

1 **Deglacial temperature and carbonate saturation state variability in the**
2 **tropical Atlantic at Antarctic Intermediate Water Depths**

3 **D. W. Oppo^{1,*}, W. Lu¹, K.-F. Huang², N. E. Umling³, W. Guo¹, J. Yu^{4,5}, W. B. Curry⁶, T.**

4 **M. Marchitto⁷, S. Wang^{1,8}**

5 ¹Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.

6 ²Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan.

7 ³Rutgers University, New Brunswick, New Jersey

8 ⁴Laoshan Laboratory, Qingdao, China

9 ⁵Research School for Earth Sciences, The Australian National University, Canberra, Australian
10 Capital Territory, Australia

11 ⁶Bermuda Institute of Ocean Sciences, St. George's, Bermuda.

12 ⁷Department of Geological Sciences and Institute of Arctic and Alpine Research, University of
13 Colorado, Boulder, Colorado, USA.

14 ⁸ MIT-WHOI Joint Program in Oceanography/Applied Ocean Sciences & Engineering,
15 Cambridge and Woods Hole, MA, USA

16

17

18 Corresponding Author: Delia W. Oppo (doppo@whoi.edu)

19 **Key Points**

20 • Regional warming occurred in the tropical Atlantic at Antarctic Intermediate Water
21 depths during Heinrich Stadial 1

22 • Deglacial nutrient and $\Delta[\text{CO}_3^{2-}]$ trends and variability suggest a strong link between
23 AMOC intensity and AAIW northward extent

24 • Deglacial $\Delta[\text{CO}_3^{2-}]$ trends and variability likely affected upper Atlantic temperature
25 estimates based on Mg/Ca of foraminifera

26

27 **Abstract**

28 Variations in the Atlantic Meridional Overturning Circulation (AMOC) redistribute heat and
29 nutrients, causing pronounced anomalies of temperature and nutrient concentrations in the
30 subsurface ocean. However, exactly how millennial-scale deglacial AMOC variability influenced
31 the subsurface is debated, and the role of other deglacial forcings of subsurface temperature change
32 is unclear. Here, we present a new deglacial temperature reconstruction, which, with published
33 records, helps assess competing hypotheses for deglacial warming in the upper tropical North
34 Atlantic. Our record provides new evidence of regional subsurface warming in the western tropical
35 North Atlantic within the core of modern Antarctic Intermediate Water (AAIW) during Heinrich
36 Stadial 1 (HS1), an early deglacial interval of iceberg discharge into the North Atlantic. Our results
37 are consistent with model simulations that suggest subsurface heat accumulates in the northern
38 high-latitude convection regions and along the upper AMOC return path when the AMOC
39 weakens, and with warming due to rising greenhouse gases. Warming of AAIW may have also
40 contributed to warming in the tropics at modern AAIW depths during late HS1. Nutrient and
41 $\Delta[\text{CO}_3^{2-}]$ reconstructions from the same site suggest a link between AMOC intensity and the
42 northward extent of AAIW in the northern tropics across the deglaciation and on millennial time
43 scales. However, the timing of the initial deglacial increase in AAIW to the northern tropics is
44 ambiguous. Deglacial trends and variability of $\Delta[\text{CO}_3^{2-}]$ in the upper North Atlantic have likely
45 biased temperature reconstructions based on the elemental composition of calcitic benthic
46 foraminifera.

47 **Plain Language Summary**

48 The Atlantic Meridional Overturning Circulation (AMOC) is characterized by northward flow in
49 the upper ocean and southward flow in the deep ocean. Understanding how the AMOC has
50 changed in the past, and how such changes have affected surface climate and the distribution of
51 ocean heat, carbon, and nutrients is important but challenging, as reconstructions of subsurface
52 ocean properties are sometimes ambiguous. Here, we use the chemical composition of seafloor
53 shells from a site in the western tropical Atlantic Ocean at ~ 950 meters water depth, within the
54 northward-flowing limb of the AMOC, to reconstruct temperature, nutrients, and carbon content
55 during the end of the last Ice Age, an interval when AMOC strength is believed to have varied.
56 Our results support a link between AMOC strength and tropical Atlantic nutrient content, and

57 further suggest that both rising atmospheric CO₂ and AMOC variations influenced temperatures
58 and carbon in the subsurface tropical Atlantic Ocean.

59 **1 Introduction**

60 During the last deglaciation, disintegration of continental ice sheets added freshwater to the ocean
61 (e. g. Bond et al., 1993), atmospheric CO₂ rose (e.g., Barnola et al., 1987), and the Atlantic
62 Meridional Overturning Circulation (AMOC) seems to have varied in strength (e.g., McManus et
63 al., 1994; Rafter et al., 2022). Reconstructions suggest the AMOC was weaker during North
64 Atlantic millennial-scale cold events – Heinrich Stadial 1 (HS1; ~ 18 to 14.7 thousand years ago,
65 ka) and the Younger Dryas (YD; 12.9 to 11 ka) – compared to the Last Glacial Maximum (LGM,
66 ~ 23 to 19 ka), the Bølling-Allerød (BA; ~14.7 to 12.9 ka), and the Holocene (e.g., McManus et
67 al., 1994; Ng et al., 2018).

68 Deglacial AMOC variability has been proposed to alter the subsurface ocean's temperature and
69 nutrient distributions but the driving mechanisms are still uncertain. Many model simulations
70 suggest that in response to a reduced AMOC, heat initially accumulates above ~ 2 km in the
71 subpolar North Atlantic convection regions (e. g. Liu et al., 2009; Zhang et al., 2017). Early
72 deglacial upper-ocean warming may have promoted basal melting of ice sheets (Marcott et al.,
73 2011) and helped maintain high surface buoyancy, sustaining a weak AMOC through HS1 (Ng et
74 al., 2018). Model simulations suggest that the upper North Atlantic warming propagates southward
75 along the Deep Western Boundary Current into the South Atlantic, and eventually into the Indian
76 and Pacific Oceans (Pedro et al., 2018). In models, the South Atlantic and tropical thermoclines
77 warm during events of AMOC weakening due to the reduced northward transport of warm upper
78 ocean waters required to replace the southward export of deep waters formed in the North Atlantic
79 (e. g. Dahl et al., 2005; Pedro et al., 2018; Zhang et al., 2007).

