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ABSTRACT
Computer simulators are widely used for the study of complex systems. In many applications, there are
multiple simulators available with different scientific interpretations of the underlying mechanism, and the
goal is to identify an optimal simulator based on the observed physical experiments. To achieve the goal, we
propose a selection criterion based on leave-one-out cross-validation. This criterion consists of a goodness-
of-fit measure and a generalized degrees of freedom penalizing the simulator sensitivity to perturbations in
the physical observations. Asymptotic properties of the selected optimal simulator are discussed. It is shown
that the proposed procedure includes a conventional calibration method as a special case. The finite sample
performance of the proposed procedure is demonstrated through numerical examples. In the application
of cell biology, an optimal simulator is selected, which can shed light on the T cell recognition mechanism
in the human immune system. Supplementary materials for this article are available online.
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1. Introduction

There are generally two types of experiments for the studies of
complex systems: physical and computer experiments. Physical
experiments refer to actual experiments performed in a labora-
tory or observed in the field. They are often expensive and/or
infeasible to conduct. Therefore, computer experiments, which
refer to simulations using complex mathematical models and
numerical tools, are commonly served as alternatives.

Based on the observed physical experiments, there is a grow-
ing demand in many applications for the identification of an
optimal computer simulator among multiple ones with different
scientific interpretations of the underlying mechanisms. For
example, among different queuing models which represent dif-
ferent types of patient flow, it is important to identify the best
simulator for a particular medical service in a hospital (Lakshmi
and Iyer 2013). Geologists want to know that, among different
global weather models governed by different fluid dynamics
and thermodynamics equations, which one can be best used
for predicting the weather of a local region (Richardson 2007).
Biologists need to select some differential equations to represent
the growth (or decline) of a biological population (Brauer and
Castillo-Chavez 2012). However, most of the existing develop-
ments in the computer experiment literature are based on the
assumption that there is only one simulator available (Fang, Li,
and Sudjianto 2006; Santner et al. 2018). To the best of our
knowledge, there is no systematic procedure developed for the
selection of an optimal simulator.

The goal in optimal simulator selection is different from the
variable selection problems in computer experiments (Bastos
and O’Hagan 2009; Overstall and Woods 2016), where the
focus is to identify significant variables by using one computer
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simulator. It is also different from studies of multi-fidelity sim-
ulations where multiple simulations are developed based on the
same physical law but with different approximation accuracy,
and the objective is to incorporate information efficiently from
all the computer simulators (Kennedy and O’Hagan 2000; Tuo,
Wu, and Yu 2014).

To identify an optimal simulator, we propose a new criterion
based on leave-one-out cross-validation (LOOCV). LOOCV is
commonly used for model selection, but how to implement this
idea to select simulators is not trivial because of two reasons.
First, unlike typical model selection problems, the current set-
ting involves two types of data, one from physical experiments
and another from computer simulations. Second, in addition to
a set of regular parameters shared across all the simulations,
each simulator is associated with a unique set of calibration
parameters. These two types of parameters play different roles,
and it is crucial to distinguish their impacts in the optimal
simulator selection. The proposed LOOCV criterion addresses
these issues by incorporating a goodness-of-fit measure for each
simulator and a generalized degrees of freedom penalizing the
sensitivity of the simulator due to calibration. Different from
typical AIC and BIC types of methods (Burnham and Anderson
2011; Wood, Pya and Säfken 2016), where the penalty is defined
directly by the total number of parameters, the proposed cri-
terion takes into account the unique feature of calibration and
offers a data-driven penalty for the simulator sensitivity.

This article is organized as follows. In Section 2, we propose
a criterion for selecting the optimal simulator. In Section 3, the
proposed criterion is shown to be decomposed into a measure
of goodness of fit for physical experiments and a generalized
degrees of freedom which properly penalizes the sensitivity
of the simulator due to the calibration parameters. It is also
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shown that the proposed criterion includes the conventional
L2-norm calibration criterion (Tuo and Wu 2015) as a special
case when there is only one simulator available. The asymptotic
properties of the selected optimal simulator are also discussed in
Section 3. The simulation studies are provided in Section 4, and
an application of the proposed method in selecting the optimal
antigen recognition mechanism for T-cell signaling is provided
in Section 5.

