no

two points in S see each other. A convex cover of P is a

set of convex polygons whose union equals P . Let hs(P )
and cc(P ) denote the cardinalities of a maximum hidden

set and a minimum convex cover of P , respectively.

Since there is at most one hidden point within any convex

subset of P , we must have the following basic inequality:

hs(P ) ≤ cc(P ) (1)

Overview of Results and Methods: Our main results

are as follows:

(1) We give a polynomial-time 6-approximation al-

gorithm for computing cc(P ) for a simple polygon P ;

see Theorem 11 of Section IV. We do this in two

parts: First, we give a polynomial-time 2-approximation

algorithm (Theorem 5, Section III) for computing cc(P )
in the case that P is weakly visible (from a convex hull

edge, W = en = vnv1, of P ). Second, we utilize a

decomposition of P into weakly visible subpolygons,

the window partition of P , and argue (Lemma 10(1))

that any convex body within P intersects at most 3 sub-

polygons. The 2-approximation result in weakly visible

P is obtained by formulating the coverage of the edges

ei (for 1 ≤ i ≤ n−1) of P as a problem of computing a

minimum path cover in a directed acyclic graph (DAG)

whose nodes correspond to edges of P and whose arcs

correspond to pairs of “strongly visible” edges whose

convex hull lies within P . Each path π in the DAG

corresponds to a convex polygon, Pπ , within P . We

then show (Lemma 4) that for any set of k paths in a

path cover, there is a convex cover of size 2k. One can

compute a minimum path cover of a DAG in polynomial

time; if it has k paths, then, by Dilworth’s theorem, there

is an “antichain” of size k, which corresponds to a set

of k edges of P that are “independent” in the sense

that no two of them are strongly visible. Finally, we

argue (Lemma 6) that there are in fact k points, one on

each edge of the antichain, that form a hidden set in

P , showing that hs(P ) ≥ k, so cc(P ) ≥ k, implying

that our set of 2k convex polygons covering P is a 2-

approximation (Theorem 8).

(2) We give a polynomial-time (1/8)-approximation

for computing hs(P ) (see Theorem 11). This is again ob-

tained in two parts, first obtaining a (1/2)-approximation

(Theorem 9) in weakly visible polygons (utilizing the

antichain result for an optimal path cover), and then

using the fact (Lemma 10(2)) that a general polygon P

can be decomposed (using the window partition) into 4

classes of weakly visible subpolygons, with the property

that no point in a polygon of one class can see any point

within another polygon of the same class.

III. WEAKLY VISIBLE POLYGONS

In this section, we assume that P is a weakly visible

polygon, weakly visible from the edge W = vnv1, which

is an edge of the convex hull of P . Without loss of

generality, we assume that W is horizontal and that P

lies above W ; see Fig. 1. Let C denote the polygonal

chain, with vertices (v1, v2, . . . , vn), that comprises the

boundary of P except for the one edge W . For two points

a, b ∈ C the portion of C between a and b is denoted

C(a, b), and for a, b ∈ P the shortest path within P from

a to b is denoted SP (a, b).
A basic property of weakly visible polygons is that

for checking the visibility between two points a, b ∈ C

it suffices to check that the visibility is not blocked by

C(a, b). Formally:

Fact 1. [Chord property] If ab ∩ C(a, b) = {a, b}, then

a and b see each other.

Proof. It is known that, for a weakly visible polygon

P , SP (a, b) bends only on vertices of C(a, b) [15,

Lemma 1]; in particular, if the shortest path does not

touch any vertex of C(a, b), the shortest path has no

bends, i.e., is a segment.

A. Edges as a Poset

Consider the directed graph G, whose nodes are the

edges, e1, e2, . . . , en−1, of C. The (directed) arcs of G

are ordered pairs (ei, ej) such that i < j and the convex

hull of the edges ei, ej lies within P (Fig. 1). For a
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(directed) path π = (ei1 , ei2 , . . . , eim) in G let Pπ be

the convex hull of the edges ei1 , . . . , eim ; we define

the base of the convex polygon Pπ to be the segment

vi1vim+1. As shorthand, we refer to the first vertex of

the base, vi1 , as a, (or aπ) and the last vertex vim+1 as b

(or, respectively, bπ). We observe that paths in G define

convex polygons in P :

Lemma 2. Pπ ⊆ P .