80 However, in a transient experiment of the last 21,000 years (TraCE-21K) (Liu et al., 2009), much
81 of the shallow (< 1000 m) North Atlantic cools, not warms, during the simulated YD even though
82 the AMOC weakens, contrasting with the warming response during the simulated HS1 (He et al.,
83 2020; Umling et al., 2019). Additional freshwater simulations suggest that the subsurface response
84 to reduced AMOC reflects a competition between reduced deep convection in the North Atlantic,
85 a change which warms the subsurface North Atlantic, and reduced northward (cross-equatorial)
86 heat advection, which cools the subsurface North Atlantic (He et al., 2020). In these experiments,

87 when a surface freshening threshold is crossed, the subsurface response changes from cooling to
88 warming. In TraCE-21K, reduced deep convection dominates the simulated HS1 (warming)
89 response due to the strong and prolonged freshwater forcing and AMOC response, whereas
90 reduced northward heat advection dominates the simulated YD (cooling), when the simulated
91 freshwater forcing and AMOC response are weaker. In both cases, reduced northward heat
92 transport results in warming of the South Atlantic and tropical thermoclines. Although the details
93 of the anomalous temperature distribution response to surface freshwater-induced AMOC
94 weakening likely differ among models, in the TraCE-21K freshwater forcing simulation, the
95 boundary between shallow (< 1000 m) southern warming and northern cooling is north of the
96 equator during the YD (He et al., 2020).

97 In TraCE-21K (Liu et al., 2009), decreasing the elevation of the Laurentide ice sheet also causes
98 an AMOC decrease (Zhu et al., 2014), warming in the upper 2000 m, especially in the North
99 Atlantic (Umling et al., 2019). Model simulations suggest that rising greenhouse gases also
100 warmed the subsurface (e. g., Liu et al., 2009; Menziel et al., 2015; Umling et al., 2019). Finally,
101 some investigators suggest that Southern Ocean warming during North Atlantic cold events was
102 transmitted northward within Antarctic Intermediate Water (AAIW), warming the tropical North
103 Atlantic (Hines et al., 2019; Poggemann et al., 2017, 2018; Thiagarajan et al., 2014).

104 Temperature reconstructions can help assess how well models simulate the subsurface response to
105 deglacial AMOC variability and greenhouse gas rise. Reconstructions suggest that the tropical
106 thermocline warmed during HS1 and the YD (e.g., Schmidt et al., 2012), as did the shallow (< 200
107 m) subpolar North Atlantic (Max et al., 2022). Several bottom water temperature (BWT)
108 reconstructions suggest the subsurface North Atlantic above ~ 1500 m warmed during HS1 and/or
109 the YD. For example, high Mg/Ca values in the calcitic benthic foraminifera genus *Uvigerina* may
110 imply warming at ~ 850 m (within modern AAIW depths) in the tropical western Atlantic during
111 HS1 and around the time of the YD (Poggemann et al., 2018). High Mg/Ca values in calcitic
112 benthic foraminifera may also imply warming at ~ 1300 m (below modern AAIW) in the eastern
113 equatorial Atlantic during these events (Weldeab et al., 2016a) and in the subpolar North Atlantic
114 at ~ 1300 m during HS1 (Marcott et al., 2011). However, the Mg/Ca of benthic foraminifera is
115 affected by changes in the carbonate ion saturation state ($\Delta[\text{CO}_3^{2-}]$), not only temperature (e.g.,
116 Elderfield et al., 1996, 2006; Yu & Elderfield, 2008). Geochemical evidence suggests higher
117 $\Delta[\text{CO}_3^{2-}]$ during the LGM than the Holocene above ~ 2 km in the subpolar North Atlantic (e. g.,

118 Yu et al., 2010; 2019) and above \sim 1.5 km in the tropical Atlantic (Oppo et al., 2018; Yu et al.,
119 2010), which could cause LGM temperature estimates based on Mg/Ca of benthic foraminifera to
120 be too high. Several of these reconstructions (e. g., Yu et al., 2010; 2019) suggest a $\Delta[\text{CO}_3^{2-}]$
121 decrease from the LGM to HS1, but none clearly resolve variability across all deglacial millennial
122 events, so the potential impact of such variations on Mg/Ca-based BWT reconstructions has not
123 been assessed.

124 Recent work suggests that for the aragonitic foraminifera *Hoeglundina elegans*, dividing Mg/Ca
125 by Li/Ca corrects for non-temperature effects on Mg/Ca (Bryan & Marchitto, 2008; Marchitto et
126 al., 2018). The only published *H. elegans* Mg/Li-based deglacial BWT reconstruction from the
127 North Atlantic is from the Florida Margin at modern AAIW depths, which shows warming during
128 HS1 and the YD (Valley et al., 2019). However, at this location, changes in geostrophic flow
129 related to AMOC variability cause vertical movement of isopycnals, and it is difficult to isolate
130 this mechanism of temperature change from regional processes (Lynch-Stieglitz et al., 2014;
131 Valley et al., 2017). Thus, *H. elegans*-based BWT records from other regions are needed to
132 evaluate the effects of AMOC reduction, altered AAIW temperature, and greenhouse gas rise, on
133 North Atlantic temperature within or near modern AAIW depths.

134 In addition to its influence on subsurface temperature, AMOC variability has a profound impact
135 on subsurface nutrient distribution. Models suggest that on the millennial time scale, AMOC
136 strength is tightly coupled to the northward extent of AAIW, an association explained by AAIW's
137 role as part of the return flow that compensates for the export of North Atlantic Deep Water
138 (NADW) at depth (e.g., Gu et al., 2017). AAIW is the main source of nutrients to the modern
139 North Atlantic (e.g., Sarmiento et al., 2004; Tuerena et al., 2015), and so changes in its northern
140 extent or composition in response to AMOC variability would alter the Atlantic's nutrient budget.
141 For example, it has been suggested that a reduction in both AAIW's nutrient content and its
142 northern extent contributed to the low nutrients in the glacial North Atlantic above \sim 2 km and in
143 the glacial equivalent of NADW (Oppo et al., 2018).

144 Several studies support a link between a weak AMOC and reduced AAIW presence in the tropical
145 Atlantic during the deglaciation (e. g., Came et al., 2008; Huang et al., 2014; Valley et al., 2017;
146 Xie et al., 2012). Others argue against this association, suggesting that during deglacial events of
147 reduced AMOC, AAIW advected more nutrients into the tropical North Atlantic (e. g., Poggemann

148 et al., 2017). In addition to influencing the North Atlantic nutrient budget via its likely influence
149 on AAIW northward extent, the AMOC intensity also influences the ventilation rate and the
150 accumulation of remineralized organic matter. For example, model simulations suggest a weak
151 AMOC results in enhanced accumulation of remineralized nutrients and carbon in the mid-depth
152 North Atlantic (e. g., Gu et al., 2021; Schmittner & Lund, 2015; Yu et al. 2022).