2. Cross-Validation for Optimal Simulator Selection

Assume that there are n observations available from physical
experiments denoted by D ≡ {(xi, yi)}n

i=1, where xi is a p-
dimensional input. For notational simplicity, we first assume the
outputs yi’s are continuous, and

y(xi) = ξ(xi) + ϵi, (1)

where y(xi) = yi, ξ(xi) is known as the true process in computer
experiment literature, and ϵi are identically distributed random
variables with zero mean and finite variance (Tuo and Wu
2015). The true process ξ can be estimated by nonparametric
regression methods, such as kernel ridge regression (Shawe-
Taylor and Cristianini 2004) and Gaussian process (Fang, Li,
and Sudjianto 2006; Santner et al. 2018), and the estimator is
denoted by ξ̂(·). Apart from physical experiments, there are
K candidate computer simulators which refer to K different
mathematical models representing different underlying mech-
anisms. These simulators are often computationally intensive to
perform, especially for the studies of complex systems; there-
fore, they are approximated by surrogate models for further
analysis and inference. These surrogate models are known as
emulators denoted by fk(x, θk, βk), where k = 1, . . . , K, θk
is a set of unknown parameters called calibration parame-
ters (Santner et al. 2018), and βk is the rest of the unknown
parameters for constructing the kth emulator. The parameters,
θk and βk, can be different over k. Various surrogate mod-
els, such as Gaussian process models or spline-based models
(Wahba 1990), are applicable here to construct emulators, and
the parameters βk can be estimated accordingly. Given the
computer experiment outputs Ds

k collected from the kth simu-
lator, we assume that one emulator, fk(x; θk, β̂k), is constructed
and serves as the surrogate for the simulator to perform pre-
diction, inference, and uncertainty quantification. By incorpo-
rating the information from the physical experiments D, the
calibration parameter θ̂k(D) can be estimated by calibration
methods, including the L2 calibration which minimizes the
discrepancy between the simulator and the true process ξ(·)
(Tuo and Wu 2015) and the least-square approach which min-
imizes the least-square distance between the simulator and the
true process.

Given the outputs from the K simulators and the obser-
vations from physical experiments, the goal is to identify an
optimal emulator f0(x; θ0, β0) satisfying

f0(x; θ0, β0) = arg min
f1,f2,...,fK

{||ξ(x) − fk(x; θk, βk)||L2}, (2)

where θk and βk are the true parameter settings associated with
the surrogate model fk and a prespecified calibration procedure,

and || · ||L2 is the L2 norm. We call the corresponding simulator
of the optimal emulator the optimal simulator. To estimate (2),
we propose a leave-one-out cross-validation (LOOCV) method
as follows. Define a LOOCV score by

Êrrk = 1
n

n∑

i=1
Êrrk,(i), (3)

where D(−i) = D\{(xi, yi)}, Êrrk,(i) ≡ Q
(
ξ̂(xi), fk(xi ;

θ̂k(D(−i)), β̂k(D(−i)))
)

, Q(·, ·) is a prespecified loss function,
θ̂k(D(−i)) is the estimated calibration parameters by using
dataset D(−i), and ξ̂(·) is the estimated true process. To guar-
antee the theoretical properties in Section 3, θ̂k(·) is required
to be

√
n-consistent estimators which are obtainable by sev-

eral calibration methods including those discussed in Tuo and
Wu (2015), Wong, Storlie, and Lee (2017), and Sung et al.
(2020a) and the necessary condition for ξ̂(·) can be achieved
by commonly used nonparametric methods, such as kernel
ridge regression methods and Gaussian processes (Stone 1982;
Tsybakov 2008). In this article, we consider three types of loss
functions for Q(·, ·) including the squared loss, the zero-one
loss, and the deviance loss (Efron 1986; Gneiting and Raftery
2007). Because β̂k is estimated from Ds

k, we have β̂k(D(−1)) =
· · · = β̂k(D(−n)). Therefore, with a slight abuse of nota-
tion, β̂k(D(−i)) is omitted in the cross-validation iterations and
fk(xi; θ̂k(D(−i)), β̂k(D(−i))) is replaced by fk(xi; θ̂k(D(−i))) for
notation simplicity.

Based on Equation (3), we obtain the estimated optimal
emulator

fT(x; θ̂T(D)) with T ≡ arg min
k=1,...,K

Êrrk, (4)

where θ̂T(D) is the estimated calibration parameter from D. The
procedure is summarized in Algorithm 1. This procedure can
also be generalized to non-Gaussian outputs. Take the binary
output as an example, the same procedure follows by replacing
the true process by ξ(x) = P(y(x) = 1). A demonstration
of Algorithm 1 in the application to binary output is given in
Section 5.

