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Superparamagnetic tunnel junctions are important devices for a range of emerging technologies, but
most existing compact models capture only their mean switching rates. Capturing qualitatively accurate
analog dynamics of these devices will be important as the technology scales up. Here we present results
using a one-dimensional overdamped Langevin equation that captures statistical properties of measured
time traces, including voltage histograms, drift and diffusion characteristics as measured with Kramers-
Moyal coefficients, and dwell-time distributions. While common macrospin models are more physically
motivated magnetic models than the Langevin model, we show that for the device measured here, they
capture even fewer of the measured experimental behaviors.
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I. INTRODUCTION

Magnetic tunnel junctions (MTJs) are versatile devices
with many modes of operation, several of which are now
being recognized for their value to neuromorphic and alter-
native computing schemes [1-5]. Their superparamagnetic
regime, in particular, holds great promise not only for the
acceleration of traditional scientific computing workloads
[6-9] but also for stochastic computing [10—12], other
neural networks [13—17], and combinatorial optimization
accelerators [18-21]. Their technological relevance, and
the attendant need to design scaled-up circuits that include
these devices, has made the task of finding appropriate
dynamical models an engineering priority.

Currently, three classes of models are used for differ-
ent levels of granularity in representing superparamag-
netic tunnel junction (SMTJ) physics. The simplest is the
Néel-Brown model [22-24], a two-state Markov model
where the transition rates are exponential functions of
the current and field applied to a device. These models
fit transition rates of the Markov model to experiment
[25], and can sometimes be aligned with the measurable
parameters of the system in a physics-driven way [26,27].
Their discrete state spaces, however, hide any intermedi-
ate analog dynamics, and experiments to date indicate that
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this analog magnetic behavior is visibly non-negligible
[8,25,28-31]. Néel-Brown models implicitly assume an
exponential distribution of the dwell times.

The most detailed form of modeling is achieved through
micromagnetic simulations. Some micromagnetics pack-
ages can explicitly solve the stochastic Landau-Lifshitz-
Gilbert (sLLG) equation over large magnetic domains
using finite-element methods [32]. The simulation of
devices in this manner can lead to physically realistic
results, but the required computational timescale renders
such models inappropriate for single elements in large cir-
cuit simulations. To wit, the authors of Ref. [33] show that
micromagnetic simulations qualitatively reproduce mea-
sured two-level fluctuations but are not able to collect
enough statistics with the full simulations to make a robust
statistical comparison.

The intermediate level between these approaches is that
of'analog compact modeling. Compact models —relatively
low-dimensional differential equations that capture the
essential analog behaviors of a device without full phys-
ical realism—have been developed for many nanodevices
[34-37], including MTJs [38—40]. When SMTJs are incor-
porated into integrated circuits, modeling the interaction
between the SMTJs and the transistors will require a sta-
tistically accurate description of the SMTJ dynamics on the
timescale of switching events in both, but that description
cannot be significantly slower than the modeling of the
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integrated circuit. Those restrictions force the development
and use of a compact model that accurately describes the
transition dynamics. A Markov model, while fast, does not
accurately capture the dynamics of the transition, whereas
a micromagnetic model would capture that dynamics, but
is far too slow.

Ideas for computing systems that use SMTJs are now
being proposed that assume the existence and even inter-
action of thousands to millions of individual devices
[10,13,41,42]. The engineering work of design, test, and
verification of large-scale designs like those will require
mature models that faithfully capture device physics. Such
models already exist for memory-class MTJs used in mag-
netic random access memory designs and have enabled
extraordinary progress in that field [43]. Our present goal,
then, is to facilitate a move beyond demonstrating the mere
viability of stochastic and probabilistic computing pro-
posals based on SMTJs and toward full-stack-engineered
system design based on SMTJ device physics.

For SMTIs in particular, a common compact modeling
methodology in the literature is the use of a macrospin
(single-domain) model [44]. Macrospin modeling has been
applied as a theoretical approach to understanding the
physics of magnetic systems [45] and has been used to
demonstrate the viability of SMTJ-based alternative com-
puting schemes [10,18]. Yet it is generally understood
that real magnetic devices rarely operate in the single-
domain regime, calling into question whether macrospin
models provide an appropriate simulation framework for
the engineering context. Even in devices that are expected
to be near-single-domain, the authors of Ref. [46] show
explicitly that a simple macrospin model cannot reproduce
their experimental results because details of the dynam-
ics change in nontrivial ways during the reversal process.
They theorize that the dissipative mechanisms of the model
behave outside of what can be captured by the usual
sLLG equation, which has a diffusive part that is pre-
determined [47] and cannot be tuned except in overall
amplitude (through the Gilbert damping). The authors of
Ref. [48] show that entropic effects due to degrees of
freedom neglected in the macrospin approximation signif-
icantly affect both the energetics and the dynamics of the
reversal process.

From a practical standpoint, numerical integration of the
sLLG equation often requires careful attention [49]; spher-
ical coordinate approaches can depend in subtle ways on
the integration scheme [50], and integrating the more sta-
ble Euclidean equations requires renormalization of the
magnetization [51,52], which slows down the integration,
or carefully chosen solvers [53] that an end-user may not
be able to access in an engineering context (e.g., when
using a commercial circuit simulator).

Facing these limitations of simple macrospin models,
we propose a data-driven method to capture the dynam-
ics of interest in circuit simulations. We turn to generic

overdamped one-dimensional (1D) Langevin models for
the voltage across the device and fit such models to exper-
imental measurements. Similar data-driven approaches
have been applied in other fields of physics to learn the
underlying physics of stochastic processes through a vari-
ety of methods [54—56]. We show that our approach leads
to high-fidelity matching of the voltage histograms and the
drift and diffusion coefficients of the device between model
and experiment while maintaining the analog nature of
macrospin approaches. We also show that our model cor-
rectly predicts the drift dynamics and dwell-time distribu-
tions of the experiment without explicitly encoding these
in the simulation, confirming a level of self-consistency
between the model and the underlying physics.

We organize the remainder of the paper as follows. We
give an overview of the approach we use to fit a time trace
measured for an SMTIJ in Sec. Il so that we can repro-
duce a statistically identical time trace in simulation. In
Sec. III we describe the different statistical measures of
such voltage-time traces that provide reductions of the data
to relevant dynamical quantities. Section IV introduces
an overdamped, 1D Langevin model and describes the
method that we use to fit the experimental data. Section V
compares the Langevin modeling with experiment and
shows that the model reproduces the experimental data
used to determine the model and exhibits self-consistency
with the assumed Fokker-Planck dynamics. In Sec. VI,
we analyze standard macrospin models and use a compar-
ison of their allowed probability distributions and drift-
diffusion statistics with those of the experimental data
to show that they cannot reasonably provide a quantita-
tive model for the data. Finally, in Sec. VII, we discuss
possible extensions to our compact modeling approach,
orienting future research in ways we view as most useful
for supporting the device-circuit-system codesign practices
needed to realize large-scale computational systems based
on SMTlJs.

Experimental details are given in the appendices.
Appendix A briefly introduces the fabrication of our exper-
imental device. Appendix B describes the direct current
(dc) characterization of the measured device. Appendix C
describes the circuitry used to make the high-speed mea-
surements of the superparamagnetic behavior. Appendix D
describes some alternate fitting schemes. Appendix E
describes the extraction of mean dwell times from time
traces.

II. MODEL CONSTRUCTION ROADMAP

Our goal is to develop a data-driven, compact, semi-
analytic model that produces dynamics that are statistically
identical to those of the voltage-time trace. We refer to
the model as data-driven because we use some of the sta-
tistical properties of the data to produce the model. In
contrast to other, physically motivated models, such as a
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Visual outline of the model generation process developed in this paper. Top row: we start with an experimental device

from which a voltage-time trace is extracted under fixed experimental conditions. The histogram and the voltage-dependent diffusion
coefficient (second Kramers-Moyal coefficient D) are extracted numerically from the time trace. The drift coefficient and dwell-time
distributions are also extracted for later use. Middle row: we fit drift and diffusion characteristics for our model to the histogram and
diffusion characteristics found in experiment, in a way that compensates for the high-frequency cutoff of the experimental data. Bottom
row: we then use these fitted drift and diffusion characteristics to simulate a Langevin equation from which we extract a voltage-time
trace and its attendant statistics. Far right: the suite of statistics from the model is validated against the experiment. In future work
with more complex fits, one may need to introduce a self-consistent fitting procedure that uses observed error between theory and
experiment to inform iterative refinements of the model (dashed line).

macrospin approximation, our models are not derived from
approximations based on device physics. Not being tied to
approximations of the physics can be an advantage, as it
allows the model to capture behavior that is neglected by
physically motivated models that may be oversimplified
compared with experimental reality.

Figure 1 shows the modeling flowchart for this paper.
From the experiment with the SMTJ device we obtain
a voltage-time trace. The statistics of that data are used
to determine our model, a 1D equation of (directed,
overdamped Brownian) motion. This equation of motion
describes the state of the system with drift (determinis-
tic) and diffusion (stochastic) terms, with parameteriza-
tions that can be calculated directly from the experimental
voltage-time trace. We integrate the model forward in time
to produce a simulated time trace, do the same statistical
analysis that we had performed for the experiment, and
compare the experimental and simulated statistics.