153 In this study, we present new records spanning the LGM through mid-Holocene from a tropical
154 western North Atlantic site within the depths of modern AAIW. We compare our new *H. elegans*
155 Mg/Li-based BWT reconstruction to the two other published Atlantic *H. elegans* Mg/Li-based
156 BWT reconstructions from AAIW depths – the Florida Margin site (Valley et al., 2017), and a site
157 from the Brazil Margin (Umling et al., 2019). Similarly, to evaluate nutrient gradients between
158 sites, we compare reconstructions of seawater Cd (CdW), which is correlated to phosphate
159 concentration (e.g., Boyle, 1988), from the same sites. These comparisons help us evaluate the
160 hypothesis that the western tropical North Atlantic at AAIW depths experienced regional warming
161 during HS1 and the YD, independent of large local vertical displacement of isopycnals as occurs
162 with reduced geostrophic transport at the Florida Margin (Lynch-Stieglitz et al., 2014; Valley et
163 al., 2017). Evolution of temperature and nutrient gradients also provide insights into mechanisms
164 of warming and nutrient variability.

165 We present new *Uvigerina peregrina* and *Cibicidoides pachyderma* Mg/Ca, Li/Ca, and Mg/Li
166 core-top data, supplementing the B/Ca and Cd/Ca published previously (Oppo et al., 2018). New
167 core-top *H. elegans* Mg/Ca, Li/Ca, Mg/Li, and Cd/Ca are also presented. The microhabitats of *C.*
168 *pachyderma* and *H. elegans* are typically epifaunal (e. g., Corliss, 1991) or very shallow infaunal
169 (within top 1 cm) (e.g., Fontanier et al., 2006) whereas *U. peregrina* is typically shallow infaunal
170 (top 2 cm) (Corliss, 1991; Fontanier et al., 2006). We present new downcore elemental ratio
171 records (Mg/Ca, Li/Ca, Mg/Li, Cd/Ca, B/Ca) from core KNR197-3-46CDH for the three species
172 of benthic foraminifera – the aragonitic *H. elegans* and the calcitic foraminifera, *U. peregrina* and
173 *C. pachyderma*. Cd/Ca records of all three species have been used to estimate the Cd concentration
174 of seawater (e.g., Boyle, 1992; Boyle et al., 1995).

175 We discuss differences among the Mg/Ca downcore records generated on the three species in the
176 context of our new *C. pachyderma* B/Ca data, which, like other species of *Cibicidoides* (Yu &
177 Elderfield, 2008), can be used to estimate carbonate saturation state ($\Delta[\text{CO}_3^{2-}]$) (Oppo et al., 2018).

178 We compare Mg/Ca-based and Mg/Li-based BWT estimates of the calcitic species, using local
179 calibrations, to the Mg/Li-based BWT estimate of the aragonitic species *H. elegans*, using an
180 updated calibration that includes new core-top data. Some BWT reconstructions use clumped
181 isotopes in solitary deep-sea corals (Hines et al. 2019; Thiagarajan et al. 2014), but to our
182 knowledge, no tropical or North Atlantic data have been published from sites shallower than 1400
183 m (e. g., near or within AAIW depths) for the last deglaciation, so clumped isotope data are not
184 discussed here.

185 **2 Materials and Methods**

186 We present elemental ratio data from a depth transect of multi-core tops (338 to 3328 m) from the
187 Demerara Rise, western tropical North Atlantic, and downcore records from KNR197-3-46CDH
188 (7°50'N, 53°40'W; hereafter 46CDH), recovered from ~950 m on the Demerara Rise. As
189 discussed previously (Oppo et al., 2018), the influence of southern-sourced waters between ~ 400
190 and 1000 m on the Rise (here, referred to collectively as “AAIW”) is evident from the relatively
191 low salinities compared to overlying and underlying South Atlantic Central Waters and northern-
192 sourced waters, respectively (Figure 1).

193 AAIW has higher phosphate (Brainbridge, 1981) and cadmium (Middag et al., 2018) and lower
194 $\delta^{13}\text{C}$ of dissolved inorganic carbon (Kroopnick, 1985) and carbonate saturation state ($\Delta[\text{CO}_3^{2-}]$)
195 (Yu et al., 2008) than North Atlantic waters from similar depths. Whereas North Atlantic waters
196 are formed from nutrient-depleted surface and thermocline waters, AAIW begins its journey to the
197 tropical Atlantic already containing upwelled, nutrient-rich waters. In addition, poor ventilation
198 and the addition of respired nutrients and carbon intensify the North Atlantic tropical phosphate
199 (and cadmium) maximum and $\delta^{13}\text{C}$ and $\Delta[\text{CO}_3^{2-}]$ minima (e.g., Duteil et al. 2012; Gebbie, 2014).
200 Thus, in addition to changes in the relative proportion of AAIW and northern-sourced waters, past
201 changes in CdW, $\delta^{13}\text{C}$, and $\Delta[\text{CO}_3^{2-}]$ at our Demerara Rise site may reflect changes in
202 remineralized components, as well as preformed changes (e.g., Lynch-Stieglitz et al., 2019; Oppo
203 et al., 2018; Poggemann et al., 2017; Weldeab et al. 2016a; Yu et al., 2008). Preformed changes
204 can result in decoupling among these properties (e. g., Lynch-Stieglitz et al., 2019; Yu et al., 2008).
205 We compare our new BWT and CdW reconstructions to published *H. elegans*-based
206 reconstructions from two other sites also recovered from depths affected by modern AAIW: Brazil
207 Margin site KNR159-5-90GGC (1105 m) (Umling et al., 2019) and Florida Margin site (~550 m)

208 KNR166-2-26JPC (Valley et al., 2017, 2019) (red circles, Figure 1; Table 1). Finally, we discuss
209 *Uvigerina* species Mg/Ca and Cd/Ca records from core M78/1-235-1 (Poggemann et al., 2017,
210 2018), recovered from ~ 850 m in the Tobago Basin (~11.6°N), also within modern AAIW (Figure
211 1, yellow triangle) in the context of our new records.

212 The influence of relatively low-salinity AAIW at the core sites decreases from south to north
213 (Figure 1). The Brazil Margin site of KNR159-5-90GGC, most influenced by AAIW, is located
214 just below the low salinity core of AAIW. AAIW and shallower southern-sourced waters still
215 dominate (~70%) the water mass mixture at ~ 950 m on the Demerara Rise (Oppo et al., 2018).
216 Waters at the Tobago Basin site of M78/1-235-1 are both warmer and saltier (5.4°C, 34.73 psu)
217 than at the Demerara Rise site (5.0°C, 34.62 psu), indicating further dilution of AAIW by northern-
218 sourced waters. AAIW also contributes to waters along the Florida Margin (Szuts & Meinen,
219 2017), where KNR166-2-26JPC was recovered. However, relatively warm and salty waters
220 (7.0°C, 34.9 psu; Bryan & Marchitto, 2010) are consistent with further dilution of the AAIW core
221 with subtropical waters compared to the sites farther south.