Proof. Since any two consecutive edges eik , eik+1
in π

are connected by an arc of G, the convex hull of the

edges eik , eik+1
belongs to P ; in particular, the subchain

C(vik , vik+1
) of the boundary of P does not intersect

Pπ , implying overall that the subchain C(vik , vim+1)
does not intersect the base vi1vim+1. Thus, by the chord

property (Fact 1), vi1 and vim+1 see each other, implying

that the boundary of P does not intersect the boundary

of Pπ .

a

b

�b �arb ra

π

W

C(a, b)

vnv1

v

pab

Pπ

Fig. 1. A weakly visible polygon. Arcs of the graph G connect pairs
of edges whose convex hull is in P ; some arcs are shown in purple,
forming the path π. The convex polygon P ′

π is the union of Pπ (red)
and the blue triangle abpab.

For every arc (ei, ej) of G we have i < j; thus,

the graph G is a directed acyclic graph (DAG), whose

transitive closure defines a partially ordered set (poset).

In fact, Lemma 2 implies that G is its own transitive

closure: if (ei, ej) and (ej , ek) are arcs of G, then

(ei, ek) is also an arc of G. A path cover of a directed

graph is a set of directed paths such that every node

of the graph belongs to (at least) one of the paths; an

antichain is a set of nodes such that no two nodes in the

set are connected by a directed path. Since G is a DAG,

both a minimum path cover, Π, of G and a maximum

antichain, I , can be computed in polynomial time by

the folklore reduction to a maximum bipartite matching

[13]. By Dilworth’s theorem, the number |Π| of paths

equals the number |I| of nodes (edges of P ) in G; let

k = |Π| = |I|.

For each path π ∈ Π, we define below (Section III-B)

two associated convex polygons within P . We then prove

(Lemma 4) that these 2k convex polygons cover P . In

Section III-C we show how to obtain a set H of k hidden

points in P . Thus, using inequality (1), we get that

k ≤ hs(P ) ≤ cc(P ) ≤ 2k, showing that the 2k convex

polygons and the k hidden points that we compute yield

approximations, with factor 2, for the minimum convex

cover and the maximum hidden set of P . This is our

main technical result.

B. A Convex Cover Based on Path Cover

For any point p ∈ P , we let �prp ⊆ W be the subset

of W that is seen by p, with �p (resp., rp) the left (resp.,

right) endpoint. We define the polygon, P ′

π ⊇ Pπ , to

be the union of Pπ and the triangle, abpab, pab is the

point where the segments b�b and ara cross (see Fig. 1).

(They must cross, since ara contains a chord, av, that

separates b from W .) An easy observation is:

Claim 3. Polygon P ′

π is convex.

Proof. Points along the edge, ei1 = (a = vi1 , vi1+1),
incident on a, must see W (since P is weakly visible

from W ), implying that the extension of ei1 into P

cannot pass above the segment av (which contains pab),

as this segment separates ab from W . Thus, the vertex

a is convex in polygon P ′

π. The same argument applies

to b.

While the convex polygons Pπ corresponding to paths

π in a path cover Π will necessarily cover the edges of

C, and the polygons P ′

π will cover even more of the

interior of P , they need not cover all of P ; see Fig. 2

(top and middle). However, by adding as well a triangle,

b�brb, for each base ab, we do obtain a covering of P

(see Fig. 2, bottom), as our next lemma shows.

Lemma 4. For any set Π of paths π that form a path

covering of the edges ei, i = 1, 2, . . . , n−1, of a weakly

visible polygon P , the polygon P is covered by the

union, over π ∈ Π, of the polygons P ′

π together with

the triangles bπ�bπrbπ .

Proof. Since we assume that Π is a path covering, all of

the edges ei, for 1 ≤ i ≤ n−1, of P are covered by the

convex polygons Pπ and thus by the (superset) convex

polygons P ′

π. It remains to argue that the interior of P ,

as well as W , is covered by the polygons P ′

π and the

specified triangles.
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π2

π1

π3

π4 π5

aπ1

bπ1

aπ3

bπ3 bπ4

aπ5

bπ2

bπ5

aπ2

aπ4

aπ

π2

π1

π3

π4 π5

paπ3bπ3

paπ4bπ4

paπ2bπ2

pp

π2

π1

π3

π4 π5

�bπ4
�bπ3

Fig. 2. Top: The convex polygons Pπ for paths π ∈ {π1, π2, . . . , π5}
in a path cover of C. Middle: The convex polygons P ′

π obtained by
augmenting Pπ with the blue triangle abpab; note that some (white)
portions of P are uncovered. Bottom: The covering using polygons
P ′

π and the (green) triangles b�brb.