Figure 2 shows a representative segment of a voltage-
time trace of our experimental device described in
Appendix A. The models we use to reproduce this behav-
ior are 1D stochastic differential equations whose drift and
diffusion parts are determined by both short-time statis-
tics and long-time statistics. The resulting equation is the
Langevin equation

D =f(P) +g(P)ns(0), (D
S — e’
drift diffusion

where @ is the dependant variable (voltage), ¢ the indepen-
dent variable (time), f(®) the function characterizing the
drift, g(®) the function characterizing the diffusion, and

ne(f) a Gaussian white noise term [57] with the proper-
ties (Ne(HNe (), = 25(¢ — ) and (ne (), = 0. The drift
and diffusion terms of the Langevin equation are related to
each other through the voltage-time trace histogram, which
gives the long-time average of the stationary state of the
system for a fixed current flowing through the SMTJ; see
Sec. 1V for further details.

The 1D Langevin models are completely determined by
fitting the histogram and either the first, » = 1, or second,

0 20 40 60 80 100
t (ns)

FIG. 2. Typical bistable voltage fluctuations of an SMTJ in our
experimental setup, measured at a sampling rate of 7., = 50 ps.
Shown is a small subset (a 100-ns window) of the full-time 1 ms
trace captured in the experiment. The total number of transitions
between the two states in the full voltage-time trace is of the order
of 3 x 103. The dashed line indicates the boundary between the
parallel and antiparallel wells. That value is chosen from the local
minimum in the distribution of measured voltages given in Fig. 3.
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n = 2, Kramers-Moyal coefficient

D) — %rhi% ([®@+ r)r— d (1] )t’ )

with t the sampling time, the angle brackets denoting a
time average over the voltage-time trace, and [® (¢ + 7) —
®(#)] a t-delayed difference in voltage. The first and
second Kramers-Moyal coefficients encode short-time
dynamics into our model. The D; coefficients capture
the drift behavior of the system while D, captures the
diffusive behavior. Fitting the histogram and one of the
Kramers-Moyal coefficients then determines the functional
coefficients in the Langevin model [Eq. (1)], fully char-
acterizing it and allowing us to perform simulations that
mimic the experimental measurement.

As will be shown in Sec. V and discussed in Sec. VII,
this data-driven approach captures multiple statistical and
dynamical metrics with high fidelity. Specifically, it cap-
tures the Kramers-Moyal coefficients, the histogram, the
dwell-time distributions, and the power spectral density
(discussed in Appendix C). The agreement for the dwell-
time distributions is perhaps the most significant validation
of the model because the experimental input to the model
does not directly encode these timescales. This ability to
recover higher-order statistics is necessary so that we can
use the model to design scaled-up circuits in engineering
applications.

II1. STATISTICS OF TIME TRACES

In this section, we describe in more detail the statisti-
cal properties that we use to set up the Langevin model.
These properties and others are compared with those of
simulations of the resulting model in Sec. V.

The first statistical reduction of the voltage-time trace
we use is the histogram of the device state over the entire
1-ms measurement window; see Fig. 3. We assume that
the system giving rise to the voltage-time trace is in
quasiequilibrium, so the histogram primarily depends on
the effective energy and entropy of the system at each volt-
age and less on the short-time dynamics of the system. The
binning resolution used for the histogram and other sta-
tistical properties described below along the voltage axis
impacts the fit quality and the observed characteristics. If
the bins are too small, the statistical uncertainty prevents
good fits; if they are too large, the details of the dynam-
ics are obscured. The bin size we use for the histogram
is a compromise between these factors at approximately
200 wV. Each bin captures approximately 50 quantized
voltage signals out of the approximately 2'? unique levels
reported by the oscilloscope.

Though the histograms we observed above can (together
with an assumption of Boltzmann statistics) tell us about
the effective energy landscape of the system, the detailed
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FIG. 3. Histogram of SMTJ state. The black circles give the

experimental results for the entire voltage-time trace of 160 ms,
part of which is shown in Fig. 2, using bins 200 wV wide. The
blue rectangles give the results of a simulation, discussed in
Sec. V, using a data-driven Langevin model. Note the excellent
recovery of the experimental histogram’s values in the simu-
lation, demonstrating the capacity of the first-order Langevin
model to capture coarse-grained statistics. Statistical error bars
are smaller than the symbols. The inset plot shows the ratio
between the simulation and experiment histogram values. Note
the near- unity agreement for the entire domain save where
both histogram’s values approach zero. The local minimum
near —1 mV is taken as the boundary between the parallel and
antiparallel wells.

short-time dynamics generated by thermally induced mag-
netic fluctuations—which are by construction separate
from the conservative forces on the system—remain hid-
den. To determine their behaviors, we compute conditional
moments [58] of the experimental voltage-time trace. The
nth-order conditional moment M,, is

M,(@,7) = ([®(t+ 1) — 2()]"),, 3)

with the angle brackets denoting a time average over an
entire trajectory, and ® (¢ + t) — O (¢) a v-delayed differ-
ence in the system’s state. We capture these conditional
moments with the same bins as we use for the histogram.
At very small 7, Eq. (3) can be used to approximate
the nth-order Kramers-Moyal coefficient [S9—61] of the
system. Formally, these Kramers-Moyal coefficients are
connected to the conditional moments as
M, (P, 1)

1.
i) = o lm

(4)

The D, and D, terms, which we refer to as the drift and dif-
fusion terms, are the specific Kramers-Moyal coefficients
used in our first-order Langevin model and are the only
nonzero Kramers-Moyal coefficients required to describe
systems obeying the Fokker-Planck equation [62].

Due to the finite resolution inherent in experimental
data, we cannot immediately take the limit as T — 0 in
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our calculation of the Kramers-Moyal coefficients. We also
find in practice that our experimental timestep was not
quite small enough to approximate this limit; subsampling
our data to compute the M, at slightly longer timesteps
indicates that we are not in the converged regime, and
strongly so for M,. As the t increases from zero, however,
finite-time corrections can be used to relate the conditional,
time-delayed moments M, to the underlying Kramers-
Moyal coefficients that are needed to construct an analytic
Langevin model [63,64]. These corrections up to second
order in the time delay t are

2
T
M, =1tD; + > (DlDll +D2D/1/) + 0(73)5 %)

M, = 21D, + t* (D + D\ D)
+ DyDy 4+ 2D,D) + O(z), (6)

with a prime denoting differentiation with respect to @,
and each Kramers-Moyal coefficient and time-delayed
moment understood to be a function of ®. Equations (5)
and (6) describe a second-order differential system for the
Kramers-Moyal coefficients in terms of calculated M, and
M,; these equations cannot be solved analytically in gen-
eral. Our approach to extracting the Kramers-Moyal coef-
ficients, which we require to parameterize our Langevin
model, is to choose a parameterized ansatz for D,; that is,
we choose some functional form with a number of free
parameters. Combining this ansatz with an analytic fit to
the histogram induces an ansatz on D; via the stationary
solution to the Fokker-Planck equation. We then choose
the free parameters [see Eq. (10) below] by fitting the right-
hand sides of Eqgs. (6) [using our ansatz on the right-hand
sides of Eq. (5) and Eq. (6)] to the M, extracted from our
experimentally measured voltage-time trace. We could fit
both M; and M, simultaneously, but finding agreement
between M, and the predictions of the model when only
M, is fitted argues for the appropriateness of using the 1D
Fokker-Planck equation.

IV. ONE-DIMENSIONAL LANGEVIN MODEL

We note in Sec. VIB that macrospin models fail
to capture qualitative metrics—let alone statistical met-
rics—associated with the experimental data. Yet models
that capture the statistics of experimental devices will
be required for high-fidelity circuit simulations of SMTJ
devices as their attendant technological applications scale.
To address this discrepancy, we introduce a first-order
Langevin model inspired by existing works on the model-
ing of fluctuating bistable processes [65,66]. This approach
may not be capable of predicting the behavior of unchar-
acterized devices, but we anticipate it could be used to
characterize the devices from a particular manufacturing
process and those fit results could be used for circuit
simulations of those devices.

We take a data-driven approach to determining the
details of the 1D Langevin model. The first step is to
find an analytic expression for the experimentally deter-
mined probability density py. We require an analytic
expression because we will need to take its derivative
to infer the deterministic forces in the system. To guar-
antee a positive-definite fit, we assume a Boltzmann
distribution and then fit not to the histogram itself but
to a dimensionless effective energy U.g(®P) defined so
that po(®) = (1/Z) exp(—Uex(P)), where Z ensures that
f d®py(®) = 1. A judicious choice of basis function is
required to capture the distribution with high fidelity;
we scale our data appropriately and then use the Cheby-
shev polynomials of the first kind 7,,(®) which form
an orthonormal, complete basis on [—1, 1] and are each
bounded between —1 and 1 over this range [67]. Figure 4
shows progressively higher order fits to Ueg; for the rest
of the work presented in this paper, we use the n = 20
fit for the effective energy and the stationary distribution.

(@) , , , , , , ,
0.100}
o 0.010
5
3
~ 0.001
104
0 5 10 15 20 25 30
n
(b) , , , ,
>
Ok 1 ] ] .
-5 0 5 10
d (mV)

FIG. 4. Fit to the effective energy. (a) Residues (normalized
norm) between the Chebyshev polynomial fits to the data as a
function of even order n and (b) sample fits— n = 4, 10,20—to
the experimental effective energy Ueg. Error bars on experimental
data indicate statistical uncertainties due to the number of counts
per histogram bin; however, these uncertainties are smaller than
the symbols.
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For practical applications the choice of the fit order would
be a balance between fidelity to the data and speed of
calculation.