222 2.1 Elemental ratio measurements

223 Foraminifera were cleaned following the full trace metal protocol (Boyle & Keigwin, 1985; Boyle
224 & Rosenthal, 1996). Core-top *U. peregrina* and *C. pachyderma* data and downcore *C. pachyderma*
225 data were collected at the Woods Hole Oceanographic Institution (WHOI) on a Thermo-Finnigan
226 Element2 sector field single-collector inductively coupled plasma mass spectrometer (ICP-MS)
227 following the method of Rosenthal et al. (1999) and subsequent modifications (Huang et al., 2008;
228 Lear et al., 2002; Marchitto, 2006). Following the same methods, downcore *U. peregrina* and some
229 downcore *H. elegans* data were generated at the Institute of Earth Sciences, Academia Sinica, on
230 a Thermo Scientific Element XR sector field single-collector ICP-MS. The remaining downcore
231 *H. elegans* data and all *H. elegans* core-top data were generated at the WHOI on a Thermo
232 Scientific iCAP quadrupole ICP-MS (iCAP Q). Inter-laboratory calibrations were conducted to
233 assess the presence of laboratory offsets. A summary of where each data set was collected, and
234 which corrections, if any, were applied is provided in Table S1 in Supporting Information SI.

235 To align WHOI data with published Mg/Li and Cd/Ca data on *H. elegans*, several measurements
236 were made on foraminifera from the same core-top samples as published in Bryan & Marchitto
237 (2008), and several WHOI iCAP Q standards and an international limestone standard were

238 measured on a Thermo Element2 at the Institute of Arctic and Alpine Research, University of
239 Colorado, Boulder, Colorado (INSTAAR) (Text S1 and Table S2 in the Supporting Information
240 SI). Similarly, an inter-laboratory calibration was conducted between the WHOI iCAP Q and IES
241 Element XR, using standards and including some splits of the same crushed, homogenized,
242 downcore samples (Text S2 and Table S3 in the Supporting Information S1). Adjustments were
243 necessary to correct for laboratory offsets (Figures S1-S4 in Supporting Information S1).

244 Precision was monitored with matrix-matched standards. Long-term precision (2σ) was better than
245 3% for all elements measured on the Academia Sinica Element XR and for Mg/Ca, Li/Ca, and
246 B/Ca measured on the WHOI Element2, and better than 2% for Mg/Ca and Li/Ca measured on the
247 INSTAAR Element2. Long-term precision for Cd/Ca measured on the Element2 was 5% at both
248 WHOI and INSTAAR. Long-term precision (2σ) on the iCAP Q for three to four consistency
249 standards having similar ratios to *H. elegans* (0.27-1.52 mmol/mol, 1.31-4.35 μ mol/mol, 0.05-0.08
250 μ mol/mol, and 28-54 μ mol/mol, for Mg/Ca, Li/Ca, Cd/Ca, and B/Ca respectively), run across a
251 range of calcium concentrations (60-150 ppm), and averaged after applying the same matrix
252 correction applied to unknowns, was 0.04 mmol/mol (5.5%), 0.10 μ mol/mol (4%), 0.005
253 μ mol/mol (8%), and 4 μ mol/mol (11%) for Mg/Ca, Li/Ca, Cd/Ca, and B/Ca respectively. The
254 relatively low precision expressed as percentage is the result of the relatively low molar ratios of
255 the consistency standards. The precision, expressed as a molar ratio, is comparable to that of the
256 other laboratories.

257 2.2 Chronologies

258 We used the Bayesian statistical package “BACON” (Blaauw & Christen, 2011) in R and the
259 Marine20 calibration (Heaton et al., 2020) to update the chronology for 46CDH, and for KNR166-
260 2-26JPC and KNR159-5-90GGC from the Florida Margin and Brazil Margin, respectively. We
261 use a marine reservoir correction $\Delta R = -100 \pm 200$ years. This correction is approximated from
262 data near the sites of KNR166-2-26JPC (-45 ± 51 years; one estimate near core site) and KNR159-
263 5-90GGC (-87 ± 38 years; five nearest values), as summarized on the Calib 8 webpage
264 (<http://calib.org/calib/>). There are no reservoir ages reported in the vicinity of the Demerara Rise,
265 so in the absence of evidence to the contrary, we also use $\Delta R = -100 \pm 200$ years.

266 For KNR197-3-46CDH, we use dates from Huang et al. (2014) as well as a few new dates (Data
267 Set 1 in Supporting Information S1). As in previous studies, we omit a few anomalously young

dates (one of two dates at 166.5 cm, and both dates at 200.5 cm). We also omit a date at 224.5 cm, which falls below the line connecting the older of the two dates at 166.5 cm and the next deepest date at 233.5 cm, suggesting that the sample from 224.5 cm may also contain planktic foraminifera that were bioturbated from overlying younger sediment. As a result, our radiocarbon-based chronology is poorly constrained between ~9 and 14 ka (Figure S5). To improve the chronology in the critical, early part of this interval, we compared the benthic $\delta^{18}\text{O}$ record from KNR197-3-46CDH (Oppo et al., 2018), on the ensemble median age time scale, to that of nearby core KNR197-3-25GGC (7.63°N, 53.79°W, 671 m) (Data Set S2 in Supporting Information SI), which does not contain radiocarbon reversals (Data Set S1 in Supporting Information SI). In KNR197-3-25GGC, the peak of the brief $\delta^{18}\text{O}$ increase superimposed on the deglacial trend of decreasing $\delta^{18}\text{O}$ corresponds to the Bølling. We thus replaced the radiocarbon constraint from the 233.5 cm (having a mean ensemble age of ~14.25 ka) with a new benthic $\delta^{18}\text{O}$ -based depth-age constraint (Figure S5 in Supporting Information SI).

For KNR159-5-90GGC, we use dates from Lund et al. (2015), Umling et al. (2019) and Yu et al. (2022). Following these previous studies, we omit most dates collected on planktic foraminifera between 80 and 150 cm from KNR159-5-90GGC, as well as a date from 72.5 cm. Lund et al.'s (2015) hypothesis that young planktic foraminifera were preferentially bioturbated down core compared to benthics was confirmed with dates on planktic and benthic foraminifera from the same depths (Yu et al., 2022) and supports the chronology used in this study. For KNR-166-2-26JPC we use radiocarbon dates published in Lynch-Steiglitz et al. (2014). The similarity of the BWT and CdW reconstructions from the Demerara Rise and Florida Margin, discussed in Section 5, supports our chronology for the Demerara Rise site between ~9 and 14 ka, which, as noted above, is poorly constrained.