Let p ∈ P be any point interior to P or interior to

W . Let �′p (resp., r′p) be the point on the boundary of P

first hit by a ray from p in the direction away from �p
(resp., rp), along the line through p and �p (resp., rp).

Note that it could be that �p = v1 or that rp = vn, or

both. (If p lies on W , then r′p = v1 and �′p = vn.) Refer

to Fig. 3.

If p lies within one of the convex polygons Pπ , we

are done (since P ′

π ⊇ Pπ). Otherwise, we know that the

segment pr′p (as well as the segment p�′p) must intersect

at least one base, aπbπ , of a convex polygon Pπ , for

π ∈ Π, since its endpoint r′p lies on the boundary of P ,

and the convex polygons Pπ cover all of the edges ei
(1 ≤ i ≤ n− 1). There are two cases:

(1) There is a base ab = aπbπ (of some Pπ for π ∈

Π) that intersects both pr′p and p�′p. In this case,

we claim that p must lie within the (blue) triangle

abpab. The point a and the edge W lie on the same

side of the chord vr′p; thus, ara cannot cross the

chord vr′p, implying that the chord vr′p (and thus

the point p) must lie above the line through a and

ra. Similarly, p must lie above the line through b

and �b. Thus, p lies within the triangle abpab and

thus within P ′

π. See the figure on the top in Fig. 3.

(2) There is not a base aπbπ that intersects both pr′p
and p�′p. Then, there must be a base ab = aπbπ
(of some Pπ) that is crossed by the segment pr′p,

with the endpoint b ∈ C(r′p, l
′

p). We distinguish two

subcases:

(a) Point p sees b. In this case, p is covered

by the corresponding triangle b�brb since the ray

from b through p hits W .

(b) Point p does not see b. Then, the (unique)

shortest path in P from p to b is not a line

segment; let pvi be the edge of this shortest path

that is incident to p, with vi a (reflex) vertex of P .

Note that vi ∈ C(b, vn). Therefore, the two edges

incident to vi both lie to the right of the ray from

p to vi. Then the chord, viαi, that arises from

extending the edge vi−1vi beyond vi to a point

αi ∈ ∂P must have its endpoint αi on the edge

W : the path viprp within P separates the interior

of viαi from the boundary C(vi, vn), and αi

cannot lie on the boundary portion C(v1, vi−1),
since this would imply that points interior to

vi−1vi cannot see W (since the chord viαi would

then separate vi−1vi from W ). This implies that

the out-degree of ei−1 = vi−1vi in G is zero,

so in the path cover, the vertex vi = bπ′ must

be the base endpoint for the path π′ that covers

edge ei−1. We conclude that point p is covered

by the triangle bπ′�bπ′
rbπ′

.

Thus, every point p ∈ P is covered.

The following theorem is a consequence of the lemma

and the fact that optimal path covers for a DAG can be

computed in polynomial time:

Theorem 5. For a weakly visible polygon P , there is a

polynomial-time algorithm to compute a set of at most

2k convex polygons within P that cover P , where k is

the size of an optimal path cover of G.

C. A Hidden Set from an Antichain

Let I be an antichain in G. We show how to place a

set H of |I| points such that no two points from H see

each other.
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v
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a

b

�p

�′p
r′p

rp W

p
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v

pp

rb

pab

rb

p

a

b

�p

�′p

r′p

rp W

v

vi

vi−1

αi

p

Fig. 3. Proof of the Lemma. Top: Case (1); Middle: Case (2a); and
Bottom: Case (2b).

Lemma 6. Given an antichain I in G, we can compute

in polynomial time a set H of |I| points, each interior

to one of the edges of I , such that H is a hidden set (no

two points of H are visible to each other).

Proof. Let I = {ei1 , ei2 , . . . , eim}, with 1 ≤ i1 < i2 <

· · · < im ≤ n − 1. We will place our hidden set at

points s� ∈ ei� or t� ∈ ei� , for � = 1, . . . ,m (note that

� enumerates the edges in I , not in C – this way we

use fewer double subscripts), which are points “close”

to the vertices of the edges ei� ∈ I (but not equal to

the vertices), defined as follows. Compute the visibility

graph (VG) of P : the graph edges connect mutually

visible vertices of P ; in particular, each edge of P is an

edge of VG. Extend each edge of VG until the extension

hits the boundary of P (and further extension would

enter the exterior of P ), and let Y� ⊂ ei� , � = 1 . . .m,

denote the set of points where extended visibility graph

edges hit the edge ei� (Fig. 4, top left). In addition, for all

1 ≤ j < k ≤ m, compute shortest paths SP (vij+1, vik)
between the closest (along C) endpoints of the edges

eij , eik ∈ I; if SP (vij+1, vik) has exactly one vertex

u between vij+1 and vik , and if both edges eij , eik
lie below vij+1vik (Fig. 4, top right), then add to Yj