The effective energy in Fig. 4, derived from the station-
ary distribution for the experimental data, exhibits several
features that are inconsistent with a macrospin model as
we show later in Sec. VI. These include asymmetry for the
interior/exterior sides of the parallel (P)/antiparallel (AP)
states, disparate P/AP well widths, and exterior bound-
aries that are significantly rounded compared with the
macrospin results. We believe that these discrepancies may
be related to a common cause: the way the macrospin
model neglects many degrees of freedom that may play an
important role in the dynamics. The asymmetry between
the parallel and antiparallel alignments could be due to
asymmetry between the configurations due to the nonuni-
form fringing fields from the fixed layer and synthetic
antiferromagnet. The tails in the distribution could have
several explanations. At a basic level, it could be that
the states with the minimum and maximum resistances
are not the lowest energy states. One may also note that
for an open system (the SMTJ) in contact with a ther-
mal reservoir it is the free energy, rather than internal
energy, that is the relevant quantity [48] for making ther-
modynamic predictions like the probability distributions.
The measured distribution integrates over the unmeasured
degrees of freedom (those that do not lie along the fixed
layer magnetization) so, even if the strictly parallel and
strictly antiparallel states were energy minima, slightly
higher energy states may be significantly more prolific
so that the peaks in the marginal distribution along the
voltage, ®, may be shifted from the energy minima.

The desire to capture these features of the histograms
and other statistical measures is what motivates us to
develop a compact model beyond the macrospin approach.
As we have detailed above, our approach is to assume a
1D overdamped Langevin equation driven by white noise.
The simplicity of this model makes our task tractable, and
in fact, we show in Sec. V that the model gives very good
agreement with experiment.

To determine the parameters for the Langevin model, we
start with the Fokker-Planck equation, which describes the
evolution of the probability density p (P, ) as

p 0 0
Frialrs [—Dl(cb)p(cb,t) + aTDDz(GD)p@,t)} , (7

with & a generic state variable (voltage, in the present
paper), t the time, D (®, ) the drift, and D, (P, ¢) the dif-
fusion. The terms D;(®,¢) and D, (D, ¢) are precisely the
first- and second-order Kramers-Moyal coefficients from
Eq. (4). The Kramers-Moyal coefficients may be functions
of time in general, but the measured probability distribu-

tion py is stationary on the timescale of the experiment and
thus we also assume D, (®, f) are not functions of time. In

the steady-state limit dp/d¢ = 0 we have

dUei(P)
do

so that D, is uniquely determined given the diffusion coef-
ficient and the steady-state distribution of the system. In
passing from Eq. (7) to Eq. (8), we used the fact that the
right-hand side of Eq. (7) is the divergence of the probabil-
ity current J. In the steady-state limit, dpJ = 0, and thus
the stationary current Jy is constant. For the system to be
physically bounded, the constant value of Jy must in fact
be zero, which allows us to uniquely solve for D;(®) as a
function of D, (®) and py(P).

In a system with additive noise (i.e., D,(®) = 0) the
drift term would be determined through the derivative of
the effective energy, in which case D; coincides with a typ-
ical conservative force, up to prefactors. A system with
multiplicative noise (where D) (®) # 0) exhibits mixing
between the stochastic terms and the deterministic part;
here the nonzero diffusion gradient introduces a stochastic
drift term.

The Langevin equation derived from the Fokker-Planck
equation is

Dy(®) = Dy(®) — D2(P) ®)

b =1 (D) + g(P)ne(?) )

with @ the voltage state, f (®) the deterministic drift
term, g(®) the stochastic diffusion term, and n¢ is white
noise with (ne(Hne(?)), =28( —¢) and (ne()), = 0.
We interpret this equation in the Stratonovich sense
[68], as one would for the typical construction of
the sLLG equation. In the Stratonovich interpreta-
tion, the Langevin equation is related to the Fokker-
Planck equation’s Kramers-Moyal coefficients by f (®) =
D(®) — D) (®)/2 and g(P) = /D,(P). The second term
on the right-hand side of f (®) comes from gradients in
the diffusion which give rise to an effective drift term
independent of the usual drift coefficient D ().

The first step in determining a Langevin model that can
reproduce aspects of the experimental voltage-time trace
in Fig. 2 is to compute the conditional moments in Eq. (3).
These moments are shown in Fig. 5. With these experimen-
tal conditional moments, we determine the Kramers-Moyal
coefficients by making an ansatz D, for the diffusion part
of the Fokker-Planck equation, which when combined with
the stationary distribution is used to obtain an induced form
for D; via Eq. (8). Measurements of M,, shown in Fig. 5,
inform our choice for D,. The observation that the data
show larger diffusion in the AP well than in the P well
leads us to propose

Dy(®; ) = md + b, (10)

with w = (m,b) the fit parameters. In Appendix D we
show that fitting with a constant D, also provides an ade-
quate fit, and introducing more fitting parameters can give
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FIG. 5. Time-delayed drift coefficient (a) and diffusion coeffi-
cient (b), showing experiment (black circles), Langevin simula-
tion (blue squares), computed at a sampling time Tgmp = 50ps
equivalent to the experimental measurement time, and the ana-
Iytic, fitted results that were inserted into the model, D, (solid
green line) and M, /nt (dashed red line), where n = 1 for the
drift term and » = 2 for the diffusion term. Error bars on the
experimental indicate single-standard-deviation uncertainties in
the mean. They are smaller than the plot symbols except at the
extreme voltages.

an even better fit. To ensure that D, is positive definite
we take D, = Alog(1 4 exp(D,)/A), where we take A =
1 V?/s, which does not significantly affect D, > 0. Com-
bining this ansatz for D, with the analytical expressions
for D; and the stationary distribution py completely spec-
ifies the model. In the next section, we use this model
to run stochastic Langevin equation simulations, that is,
numerical integrations of Eq. (9).

We fit the parameters of the ansatz in Eq. (10) follow-
ing the procedure outlined in Sec. IV. The fit parameters
in Eq. (10) are determined by first computing an ana-
Iytic form for D; from the ansatz for D,, the fit to the
histogram, and Eq. (8). Then an analytic form for M,
is determined from Eq. (6). The parameters of this last
expression are adjusted to fit the experimental data. The
agreement between the model and the experimental data is
shown in Fig. 5. The error in the drift and diffusion coeffi-
cients was calculated from the standard deviation o;/+/N;
of the underlying §&®"(®) distribution as a function for

the binned ®; levels shown in the figure, where o is the
standard deviation and &; is the number of counts within
the ith ®; level. The binning level used for ®; here was
approximately 295wV to have exactly 64 total bins over
the sample. The maximum error shown in the plots is
observed on the exterior well boundaries where the num-
ber of V; counts is of the order of hundreds of data points,
instead of millions nearer the well’s interior.

Both drift and diffusion coefficients (i.e., the induced
ansatzes for M,,), agree well with the conditional moments
extracted from experiment except at the extreme voltage
values where the statistical certainty is poor. Figure 5
shows the functional forms determined for the model.
The model is constructed so that the M,/2t is fitted to
the experimental data; the consequent agreement between
M/t and the experimental data speaks to the appro-
priateness of the underlying Fokker-Planck model as a
description of this system.

V. RESULTS

Our ultimate goal is to develop a stochastic differential
equation of motion for SMTJs for use in circuit simula-
tors. Though our current model is restricted to a particular
biasing condition, we can still explore how well our model
matches the device. We simulate the Langevin equation
[Eq. (9)] and compare simulation results both with the
experimental data used to fit the model and to selected
statistical metrics of the experimental data.

After obtaining the Kramers-Moyal coefficients D, and
D,, we insert them into Eq. (9). We set the integration
timestep to a fifth of the experimental sampling rate,
dt = Texp/S = 10ps. Integration is performed using the
Euler-Maruyama method. Simulation histogram results are
compared with the experimental histogram in Fig. 3, con-
firming that the first-order, data-driven Langevin model
captures this aspect of the experiment well. The his-
togram displays asymmetrical energy-well probabilities
and widths, greater-than-exponential decay for the prob-
ability density at exterior data boundaries, and a large
energy barrier between the two well peaks. We assert that
the reproduction of statistical features such as these is key
to developing an engineering-appropriate model for the
device. For purely analog circuits in particular—such as
those proposed in Refs. [69] and [42]—correct modeling of
these distributions may be crucial for capturing emergent
statistics of scaled-up circuitry based on superparamag-
netic tunnel junctions.

Comparing the conditional moment extracted from
experiment and simulation demonstrates that the first-order
Langevin model gives dynamics similar to those seen in
experiment. Figure 5 confirms excellent agreement for
M (P, 1) and M,(d, ) calculated for a time delay equal
to the experimental sampling time (Tsamp = Texp = 50 PS).
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The statistics that have received perhaps the most atten-
tion in the literature are the mean dwell times of the parallel
and antiparallel states. These are captured directly by con-
struction in Néel-Brown models, and macrospin models
are generally fitted to ensure these dwell times are accu-
rate [40]. In circuits and systems where the SMTJ state
is binarized into a two-level telegraph signal, the mean
dwell times together with the assumption that the switch-
ing events are independent of the past history (the Markov
property) completely determine the circuit output. With a
voltage threshold chosen to demark the boundary between
the P and AP states, the dwell times imbue the data we
have already captured in the histogram with a characteristic
timescale. Crucially, this timescale information is carried
into the model through our fitted ansatz on D,. For the pur-
poses of this work we consider a transition between the P
and AP states to occur when the voltage crosses the barrier
location determined by the local maximum of the energy
landscape in Fig. 4. We define a dwell time as the amount
of time the system spends in the positive or negative half of
state space before crossing that dg Uy = 0 threshold into
the other half of state space.