The proposed procedure assumes that each simulator is
represented by one emulator. In practice, there are numbers
of surrogate models that can be used to construct emulators;
therefore, it is crucial to carefully select one of them to represent
the simulator. To do so, one approach is to modify the proposed
LOOCV procedure by replacing fk in Algorithm 1 with different
surrogate models and find the one that minimizes the Êrrk.
Furthermore, an accurate estimation of the true process, ξ̂(·),
is crucial as shown in the next section. To further enhance
the asymptotic performance, ξ̂(·) can be incorporated into the
proposed LOOCV procedure by estimating ξ(·), denoted by
ξ̂(xi; D(−i)), after line 5 of Algorithm 1 instead of line 2.

3. Theoretical Properties

In the following lemma, it is shown that the LOOCV score
in Equation (3) can be decomposed into the goodness-of-fit
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Algorithm 1 The algorithm for simulator selection
1: procedure LOOCV(D ≡ {(xi, yi}n

i=1), {Ds
k : k = 1, . . . , K})

2: Estimate the true process ξ̂

3: for each k in 1, 2, . . . , K do
4: Construct emulator fk(x; θk, β̂k) using Ds

k.
5: for each i in 1, 2, . . . , n do
6: Obtain the estimated calibration parameter

θ̂k(D(−i)).
7: Calculate Êrrk,(i) = Q(ξ̂(xi), fk(xi; θ̂k(D(−i))))
8: end for
9: Obtain T ≡ arg mink=1,...,K Êrrk, where Êrrk =

1
n

∑n
i=1 Êrrk,(i).

10: end forreturn The selected optimal simulator fT .
11: end procedure

of the emulator and a quantity penalizing the flexibility of the
emulator. Therefore, minimizing (3) implies a minimization
of not only the discrepancy between physical and computer
experiments but also the sensitivity of the emulator. The detailed
proofs can be found in the supplemental material Section 2.

The decomposition of Equation (3) requires an expression of
the loss function which is introduced by Efron (1986). That is,

Q(ξ̂(xi), fk(xi; θ̂k(D))) = q(fk(xi; θ̂k(D))) (5)
+ q̇(fk(xi; θ̂k(D))){ξ̂(xi) − fk(xi; θ̂k(D))},

where q(·) is a concave function and q̇(·) is its first-order
derivative. For example, as shown in the supplementary material
Section 6, a squared loss function Q(·, ·) can be expressed by
Equation (5) with q(f (x)) = f (x)(y(x) − f (x)).

Lemma 1.

E[Êrrk] = ¯errk + 1
n GDk, (6)

where

¯errk = 1
n

n∑

i=1
Q(yi, fk(xi; θ̂k(D(−i)))) (7)

and

GDk =
n∑

i=1
cov

(
−q̇

[
fk(xi; θ̂k(D(−i)))

]
, yi − ξ̂(xi)

)
. (8)

The quantity in Equation (7) determines how well the emulator
fits the physical observations and the quantity GDk in (8) is
the generalized degrees of freedom for the kth emulator which
is an analogy to “optimism” in Efron (1986) and the generalized
degrees of freedom for linear model in Ye (1998). The quantity
GDk can be estimated by ĜDk = n(Êrrk − ¯errk) and can
be interpreted as the sum of sensitivity of the kth estimated
emulator to perturbations in the corresponding physical obser-
vation yi − ξ̂(xi). If the emulator is highly flexible/sensitive,
then the values in fk tend to have a higher correlation with
yi − ξ̂(xi), which leads to a larger penalty. It also appears that
the sensitivity is mainly associated with calibration because
GDk = ∑n

i=1 cov
(
−q̇

[
fk(xi; θ̂k(D(−i)))

]
, yi − ξ̂(xi)

)
=

∑n
i=1 −q̇

[
fk(xi)

]
E

{
(yi − ξ̂(xi))

}
= 0 if there is no calibra-

tion parameters involved in the kth emulator. As compared
to a naive application, where LOOCV is evaluated based on
the physical observations yi directly instead of ξ̂ in (3), the
value of GDk is always zero which indicates no penalty for the
sensitivity. This result demonstrates the novelty of the proposed
LOOCV where a data-driven penalty function is incorporated
and the penalty function automatically distinguish the impacts
of calibration from regular parameter estimation. It is shown
in the following special case that the generalized degrees of
freedom is equivalent to the number of calibration param-
eters. The detailed proof is given in supplemental material
Section 3.