(resp. Yk) the points where the line through u parallel to

vij+1vik intersects (the supporting line of) eij (resp. eik )

if they exist. On each edge ei� ∈ I we keep only the two

extremal points s′�, t
′

� from Y� (s′� ∈ Y� ∩ ei� is closest

to vi� , and t′� ∈ Y� ∩ ei� is closest to vi�+1). Finally, s�
(resp. t�) is the midpoint of s′�vi� (resp. t′�vi�+1).

vij+1 vik

u

ut�

s�1

s�3

s�2

vi�+1
vi�3

Fig. 4. Defining s�, t� on edges from I (red). Top Left: Some
of the points added on edge e ∈ I . Top Right: Points added if
SP (vij+1, vik ) = vij+1 − u − vik . Bottom: C(t�, u) is visibly

obstructed from C(u, s�′ ) by vertex u.

Fact 7. For any 1 ≤ � < �′ ≤ m, there exists a vertex

u ∈ C such that no point in C(t�, u) (excluding u) sees

any point in C(u, s�′) (excluding u).

Proof. The shortest path SP (vi�+1, vi�′ ) follows VG

and makes only left turns at vertices of C [15, Lemma 2].

If the shortest path has internal vertices, then u is any

such internal vertex (see �′ = �1 or �′ = �2 in Fig. 4,

bottom, for an example). If vi�+1 and vi�′ see each other,

then at least one of the two edges ei� , ei�′ (say, ei� ) lies

above (the supporting line of) vi�+1vi�′ , for otherwise, by

the chord property (Fact 1) every point on ei� would see

every point on ei�′ , meaning that the convex hull of the

edges would lie within P , so they would be connected

by an arc in G. Then u = vi�+1 (see point s�3 in Fig. 4,

bottom for an example)

Now, for |I| = m = 1 the lemma is trivially true. We

prove that for m ≥ 2 we can choose a set H of m hidden

points, one per edge in I , from the following 2m − 2
points: t1 ∪ {s�, t�}

m−1
�=2 ∪ sm. That is, t1, sm ∈ H (we
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do not place hidden points at s1 or tm), and each other

edge e� contributes either s� or t�.

The proof is by induction on m. The base (m = 2)

follows from Fact 7: the points t1 and sm = s2 are

visibly obstructed from each other by the vertex u (refer

to Fig. 4, top right). For m > 2, also apply Fact 7,

and let u be a vertex that (visually) separates C(t1, u)
from C(u, sm). Let I1 ⊂ I be the edges of I that lie in

C(vi1+1, u), together with the edge ei1 ; note that I1 is

a proper subset of I (|I1| < m) because the last edge

eim is not in I1, and thus we can compute the hidden set

H1 (with |H1| = |I1|) for it by the inductive hypothesis.

Similarly, compute the hidden set H2 (with |H2| = |I2|)
for the edges I2 = I \ I1 that lie in C(u, vim) plus the

edge eim . By Fact 7, the union H1 ∪H2 is the required

hidden set H with |H| = |H1|+ |H2| = |I|,

See Fig. 5 for an example illustrating an antichain of

edges, the convex polygons P ′

π , a hidden set on ∂P , and

a convex cover of P , for a weakly visible polygon P .

D. Resulting Approximations for cc(P ) and hs(P ) in

Weakly Visible Polygons

Theorem 8. For a weakly visible polygon P , a con-

vex cover B such that |B| ≤ 2 · cc(P ) (i.e., a 2-

approximation) can be found in polynomial time.

Proof. Theorem 5 shows that we can find a convex

cover, B, which has at most twice as many pieces as

the size of the minimum path cover of the poset of the

edges of P . Let k be this size, so at most 2k pieces. From

Lemma 6, we know there exists a hidden set H that is at

least as large as the longest antichain in the poset of the

edges of P . By Dilworth’s theorem [9, Theorem 1.1],

we know that size of the longest antichain is equal to

the size of the minimum path cover, therefore |H| = k.