The main panels in Fig. 7 show simulation and exper-
imental dwell times for a sampling rate of Teamp = Texp
on log-log and semilog plots for the two distinct P and
AP states. These figures show that the simulation captures
the full distribution of dwell times for both states. This
agreement for the dwell-time distributions is perhaps the
most significant validation of the model because the exper-
imental input to the model does not directly encode these
timescales. The model uses just the short-time dynamics
captured by the Kramers-Moyal coefficients and the sta-
tionary limit of the time-averaged time series in the form
of the histogram.

One unusual feature of both experimental and simulated
distributions is the crossover from the familiar exponen-
tial behavior to approximately #~3/> power-law behavior
at short times. We attribute this behavior to fluctuations
around the threshold we defined between the states. Recall
that we chose the threshold between states to correspond to
the local maximum of the effective energy landscape; lin-
earizing about this threshold therefore reveals a locally flat
energy landscape where the dynamics are driven entirely
by stochastic fluctuations. In other words, the dynamics
in this small neighborhood around the threshold are given
by a random walk. It is well known that the dwell-time
(return-time) distribution of a random walk is proportional
to \/7/£, where 7 is the timestep of the walk [70]. As
T decreases, more and more probability mass accumu-
lates at smaller and smaller ¢, dominating the dwell-time
distribution. This suggests that the transition between the
power-law and exponentially distributed dwell times is
controlled by the curvature of the energy barrier: the flatter
the energy near the threshold, the longer the system can
behave as an unbiased random walk.

Intuitively, we can imagine zooming in to a threshold-
crossing trajectory sampled at some frequency. If we
“zoom in” by increasing our sampling frequency on the
same underlying trajectory, the newly sampled points have
the potential to introduce additional threshold crossings.
Since the spectrum of the white noise process contains all
frequencies, we expect to introduce more and more cross-
ing events as we sample at higher and higher frequencies;
as the sampling time goes to zero, the number of crossings
will diverge.

To see this visually, consider Fig. 6. In the top panel,
we plot in gray a simulated trajectory of an Ornstein-
Uhlenbeck process with unit mean and volatility, spring
constant # = 2, and initial condition y = —1. As it tra-
verses from the initial condition toward its energy mini-
mum at y = 1, it crosses the y = 0 line, which we regard
as a threshold. The question is how many times it crosses
this threshold. This question is easily addressed if we have
the full trajectory data. But suppose the number of points
we have access to on the trajectory is much smaller than the
“true” number of points. In Fig. 6, we denote subsampled
trajectories with a blue line.
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FIG. 6. Progressively increased zoom and sampling rates on a
random trajectory generated by an arbitrarily simulated Ornstein-
Uhlenbeck process. Top panel: the full-resolution trajectory
which has 107 sampling points is given in gray. The blue tra-
jectory, subsampled to have only 10? points, represents what
might one collect experimentally. Red vertical bars denote zero-
crossings of the blue trajectory. We zoom in on the gray region
of the top panel in the center panel. Center panel: here we locally
resample with 10? points, an order of magnitude faster sampling
than in the top panel. The resampling reveals more zero-crossings
than were present at that larger scale. Bottom panel: zooming and
resampling by factors of 10 again reveals yet more crossings.
Note the qualitative self-similarity of the blue curves in each
panel, suggesting that (with infinite underlying resolution) we
would continue to reveal more and more crossings with higher
and higher sampling rates.
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In the top panel of Fig. 6, we observe three crossings
of the subsampled trajectory across the threshold. But if
we zoom in on the gray region and resample the underly-
ing trajectory there (middle panel), we find that far more
crossings become apparent, approximately 11. We zoom
in and resample once again on a subdomain of this trajec-
tory to find an even finer resolution (bottom panel), which
has yet more transitions. Note that in each case, the size
scale of the fluctuations (i.e., the range of the vertical axis)
gets smaller and smaller. But the thresholding process, by
definition, ignores this amplitude information, and since
the white noise driving the system has support at all fre-
quencies, we will always find more transitions by going to
higher and higher sampling rates.

In the physical SMTJ system, we expect some physical
mechanism to impose an ultraviolet cutoff— but whatever
this cutoff may be clearly resides at a higher frequency than
our experiment can access. Since this power-law behav-
ior is simply a property of stochastic dynamics around a
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FIG. 7. Dwell-time distributions as extracted from experiment

(black) and simulation (blue) in (a) a log-log plot and (b) a
semilog plot. The log-log plot uses a sampling time bin size
of 100 ps, while the semilog plot uses a sampling time bin size
of 1ns. The experimental data and simulation both have of the
order of 300,000 transitions. The straight-line behavior of both
the simulation and experiment for short times in the upper panel
indicates a power-law distribution and for long times in the lower
panel an exponential distribution.

threshold, we expect it to be found in other stochastic mag-
netic systems as well. In Sec. VI, we will find that the
behavior is also reproduced in the macrospin model, but
note that it is impossible to capture in a simple Néel-Brown
model, which is based on a two-state Markov model that
assumes exponential distributions of dwell times; such a
system has no notion of dynamics in the barrier, which is
the essential cause of the power-law effect.

Traditionally, mean dwell times are extracted from
experimental dwell-time histograms by examining the
slope of the exponential dwell-time distributions on a
semilog scale (wherein the distribution appears linear, as
in Fig. 11). Because of the power-law behavior at small
times in our data, these inverse slopes—which we will call
characteristic dwell times—are clearly very different than
the literal mean dwell times. Yet merely isolating the slope
of the curve where it does appear exponential in Fig. 7 does
not lead to a physically invariant characteristic dwell time;
this slope can change significantly under minor subsam-
pling of the signal, because this changes the probability-
dominating power-law part. We elaborate more on the
topic of characteristic dwell times in Appendix E.

Finally, we compare the power spectral densities of the
experimental signal with those produced by the model.
Accurate power spectra are crucial from an electrical engi-
neering context. Unlike the diffusion characteristics and
histograms, power spectra are known to exhibit the correct
qualitative (Lorentzian) form in macrospin models [32]
and in Néel-Brown models [71]. In Appendix C, we show
that the power spectral density of the simulation agrees
with that of the experiment and both follow the expected
behavior at high frequencies.

VI. ANALYSIS OF MACROSPIN MODELING

In the previous sections, we described the modeling of
an experimental dataset collected from a device in the
laboratory. In service of our engineering-focused model-
ing goals, our objective was to create compact models
that faithfully capture the relevant physics of that par-
ticular device. A common approach in the literature to
modeling SMTJs is through the use of a macrospin model.
In the present section, we consider the macrospin model
for SMTJs in two separate contexts. First, we show that
it cannot reproduce important aspects of the measured
properties of our device. Second, we use the macrospin
model as experimental data to test the generality of our
approach using the Langevin model to fit data. In this con-
text, we show that our Langevin modeling approach can
capture the dynamics of an easy-axis macrospin. How-
ever, for other devices of current interest, referred to as
low-barrier devices [28,31], in which there is a strong easy-
plane anisotropy axis and a weaker in-plane easy axis, the
Langevin approach can model the drift and diffusion char-
acteristics but is unable to capture the correct dwell-time
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distributions of the device. This failure is due to the inertial
dynamics that are neglected in the overdamped Langevin
approach. Treating such systems will require additional
developments as discussed at the end of this section.

A. Macrospin model

We consider here a typical macrospin model with
anisotropy. The dynamics are generated by the sLLG
equation for dimensionless magnetization m,

m = —pyym X hgg — Am x (m x hey), (11)
with hegy = & — 9,E/(uoM;) the effective field with
thermal part & and M; the saturation magnetization,
7 = yo/(1 + «?) the renormalized gyromagnetic ratio,
x =y /(1 + o?) with « the Gilbert damping, and yy =
wogug/h, with po the vacuum magnetic permeability,
g the electron g-factor, pp the Bohr magneton, and h
the reduced Planck constant. We take & to be a spheri-
cally symmetric Gaussian noise term with variance 2I" =
20kT/(oyoM;V) [45], where V is the volume, k the
Boltzmann constant, and 7" the temperature. Finally, £ =
—K.m? — K,m? is the energy density. The first term, with
K, > 0, is an easy-axis anisotropy along the direction of
the fixed layer magnetization, that is, the component of
the magnetization that determines the magnetoresistance.
We take m, as a proxy for the voltage signal across an
MT]J at fixed bias; in Fig. 8, for instance, m, is the vertical
axis (compare with Fig. 2). The second term, with K, < 0,
is a (potential) easy-plane anisotropy. Other contributions,
like external fields, other anisotropies, or current-driven
torques, could be included but would not change the con-
clusions we draw below. We assume the Stratonovich
interpretation here as we have for all other stochastic
differential equations throughout the paper [68].

