TYPE Original Research
PUBLISHED 15 March 2024
pol 10.3389/feduc.2024.1356626

& frontiers Frontiers in Education

@ Check for updates

OPEN ACCESS

EDITED BY
Miriam Segura,
University of North Georgia, United States

REVIEWED BY

Lisa Limeri,

Texas Tech University, United States
Sumali Pandey,

Minnesota State University Moorhead,
United States

*CORRESPONDENCE
Joseph Dauer
joseph.dauer@unl.edu

RECEIVED 15 December 2023
ACCEPTED 07 March 2024
PUBLISHED 15 March 2024

CITATION

Dauer J, Behrendt MG, Elliott M,

Gettings B, Long T and Clark C (2024)
Individual variation in undergraduate student
metacognitive monitoring and error detection
during biology model evaluation.

Front. Educ. 9:1356626.

doi: 10.3389/feduc.2024.1356626

COPYRIGHT

© 2024 Dauer, Behrendt, Elliott, Gettings,
Long and Clark. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Education

Individual variation in
undergraduate student
metacognitive monitoring and
error detection during biology
model evaluation

Joseph Dauer®, Mei Grace Behrendt?, McKenna Elliott?,
Bethany Gettings®, Tammy Long® and Caron Clark?

1School of Natural Resources, University of Nebraska—Lincoln, Lincoln, NE, United States,
2Department of Educational Psychology, University of Lincoln-Nebraska, Lincoln, NE, United States,
*Department of Plant Biology, Michigan State University, East Lansing, MI, United States

Introduction: Models are a primary mode of science communication and
preparing university students to evaluate models will allow students to
better construct models and predict phenomena. Model evaluation relies on
students’ subject-specific knowledge, perception of model characteristics, and
confidence in their knowledge structures.

Methods: Fifty first-year college biology students evaluated models of concepts
from varying biology subject areas with and without intentionally introduced
errors. Students responded with ‘error’ or ‘'no error’ and ‘confident’ or 'not
confident’ in their response.

Results: Overall, students accurately evaluated 65% of models and were
confident in 67% of their responses. Students were more likely to respond
accurately when models were drawn or schematic (as opposed to a box-and-
arrow format), when models had no intentional errors, and when they expressed
confidence. Subject area did not affect the accuracy of responses.

Discussion: Variation in response patterns to specific models reflects variation in
model evaluation abilities and suggests ways that pedagogy can support student
metacognitive monitoring during model-based reasoning. Error detection is a
necessary step towards modeling competence that will facilitate student evaluation
of scientific models and support their transition from novice to expert scientists.
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1 Introduction

Models are fundamental to all forms of science (Lehrer and Schauble, 2000; Gilbert, 2004;
Papaevripidou and Zacharia, 2015) and allow scientists to describe, understand, and ultimately
predict phenomena (Odenbaugh, 2005; Gouvea and Passmore, 2017; Seel, 2017). Experts in
science learn their discipline through these models — from testing and revising, determining
missing components and relationships, and by generalizing across models (Windschitl et al.,
2008; Magnani et al., 2012). We separate the process of modeling from model objects by
referring to the process of building, evaluating, using, and revising models as modeling, and
the object being constructed, evaluated, or revised as the model (Krell et al., 2013). As scientists

01 frontiersin.org



Dauer et al.

often communicate with models, being able to identify incongruencies
between one’s knowledge and observed models is a critical component
of one’s progression as an expert in the discipline. Understanding the
factors that facilitate students’ efficient error detection may offer
valuable insights into how to guide students in this progression.
Modeling ability is predicated on prior knowledge because
modeling is always done in a context and for a purpose (Nielsen and
Nielsen, 2021). Prior knowledge, when organized in an explanatory
model of the phenomena in working memory (Oh, 2019), is the
comparator to observed phenomena. During model sense-making,
students evaluate the strengths and weaknesses of their explanatory
model (aka, mental model) and whether to revise their explanatory
model (Schwarz et al,, 2009). While most, if not all, modeling
frameworks include the element of model evaluation and revision
(Lohner et al., 2005; Upmeier zu Belzen et al., 2019), there are sparse
details about the cognitive processes inherent to model evaluation.

1.1 Prior knowledge as the foundation for
model evaluation

Biology knowledge provides the foundation for class performance
and plays an important role in how students do model-based
reasoning and modeling. According to the passive activation principle,
knowledge is activated regardless of its importance to comprehension
(Myers and O’'Brien, 1998), and the overabundance of knowledge
must be evaluated. While retrieving this prior knowledge increases the
opportunity to develop an explanatory model of phenomena, it
simultaneously requires greater effort to discern the most relevant and
scientifically sound knowledge.

Students’ knowledge
understanding, i.e., misconceptions. When one stores scientifically

contains incorrect or incomplete
incorrect knowledge (e.g., the inaccuracy that CO, is absorbed by
plants but not respired), these misconceptions are indefinitely encoded
in memory (Kendeou et al., 2019). Experts, by definition, possess
exceptional knowledge and the skills to evaluate it (Allaire-Duquette
et al, 2021). The ability to evaluate one’s knowledge for scientific
inaccuracies is one of the ways expert scientists and novices diverge
and is the object of this study. Model evaluation is a critical element of
modeling, but little is known about how students use their conceptual
knowledge to judge and evaluate models.