Proposition 2. Suppose q(·) = −x2/2, fk(xi; θk) = xT
i θk and

yi = µi + ϵi, where ϵi are i.i.d standard normal for i = 1, . . . , n
and k = 1, . . . , K. If θk is estimated by least-square method,
the generalized degree of freedom GDk in (8) is equal to the
dimension of θk.

The proposed selection procedure can also be applied to
the conventional calibration problem with K = 1. The fol-
lowing result shows that the estimated calibration parameters
and the resulting discrepancy based on the proposed leave-one-
out procedure asymptotically converge in probability to those
obtained by the conventional L2 calibration (Tuo and Wu 2015;
Sung et al. 2020a). The proof is given in supplemental Material
Section 4.

Theorem 3. Suppose Q(·, ·) is the squared loss, and x follows a
uniform distribution on [0, 1]p and θ̂k and β̂k are

√
n-consistent

estimators of θk and βk. Suppose ξ(·) is a d-times differentiable
function, and ||ξ̂(·)−ξ(·)||L2 is op(n−d/(2d+p)). Under Assump-
tion (A1) given in supplemental material Section 1, we have

(i)

Êrrk = 1
n

n∑

i=1
Êrrk,(i) (9)

= ||ξ(x) − fk(x; θk, βk))||L2 + op(n−d/(2d+p)).

(ii) When K = 1, Êrr1 converges in probability to the minimum
L2 discrepancy defined by Tuo and Wu (2015) with conver-
gent rate op(n−d/(2d+p)).

For the estimated optimal emulator, its estimated pre-
diction error and the sensitivity are denoted by ÊrrT and
ĜDT = n(ÊrrT − ¯errT). For the optimal emulator f0(x, θ0, β0)
defined in (2), we denote its prediction error by Err0 =
1
n

∑n
i=1 Q(ξ̂(xi), f0(xi; θ0, β0)) and the corresponding sensitiv-

ity by GD0 = ∑n
i=1 cov

(
−q̇

[
f0(xi; θ0, β0)

]
, yi − ξ̂(xi)

)
. In the

following theorem, it is shown that the estimated prediction
error ÊrrT and the estimated ĜDT are asymptotically equivalent
to those calculated for the optimal emulator f0(x, θ0, β0). The
proof is given in supplemental material Section 5.

Theorem 4. Under the assumptions in Theorem 3.3 with
Assumptions (A1)–(A3) in supplemental material Section 1. We
have

https://doi.org/10.1080/01621459.2021.1987920
https://doi.org/10.1080/01621459.2021.1987920
https://doi.org/10.1080/01621459.2021.1987920
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(i) ÊrrT = Err0 + op(n−d/(2d+p)), and
(ii) ĜDT/n = GD0/n + op(n−d/(2d+p)).

4. Numerical Studies

In this section, the true process ξ(x) is estimated by the kernel
ridge regression, that is, to minimize the following loss function

1
n

n∑

i=1
(yi − ξ(xi))

2 + λ||ξ ||2N$
, (10)

where λ > 0 is a penalized parameter, || · ||N% is the norm
of the reproducing kernel Hilbert space N% generated by a
kernel function %(·). We consider a Gaussian kernel %(h) =
exp(−h2/(2τ 2)), where τ is the length scale parameter. The
penalized parameter λ in Equation (10) and the length scale
parameter τ are chosen by 10-fold cross-validation. The emula-
tors are then constructed by the Gaussian process (GP) models

fk(x; θk, βk) ∼ GP(µk, σ 2
k $((x′, θ ′

k), (x, θk))), (11)

where $((x′, θ ′
k), (x, θk)) a Matèrn kernel with

roughness coefficient 2.5 for kth emulator, i.e.,
$((x′, θ ′

k), (x, θk)) = (1/[((ν)2ν−1])(
√

2ν{||x′ − x||22 +
||θ ′

k − θk||22}/ρk)νKν(
√

2ν{||x′ − x||22 + ||θ ′
k − θk||22}/ρk)

with ν = 2.5, where ((·) is the gamma function, Kν(·) is the
Bessel function, and ρk is the range parameter. The model
parameter βk = (µk, σ 2

k , ρk) in (11) includes the unknown
mean, variance, and the range parameter for kth emulator,
and is estimated by empirical maximum likelihood method
(Santner et al. 2018, sec. 3.3). The calibration parameters are
estimated by the L2-calibration method (Tuo and Wu 2015).