B. Capturing macrospin physics in a first-order
Langevin model

Figure 8 shows typical time traces for a macrospin
where K, = 5kT; in the top panel, K, = 0, and in the bot-
tom panel, K, = —10kT. Compare with Fig. 2 (or experi-
mentally measured voltage-time trace signals); macrospin
simulations show much harder walls at the m, = +1 state
than we see in experiment. We will soon see that the dif-
fusion characteristics also look quite different than in the
experiment. Nevertheless, in this section, we attempt to
capture the physics of a macrospin within an overdamped
Langevin model with a single degree of freedom, m,.

Our experimental results indicate that our real device has
two relatively well-defined states, which suggests an easy-
axis description in the macrospin limit. If the system has
only easy-axis anisotropy in the energy density, we can
isolate the equations of motion for the z-component of a
macrospin. Rewriting Eq. (11) in terms of m, and ¢ gives

o4
[o3

e
=

Axial magnetization, m,

Axial magnetization, m,

1000
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FIG. 8. Typical magnetization-time traces from the SLLG sim-
ulation of the easy-axis (top) and hard-axis with in-plane easy-
axis (bottom) macrospin model. In both panels, the simulation
was conducted with a timestep of 10fs, but the trajectories are
plotted by subsampling the raw data with a 5 ps timestep (corre-
sponding to the subsampling used in the experimental section).
Compare with Fig. 2: we have harder walls at the extremal states
in the vertical direction.

an equation for ¢ that depends on m. and one for sz, that is
independent of ¢,

AK,

= m(mz —m2) — oLy +ale)y/1 —m2, (12)
0V

m;

where the two independent white noise processes, Ls and
Ly, each have variance 2I" and produce thermal fields in
the ¢ and 6 directions. We combine these and regard them
as a combined white noise process L with variance 2I" =
20 (1 + o?) = 20kT/(;uoM,V). Then it is straightforward
to derive the drift and diffusion coefficients,

_hm, e

Dl(mz)_MO SV(KZ(I m?) — kT), (13a)
B r .,

Dr(m,) = MOMYV(I m;). (13b)

The critical point K, = kT is a pitchfork bifurcation in the
drift coefficient where m, = 0 changes stability and two
additional zeros of Dj(m,) appear. Note that the value
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of Di(£1) is exactly FI'; the conservative forces do not
contribute there.

Equipped with the drift and diffusion coefficients of this
process in m, coordinates, it would be theoretically valid
to write down a Langevin equation

dm, = [Dl (m) — gD;(mg] di+ 2Dy dW, (14)

where W is a Wiener process [72] with unit variance and
zero mean. Given Egs. (13), however, it is clear that this
equation would be difficult to simulate numerically. Any
finite-timestep integration of this process is liable to step
beyond the valid domain m, € [—1,1], leading both to
imaginary diffusion and to a drift term that would push the
system even further away from the valid regime.

There may well be methods to properly integrate
Eq. (14), but for the purposes of this paper we will instead
consider our data-driven approach. First, we simulate the
system according to the original description [Eq. (11)].
By examination of the conditional moments M; = (m, (¢ +
7) —m.(f)) and M, = ([m.(t + ) — m.()]?) of those
“experimental data,” we once again choose an ansatz for
the D, of our synthetic model and fit it to the data via
Eq. (10). The histogram of the data again defines an energy
function E(m.;) = —log p(m,) which, together with D,,
determines D; through the equilibrium condition of the
Fokker-Planck equation,

Di(m;) = Dy(m;) — Dy(m;)E'(my), (15)

just as in Sec. IV. Then we simulate Eq. (14) using these
fitted Dy, D, which will be chosen to have good behavior
at the boundaries.

We numerically integrate the sLLG equation that will
provide our dataset in two different ways: first, using only
an easy-axis anisotropy K, = 5kT; second, using a hard-
axis anisotropy K, = —10kT with a weak easy axis K, =
5KkT. In both cases, we take = 0.01, M, = 1.5 MA/m,
and 7 =300K. We assume a free layer thickness of 1
nm and a diameter of 20nm, which approximates our
experimental device.

We then take these data and apply our procedure from
Sec. IV to extract an effective first-order Langevin sys-
tem. As the structure of the macrospin dynamics is much
simpler than the experimental device, we use only a
fourth-order polynomial to fit the effective energy function,
though we also include two sharp exponential functions
Ay exp[£100(x F 1)] in order to capture the hard-wall
boundaries at m, = 1. We then simulate this effective
model and compare its histogram with the macrospin sim-
ulation data in Fig. 9. Both simulations used a timestep
of 10fs and ran for 10'' timesteps (a total simulated
time of 1 ms). While the agreement is good in the easy-
axis simulation, our models naturally exhibit “leak” of
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FIG. 9. Comparison of histograms between our sLLG sim-

ulation of the easy-axis macrospin model and the first-order
Langevin model that was fitted to the SLLG simulation statistics,
together with the analytic solution for these distributions (dashed
line). The top panel shows the easy-axis macrospin, the bottom
panel a hard-axis macrospin with an in-plane easy axis.

probability beyond [—1,1]. Both models have analyti-
cally tractable histograms with which the macrospin and
Langevin simulations well agree.

Theoretically, the structure of the multiplicative noise
in the sSLLG equation (which manifests here as D,) arises
entirely from the geometric considerations of m’s normal-
ized amplitude [47]; the thermally driven part of the SLLG
equation in Cartesian coordinates has coefficients €;;my +
a(8; — m;m;) irrespective of the effective field. The agree-
ment between M, from all simulations with the known 1 —
m? form of D, in the macrospin model is excellent; they
are essentially indistinguishable except for very tiny devi-
ations at m, = £1. We conclude that a simple macrospin
model cannot capture the complex diffusion characteristics
such as those observed in Fig. 5(b), since the functional
form of D, is fixed by construction. Figure 10 shows the
first conditional moments for these sLLG simulations com-
pared with their fitted Langevin models. These also have
nice agreement, though the convergence of the noise is
slower than for M, and the boundary conditions more
artificially imposed.
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FIG. 10. Comparisons of M;(t)/t between our sLLG sim-
ulation of the easy-axis macrospin model and the first-order
Langevin model that was fitted to the SLLG simulation statistics.
The top panel shows the easy-axis macrospin, the bottom panel
a hard-axis macrospin with an in-plane easy axis. In both cases,
T =10fs.

In both the easy-axis and hard-axis models, the literal
mean dwell times agree very well between macrospin
and Langevin models: the easy-axis mean dwell times
are 0.624ns (macrospin) and 0.623ns (Langevin); the
hard-axis mean dwell times are 0.730 ns (macrospin) and
0.731 ns (Langevin). We also consider the distribution of
dwell times, that is, the probability that any particular
dwell event has a given dwell time. These agree very well
between macrospin and Langevin models in the easy-axis
system (Fig. 11, top panel). Although we have elaborated
above and in Appendix E on the potential unphysicality
of characteristic dwell times extracted from the slopes of
these curves, they can still offer a comparison between
macrospin and Langevin models. Using a linear fit to
extract the slope of the exponential distribution from the
semilog plot, we obtain “characteristic dwell times” of
121ns and 120ns for both the macrospin and Langevin
simulations, respectively. In the hard-axis system, despite
the remarkable agreement of the mean dwell times, the
dwell-time distributions are considerably different (bottom
panel). The “characteristic dwell time” of the Langevin
model is 293 ns, while the “characteristic dwell time” of
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FIG. 11. Long-time behavior of the dwell-time histograms for

the easy-axis macrospin (top) and hard-axis macrospin with an
in-plane easy axis (bottom). As in Fig. 12, the model fit to the
hard-axis macrospin has poor agreement, but the easy-axis sys-
tem matches well. Note that these data have been rebinned to
a 1-GHz sampling frequency compared with Fig. 12; on this
timescale, the coherent switching dynamics of the easy-plane
oscillator are washed out.

the macrospin model is only 27 ns—an order-of-magnitude
difference.

The top panel of Fig. 12 zooms into the dwell-time dis-
tribution of the hard-axis macrospin simulation for very
short times. Both the easy- and hard-axis macrospin mod-
els exhibit the same 1~/ power-law behavior [73] at the
smallest time steps (not shown) as was observed in the
experimental device [Fig. 7(a)]. At intermediate but sub-
nanosecond dwell times, however, the hard-axis system
shows a distinctive set of peaks. We associate these peaks
with coherent precession events around multiple cycles
of the easy plane. The bottom panel of Fig. 12 shows
an example of a “transition” we found in a trajectory
generated from the hard-axis macrospin simulations; the
ringing here artificially creates “switching events” around
twice some resonant frequency of the macrospin. Such
dynamics rely crucially on second-order behavior, with
energy being stored in the out-of-plane angle serving as a
source of inertia. Since these dynamics strongly affect the
switching times but cannot possibly be modeled in an 1D
overdamped Langevin equation, it is unsurprising that our
model fails to capture these particular statistics.
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FIG. 12. Top: short-time behavior of the dwell-time histogram
for the hard-axis macrospin with an in-plane easy axis. The cen-
tral peak in the distribution is not captured by the fitted Langevin
model; abnormally frequent dwell times around 250 ps (and, to a
lesser degree, around 750 ps) are attributed to coherent in-plane
switching cycles. Bottom: a high-resolution (10-fs-timestep)
time trace of a transition in the hard-axis macrospin model that
exhibits coherent ringing effects on subnanosecond timescales
leading to approximately 0.2-ns dwell events, commensurate
with the central peak in the top panel.