1.2 Error detection during model
evaluation

Studies have shown repeatedly that the ability to detect conflict
and inhibit intuitive scientific misconceptions correlates both with
more effective reasoning and with scientific expertise (Pennycook
etal, 2012; Brookman-Byrne et al., 2018). Relative to student novices,
experts are drawing on well-established, scientifically-sound
knowledge that supports rapid error identification. Students have had
fewer opportunities to evaluate scientifically accurate, robust, and
inter-connected knowledge and therefore have less-developed error
detection abilities compared to experts.

In science classrooms, students frequently must compare their
conceptual knowledge to canonical knowledge presented in the form
of a model. The presented knowledge is most often shown as a
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scientifically-sound explanatory model for a phenomenon. Zhang and
Fiorella (2023) propose a theoretical model for how students learn as
they generate errors during retrieval of prior knowledge then detect
errors when comparing their mental model with the reference
information. Specifically, these authors propose that students learn
from errors when those errors are semantically related to the target
content and prompt self-feedback and evaluation of current
knowledge. Conversely, students do not learn from errors when the
errors are semantically unrelated to the target content or when
students are unmotivated to reflect on their mental models. Our work
focuses on the specific process of error detection that occurs during
the comparison of one’s mental model to the reference information.
In terms of model evaluation, we consider the reference information
to be the presented, scientifically sound model of phenomena and the
mental model to be the product of concepts elicited by the task, and
which resides in long-term or working memory. Consistent with
Zhang and Fiorella, model attributes such as the format of the model
(e.g., pictures or schematic models) may act as cues for prior
knowledge and alter the likelihood of students’ error detection, as well
as inspiring different levels of self-monitoring and reflection.
Therefore, we focus on model attributes as a potentially potent factor
that may affect students’ error detection. Moreover, we expand upon
the Zhang and Fiorella model by examining students’ confidence in
their responses as a function of accuracy and model attributes.

We predict that students’ abilities to detect errors will be mediated
by their confidence in their knowledge of the concept, and that the
alignment between student confidence and accuracy in error detection
approximates their level of self-monitoring. A learner adept at self-
monitoring is more likely to systematically determine when their
knowledge is scientifically sound and when there are errors, and
therefore may be “primed” for disequilibrium and associated
conceptual change (D'Mello et al., 2014). Conversely, students who do
not perform self-monitoring, or have low knowledge or motivation,
only do surface level reasoning (Zhang and Fiorella, 2023) and
therefore miss the first step in generating the productive confusion
that serves as an entry point for conceptual change (VanLehn et al.,
2003; D’'Mello et al,, 2014). Students may also display low self-
monitoring that results in over- or under-confidence in their own
knowledge of the topic. For example, the “Dunning-Kruger effect”
describes the phenomenon where people are overconfident in their
lower quality performance (Kruger and Dunning, 1999). Therefore,
confidence acts as a critical mediator in the process of error checking
and model evaluation.

Different forms of alignment between model accuracy and
students’ evaluation of models offer clues as to the nature of students’
knowledge (Table 1). When knowledge aligns with the presented
model, students will likely respond accurately. Misalignment can
occur when students are presented with an explanatory model and
perceive an error where none existed, or when the student fails to
notice an intentionally-introduced error. In both misalignments, it is
possible the students’ conceptual understanding is incomplete or
incorrect. Again, students’ confidence responses can indicate the level
of self-monitoring as students assess their knowledge of the concept.

Considering student confidence leads to a far more complicated
picture of students’ self-monitoring abilities (Table 1). Confidence and
error detection interact in ways that suggest significant variation in
how students perceive the observed models (Dinsmore and Parkinson,
2013). A student who is an “ideal metacognitive observer” of their
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TABLE 1 Alignment of knowledge and self-monitoring of one'’s
knowledge.

Presented with explanatory model

Student

Inaccurate
response

Accurate

Alignment
between
knowledge and Aligned Misaligned
explanatory

model

Student
Not Not
Confident

confidence in Confident

confident confident

response

Estimate of
High Low Low High

self-monitoring

Collectively, they highlight the spectrum of responses observed during the modeling task
and the level of self-monitoring that can be assumed. Shaded cells identify occurrences of
misalignment, suggesting a misconception may be present.

performance (has high self-monitoring; Table 1) will show high
correspondence between their performance and their confidence.
That is, they will know what they know and know what they do not
know (Fleming and Lau, 2014). Conversely, a mismatch between
student confidence and accuracy reflects low self-monitoring either in
the form of over- or under- confidence. Whether students display
variation in self-monitoring as a function of model attributes,
including the conceptual content or the format of the model, may
yield insights into which types of models elicit self-monitoring and
offer guideposts for instructors on teaching metacognitive skills. For
instance, if students routinely are over-confident when evaluating
models presented as pictures, this may provide an entry point for
prompting further reflection or presenting content in an
alternative format.

1.3 Research aims

In our study, students evaluated explanatory models of biology
phenomena with different model attributes like whether they had
intentionally-introduced errors, the subject area, or the format. Some
of the presented models were scientifically sound and some contained
scientifically incorrect information that rendered the model
empirically inaccurate. We acknowledge all models are incomplete
and there is more than one explanatory model to represent phenomena
while also noting that phenomena have core conceptual ideas that
must be shared by these “correct” models. For example, to represent
relatedness in a phylogenetic tree, nodes and branch tips have
scientifically accepted interpretations even though an individual could
conceive of a novel format and create an alternative “correct” model
depicting the same information. In this study, we aimed to capture the
core conceptual components and relationships inherent to phenomena
rather than to discern or compare alternative representations.