4.1. Example 1: The Branin Function

Two simulators are constructed by the Branin function with two
different sets of calibration parameters:

m1(x1, x2; θ1) =
(

x2 − b(
x1
π

)2 + 5.5 x1
π

− r
)2

+1
(

1 − 1
8π

)
cos(x1) + 1,

m2(x1, x2; θ2) =
(

x2 − b(
x1
π

)2 + c x1
π

− 6
)2

(12)

+1
(

1 − 1
8π

)
cos(x1) + 1,

where simulator m1 contains the calibration parameters θ1 =
(b, r), simulator m2 contains the calibration parameters θ2 =
(b, c), b ∈ [0, 2], r ∈ [5, 7], and c ∈ [4, 6]. For both simulators,
computer experiments are conducted by using a 60-run maxi-
mum projection design (Joseph, Gul, and Ba 2015). Simulator
m2 is used as the true process to generate physical experiments
by y(x1, x2) = m2(x1, x2; θ2) + ϵ, where the inputs x1 and x2
are 30 Sobol′ points, the calibration parameters are set to be
θ2 = (1.275, 5), and ϵ ∼ N(0, 4).

The true process is estimated by minimizing the loss function
(10) with the length scale parameter 2.635, selected by a 10-
fold cross-validation. Based on Equation (3) and Lemma 1, the
leave-one-out cross-validation scores for the two simulators are
reported in Table 1 with the estimated generalized degrees of

Table 1. The leave-one-out cross-validation scores and the estimated generalized
degrees of freedom for the two simulators in Example 1.

k Êrrk ĜDk

1 7.878 3.016
2 6.469 3.138

Figure 1. The response surfaces for the three functions in Example 2.

freedom. By using the proposed criterion, the selected optimal
simulator is T = 2, which agrees with the numerical settings.
Furthermore, the estimated generalized degrees of freedom for
the two simulators are similar, which implies a similar sensitivity
due to the calibration parameters for the two simulators. This
observation also agrees with the numerical settings in which
equal number of calibration parameters are associated with the
simulators.

4.2. Example 2: Multi-Fidelity Simulators

The proposed procedure is demonstrated by using two simu-
lators introduced by Goh et al. (2013) for the study of multi-
fidelity simulations. Define the low-fidelity and high-fidelity
simulators, m1 and m2, by

m1(x1, x2; θ1) =
(

1 − exp
( 1

−2x2

))

×1000tsx3
1 + 1900x2

1 + 2092x1 + 60
1000tℓx3

1 + 500x2
1 + 4x1 + 20

,

m2(x1, x2; θ2) = m1(x1, x2; θ1) (13)

+5 exp(−ts)
xth

1
100x2+th

2 + 1
,

where the calibration parameters θ1 = (ts, tℓ) ∈ [0, 1]2 and
θ2 = (ts, th) ∈ [0, 1]2. When the high-fidelity simulator (13)
is used, the calibration parameter tℓ in θ1 is set to be 0.1. The
physical experiments are generated by

y(x1, x2) = m2(x1, x2; θ2) + 10x2
1 + 4x2

2
50x1x2 + 10

+ ϵ

with the calibration parameters set to be θ2 = (0.2, 0.3) and ϵ ∼
N(0, 0.25). These functions are shown in Figure 1. The goal is to
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Table 2. The leave-one-out cross-validation scores and the estimated generalized
degrees of freedom for the two simulators in Example 2.

k Êrrk ĜDk

1 1.429 4.808
2 0.283 5.200

identify the optimal simulator based on the observed physical
data. This is different from the conventional goal in the study of
multi-fidelity simulations.

A 40-run maximum projection design is used for the two
simulators, and the physical experiments are performed based
on a 30-run Sobol’ points. The true process is estimated by
minimizing (10) with the length scale parameter 0.584, selected
by 10-fold cross-validation. For the two simulators, the esti-
mated LOOCV scores and the estimated generalized degrees
of freedom are reported in Table 2. Because Êrr1 > Êrr2, the
high-fidelity simulator m2 is chosen as the optimal simulator
according to Equation (4). Based on Table 2, the high-fidelity
simulator has a larger ĜDk as compared to the low-fidelity sim-
ulator which indicates a slightly higher flexibility and therefore
a larger penalty for the sensitivity.