The inclusion of memory and higher-order differential
terms would, therefore, seem a necessary next step to
capture higher-fidelity models, especially given the high
interest in low-barrier easy-plane devices. Representation
of such systems as multiple coupled first-order Langevin
models seems the natural direction of study, but this will
come hand-in-hand with a quadratic increase in the number
of free parameters. Fitting the increased set of param-
eters will require extracting more statistical information
from the time traces. In the simple case we consider here,
the first-order Kramers-Moyal coefficient is not needed,
nor are the dwell-time distributions. In addition to these,
higher-order or time-lagged Kramers-Moyal coefficients
could be extracted and used. It is not implausible that
the inverse problem (i.e., divining the model directly
from the experimental data without having to run simu-
lations to compare) may become intractable. One solution

might be to use an iterative, self-consistent forward-fitting
approach, where trial models are refined by comparing
the statistics extracted from simulations with those of
experiments and refining the parameters until the compar-
ison is satisfactory. While finding the appropriate model
will become much more complicated, using the resulting
model will not. This type of approach is represented by
the dashed arrow in Fig. 1, and may be a topic of future
research.

VII. DISCUSSION

While the sSLLG equation for a macropsin is physically
motivated and contains terms directly identifiable with dis-
tinct physics, it cannot capture certain statistical metrics
associated with our experimental device. This is partly due
to the sLLG model’s drift and diffusion coefficients; fitting
the former to the observed drift would require including
sufficiently “data-driven” terms as to lose the simple plau-
sibility of the model, while directly fitting the diffusion is
simply impossible in general. Indeed, even single-domain
MTJs may show diffusion properties that do not gener-
ally agree with the macrospin. Theory indicates that the
Gilbert damping (an overall prefactor for D,) in common
magnetic materials has strong directional dependence [74],
while recent experiments on SMTJ switching suggests
that the Suhl instability may create dynamically variable
damping mechanisms during single-domain reversal [46].
These considerations suggest that we must move beyond
the simple macrospin model to accurately capture SMTJ
physics in compact models in general, and the data-driven
approach explored in this paper is our initial attempt at this
enterprise.

We show that our data-driven approach captures mul-
tiple statistical and dynamical metrics with high fidelity
in an experimentally measured SMTJ device with perpen-
dicular anisotropy. Specifically, we were able to capture
the Kramers-Moyal coefficients (Fig. 5), the stationary dis-
tribution py by construction (Fig. 3), and the dwell-time
distributions (Fig. 7). The first-order Langevin model out-
performs traditional sLLG macrospin simulations in cap-
turing coarse-grained statistics of the experimental data.
We note that perpendicular devices of this type are of
strong applied interest, as the fabrication of their ther-
mally stable kin are already integrated into commercial
foundry processes, and challenges with device-to-device
variation are expected to be easy to address in this geome-
try compared with in-plane magnets (so-called low-barrier
magnets) [75].

We have also simulated macrospin models to demon-
strate that the behaviors they exhibit are not commensurate
with the experimental observations that we capture with
our Langevin model. Of course, the macrospin model is,
ultimately, a Langevin equation. So long as one is willing
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to accept a macrospin’s finite domain, it should be possi-
ble in principle to deduce complicated, potentially patho-
logical forms of the effective field and (state-dependent)
Gilbert damping functions that would indeed mimic the
behavior we observe in experiment. But to do so would be
to lose the physical motivation of the macrospin model; we
contend that achieving this would amount to using a data-
driven approach similar to what we present here, simply in
spherical rather than Euclidean geometry.

There are several refinements of our approach that are
necessary to successfully design scaled-up circuits that
operate over ranges of input parameters. One, which is
referred to at the end of the previous section, is to extend
the model to include memory effects and incorporate addi-
tional statistical properties of the device into the fitting
procedure. A second is to extend the model to varying cur-
rents through the device. In the present results, the current
through the device was kept constant, but for a model to
be useful in simulation it must extrapolate to an extensive
current range. Additionally, it is likely that the devices will
have a range of properties and cannot all be described with
a single model. If the distributions of device properties are
wide enough, it will be necessary to fit a distribution of
device properties with a distribution of model parameters.
Ultimately, the needs of compact models will be dictated
by advancements in circuits and systems that use SMTIJs
as critical computational elements. Progress on the front
of applied physics and engineering in this regard must
occur in tandem with physics-level device modeling to
ensure that large-scale circuit simulation remains rooted in
physical reality.

ACKNOWLEDGMENTS

The authors are indebted to Di Xiao for his useful
notes on stochastic processes and to Steve Moxim for
his help with the experimental setup. We also thank
William Rippard and Robert McMichael for their invalu-
able comments on the manuscript, and we again thank
Robert McMichael for his advice on microwave theory.
This work was funded by the National Institute of Stan-
dards and Technology, National Science Foundation, and
Agence nationale de la recherche. S.G., T.A., L.P., D.P.L.,
and A.M. acknowledge support under NSF Grant No.
CCF-CISE-ANR-FET-2121957. A.M. acknowledges sup-
port under the NIST Cooperative Research Agreement
Award No. 70NANB14H209 through the University of
Maryland. P.T. and U.E. acknowledge support under the
ANR StochNet Project Award No. ANR-21-CE94-0002-
01. The authors acknowledge J. Langer and J. Wrona from
Singulus Technologies for the MTJ stack deposition and N.
Lamard, R. Sousa, L. Prejbeanu, and the Upstream Tech-
nological platform PTA, Grenoble, France for the device
nanofabrication.

APPENDIX A: EXPERIMENTAL SAMPLES

To serve as a basis for our modeling efforts we collected
experimental time-voltage traces from an SMTJ. The
device’s material stack is Si (base)/SiO,/TaN/[Co(0.5)/
Pt(0.2)]6/Ru(0.8)/[C0(0.6)/Pt(0.2)]3/Ta(0.2)/Co(0.9)/W
(0.25)/CoFeB(1)/Mg0O(0.8)/ CoFeB(1.4)/W(0.3)/CoFeB
(0.5)/Mg0O(0.75)/Ta(150)/Ru(8), where the numbers in
parentheses refer to layer thicknesses in nanometers and
the subscripts on square brackets show bilayer repetitions.
The device is roughly circular in cross section and has
a diameter of about 20nm [76,77]. The materials in this
stack produce a perpendicular anisotropy [78] that largely
cancels the demagnetization field, leaving only a small
energy barrier in the final device. The device thus shows
superparamagnetic behavior at a small range of applied
currents and applied field. The biasing scheme in this paper
is described in Appendix C. An external magnetic field of
124.5 mT was applied at an 18° angle to the device’s nor-
mal axis. This tilt accelerates the occurrence of stochastic
reversals and allows for operation at lower bias voltages
and currents.

APPENDIX B: EXPERIMENTAL DIRECT
CURRENT CHARACTERIZATION

We first characterized the dc properties of the SMTJ
by performing static dc measurements using a varied dc
applied voltage and magnetic field. This initial measure-
ment provides the operating voltage and field conditions
needed to find superparamagnetic regimes in the fabricated
devices.

To accurately measure the dc resistance of the fabricated
SMTIs, a constant dc voltage Vy was applied to the SMTJ
through a static series resistance Ry = 3 k2. For real-time
monitoring and precise measurement of the device’s dc
resistance, an oscilloscope with an internal impedance of
Zy = 1 MQ was connected in parallel to the SMTJ. The
oscilloscope, used as a dc voltmeter, outputs an average
voltage that is used to evaluate the dc resistance of the
SMTIJ. At the Vy = 505 mV operating voltage used to mea-
sure the time trace analyzed in this paper, the parallel (P)
and antiparallel (AP) resistances are 2500 2 and 3400 2,
respectively.

We measured the evolution of the dc resistance in
response to a perpendicular magnetic field, which was
swept back and forth while maintaining the constant
applied voltage during the field sweep. The obtained mag-
netoresistance loops (resistance versus field curves) are
summarized in Fig. 13, presenting them as a dc resistance
phase diagram.

As shown in the diagram, positive (negative) fields tend
to stabilize the P (AP) state. Similarly, positive (nega-
tive) voltages increase (decrease) the stability range of the
P (AP) state. For an intermediate set of fields and voltages,
a “bistable” region corresponding to configurations where
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FIG. 13. Direct current resistance phase diagram of the inves-
tigated SMTJ device. The chart summarizes the dc resistance
versus field (x axis) curves obtained at different SMTJ voltages
(y axis). The red (blue) region corresponds to antiparallel (AP)
[parallel (P)] configurations. The central green region illustrates
a hysteretic bistable configuration where both AP and P states
are possible depending on the variation direction of the applied
field. A reduction in the dimension of the bistable region at large
voltages coincides with the emergence of a superparamagnetic
regime in the device.

both AP and P states can be stabilized is depicted in green.
In a traditional resistance versus field loop, that region can
be understood as the opening of the hysteresis. For small
voltage values, roughly close to zero, the bistable region
occupies a roughly —150mT hysteresis opening, which
coincides with the behavior of a thermally stable MT]J,
typically suitable for nonvolatile memory applications
(e.g., magnetic random access memory).