Representation format may impact how a student perceives a
model, especially if presented in a modality that contrasts with their
prior knowledge format. In past research, we have adapted the Goel
and Stroulia (1996) Structure-Behavior-Function (S-B-F) framework
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when constructing biology models, where structures of a system are
in boxes (nodes) and the behaviors/relationships among them are
described on connecting arrows (links, edges), to illustrate how the
system produces a function (Dauer et al., 2013; Long et al., 2014; Clark
et al,, 2020). The symbolic nature of SBF models places attention on
the text within the boxes and on the labeled arrows (Figure 1).

Some concepts were difficult to represent in this SBF format and
biology norms often represent some concepts in drawn format, what
we term schematic (Figure 1; Table 2). Schematic model objects often
contained variation in components (e.g., bacterial cells shown as
circles with and without fill patterns to illustrate phenotypic variation
in traits, such as antibiotic resistance) that change over time. All the
model objects in this study were in formats that undergraduate
students would regularly have encountered during the course.

Detecting and correcting errors in one’s own mental models
requires comparing and evaluating one’s own mental models with
diverse scientific explanatory models (Zhang and Fiorella, 2023)
coupled with one’s self-awareness, through confidence, of their
knowledge of the concept presented in the model. This study sought
to describe the variation in students’ abilities to detect errors in
presented models, describe the variation in self-monitoring during
model evaluation, and identify the model attributes that contribute to
the variation. We ask two research questions: (a) how do model
attributes (intentionally-introduced errors, subject area, format)
impact students’” accuracy and confidence when detecting errors in
explanatory models; (b) how do individuals vary in their abilities to
detect intended errors in explanatory models?

2 Materials and methods
2.1 Course and sample

Students were recruited for this neuroimaging study from the
second in a two-part introductory biology course at a large, doctoral-
granting institution in higher education in the United States. The
course content included, in order of instruction, evolution, phylogeny/
diversity, physiology, and ecology. Students were recruited from two
sections of the course led by two instructors: the lead author
(Instructor 1) and another instructor not involved in the study
(Instructor 2). Both instructors have taught the course for more than
9 years and use models regularly during instruction and assessment.
Students in the class of Instructor 1 also constructed and evaluated
their own and each other’s models. The specific models used in this
study were never seen or used in the course, although the concepts
were a focus of instruction.

Students were recruited from four sections of the course in Spring
2021 and Spring 2022 terms. Instructor 1 taught two sections in
Spring 2021 and one section in Spring 2022; Instructor 2 taught one
section in Spring 2022. Spring 2021 students (only Instructor 1) were,
as per university policy at the time, taught in an online format similar
to the approach in Spring 2022. Participating students from different
instructors did not differ in their grade point average (GPA) entering
the course (4-point scale, p<0.91) or their final course grades
(p<0.58). Similarly, for Instructor 1, students did not differ between
years for GPA (p<0.31) or final course grade (p<0.44). Student
privacy was maintained and the identity of students participating in
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FIGURE 1

Examples of biology conceptual models used in the error detection task in SBF (boxes and arrows) format and schematic (drawn) format. Shown models are
one of three versions for each concept. Model 405 contains an intentionally-introduced error. Silhouette images from https://www.phylopic.org/.
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the study was never known to either instructor. A total of 51 students
consented to participate.

Students were screened for learning disabilities, Attention-
Deficit/Hyperactivity Disorder, experience of concussion, and other
neurological diagnoses that might impact neural response patterns.
One participant was excluded from analyses because they
consistently gave the same response to every trial. Of the final
analytic sample (N'=50, M, =19.62, SD,,.=0.90), 35 (70%) were
first-year freshmen, 12 (24%) were sophomores, and three (6%)
were juniors. Seven (14%) were first-generation college students.
Forty-three were European American/White, three were Hispanic,
three were Asian, and one identified as both European American/
White and Hispanic. Thirty-eight were female, 10 were male, and
two identified as non-binary.

2.2 Model selection and development

The model database started with a large set of models from
textbooks and student-constructed models from past courses related
to the concepts presented in the course. Twelve concepts (each one
designated as a series, e.g., 1XX and 10XX, Table 2) were selected from
this database: four each in evolution and ecology, two each in
physiology and genetics. While genetics was not a specific course
content area, central dogma and origins of alleles are concepts
fundamental to the evolutionary mechanisms that are present in the
course. Undergraduate teaching assistants from the course were
recruited to pilot the evaluation task which led to revisions that
simplified chosen models. Each concept modeled was represented in
correct and incorrect versions, totaling 3 models per concept (Table 2;
Supplementary material). Scientifically-sound explanatory models
were numbered XX01 and XX02, e.g., 101 or 502, while explanatory
models with intentionally-introduced errors were numbered XX05 or
XX06, e.g., 105 or 1,106.
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2.3 The error detection task and debrief

This work is complemented by a study identifying neural networks
associated with error detection in models (Behrendt et al., 2024). In
that study, students who displayed greater metacognitive calibration
activated lateral prefrontal brain regions that have been associated
with expert STEM reasoning. The experimental design accounts for
the challenges and recruiting constraints inherent to neuroimaging
studies. Recruited students completed the task inside an MRI scanner
at the Center for Brain, Biology, and Behavior located at the University
of Nebraska-Lincoln, during the last third of the course. Scheduling
the MRI meant students were at different places in the course content
although we did not observe differences in date of task on accuracy
[Z(49)=0.115, p=0.909].