This gives us the following inequality:

k = |H| ≤ hs(P ) ≤ cc(P ) ≤ |B| = 2k (2)

which implies that the convex cover found in Theorem

5 is a 2-approximation.

Theorem 9. For a weakly visible polygon P , a hid-

den set H such that |H| ≥ 1
2 · hs(P ) (i.e., a 1/2-

approximation) can be found in polynomial time.

Proof. The chain of inequalities (2) implies k = |H| ≥
1
2 · hs(P ).

Fig. 5. An example weakly visible polygon, P , in which we show
a hidden set and a convex cover. Top Left: An antichain in G. Top
Right: All P ′

π for a path cover in G. Bottom Left: A hidden set in P .
Bottom Right: A convex cover of P .

IV. GENERAL SIMPLE POLYGONS

In this section, P is an arbitrary simple polygon, with

n vertices. We utilize concepts related to “link distance”

within P , so we begin with a brief review of these

concepts and terminology.

A minimum-link path between points s, t in P is an

s-t path with a minimum number of edges (links); that

number is the link distance between s and t. Algorithms

for computing link distance [14], [21], [30] employ the

“staged illumination” paradigm (see, e.g., the handbooks

[28, Chapter 12] and [32, Chapter 31.3]): at the first

stage, a light source at s illuminates the visibility poly-

gon of s – this is the set of points with link distance 1

from s; at the beginning of any subsequent stage, the

boundary between the illuminated and the dark portions

of P consists of a set of windows, each being a segment

(a chord of P ), with one endpoint being a reflex vertex

of P and the other endpoint on ∂P , which bounds the

weak visibility polygon of the region illuminated at the

previous stage (we assume that the window is part of

the cell that created it, i.e., that the illuminated region

is closed while the dark region does not include its

boundary with the illuminated region); see Fig. 6 (top).

The link distance map, denoted LDM(s), with respect

to the source point s ∈ P is the decomposition of P

into cells such that the link distance from s to any point

within one cell is the same. The LDM is a by-product

of the staged illumination: the edges of the map are the

windows (because the windows are pairwise-disjoint, the

LDM is also called a “window partition” [4], [31]). Each

cell of the map is labeled with the link distance of its

points to s. The cells are naturally organized into a (dual)

tree T , so that the path from s arrives to a cell through

the window from its parent. Further, the windows (and
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Fig. 6. Top: Staged illumination in a simple polygon (Figure 3 from
[26]): The windows are yellow. Bottom: Right (red) and left (blue)
windows of the weak visibility polygon (gray) of the yellow window.

hence the cells) can be classified as being left or right

[3], depending on whether the child face is on the left

or right of the window (Fig. 6, bottom). Let R1 be the

left cells on even levels of T ; let R2, R3, R4 be the right

cells on even levels, left cells on odd levels, and right

cells on odd levels, respectively.

We take an arbitrary convex vertex s of P and

compute LDM(s), which can be done in O(n) time [31].

The following properties of the LDM are important for

us:

Lemma 10. (1) Any convex polygon K ⊆ P intersects

at most 3 cells of LDM(s).

(2) For any i = 1, 2, 3, 4, no point in one cell from Ri

sees a point in another cell from Ri, i.e., if f, f ′ ∈ Ri

are two cells and p ∈ f, p′ ∈ f ′ are two points in the

cells, then p does not see p′.

(3) Every cell of LDM(s) is a weakly visible polygon.

Proof. (1) Among the cells of LDM intersected by K,

let f be a face with minimum associated link distance

from s; let � denote this distance (the number of links

in a minimum-link path from s to any point in f ).

Then K cannot intersect the parent face of f (since

its link distance is � − 1). Since K is convex, it can

intersect at most one left window and at most one right

window of f , for otherwise the intersection of K and the

supporting line of a window would consist from more

than 1 connected component. Further, K cannot intersect

any grandchild face, f ′, of f , as this would imply, by the

convexity of K, that there is a point in f ′ at link distance

�+ 1 from s– contradiction to the fact that the distance

from s to points in f ′ is � + 2. Thus, K intersects at

most 3 faces: f , at most 1 left child of f , and at most 1

right child of f .

(2) This is proved in [3] with respect to the vertices

but applies more generally to all points in P ; the proof

is similar to the proof of (1) above: the segment between

mutually visible points spans at most two levels of the

tree T (as level is equal to link distance from s), and

points in two right cells (or two left cells) of the same

level cannot see each other. Therefore, no point in a cell

of Ri can see a point in a different cell of Ri for any

i = 1, 2, 3, 4.