The size of the bistable region can be reduced by apply-
ing positive (negative) voltages, which in our case is
interpreted as a stabilization of the P (AP) state through
spin-transfer torque. In this line of thinking, the slope of
the top-right and bottom-left boundaries of the bistable
region can be interpreted as the efficiency of the spin-
transfer torque. For large voltages, the boundaries present
a curvature (quadratic or higher-order contribution in volt-
age), which could be a partial consequence of Joule heating
effects in perpendicular MTJs [79].

For conditions close to the zero field, the bistable region
seems to progressively disappear with voltage, at least for
negative voltages larger than —400 mV, leading to a super-
paramagnetic regime. In our case, such a set of dc field and
voltage conditions is typically used to observe superparam-
agnetic behavior, which is confirmed by voltage-time trace
measurements in real time presenting random telegraph
noise.

APPENDIX C: HIGH-BANDWIDTH
MEASUREMENT CIRCUIT

To precisely capture random telegraph noise on the
nanosecond scale, we engineered a radio frequency mea-
surement setup optimized for identifying transitions with
dwell times below 10 s as shown in Fig. 14(a). The
setup uses a wideband bias-tee in order to isolate the
high-frequency noise from other electrical components
interfering with our signal while allowing the fast, alternat-
ing current (ac) fluctuations of our devices to be captured
effectively. It is specified to have an operating frequency
range from 80 kHz to 26 GHz. The dc-only terminal of the
bias-tee is connected to a voltage source through a 3 k2
source resistor, while the rf+dc terminal is connected to the
SMTJ. The AC-only terminal is connected to a 5-cm-long
coaxial cable which is terminated into a wide-bandwidth
amplifier. The characteristic impedance of the cable and
the termination into the amplifier is 50 2. The amplifier is
specified to have a gain of 4 and an operating frequency
range from 50 kHz to 40 GHz, and is powered by a filtered
source to minimize the effects of noise. The output of the
amplifier is impedance-matched to a 50-Q coaxial cable

. 5V
(a) Bias tee
(80 kHz to 26 GHIZI) Amplifier
VWA o' g o WIS (] iso()égzm
R,=3kQ z)
Oscilloscope
v, = 7,=50Q
(10 GHz
SMTJ bandwidth)
b)
8
—~ 67 b
S
g
S
2, 4
0t L L R R
0.0 0.2 0.4 0.6 0.8 1.0
Post-threshold time (ns)
FIG. 14. (a) A schematic diagram of the electrical circuit

designed for the detection of resistance fluctuations between
parallel (P) and antiparallel (AP) states on submicrosecond
timescales. This setup is specifically tailored for measuring the
nanosecond-scale random telegraph noise generated by SMTJs.
(b) Schematic illustration of the trajectory-averaging process we
use to analyze transition dynamics. The gray lines represent a
small subset of (the initial timesteps of) the positive voltage sub-
trajectories. Error bars on the blue mean curve indicate a standard
deviation of uncertainty on the mean.
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which terminates into the 50-Q2 input of the oscilloscope.
The oscilloscope has a frequency range of 10 GHz and a
sampling rate of 20 billion samples per second.

The rf path of the measurement setup has a nominal
complex impedance of 50 2, which helps in achieving
impedance matching with the oscilloscope, thus ensuring
the efficient transmission of rf signals from the SMTJ. This
is effective even when the cumulative impedance of the
SMT]J and the static resistor diverge from the 50 2 target.
Within such a setup, SMTJ resistance changes lead to a
fluctuating current, which acts as the primary stimulus for
the entire rf circuitry. Nonetheless, this configuration sig-
nificantly reduces the voltage amplitude of the outgoing rf
signal observed on the oscilloscope.

1. Temporal sensitivity

After implementing the measurement circuit outlined
above, the effective RC time constant of the circuit is
decreased to below 0.5ns, as illustrated in Fig. 14(b).
This adjustment facilitates the electrical detection of phe-
nomena within the SMTJs occurring on timescales from
submicroseconds to nanoseconds. Of particular interest
is how the electronic setup affects our measurement of
the transitions between P and AP states. This is difficult
to interrogate for single trajectories due to the intrinsic
noise of the system, so we use the following procedure
to compute averaged switching events. We consider all
positive-voltage (negative-voltage) subtrajectories of our
time trace, representing stretches of time that the device
spent purely in the AP (P) state. We discard subtrajec-
tories shorter than 20ns to ensure that we are studying
events that reliably transition, sit in a metastable state, and
then transition back. This filtering leaves us with 3263
positive-voltage subtrajectories and 5550 negative-voltage
subtrajectories.

From each of these subtrajectories, we extract their ini-
tial (final) 10ns stretches and average these across all
subtrajectories, creating averaged trajectories into (out of)
the two states. The averaging process on the initial-stretch
trajectories for the P and AP states is depicted in Fig. 14(b)
to give a sense of the underlying distributions. We repeat
this entire averaging procedure for the voltage-time trace
generated by our Langevin simulation from Sec. V so that
we may compare theory and experiment.

We glue the averaged state-entering and state-exiting
trajectories together to get a sense of average transition
events. We zoom in on the 2-ns window around bar-
rier crossings to examine crossing dynamics in Fig. 15.
There are some apparently coherent oscillations in the
experimental trajectories before and after barrier crossings.
These are not captured by the Langevin model in sim-
ulation—an unsurprising result given that the Langevin
model is inertia-free by construction. It is not straight-
forward at this point to tell whether these oscillations

Experiment

Simulation === Algebraic = = = Exponential
T T T T T T T T T T T T T

Voltage (mV)

Post-transition time (ns)

FIG. 15. Blue curves show the experimental subtrajectory
averages around a transition; red curves show the simulation
subtrajectory averages. Note that at 1 ns the simulation curve is
larger in amplitude than the experimental curve, but by the end of
the trajectory (i.e., at —1 ns) the experimental amplitude exceeds
the simulated amplitude. The dashed black line, which approxi-
mately captures the simulation behavior, is Vpt/+/# + (0.25 ns)?
for Vo =4mV. The early rise times and asymptotic behav-
ior of the experiment are captured by the dashed gray line,
Vo tanh[#/(0.15 ns)].

represent magnetic physics or artifacts of the experimen-
tal setup. We note that the simulation curve was difficult
to fit with functions of exponential character (like hyper-
bolic tangent); here we fit it with a curve of the form
t/+/t% + 2. We speculate that, since the Langevin model
is given by diffusion motion over the barrier, there is no
characteristic timescale per se available to make a sensi-
ble exponential-type fit, but again, more investigation is
needed. The timescales reported in Fig. 15 are close to the
limits of the oscilloscope. Accurately observing even faster
dynamics necessitates further enhancements in the electri-
cal circuit design, including the use of oscilloscopes and
circuits that support a broader frequency bandwidth.

Finally, in Fig. 16, we zoom out and show these aver-
aged trajectories for a span of 20 ns. We note that at about
61ns post transition in the experimental data, there is a
notable voltage shift in both the P and AP wells (though it
is more visible in the P well). Since these curves are aver-
aged over thousands of subtrajectories, it seems unlikely
that these correspond to device physics. We attribute them
to signal reflection in the cable connecting our oscilloscope
to the amplifier.

2. Frequency response

This paper is focused on a temporal analysis of the
behavior of the device. Analysis in the frequency domain
is complicated by the dependence of the behavior on the
state of the SMTJ as it crosses the barrier. Nonetheless, it
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FIG. 16. Zoomed-out version of Fig. 12. A notable artifact in
the signal is present at 6ns post transition. Note that at long
times (i.e., the left half of the plot) the simulated signal stays
flat at around +4 mV while the experiment signal rises to almost
+4.5mV.

can be useful to look in the frequency domain in the addi-
tive noise limit (where no state dependence of the diffusion
processes exists) to understand the effect of measurement
noise on the analysis. First, we note that measurements of
electronic noise in this measurement circuit indicate that it
only makes minor contributions to the voltage-space his-
tograms. The electrical noise is characterized by replacing
the SMT]J with a 3-k€2 resistor giving measured noise with
a standard deviation of (256 4 1) wV. Meanwhile, the full
widths at half maximum of the P and AP wells found in
our data are approximately 2 mV and 4 mV, respectively.
Since these widths add in quadrature, we expect the effects
of electrical noise to contribute to less than 5% of the dis-
tributional full widths at half maximum around each well.
In what follows, we use a voltage-time trace collected with
this 3-kQ2 resistor to represent the effective noise floor of
the measurement apparatus.

In Fig. 17, we note that power spectral density [80] of
our model simulations are well matched to the experiment
to which it was fitted. These spectra are consistent with the
expected Lorentzian behavior of an asymmetric random
telegraph noise model [71]. Figure 17 shows the 10-GHz
cutoff frequency of the oscilloscope. Note that the slight
upward curvature of the simulation curve at high frequency
is an expected deviation from the continuous-time behav-
ior of any discrete-timestep simulation of the Langevin
equation (i.e., any autoregressive process of order 1).

The power spectral densities make two things clear.
First, although we do measure slightly above the cutoff
frequency of the scope, the loss of total signal power result-
ing from this choice is minimal. Because of the 1/f2
behavior, the spectral contributions here would be negli-
gible compared with where we do have meaningful signal.