The task consisted of three runs of 12 models. For each model,
students were first shown the binary prompt (“error” or “no error”),
followed by the prompt + model, and then allowed up to 305 to select
aresponse. After each response, students were prompted to reflect on
their level of confidence in their response by selecting “confident” or
“not confident” At the conclusion, students were debriefed by
providing them with paper copies of each of the models in the order
they had seen them. If the student had indicated an error for a model,
the student was now instructed to circle the error they had observed.
In some cases, students added additional details like what word they
expected to see or a brief explanation.

2.4 Analysis

Behavioral accuracy in this study was defined as selecting “no
error” when presented with a model that had no intended error (i.e.,
a correct model), or selecting “error” on models that had an intended
error (i.e., an incorrect model, Table 3). We recognized that students
may be misidentifying errors, i.e., responding with an error when, in
fact, it is correct, but the limitations of the MRI machine forced us to
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TABLE 2 Intended and unintended errors for models of different model formats and subject areas.

Model format

Subject area (model

Intended errors (model ID)

Unintended errors commonly

IDs) noticed by students
Ecology
SBF Carbon absorbed by plants from soil (105) Plants - >absorb O,
(101, 102, 105)
Ecology Missing producers respire CO2 (205)
SBF Producers - > respire CO,
(201, 205, 206) Missing photosynthesis to producers (206)
Ecology Respiration decreases greenhouse gases (305)
SBF Heat energy - >increases respiration
(301, 305, 306) Heat energy stops respiration (306)
Evolution Antibiotic causes resistance mutation (405)
Schematic Rare. Circled a population without explanation
(401, 405, 406) Individuals who need a trait (resistance), can create it (406)
Evolution Amphibians and reptiles
Schematic Humans are more evolved and placed as outgroup (505)
(501, 502, 505) Common ancestor of reptiles and mammals
Physiology ¢ Glucose absorbed in stomach (605) Components: Liver, Lungs, Small Intestine
BF
(601, 605, 606) Glucose goes from heart to kidney before limbs (606) Relationship: carried to
Matter converted to energy (705)
Physiology Fat - >broken down into CO,
(701, 705, 706) SBF Water moved into large intestine and leaves through feces Excreted as - > CO, from lungs
(706)
Evolution Primates evolved into other primates leading to humans (805)  Lizards and mice should be gorilla and
Schematic
(801, 805, 806) Extant taxa evolved into other taxa leading to humans (806) chimpanzee
Energy accumulates (905)
Ecology .
(901, 905, 906) Schematic Primary consumers have more energy than primary producers = Rare
(906)
Evolution No selection of phenotypes and no reproduction (1,005)
Schematic Population with no phenotype diversity
(1,001, 1,005, 1,006) Selection increases diversity (1,006)
Genetics Reverse transcription and translation (1,105) DNA - > translated to RNA - > transcribed to
SBF
(1,101, 1,105, 1,106) RNA becomes protein (1,106) Protein
Protein causes mutations called alleles (1,205) Gene - >has a protein
Genetics
SBF Mutation forms - > allele
(1,201, 1,205, 1,206) Genes causes mutations in nucleotide sequences (1,206) Nucleotide sequences - > named alleles

Unintended errors were determined from debrief events where students circled the portion of the model where they had seen an error that was not the intended error created by the
researchers. SBF = structure-behavior-function, formatted as boxes and arrows. Images of models are available in Supplementary material.

determine these cases using the debrief. Therefore, the behavioral
accuracy does not capture whether students identified the intentionally
introduced error or misidentified an error. A generalized linear model
with binomial error distribution was fit to the accuracy data, assuming
repeated measures, to analyze the effects of model types (SBF vs.
schematic), subject area, confidence response, and course grade on
behavioral accuracy. Students’ modeling abilities can parallel course
performance in introductory biology and we expected high
performing students (based on final course grade) to perform well on
the model evaluation task because they likely had greater biology
knowledge (Couch et al., 2019). To determine the likelihood (odds) of
correctly responding to a particular model, a generalized linear
regression model with logit link function and binomial error
distribution was fit to the combined correct/incorrect responses.
Debrief responses were characterized in terms of what students
noticed. Occasionally, a student would change their mind during the
debrief and this was always in the direction of no longer feeling the
model had an error and therefore there was no error to identify. The
researchers discussed what to do for these cases and decided to not
alter the within-MRI response. During the debrief, students either

Frontiers in Education

noticed the intended error or misidentified errors. Misidentified
errors occurred both when identifying an error where none existed
(i.e., in models with no intended error) or identifying an error that was
different than the intended error (i.e., in models with an intended
error). For all ambiguous cases (fewer than 20 out of 1,800 responses),
the lead author decided whether students indicated the intended error
or misidentified an error, conservatively characterizing these as
noticing the intended error.

Two metrics were calculated to further clarify the relation of
student confidence, accuracy, and noticing during the debrief: A
modified knowledge corruption index (KCI) value and the noticing
gap. KCI reveals whether students are misaligned and therefore overly
confident in their responses rather than calibrated to their knowledge
of the concept (Moritz et al., 2005). KCI is calculated as the proportion
of all “confident” trials that were inaccurate. Greater KCI values
suggest greater frequency of incorrect interpretation held with high
confidence. The KCI is calculated from behavioral data (selecting
“error”/“no error” and “confident”/“not confident”) during the MRI
portion and the data were not connected to neuroimaging for the
purpose of this study. During the debrief after the MRI scan, a noticing
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TABLE 3 Terms commonly used and their working definition related to this research.