2.3. Age uncertainty analyses

To take age uncertainty into consideration, we use an R package “geoChronR” (McKay et al. 2021) to model, analyze, and visualize the age-uncertain proxy data. For each core, we first created an age model using the runBacon function, then created 1,000 age-uncertain proxy ensembles in each core, computed the median ensemble member and the 50% and 95% highest-density probability ranges in each proxy, and exported the ensemble series using plotTimeseriesEnsRibbons function.

297 The plotting of outliers on the age axis was set to exclude values below 5% and 95% probability
298 limit (limit.outliers.x = 0.025). We exported the raw downcore data with their median BACON
299 age. Files to reproduce the results are in the Supporting Information SI.

300 **3 Results**

301 **3.1 Core-top Data**

302 Carbonate saturation state and other environmental factors related to the biocalcification process
303 affect the Mg/Ca and Li/Ca of benthic foraminifera (e.g., Bentov et al., 2009; Bentov and Erez,
304 2006; Bryan & Marchitto, 2008; de Nooijer et al. 2009; Elderfield et al., 1996, 2006; Erez, 2003;
305 Hall & Chan, 2004; Marriott et al., 2014; Marchitto et al., 2018; Martin et al., 2002; McCorkle et
306 al., 1995; Nürnberg et al., 1996; Yu & Elderfield, 2008). Both Li/Ca and Mg/Ca have low calcite
307 and aragonite abiotic partition coefficients (<<1) (Gaetani & Cohen, 2006; Marriott et al., 2004;
308 Oomori et al., 1987). This implies that calcification discriminates against the incorporation of Li
309 and Mg and so the Li/Ca and Mg/Ca of the foraminifera are lower than the ratio within the
310 calcifying fluid. Assuming a closed or semi-enclosed calcifying pool, such discrimination would
311 lead to increases in Mg/Ca and Li/Ca in the residual calcifying fluid (Elderfield et al., 1996). This
312 effect is greater at lower $\Delta[\text{CO}_3^{2-}]$ than higher $\Delta[\text{CO}_3^{2-}]$ due to the effect of $\Delta[\text{CO}_3^{2-}]$ on
313 precipitation rate and so, if this were the only influence on the ratios, Mg/Ca and Li/Ca should be
314 positively correlated to $\Delta[\text{CO}_3^{2-}]$. Increased pumping of Ca^{2+} into the calcifying fluid at low
315 $\Delta[\text{CO}_3^{2-}]$ would also cause such a correlation (Marchitto et al., 2018). Inorganic precipitation
316 experiments suggest temperature also influences these ratios in calcite and aragonite: Mg/Ca
317 increases and decreases with increasing temperature in calcite and aragonite, respectively, whereas
318 Li/Ca decreases with increasing temperature in both (Gaetani & Cohen, 2006; Marriott et al., 2004;
319 Oomori et al., 1987).

320 New and published (Oppo et al., 2018) Demerara Rise Mg/Ca and Mg/Li core-top data for *C. pachyderma*, *U. peregrina*, and *H. elegans* (Data Set S3 in Supporting Information SI) are shown
321 versus BWT on Figure 2, and versus carbonate saturation state in Figure S6 in Supporting
322 Information S1. Core-top Li/Ca data are also shown in Figure S6 in Supporting Information S1.
323 Core-top Li/Ca of *C. pachyderma* is weakly negatively correlated to BWT ($R^2=0.02$). Li/Ca of *U.*
324 *peregrina* is also negatively correlated to BWT ($R^2=0.37$), whereas Li/Ca in *H. elegans* is

326 positively correlated ($R^2=0.65$). Li/Ca of all three species (and other calcitic species) is negatively
327 correlated to BWT in core tops from the Florida Strait (Bryan & Marchitto, 2008), consistent with
328 our data on calcitic foraminifera but not with our *H. elegans* data. However, a positive trend for
329 *H. elegans* emerged at low temperatures with the addition of new data (Marchitto et al., 2018), and
330 our data are consistent with those data. Li/Ca in *H. elegans* from the Demerara Rise core tops is
331 lower than published data from similar temperatures (Figure S7 in Supporting Information SI),
332 likely due to the lower aragonite saturation state at the Demerara Rise.

333 Core-top Mg/Ca values of all three species exhibit positive correlations to BWT (*C. pachyderma*:
334 $R^2=0.90$; *U. peregrina*: $R^2=0.87$; and *H. elegans*: $R^2= 0.89$) (Figure 2). The local core-top
335 calibration equation for *C. pachyderma* is $Mg/Ca=0.150\pm0.018*BWT + 0.356\pm0.103$, and for *U.*
336 *peregrina* is $Mg/Ca=0.080\pm0.009*BWT + 0.780\pm0.049$. Our Mg/Ca-BWT data overly Florida
337 Strait *C. pachyderma* data presented in Bryan & Marchitto (2008), although their data extend to
338 warmer temperatures, resulting in a different core-top calibration. Our calibration equation for *U.*
339 *peregrina* is nearly identical to theirs from the Florida Strait. On the other hand, our *H. elegans*
340 Mg/Ca values are lower than published data from similar temperatures (Figure S7 in Supporting
341 Information SI), likely due to the lower aragonite saturation state.

342 Li/Ca is positively correlated to $\Delta[CO_3^{2-}]$ for all three species (*C. pachyderma*: $R^2=0.81$; *U.*
343 *peregrina*: $R^2= 0.40$; and *H. elegans*: $R^2= 0.31$) (Figure S6 in Supporting Information SI). The
344 correlation between $\Delta[CO_3^{2-}]$ and benthic foraminiferal Li/Ca in the Norwegian Sea is also positive
345 (Lear et al., 2006), but negative in the Florida Strait (Bryan & Marchitto, 2008). The positive
346 correlation between $\Delta[CO_3^{2-}]$ and Li/Ca at Demerara Rise is consistent with the hypothesis that in
347 relatively low $\Delta[CO_3^{2-}]$ environments (like the Demerara Rise and Norwegian Sea), the effect of
348 $\Delta[CO_3^{2-}]$ dominates over the temperature effect on Li/Ca, whereas the temperature influence may
349 be more dominant in higher- $\Delta[CO_3^{2-}]$ environments (Bryan & Marchitto, 2008; Doss et al., 2018).