Noise floor

PSD (V%/Hz)

10719 L

0.05 0.10 050 1 5 10 50
Frequency (GHz)

FIG. 17. Estimated power spectral density (PSD) of the exper-
imental time trace compared with the noise floor of the measure-
ment apparatus and the output of the simulated Langevin model
described in Sec. V. The dashed line shows the slope of 1/f?
behavior, which would be typical of the spectral density expected
from asymmetric random telegraph noise (i.e., a Néel-Brown
model) beyond its Lorentzian low-frequency cutoff.

Estimating from the plot (and assuming a continuation of
the Lorentzian tail), the total missing signal power from
10 GHz out to infinity is approximately 3 x 1078 V2. The
integrated power of such a Lorentzian integrated from zero
frequency up to the cutoff is three orders of magnitude
larger, approximately 2 x 107> V2.

Of course, the quantity we extract from the data that is
most sensitive to this noise power is M,, which is our direct
characterization of the noise from experiment. Together
with the histograms, M, is a central quantity on which all
our fitting is based, so its fidelity is crucial to our process.
One may ask how not only the high-frequency truncation
but also the low-frequency cutoff from the bias-tee may
affect this characterization. As a first approximation, we
can consider the case of additive noise (in Appendix D we
show that, though modeling our device with additive noise
loses some of the features present in the data, it still does
a reasonably good job). In this case, one can expand the
signal ®(7) in the definition of M, [Eq. (3)] in its Fourier
components, and after some simplification one finds that

/T
M, = %/ S(w)[1 — cos(wT)] dw, (C1)
0

where S(w) is the power spectral density of the signal
measured with timestep ; note that the upper integration
limit is the (angular) Nyquist frequency. This expression
for M, suggests that while the maximal contribution is
nominally from the Nyquist frequency itself, there are still
strong contributions at half the Nyquist frequency (where
coswt = 0) and lower.

The infrared cutoff of about 0.1 MHz to 1 MHz imposed
by the bias-tee corresponds to (1 — coswt) of about 5 x
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FIG. 18. The integrand of Eq. (C1) for the experimental data

and for the noise analysis data of the measurement setup without
the SMT]J. At all frequencies, the experimental curve equals or
exceeds the diffusion density found in the noise-floor characteri-
zation.

107! to 5 x 107°, respectively. This suppression is suf-
ficiently strong that any signal power lost from the sub-
megahertz range would never meaningfully contribute to
M, even if we could capture it.

More problematic, however, is the ultraviolet cutoff.
Figure 18 plots the integrand of Eq. (C1) for the experi-
mental data and the noise-floor characterization. Because
of the convergence of the noise floor with the signal at
the cutoff frequency (Fig. 17), the contribution of the elec-
trical noise to M, becomes significant there; all in all,
the total M, from the noise floor derived from integrat-
ing Eq. (C1) amounts to 20% of the same integral for the
experiment. Unlike the histograms, these quantities do not
add in quadrature. While the majority of our M, signal is
indeed device physics, it is also clear that the effect of the
electrical noise is far from negligible.

From a theoretical standpoint, however, accounting for
the electrical noise may be straightforward. Assuming the
magnetic fluctuations have zero mean and are indepen-
dent of the electrical noise, Eq. (3) factors to give M, =
Mfeme + Mfle"mcal. The measured M, for the noise char-
acterization could then be subtracted out directly before
beginning the fitting process for the theoretical model.
Verifying this model against the experiment would then
involve the additional step of injecting modeled electrical
noise on top of the signal from the Langevin simulation
in order to make a fair comparison. Though this proce-
dure could be used to mitigate the effect of experimental
artifacts on the model, we omit such a procedure from the
main text in the interest of clarity.

APPENDIX D: OTHER PARAMETERIZATIONS
OF D,

The ansatz chosen in Sec. IV only has two fit parame-
ters that can be optimized to fit the experiment’s calculated

M, /2t Kramers-Moyal coefficient. This section describes
the results using a higher and lower number of fitting
parameters for the D, ansatz.

The higher-order fit differs from the linear fit by includ-
ing a Gaussian that seeks to capture the difference between
the Langevin model’s calculated M,/27 and the experi-
ment’s calculated M, /2t seen in Fig. 5. The analytic form
for this fit is Dy(®; p) = m® + b + a e ®=10/27>  Note
that we ensure D, remains positive, as discussed in the
main text. The lower-order fit assumes a constant D, —
Dy (®; ) = b.

Figure 19 compares the calculated M,/2t coefficients
from experiment and simulations using the Gaussian plus
linear fit, the linear fit, and the constant fit for Ds.
With progressively higher-order fits, the simulation fidelity
increases, indicating that the actual noise term in the SMTJ
device has a more complicated structure than these simple
analytic models. However, model fidelity to the empirical
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FIG. 19. Experimental and Langevin simulation results for
the time-delayed, drift panel (a) and diffusion panel (b) coeffi-
cients computed at a sampling time Tgmp = 50 ps equivalent to
the experimental measurement time. The various symbols are
as follows: black circles show experimental data; blue squares
show first-order, data-driven Langevin simulations with a Gaus-
sian plus linear Ds; yellow circles show first-order, data-driven
Langevin simulations with a linear D, as reproduced from the
main paper body; green triangles show first-order, data-driven
Langevin simulations with a constant Dz.
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data is remarkable and demonstrates the flexibility and
robustness of our data-driven method to capture gross
statistics of the SMTJ device.

In addition to comparing calculated Kramers-Moyal
coefficients, we also compare the dwell-time distributions
of each model. Figure 20 shows the dwell-time distribu-
tions in the P state for the experiment and simulations
measured using 2 x 10° points. This number of points is
smaller than used in Fig. 7, which is why there is a differ-
ence between the experimental curves in the two figures.
This was done to ensure magnitude agreement in the dwell-
time distribution between the experiment and simulations,
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FIG. 20. Log-log panel (a) and semilog panel (b) dwell-time
distribution for the P state 7p as calculated in experiment and
produced by simulation: black circles show experimental data;
the blue dashed line shows the first-order, data-driven Langevin
simulations with a Gaussian plus linear D; the yellow dotted
line shows the first-order, data-driven Langevin simulations with
a linear D, as reproduced from the main paper body; and the
green dot-dashed line shows the first-order, data-driven Langevin
simulations with a constant D,. The linelike behavior of the sim-
ulation and experiment in the upper plot at short times indicated
a power-law dwell-time distribution in that regime. In the lower
plot, the linelike behavior of the simulation and experiment for
longer times indicates an exponential dwell-time distribution in
that regime. The same sampling time Ty, is used as in Fig. 7,
but the overall dwell-time distribution is only measured over the
first 2,000,000 measurement points of the experiment.

which were limited in total length because of computa-
tional expense. The dwell-time distribution is unchanged
for these different assumed fits for D,.

APPENDIX E: CHARACTERISTIC DWELL TIMES

In the discussion of Sec. V, we described how the short-
time power-law behavior of the dwell-time histograms in
both experiment its fitted simulations [Fig. 7] and, later,
in simulations of the macrospin model [Fig. 11] can be
attributed to the scale-free, fractallike nature of random
walks around the switching threshold at high sampling fre-
quencies. They are not mere artifacts of the experiment, but
additional structure that is usually neglected in dwell-time
analysis of magnetic devices, and structure that we expect
to similarly arise in any magnetic nanodevice.

Calculating the mean dwell times from the entire distri-
butions gives very small dwell times dominated by these
short-time power-law behaviors. Figure 21 shows good
agreement between the mean dwell times (r) extracted
from the simulation and from the experiment. Even
when subsampled, the simulation and experimental aver-
age dwell times agree moderately well. Recall that D,
which is fitted to M, via finite-time corrections, holds all
this timescale information in the model. The mean dwell
time increases as the subsampling time increases because
more and more short-time events are eliminated from the
distribution.

Generally speaking, one expects that if a dwell time is
relevant for a particular application, it is likely the char-
acteristic dwell time of the exponential distribution that
is most meaningful. If we ignore the power-law behav-
ior of the very short dwell times, we can extract these
from the slope of the exponential in the semilog plot in
Fig. 7(b). The resulting fits give Tpex, = 7.1018, Tapexp =
11.5ns, psm = 5.95ns, and tapsim = 9.51 ns. The one-
standard-deviation ranges for these slopes are 7p ey £ 0 =

147 =
L4
12 |~ Exp.tp ——- Exp.7ap P
*,
4
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72] 8 L
=)
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FIG. 21. Mean dwell times of experiment and simulation as a

function of sampling time.
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[6.82,7.39]ns, Tapexp £0 =[11.23,11.85]ns, tpsim =
o =[5.79,6.12] ns, and tapsim £ 0 = [9.33,9.69] ns. The
agreement is good even though both simulation dwell-time
slopes slightly underestimate the corresponding experi-
mental values.

It is important to note that different fitting schemes will
give different results that lie outside these ranges, which
are strictly determined by the statistics of the points that
have been fitted. Indeed, it is not clear that these extracted
times represent anything of experimental relevance. By
a fine-tuned subsampling or RC filtering of the data, we
can artificially flatten the power-law behavior so that the
resulting distribution is exponential. Using this procedure
to obtain a plausibly exponential distribution gives p sjm ~
25ns and Tapsim &~ 30ns. Going back to Fig. 2 qualita-
tively illustrates this effect. Keeping all short-time events
gives on the order of 35 crossings of the zero line, which
would correspond to mean dwell times of approximately
3ns. On the other hand, if the rapid fluctuations were fil-
tered out, there would be approximately six transitions for
a mean dwell time of about 17 ns.
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