(3) By definition, any cell is what is seen from a

window w (the cell illuminated at stage 1 is the visibility

polygon of s, which may be viewed as a degenerate,

length-0 window) and is thus weakly visible from w. A

cell illuminated at any stage k > 1, is on one side of the

window and is thus a weakly visible polygon. Stage 1

starts from a convex vertex s; hence, one can draw a line

through s so that P is on one side of the line: s is thus a

degenerate edge whose visibility polygon is on one side

of the supporting line of the edge.

Lemma 10(1) implies that if we separately cover each

cell of LDM(s) with convex polygons, we lose only a

factor of 3. Lemma 10(2) implies that we can separately

find the hidden sets in each cell of the LDM (our hidden

set algorithm from Lemma 6 places hidden point only

in the relative interior of the edges of the chain C of

a weakly visible polygon) and then choose the largest

among the hidden sets in R1, R2, R3, R4, losing only a

factor of 4 (this is the same idea that was used in [3]

to give a 1/4-approximation to the maximum hidden set

of vertices). Combining these with Lemma 10(3) and

the constant-factor approximations for convex cover and

hidden set for weakly visible polygons (Section III), we

obtain our main result:

Theorem 11. A 6-approximate convex cover and a 1/8-

approximate hidden set in a simple polygon can be found

in polynomial time.

Our algorithms run in O(n2+o(1)) time.

• Computing the visibility graph VG of P and deter-

mining where the extensions of the visibility graph

edges intersect edges of P takes O(|V G|) = O(n2)
time [20].

• Minimum path cover of a DAG and a largest

antichain in the poset can be found in O(n2+o(1))
time: the problems reduce to maximum matching

in a bipartite graph [13], which can be found by
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computing a maximum flow, for which the fastest

known algorithm [8] runs in O(n2+o(1)) time.

• Finally, computing the O(n) shortest paths for

placing hidden points takes O(n2) time overall; a

shortest path in a simple polygon can be computed

in linear time [16], [32, Chapter 31].

Note that we do convex cover and hidden set sepa-

rately in every cell of the LDM: the work is charged to

the complexity of each cell, and the total complexity of

the cells is O(n).
Remark: We can improve the running time for

computing hs(P ) to O(n2), with a slightly different

approach: using arguments as we did for placing points

s� and t� interior to edges of P , we can obtain, in time

O(n2) a set of O(n) points on the boundary of P that

form a sufficient set for searching for a hidden set of

the same size as an antichain. Then, considering these

boundary points as vertices of the polygon P , we can

apply the quadratic time algorithm of [15] to compute an

optimal hidden subset of vertices within a weakly visible

polygon.

V. CONCLUSION

We gave the first constant-factor approximation al-

gorithms for convex cover and hidden set in simple

polygons. As a by-product of our algorithms, we obtain

a combinatorial result (confirming a conjecture from

[6]) that cc(P ) ≤ 8hs(P ) for a simple polygon P ;

for weakly visible simple polygons, we establish that

cc(P ) ≤ 2hs(P ). These combinatorial bounds may be

of independent interest; improving them or demonstrat-

ing their tightness is an open problem.

Perhaps the most intriguing open problem is whether

our techniques can be extended to find an approximately

optimal cover with star-shaped polygons, also known

as the guarding problem or the Art Gallery Problem.

One stumbling block is devising a lower bound stronger

than the “witness number” of P (the maximum number

of points having pairwise-disjoint visibility polygons):

contrary to the inequality hs(P ) ≤ cc(P ) ≤ 8hs(P )
established in this paper, it is easy to provide examples

in which the ratio of the number of guards to wit-

nesses reaches Ω(n). Nevertheless, our results may be

encouraging in the sense that ∃R-completeness does not

preclude approximation.

In polygons with holes, maximum hidden set cannot

be nε-approximated for some ε > 0, unless P=NP [11];

thus, our methods do not extend to approximating convex

cover in polygons with holes. The only known lower

bound for the problem is APX-hardness and the best

approximation ratio remains logarithmic [12].

Finally, an obvious open question is improving the

approximation ratios. We believe that there are two

possible fronts to achieve this, either by placing hidden

points in the interior of the weakly visible polygons or by

showing that only a fraction of the additional triangles

are needed for the convex cover (note that, as can be

seen from Fig. 2, just taking maximal extensions of our

polygons Pπ is not enough to cover P ). It may also be

interesting to improve the running time of our solutions

or to give computational lower bounds.
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