Accuracy Selecting “no error” when presented with a model that had no intended error, or selecting “error” on models that had an intended error
Confidence Level of confidence in their response by selecting “confident” or “not confident”

o During debrief, identifying the intended error or misidentifying errors. Misidentified errors occurred both when identifying an error where
Noticing none existed or identifying an error that was different than the intended error
Noticing gap Proportion of trials where students noticed intended errors minus trials where they misidentified errors
Knowledge-corruption index Proportion of inaccurate to accurate confident responses for models with no intended error

Final Cou'rse Grade
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Effect of course grade on accuracy and confidence. Students with higher performance in the course had responses that were significantly more
accurate (y = 0.34x-0.5, p < 0.01), yet these students were no more confident in their responses than lower performing students (p < 0.3).

Final Course Grade

gap was calculated as the proportion of trials where students noticed
intended errors (i.e., errors intentionally introduced into models)
minus trials where they misidentified errors (i.e., identified errors in
models with no intended error). The noticing gap during the debrief
reveals students who notice intended errors more readily than
misidentify errors. Trials where students responded “error” and
“confident” would have overlapped between the KCI and the noticing
gap and therefore we calculate the modified KCI as the proportion of
inaccurate to accurate confident responses for models with no
intended error. The relationship provides insight into which students
are more calibrated because they are confident they know the errors
and which students are overconfident and misidentifying errors in the
models, i.e., students who confidently hold corrupted knowledge.

3 Results

Overall, students were most accurate when presented with
schematic and scientifically sound models, and in responses where
they expressed confidence. Subject area did not affect the accuracy of
responses. Students were accurate on 65% of models (M =23.4 models,
Mdn=23) with a range of 16-33 accurate responses out of 36 models
(Figure 2). Students with a higher final course grade were more
accurate in their responses [Z(29) =2.79, p<0.01]. For each increment
in course grade (i.e., course grade of 2.0 vs. 3.0), the proportion of
correct responses increased by 0.34, or 34%. Students were confident
in their responses on 67% of the models (Mdn =25 responses) with a
range of 17-36 out of 36 responses (Figure 2). Students with higher
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course grade did not have greater confidence in their responses
[Z(49)=—0.83, p>0.05]. Student accuracy was significantly greater on
responses where they expressed confidence in their response
[32(1)=19.55, p<0.001].

Model format affected accuracy [x*(1)=6.20, p<0.02] with
schematic models resulting in accurate responses in 10.4 of 15 models
and SBF models resulting in accurate responses to 13 of 21 models
(Figure 3A). Students were 1.24 times more likely to respond
accurately to schematic models than SBF models. The model format
affected confidence [x*(1)=5.80, p<0.02] and students reported
confidence in their response to 11.8 of 15 schematic models and in
15.5 of 21 SBF models (Figure 3B).

Students were significantly more accurate on models with no
intended error [Z(1) =8.40, p <0.01] where they accurately responded
to 10.3 out of 14 models and responded accurately to 13.1 of 22
models with an intended error. Students were 1.85 times more likely
to respond accurately to a model with no intended error. Confidence
in their responses was no different for models having no intended
error and models having an intended error [Z(1) =—0.43, p>0.05].

There was no significant effect of subject area on proportion of
correct responses [x*(3)=5.27, p<0.15], recognizing that within a
subject area, concepts are not necessarily independent (Figure 3C).
Ecology models (63% accurate, 7.6 accurate, SD =2.02) and evolution
models (64% accurate, 7.8 accurate, SD =2.25) were intermediate with
genetics models having the greatest accuracy (68% accurate, 4.1
accurate, SD=1.4) and physiology models the lowest accuracy (61%
accurate, 3.6 accurate, SD=1.1). The subject area significantly affected
confidence in their responses [y*(3)=20.45, p<0.001]; physiology
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Proportion of accurate responses by (A) model type and (C) subject area and proportion of confident responses for (B) model type and (D) subject
area. Students were more likely to respond accurately and confidently to schematic models than box and arrow (SBF) models. Students were less likely
to respond accurately and had lower confidence on physiology models. Bars represent standard error of means.

prompts decreased confidence by about 0.54 (SE=0.26) compared to
confidence in ecology models (Figure 3D). Students were more
confident in responses to genetics responses (4.2 confident out of 6,
69%) and less confident in physiology responses (3.7 confident out of
6, 61%) with ecology (7.7 confident out of 12, 64%) and evolution (7.9
confident out of 12, 66%) intermediate.

3.1 Effect of model content

Student accuracy varied with the model they were evaluating
(Figure 4), with a median accuracy of 65%. Twelve models frequently
elicited accurate responses for more than 75% of the students, half of
these models having no intended errors (101, 401, 801, 901, 1,001,
1,101) and half having an intended error (606, 806, 906, 1,005, 1,106,
1,205). Two models frequently elicited inaccurate responses, 205 at
25%, and 405 at 27% accurate. Accuracy varied even within a series.
For example, in the series related to the pathway of carbon (1XX
series), 92% of students responded accurately when evaluating 101,
while only 38% responded accurately on model 102, and 33%
responded accurately on model 105. Series related to carbon cycle
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(2XX), evolution of antibiotic resistance (4XX), pathway of fat atoms
(7XX), human ancestry (8XX), central dogma (11XX) also show
sizable variation in accurate responses (Figure 3).