4.3. Example 3: The Study of Simulator Sensitivity

To demonstrate the performance of the generalized degrees of
freedom with respect to the different sensitivity in simulators,
we consider two simulators with different numbers of calibra-
tion parameters: m1(x; θ1) = δ1x+δ2x2 +δ3x3 and m2(x; θ2) =
θ2x, where θ1 = (δ1, δ2, δ3), and θ2 are the calibration parame-
ters. Physical experiments are generated from y(x) = x + 2x2 +
3x3 + 0.1 sin(20x) + ϵ, where ϵ ∼ N(0, 0.25). These functions
are illustrated in Figure 2(a). A 100-run maximum projection
design is used to generate computer experiments based on the
two simulators, and a 61-run maximin design is implemented
for physical experiments.

Based on 100 replicates, the average of ĜD1 is 3.143 with
standard deviation 0.342, and the average of ĜD2 is 1.294 with
standard deviation 0.154. These results are summarized in the
boxplots in Figure 2(b). The estimated generalized degrees of
freedom for the first simulator are around three times more
than that of the second simulator, which reflects the sensitivity
associated with the first simulator due to a larger number of
calibration parameters and a higher-order polynomial.

5. Optimal Simulator for T-cell Signaling

It has long been known that the adaptive immune sys-
tem defends the organism against diseases by recognition of
pathogens by the T cell. T- cell receptor (TCR) is the primary
molecule on the T cell in detecting foreign antigens which are
present in major histocompatibility complex (pMHC) molecule
expressed by infected cells. However, much is still unknown
regarding the underlying antigen recognition mechanism.

To understand the recognition mechanism through the TCR-
pMHC interactions, biologists (Rittase 2018) have developed
micropipette adhesion frequency assays which are physical
experiments performed in a laboratory. Although micropipette
assays allow accurate measurements, they are time-consuming
and often involve complicated experimental manipulation. Fur-
thermore, some variables of interest cannot be studied in the lab
due to technical complexity in carrying out the experiments.
A more cost-effective approach is to illuminate the unknown
recognition mechanism through computer simulations. Based
on the idea of the kinetic proofreading model, two simulators
are developed under two different recognition mechanisms:
one is the conformation-change mechanism (denoted by CC in
Figure 3(a)), and the other is the receptor-pulling mechanism
(denoted by RP in Figure 3(b)). The two mechanisms asso-
ciate with two different ways of TCR-pMHC interactions, either
the molecules have conformational change due to the binding

Figure 2. (a) The physical model and two simulators. (b) The estimates of the generalized degrees of freedom for the two simulators.
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Table 3. The range and description of the input variables in the T-cell adhesion frequency assay experiments.

Type of variables Physical experiments Simulators Description (s represents
second)

Range

CC RP

Control variables xwt ! ! ! Waiting time in between
contacts (s)

[1, 6]

xct ! ! ! Cell–cell contact time (s) [0.25, 5]
Calibration parameters xKc ! Kinetic proofreading rate for

activation of cluster (1/s)
[0.1, 100]

xKf ! ! On-rate enhancement of
inactive TCRs (µm2/s)

[10−8, 10−10]

xKr ! ! Off-rate enhancement of
inactive TCRs (1/s)

[0.1, 10]

xr,p ! ! Off-rate enhancement of
activated TCRs (1/s)

[0.01, 100]

Figure 3. Two simulators capturing two biological mechanisms.

or involve force due to the pulling of the TCR-pMHC bond
(Rittase 2018). Biologists are interested in understanding which
mechanism is behind the recognition process, but it cannot be
directly detected by physical experiments. Therefore, the goal
of this study is to identify the optimal mechanism based on the
observed experimental data from the laboratory.