350 Demerara Rise core-top Mg/Ca is uncorrelated to $\Delta[CO_3^{2-}]$ except for *H. elegans*, which is
351 positively correlated ($R^2= 0.20$) (Figure S6 in Supporting Information SI). *H. elegans* Mg/Ca
352 values are similar to values in other areas with low temperatures and low aragonite saturation state,
353 where they are also positively correlated to $\Delta[CO_3^{2-}]$ (Rosenthal et al., 2006). *H. elegans* core-top
354 B/Ca is positively correlated to aragonite saturation state ($R^2=0.45$; not shown), consistent with
355 previous work (Yu & Elderfield, 2007).

356 Core-top Mg/Li is positively correlated to BWT for all three species (*C. pachyderma*: $R^2=0.90$,
357 *U. peregrina*: $R^2=0.86$, *H. elegans*: $R^2=0.77$) (Figure 2). The local core-top calibration
358 equations are $Mg/Li= 0.0126\pm0.0015*BWT + 0.0285\pm0.0086$ for *C. pachyderma* and
359 $Mg/Li=0.0076\pm0.0010*BWT + 0.0417\pm0.0049$ for *U. peregrina*. The relationships at the
360 Demerara Rise are similar to published *U. peregrina* data (Bryan & Marchitto, 2008), but for *C.*
361 *pachyderma*, are offset to lower Mg/Li at relatively cold BWT. The Mg/Li-BWT relationship of
362 *H. elegans* is similar across sites (Marchitto et al., 2018), and we combine new and published
363 data (Data Set S4 in Supporting Information SI) to develop a new linear Mg/Li-BWT calibration
364 (Figure 3).

365 $Mg/Li = 0.1794(\pm0.0037) + 0.01484(\pm0.0003) \times BWT$ ($R^2 = 0.93$) (1)

366 The standard error of temperature estimates is ±1.4 °C with a Mg/Li standard error of estimate of
367 ±0.02 mol/mmol. Compared to the original equation (Marchitto et al., 2018), the new calibration
368 suggests slightly colder temperatures at low Mg/Li and slightly warmer temperatures at high
369 Mg/Li. More core-top data would be useful to further constrain the relationship between Mg/Li
370 and BWT.

371 CdW estimates for *H. elegans* using Boyle's (1995) distribution coefficient for this species
372 ($D=1$) returns CdW estimates similar to seawater cadmium measured at the Demerara Rise
373 (Figure S8 in Supporting Information SI). By contrast, applying Boyle's (1992) depth-dependent
374 distribution coefficient for calcitic foraminifera to *C. pachyderma* and *U. peregrina* Cd/Ca
375 overestimates seawater cadmium at the Demerara Rise (Oppo et al., 2018) (Figure S8 in
376 Supporting Information SI).

377 3.2 Downcore Data

378 In this section, we discuss LGM to mid-Holocene (MH; here ~6 - 7 ka) trends in the elemental ratio
379 records from KNR197-3-46CDH (Data Set S5 in Supporting Information SI). We present records
380 versus depth, to maintain focus on the difference between species, rather than on interpretation of
381 millennial-scale features of the deglaciation.

382 3.2.1 Multispecies B/Ca Records

383 A decrease in B/Ca values from the LGM to the MH is evident in all three species, with B/Ca
384 decreasing by ~ 40, 20, and 5 μ mol/mol in *C. pachyderma*, *H. elegans* and *U. peregrina*,

385 respectively (Figure 4a). As core-top B/Ca values of *C. pachyderma* (Oppo et al., 2018),
386 *Uvigerina*, and *H. elegans* (Yu & Elderfield, 2007) are correlated to and likely controlled by
387 $\Delta[\text{CO}_3^{2-}]$ (Yu and Elderfield, 2007), the results imply higher glacial than Holocene $\Delta[\text{CO}_3^{2-}]$ in
388 bottom and shallow pore waters. Our finding of smaller glacial-Holocene B/Ca decreases in *U.*
389 *peregrina* and *H. elegans* than *C. pachyderma* is consistent with the higher sensitivity of
390 *Cibicidoides* species to $\Delta[\text{CO}_3^{2-}]$ indicated in previous studies of B/Ca of benthic foraminifera
391 from core-top sediment (e. g., Rae et al., 2011; Yu & Elderfield, 2007).

392 3.2.2 Multispecies Li/Ca, Mg/Ca, and Mg/Li Records

393 Li/Ca values of all three species also exhibit glacial-Holocene decreases (Figure 4b). The parallel
394 decline with B/Ca is consistent with a strong influence of $\Delta[\text{CO}_3^{2-}]$ on Li/Ca via the
395 biomineralization process, as suggested previously (Hall & Chan, 2004; Lear & Rosenthal, 2006;
396 Marchitto et al., 2018). Assuming that waters at the site warmed during the deglaciation, the trends
397 are also consistent with an inverse relationship between temperature and Li/Ca (Hall & Chan,
398 2004; Marriott et al, 2004).

399 Mg/Ca values of *C. pachyderma* and *H. elegans* also exhibit clear glacial-Holocene decreases
400 (Figure 4c). If interpreted only as BWT signals based on the core-top relationships, these Mg/Ca
401 trends would imply warmer glacial than Holocene temperatures at the core site. The Mg/Ca of *U.*
402 *peregrina* has a more complex signal, with similar LGM and Holocene values, and highest values
403 in between. Given the likelihood that this site warmed during the deglaciation, the similar trends
404 of B/Ca and Mg/Ca in *H. elegans* and *C. pachyderma* suggest that the LGM to MH Mg/Ca
405 decreases are dominated by a decrease in $\Delta[\text{CO}_3^{2-}]$, and not by temperature. This finding is
406 consistent with previous work that suggests that variations in Mg/Ca values of two other
407 *Cibicidoides* species (*C. wuellerstorfi* and *C. mundulus*) are dominated by $\Delta[\text{CO}_3^{2-}]$ effects (Yu &
408 Elderfield, 2008). The similar LGM and MH *U. peregrina* Mg/Ca values also suggest a $\Delta[\text{CO}_3^{2-}]$
409 influence.