Students’ confidence in their responses was higher than accuracy
with a median of 69%. One model series (601, 605, 606), tracing the
pathway of glucose from absorption to muscle, elicited “not confident”
responses from 47, 45, and 42% of students. Conversely, models about
the central dogma (1,101, 1,105, 1,106), and models of the energy
pyramid in communities (901, 905, 906), elicited high confidence in
responses (Figure 4).

3.2 Noticing errors during debrief

During the debrief, students were asked to circle the error in the
models where they had responded “error” Two students were not
debriefed because of time constraints and results represent responses
from 48 students. Students were asked to identify errors on a range of
8-31 models (Mdn =22 models) depending on how many models they
had determined to have errors. Students noticed the intended errors
60% of the times they were asked, although there was considerable
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variation in this with one student only identifying the intended error
on 1 of 8 models they were asked, and another identifying the intended
error on 15 of 16 models they were asked.

Students regularly failed to notice the intended errors. For model
206, students often misidentified “plants respire CO,” and models 102,
201, and 601 often elicited students misidentifying errors in models
where none existed. For 102, students often misidentified “plants
absorb O,,” for 201 students misidentified “plants respire CO,,” and for
601 students circled parts of the model related to the placement of the
liver in the sequence and the relationship “carried to.”

The noticing gap reveals students who noticed intended errors
more readily and the median gap was 0.21, or 21%, with a range of
—0.75 (mostly noticed intended errors) to 0.88 (mostly misidentified
errors, Figure 5). The noticing gap was unaffected by final course
grade [£(49)=1.83, p>0.05].

We carefully interpret the modified knowledge corruption index
because this metric has been used diagnostically in medical studies
where the number of trials is large and participants may have cognitive
challenges. Our interest is in how the modified KCI varies by student
relative to the noticing gap that was calculated from data collected
during the debrief (Figure 5). The modified KCI does capture a range
of students from calibrated to overconfident in their knowledge. The
median modified KCI value was 0.44 with a range of 0.14 (mostly
accurate when confident, ie., highly calibrated) to 0.69 (mostly
inaccurate when confident, i.e., overconfident) was unaffected by final
course grade [#(49) =—1.88, p>0.05]. The correlation coefficient for
noticing gap and the modified KCI was r=—0.64.

4 Discussion

Student evaluation of models is a complicated interplay of subject-
specific knowledge, perception of model characteristics that match
their knowledge of the phenomena, and confidence in their own
knowledge structures. We start by exploring how prior knowledge and
model-based reasoning affect performance on the task before
examining how these results explain variation in student error
detection, and the implications for learning research and
teaching practices.

4.1 Biology knowledge and model
attributes contribute to model evaluation

We hypothesized high performing students would perform well
on the model evaluation task because they likely had greater biology
knowledge. Final course grade did positively relate to student accuracy
on the model evaluation task although the student sample
overrepresents high performing students. The 65% accuracy rate,
lower if accounting for misidentifying errors, was lower than might
be expected given students were concurrently enrolled in the course
and the model contexts would be recent.

Students encountered different model formats, subject areas, and
models with and without intended errors and our a priori hypothesis
was that variation in the model attributes would correspond with
variation in students’ biology knowledge. The study occurred during
weeks 10-16 of the term, depending on student and MRI availability,
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following class content on the genetic basis of evolution and
biodiversity (includes human evolution and phylogeny), and during
the physiology and ecology units. Given the recency of genetics and
evolution topics, we expected higher performance on models focused
on these subject areas. Although no significant subject area differences
were found in accuracy, physiology models had a lower accuracy
(Figure 3). Physiology models were a particular challenge for students
and confidence in physiology responses was significantly lower than
other subject areas. Students may have recognized their limited
knowledge of the represented physiology processes (Scott et al., 2023)
affecting both accuracy (slightly) and confidence in their responses.
While we can find nuance in the results, students” overall accuracy on
ecology and physiology was similar to evolution and genetics, perhaps
suggesting students were using domain-general error detection
strategies to compensate for variance in knowledge.

When looking at model formats, schematic models resulted in
higher accuracy and more confident responses, acknowledging the
limits of our experimental design to cross format and subject area
(Figure 3). SBF formatted models may emerge from different
pedagogical goals or to show different structures or processes (Quillin
and Thomas, 2015). In our study, when presented with SBF models
students had fewer accurate responses and fewer confident responses.
This effect may be the byproduct of the experimental design where
we were unable to represent all models in a single format. For example,
we could not create an SBF model of a phylogenetic tree. This effect
needs to be more systematically tested to determine the interaction of
model format on student error detection abilities. It may also have
more general implications for thinking about how to present scientific
information and how to time and scaffold curricular content to
leverage students’ abilities to achieve across model formats.