Two control variables, contact time xct and waiting time xwt ,
are involved both in the lab experiments and in the simulators.
Denote x = (xwt , xct). Four calibration parameters, denoted by
xKf , xKr , xKr,p, and xKc, are involved in the CC mechanism, while
only the first three of them are involved in the RP mechanism.
The descriptions for the variables are given in Table 3, and
further details can be found in Sung et al. (2020a). The two
mechanisms are simulated by the Gillespie (1976) algorithm,
which is a stochastic simulation algorithm. The experimental
outputs are binary, indicating a TCR-pHMC binding or not.
A 60-run OA-based Latin hypercube design (Tang 1993) is
implemented for the two simulators, and each design consists
of 10 replicates to capture the cell–cell variability. Therefore,
the sample size of the computer experiment is 600 for each
mechanism. For the physical experiments, the sample size is

Table 4. The leave-one-out cross-validation errors and the estimated degrees of
freedom for the two simulators.

Simulator LOOCV Generalized degrees of freedom

CC mechanism 0.102 5.358
RP mechanism 0.146 4.950

n = 272 and the settings of xct and xwt are randomly chosen
from the sample space [0.25, 5] × [1, 6].

Given the binary binding outcomes y(x) observed in the
laboratory, the true process is defined as the binding probability,
ξ(x) = P(y(x) = 1), and estimated by a kernel logistic
regression

logit{ξ̂(x)} = α̂0 +
n∑

i=1
α̂i%(xi, x), (14)

where logit{·} is the logistic link function, {α̂i}n
i=0 are the

estimated coefficients, and %(x′, x) is the Matérn kernel with
roughness parameter ν0 = 2.5. Define p(x; θ) = P(ys(x; θ) =
1), where ys(x; θ) is the simulated binary outcomes, and its
emulators are constructed by the generalized Gaussian process
models (Sung et al. 2020b)

fk(x; θk, βk) = logit{p(x; θk)} ∼ GP(µk, σ 2
k $((x′, θ ′

k), (x, θk))),
(15)

where $((x′, θ ′
k), (x, θk)) is the Matérn kernel with roughness

parameter ν = 1.5, βk = (µk, σ 2
k , ρk) includes the mean,

variance, and range parameters for CC simulator (k = 1) or
RP simulator (k = 2). βk is estimated by empirical maximum
likelihood method as in Section 4. The calibration parameters
are estimated by minimizing the L2 discrepancy proposed by
Sung et al. (2020a).

The leave-one-out cross-validation errors for the two sim-
ulators are summarized in Table 4 along with the estimated
generalized degrees of freedom. The optimal simulator is the CC
mechanism because its LOOCV is smaller, while its sensitivity
is slightly higher than that for the RP mechanism. From a bio-
logical perspective, the selection of the CC mechanism indicates
that the molecules have conformational changes due to the TCR-
pMHC binding. Analyzing the CC mechanism using all the
data, we have β̂1 = (µ̂1, σ̂ 2

1 , ρ̂1) = (−0.322, 1.732, 3.089), and
θ̂ = (1.560, 8.563 × 10−7, 1.425, 1.589). By plugging in the
estimated calibration parameters, the simulated binding prob-
ability according to the CC mechanism (red dashed lines) in
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Figure 4. The fitted adhesion models from the physical experiment and from the computer experiment of the CC model for two control variables: waiting time and
contacting time.

Figure 4 as a function of the two control variables, waiting time
and contact time. It appears that the selected optimal simulator,
CC mechanism, can reasonably capture the trend observed in
the lab experiments.

6. Summary and Concluding Remarks

In many applications, identifying an optimal simulator for the
observed physical experiments can provide scientific insights
that are not available from lab experiments. There is, however,
no systematic statistical method to tackle this problem. We
propose a new criterion based on the idea of leave-one-out
cross-validation. Theoretical properties of the selection method
based on the criterion and the estimated optimal simulator are
discussed. It is also shown that asymptotically the proposed
approach includes the L2 calibration method as a special case.
Simulation studies are conducted to demonstrate the perfor-
mance of the proposed method. By applying the proposed
method, the selected optimal T-cell signaling simulator suggests
that the true binding mechanism is through conformational
changes in molecules, which may shed new light on the antigen
recognition mechanism in human immune system.

As pointed out by one of the reviewers, an important and
interesting research is to understand the convergence properties
of the estimated optimal emulator fT , such as the convergence
rate to the optimal emulator f0. A promising direction is to
extend recent results in Wang, Tuo, and Wu (2020), which is for
deterministic functions, to stochastic functions. This work will
be considered in a future research.

Supplementary Materials

The online supplemental material contains more technical details of this
paper, including the assumptions used in Theorems 3.3 and 3.4, and the
detailed proofs of the lemma, proposition, and theorems.
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