410 We compare Mg/Ca-based and Mg/Li-based BWT estimates of the calcitic foraminifera to the *H.*
411 *elegans* Mg/Li-based estimate, converted to BWT using Equation (1). We use local core-top
412 calibrations to convert Mg/Ca of *U. peregrina* and the Mg/Li (Figure 4d) to BWT. We do not
413 convert the Mg/Ca of *C. pachyderma*, as the results would suggest much warmer glacial than

414 Holocene temperatures. The *H. elegans* reconstruction suggests late glacial/early deglacial
415 temperatures of about 3°C, peaking above 8°C, and cooling to about 5.5°C by the MH (Figure 4d).
416 The deglacial *U. peregrina* Mg/Ca-BWT reconstruction suggests peak warmth at about the same
417 time as the *H. elegans* Mg/Li-BWT reconstruction, consistent with a strong buffering of $\Delta[\text{CO}_3^{2-}]$
418 within pore waters in shallow sediments where *Uvigerina* calcify (Elderfield et al., 2006, 2010).
419 However, the similar LGM and MH *U. peregrina* Mg/Ca (and Mg/Ca-based BWT estimates),
420 along with the decreasing LGM-MH trends of B/Ca and Li/Ca (which are correlated; $R^2=0.83$; not
421 shown) suggest that buffering in shallow pore waters is not always complete, consistent with
422 previous evidence (Weldeab et al., 2016b). We thus suggest that the similar LGM and MH *U.*
423 *peregrina* Mg/Ca are likely due to higher LGM than MH $\Delta[\text{CO}_3^{2-}]$ in shallow pore waters, and do
424 not reflect similar BWTs.

425 The application of the local Mg/Li calibrations (Section 3.1) to the downcore *U. peregrina* and *C.*
426 *pachyderma* confirms that the influence of $\Delta[\text{CO}_3^{2-}]$ on Mg/Ca is at least partly corrected for by
427 dividing by Li/Ca (Bryan & Marchitto, 2008). However, *C. pachyderma* Mg/Li suggests a small
428 range of BWT variability (~ 2°C), thus underestimating BWT variations reconstructed from Mg/Li
429 of *H. elegans* (Figure 4d). BWT estimated from Mg/Li of *U. peregrina* shares some features of
430 the *H. elegans*-based BWT reconstruction, especially above ~ 225 cm. However, from ~ 300 to
431 225 cm, *Uvigerina* Mg/Li often underestimates BWT by ~ 2-3°C. Given errors of about $\pm 1.5^\circ\text{C}$
432 the two reconstructions are within error of each other, even during the interval of differences in
433 the best estimate. If additional studies demonstrate that the core-top relationship between *U.*
434 *peregrina* Mg/Li and BWT holds across many different environments, and *U. peregrina* Mg/Li-
435 BWT calibrations replicate *H. elegans* Mg/Li-based BWT estimates, this would bolster confidence
436 in the use of *U. peregrina* Mg/Li to reconstruct BWT. However, as *H. elegans* Mg/Li appears to
437 record BWT across a range of environments, and its relationship to temperature also appears
438 consistent with that in coral aragonite (Marchitto et al., 2018), here we use the *H. elegans* Mg/Li-
439 based BWT reconstruction.

440 3.2.3 Multispecies Cd/Ca Records

441 LGM Cd/Ca values are lower than MH values for all three species though the trend is most
442 pronounced in *U. peregrina* and least pronounced in *H. elegans* (Figure 4e). The records of all
443 three species show a deglacial oscillation towards lower values. The generally higher Cd/Ca values

444 for *U. peregrina* than *C. pachyderma* are consistent with the core-top data from the Demerara Rise,
445 also showing values 0.01 to 0.02 $\mu\text{mol/mol}$ higher in *U. peregrina* (Figure S8 in Supporting
446 Information S1).

447 We convert Cd/Ca to CdW using the published distribution coefficient (D=1) for *H. elegans* (Boyle
448 et al. 1995) and the depth-dependent distribution coefficient (D=1.3) (Boyle, 1992) for the calcitic
449 species. The Mid-Holocene CdW estimates for calcitic foraminifera from 46CDH are similar to
450 modern, contrasting with multi-core top data (Figure S8a in Supporting Information S1). *H.*
451 *elegans* and *C. pachyderma* CdW reconstructions are similar above \sim 270 cm, but *C. pachyderma*
452 estimates are generally lower below \sim 270 cm. The *U. peregrina* record is generally offset to higher
453 CdW estimates (Figure 4f). Applying the higher distribution coefficient (D=1.8) for calcitic
454 foraminifera from Oppo et al. (2018) brings the downcore *U. peregrina*-based estimates closer to
455 the *H. elegans* estimates but the *C. pachyderma*-based estimates lower than the *H. elegans*-based
456 estimates (not shown).

457 Along with the core-top offsets (Oppo et al., 2018) (Figure S8 in Supporting Information S1) these
458 results seem to imply different Cd/Ca distribution coefficients for *U. peregrina* and *C.*
459 *pachyderma*, although evidence from other sites exists to the contrary (Boyle, 1992; Bryan &
460 Marchitto, 2010). Typical *U. peregrina* Mn/Ca in 46CDH is 40-80 $\mu\text{mol/mol}$ whereas that of *C.*
461 *pachyderma* is 60-120 $\mu\text{mol/mol}$, suggesting that manganese carbonate overgrowths are not the
462 reason for the relatively high Cd/Ca *U. peregrina* values. Another possibility that we cannot test
463 with samples in hand is that higher pore water concentrations gave rise to the higher *U. peregrina*
464 Cd/Ca value compared to the other species.

465 When it is available, *H. elegans* is generally preferred for CdW because it has a smooth glassy test,
466 making it less prone to manganese carbonate overgrowth, and thus, less prone to contamination
467 (Boyle, 1995). However, given the uncertainty in the CdW reconstructions, and the similarity of
468 the *H. elegans* and *C. pachyderma* Cd/Ca for most of the study interval, we consider both
469 reconstructions in our discussions. For consistency with published records, and because they return
470 CdW estimates that are similar to each other (Figure 4f), we use Boyle's (1992) calcitic (D = 1.3)
471 and Boyle et al.'s (1995) *H. elegans* distribution coefficients (D = 1).

472 **4 Subsurface Variability Recorded in KNR197-3-46CDH**

473 The reconstructions from Demerara Rise core 46CDH show large glacial-Holocene trends, as well

474 as millennial-scale variability associated with North Atlantic deglacial climate oscillations (Figure
475 5). Compared to the mid-Holocene, the LGM at our western tropical Atlantic site was $\sim 3^{\circ}\text{C}$ colder,
476 nutrient depleted, and had higher $\Delta[\text{CO}_3^{2-}]$. Using the core-top relationship between $\Delta[\text{CO}_3^{2-}]$ and
477 B/Ca of *C. pachyderma* (Oppo et al., 2018), we estimate that glacial $\Delta[\text{CO}_3^{2-}]$ was $\sim 100 \mu\text{mol/kg}$,
478 or $\sim 30\text{--}40 \mu\text{mol/kg}$ higher than the MH (Figure 5b). The glacial value is comparable to values
479 found today in the deep subtropical thermocline (e.g., 150–100 $\mu\text{mol/kg}$ between 250 and 550 m
480 at the Great Bahama Banks; Bryan & Marchitto, 2008) and to glacial values at ~ 1150 m in the
481 subpolar North Atlantic (Yu et al., 2019). The relatively low CdW and high glacial $\Delta[\text{CO}_3^{2-}]$ are
482 consistent with a greater contribution of northern-sourced waters at the expense of AAIW to the
483 site during the LGM (Oppo et al., 2018).