Two models (102 and 205) provoked frequent discussion among
the researchers (Figure 1). Both models related to challenges
associated with research on model-based reasoning and students’
limited knowledge about gas exchange between plants and
atmosphere. In model 102, the arrow from Atmosphere to Plants is
labeled “O, absorbed by.” This is a scientifically sound proposition as
plants facilitate gas exchange with the atmosphere and they both
absorb and release O, (and CO,) in respiration and photosynthesis.
Twenty-nine students noticed this as an error and five students wrote
or verbally responded with a variation of “plants release O, rather than
absorb it” Model 205 raised a different question, also related to gas
exchange in plants. In model 205, a critical arrow, from plants to
atmosphere labeled “respire CO,,” is missing from the presented
model (Figure 1). The case could also be made for model 206, where
the arrow from atmosphere to plants labeled “photosynthesis,” is
missing. Are missing arrows, relationships, or components, errors
when they are central to the purpose of the model as described in the
prompt? A few students clearly noticed the missing arrows. During
the debrief, students 14, 36, and 52 circled the area without an error
and wrote in “respire” and “photosynthesis,” and student 32 noticed
the omission of “photosynthesis” In model 201, 20 students circled,
incorrectly, that plants “respire CO,” to the atmosphere. All students
were focusing on this portion of the model as none of the other
portions of the model were mentioned. Misconceptions around plants
and their interactions with the atmosphere remain prevalent in
university biology students (Parker et al., 2012). It is likely that
students concurrently hold scientifically sound knowledge of these
interactions and misconceptions about the matter flows and
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Confidence and accuracy per model. Values are proportion of students to accurately respond and percent of students to select “confident” for each
model (gray lines represent median). Models right of the median line suggest student prior knowledge is strongly connected into an explanatory model
(above median confidence) or weakly connected (below median confidence). Models left of median accuracy suggest gaps in prior knowledge or
misconceptions leading to overconfidence (above median confidence) and uncertainty (below median confidence).
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Noticing gap and modified knowledge corruption index. Students who tended to be overconfident during the task in the MRI scanner also tended to
notice unintended errors when debriefed on the errors they had seen during the MRI scan. Noticing gap is proportion of models where students had
responded “error,” where they noticed the intended versus unintended errors. The modified knowledge corruption index was proportion of inaccurate
responses when student responded confident to models with no intended error.

accumulations (Scott et al, 2023). Pedagogically, this plays an
important role as we look to support students to critically evaluate
their knowledge about these processes. While cognitively it is critical
that students hold misconceptions and scientific knowledge (Kendeou
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et al., 2019) the nuance in this phenomena may be at too fine a scale
to facilitate conceptual change.

Despite its brevity, the debrief provided more clarity about when
students notice intended errors or misidentified errors. In the
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antibiotic resistance models (401, 405, 406) and the energy pyramid
models (901, 905, 906) rarely resulted in misidentifying errors. The
ecosystem carbon cycle models (201, 205, 206) and the pathway of
glucose models (601, 605, 606) elicited students misidentifying errors,
but for different reasons. The ecosystem carbon cycle elicited almost
universal circling of the “primary producers respiring CO,” while the
pathway of glucose elicited circling a variety of combinations of
structures and relationships that appeared to be haphazard. The
impact of model format or subject area will require a more systematic
investigation across many more concepts to clarify student
perceptional differences.

Our findings suggest that attributes of models may enhance or
detract from students’ ability to detect errors. If broadly generalizable,
these attributes have real consequences for learners, particularly in
model-based instructional contexts. An inability to detect errors
means students will be unable to perform sense-making during model
construction or evaluation and be unable to make accurate predictions
when applying models. Most consequentially, students will continue
to rely on scientific inaccuracies that remain unchallenged.

4.2 Individual variation in model evaluation

The combination of accuracy, confidence, and noticing results
provide clues about student variation in self-monitoring during model
evaluation and gaps in knowledge or misconceptions. For instance, it
is clear that student confidence in and of itself is not related to course
performance (Figure 2), suggesting that students with the lowest
model evaluation performance are not necessarily aware of their
knowledge limitations. Relationships between accuracy and
confidence for particular models reflect the variation in students’
metacognitive monitoring of their prior knowledge (Figure 3). Models
represented in the Confident in Knowledge quadrant generated both
accurate and confident responses. These included models about
human ancestry, the energy pyramid, selection, and central dogma,
although specific models in these series are represented elsewhere
with lower confidence and/or accuracy. Models in the Underconfident
in Knowledge quadrant (Figure 3), generated student responses
suggestive that students had knowledge of these concepts because they
accurately evaluated the models, however, they lacked confidence in
their responses. Most models in this quadrant were scientifically
sound versions with no intended errors and students may have been
hedging their bets, tentatively registering a “no error” response
because the model appeared “close enough” to their knowledge. These
students were underconfident in their own knowledge (Table 1) and
may be in the process of encoding new neural pathways that reflect
more scientifically sound knowledge (Kendeou and O’Brien, 2014).
The lower confidence of these students suggests that many students
have prior knowledge that is weakly connected and may benefit from
pedagogies that improve confidence in their foundational knowledge.

Models in the Overconfident in Misconceptions quadrant
(Figure 4) align with persistent misconceptions, including those
related to ecosystem carbon cycling (gas exchange in primary
producers), antibiotic resistance (antibiotics cause mutations), genetic
variation (meaning of transcription and translation), and animal
physiology (matter converted into energy). Models in the Uncertain
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of Knowledge quadrant (Figure 4) elicited low confidence and low
accuracy responses reflective of incomplete knowledge of the concepts
for students to confidently determine the accuracy of the presented
model. The level of self-monitoring is difficult to discern based on
responses to these models with students likely showing low
self-monitoring.

Students have many foundational knowledge structures that allow
them to perform in class despite misconceptions related to the same
topics. Physics experts exhibit tendencies of retaining misconceptions,
and inhibiting them to more accurately perform on physics, but not
biology tasks (Allaire-Duquette et al., 2021). Students in our study
exist on a novice to expert spectrum for subject areas with generally
higher performing students still holding, but likely inhibiting critical
misconceptions. Course performance and final course grades,
surrogates for general biology knowledge, did impact performance,
with model attributes and self-monitoring acting as moderating
factors in the performance differences.

Students with high KCI values often misidentified errors
(Figure 5). Students who noticed errors where none existed
exhibited a high incidence of misconceptions. Student 33 is a good
example, writing during the debrief: only producers respire (model
201), respiration decreases greenhouse gases, not increases (301),
mammals more closely related to amphibians [than reptiles] (501),
and fat only turns into CO, (701). Once a student performed a
partial mapping of new information to their biology knowledge,
and decided there was a misalignment with their prior knowledge,
they stopped evaluating the model and were confident in their
response (Cook et al., 2018). On the other side are students who
were very good at noticing intended errors (upper left, Figure 5).
Across the suite of concepts, at least seven students were excellent
at both noticing intended errors and not misidentifying errors.
These students likely held strong, well-connected explanatory
models for the concepts and high self-monitoring, often matching
their correct responses with confidence in their responses. These
students exemplify an upper bound for expectations on this task—
not perfect accuracy, confident in their knowledge, and able to
identify the intended errors across subject areas. While these
students likely encountered similar misconceptions in their
schooling or lived experiences, they have also been able to create
neural traces with scientifically sound knowledge that allows them
to inhibit the misconceptions.

Recent work on evaluative mindset has provided key insights into
how students may operate when encountering scientifically incorrect,
or even purposefully false information. When people have sufficient
background knowledge of the topic, they are fast and efficient at
rejecting false information and routinely do this when reading text
(Richter et al., 2009). Further clarifying this work, Wiswede et al.
(2013) showed that evaluation of the validity of a text is dependent on
the evaluative mindset of the participant, and can be thought of as a
deliberate evaluation. The evaluative mindset reinforces the claim that
“shallow processing is simply the result of an incomplete validation
process” (Cook et al., 2018, p. 119). Presumably students whose
responses placed them toward the top left (Figure 5) are doing
evaluation differently than students who misidentify errors and are
prone to overconfidence. Better error detection ability can support
students being more calibrated as they become more aware of their
prior knowledge.
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4.3 Limitations

The study design was a balance between behavioral cognitive and
cognitive neuroscience designs in an educational context. To this end,
the models we used were more simplistic than an interview study but
lays the foundation for using a broader suite of formats and subject
areas. Similarly, the binary response for accuracy and confidence was
necessitated by the neuroscience constraints, yet still provides patterns
of error detection ability and levels of self-monitoring that are
infrequently found in authentic cognitive educational neuroscience
studies (Fleur et al,, 2021). As is typical in neuroimaging research (e.g.,
Masson et al.,, 2014; Declercq et al., 2022) students with neurological
conditions likely to alter their neural response patterns, including
ADHD, concussion, and learning disabilities, were excluded from this
sample. This means that the sample is relatively homogeneous and
does not reflect the full variation in cognitive responses that would
occur in a typical undergraduate life sciences classroom. Studies that
reflect the diversity of students within the typical classroom will
be necessary before drawing conclusions for educational practice.
Lastly, we acknowledge that error detection does not equal modeling
but retain that error detection is a critical step in model-based
reasoning and the transition from model construction to model
application (Upmeier zu Belzen et al., 2021). Despite the limitations
from combining study designs and theoretical constraints, the results
provide incremental advancement of how teaching can be advanced
through a biological understanding of how students learn.

4.4 Implications for biology instruction and
conclusion

Detecting the errors in one’s prior knowledge is a difficult but
necessary step before students can create a new neural trace for the
scientifically sound knowledge (Kendeou et al, 2019). This is
especially true for the Uncertain quadrant (Figure 4) where students
also had low confidence in their responses. People exhibit a bias
toward accepting new information as true (Brashier and Marsh, 2020),
encoding this information as true, creating a neural pathway that will
need to be re-evaluated to change. When students in our study
encountered these basic biology concepts, multiple times over many
years, they may have encoded the misconceptions, setting a path that
will require significant effort to change.

Ultimately, scientists use models and engage in modeling as a part
of their work and students enrolled in science courses are developing
productive ways to do the same. University instructors can
be instrumental in providing opportunities for students to critically
examine their knowledge and the reasons they know it. Importantly,
instructors must normalize having, identifying, and learning from
errors since we all possess and frequently inhibit many of the same
misconceptions our students hold (Masson et al., 2014; Allaire-
Dugquette et al., 2021; Wan et al., 2023). Identifying errors in models,
and the inferences about our own internal models, requires
comparison that is time-intensive and effortful and must be made
explicit for students. By framing the error detection process as
common, expected, and beneficial, students receive many benefits
including increased motivation (Steele-Johnson and Kalinoski, 2014)
and improved connections between instructors and students (Cooper
et al., 2018). Students, as with all people, remain curious and clearly
do not want to hold scientifically incorrect knowledge. Learning
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effective self-monitoring skills to allow evaluation of their own
knowledge structures is a necessary step that will allow students to
transition from novice toward expert scientists and become better
purveyors of scientific models.
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