484 The Demerara Rise $\Delta[\text{CO}_3^{2-}]$ began a long-term decrease at ~ 17 ka. Four factors may have
485 contributed to the glacial-Holocene decline: (1) decreasing “endmember” $\Delta[\text{CO}_3^{2-}]$ values of
486 northern surface source waters due to rising atmospheric CO₂ (Yu et al., 2008), (2) decreasing
487 $\Delta[\text{CO}_3^{2-}]$ of AAIW after about 16 ka (Lacerra et al., 2019), (3) an LGM-to-Holocene decrease in
488 the contribution of high- $\Delta[\text{CO}_3^{2-}]$ northern-sourced waters relative to low- $\Delta[\text{CO}_3^{2-}]$ AAIW, and
489 (4) greater accumulation of resired material in the ocean interior along the water mass pathways
490 to the site. CdW increased from the LGM to the Holocene, implying that at least some component
491 of the $\Delta[\text{CO}_3^{2-}]$ decrease was due to increasing southern waters and/or enhanced accumulation of
492 remineralized organic matter, that is the 3rd and/or 4th mechanisms.

493 On the millennial time scale, CdW also generally varied with a sign opposite to $\Delta[\text{CO}_3^{2-}]$ (Figure
494 5e) implying that variations in remineralized organic matter, either preformed or accumulated
495 along water mass flow paths or within the tropics, contributed to these oscillations. As discussed
496 in Section 5.2, AMOC variability likely contributed to the observed millennial-scale $\Delta[\text{CO}_3^{2-}]$ and
497 CdW variations.

498 Only one glacial sample had enough *H. elegans* to measure elemental ratios, so additional data
499 are needed to establish the onset of initial warming. Regardless of the timing of initial warming,
500 BWT rose from ~ 17.4 ka through HS1 (Figure 5c). Aside from a brief cooling during the warm
501 peak of the BA (during the Bølling), which is also evident in the benthic $\delta^{18}\text{O}$ record (Figure 5e),
502 warming continued until the beginning of the YD, remained approximately constant during the
503 YD, then began a long-term cooling that continued to at least ~ 6 ka.

504 **5 Comparison to other Atlantic *H. elegans* records from AAIW depths**

505 5.1 Deglacial Temperature Variability at modern AAIW depths

506 The Demerara Rise (950 m core depth) BWT reconstruction (Figure 5) provides clear evidence of
507 warming during HS1 in the western tropical North Atlantic at modern AAIW depths, independent
508 of isopycnal tilt variations as may have occurred at the Florida Margin in response to variability
509 in geostrophic flow (Lynch-Stielglitz et al., 2014; Valley et al., 2019). As discussed in Section 1,
510 model simulations suggest that if reduced vertical mixing dominates over reduced northward heat
511 advection when the AMOC weakens, subsurface warming occurs in northern high-latitude
512 convection regions and along the upper AMOC return flow path, where our site is located (e.g.,
513 He et al., 2020; Liu et al., 2009; Pedro et al., 2018). Single forcing simulations suggest that the
514 deglacial atmospheric CO₂ rise also causes a subsurface warming response in the upper North
515 Atlantic during HS1 (see Figure 6 in Umling et al., 2019), and both mechanisms likely contributed
516 to early HS1 warming at our site.

517 We apply Equation (1) to two published *H. elegans* Mg/Li records (Valley et al. 2019; Umling et
518 al., 2019) to update BWT estimates. Due to the scarcity of glacial data, we cannot identify the time
519 of initial HS1 warming at the Demerara Rise, but by ~17 ka, warming was underway. This
520 warming was approximately simultaneous with warming at the Florida Margin, where warming
521 began at ~18 ka (550 m; Valley et al., 2019) (Figure 6). BWTs at the two sites were within error
522 of each other from ~17 ka to ~12 ka, whereas in the modern, the Demerara Rise site is colder,
523 reflecting a greater proportion of relatively cold AAIW at the Demerara Rise. The similar deglacial
524 temperatures at the two sites during HS1 may imply a similar water mass mixture of northern and
525 southern sources.

526 The Brazil Margin BWT reconstruction suggests that South Atlantic water at AAIW depths may
527 have warmed by as much as 0.5°C before 16.5 ka. By this time, the tropical sites had already
528 experienced significant warming (~4°C at the Florida Margin, and at least ~2.5°C at the Demerara
529 Rise). The greater warming between 18 ka and 16.5 ka at the tropical sites implies that this
530 warming was not transferred from the Southern Ocean to the tropics via AAIW. Instead, this earlier
531 and larger warming at the Demerara Rise and Florida Margin compared to the Brazil Margin is
532 consistent with warming mechanisms suggested from modeling studies – deglacial CO₂ rise and
533 AMOC reduction (e.g., Liu et al., 2009; Umling et al., 2019). Isopycnal deepening may have also

534 contributed to warming at the Florida Margin (Lynch-Stieglitz et al., 2014). However, the Brazil
535 Margin warmed by $\sim 3^{\circ}\text{C}$ from ~ 16.5 to 14.5 ka, implying that AAIW may have contributed to
536 late HS1 warming in the tropical Atlantic, as suggested by Poggemann et al (2018).

537 Like the Demerara Rise, the Florida Margin was colder early in the BA (during the Bølling) than
538 during the peak warmth of HS1 (Figures 5c and 6b). Such a brief cooling is consistent with a
539 reinvigoration of the AMOC, which would result in northward transport of accumulated heat away
540 from the tropics (e. g. Pedro et al., 2018). Cooling at the Florida Margin may have been larger due
541 to the associated shoaling of isopycnals. The cooling was short lived, however, as both sites
542 warmed during the rest of the BA (during the Allerød). Atmospheric CO₂ decreased by ~ 2 ppm
543 during the Allerød (Figure 6e), and so could not be the driver of continued warming. In the TraCE-
544 21K ice-sheet single-forcing simulation, orographic effects of a diminishing ice sheet drive an
545 AMOC reduction (Zhu et al., 2014), resulting in significant subsurface warming from the Bølling
546 through the beginning of the YD (Umling et al., 2019). As discussed in Section 6, our CdW
547 reconstructions hint at such an AMOC weakening. A weaker AMOC and associated reduced
548 northward surface heat transport is consistent with high-latitude North Atlantic regional cooling
549 from the Bølling through the rest of the BA as reconstructed in ice cores (e.g., Kindler et al., 2014).

550 BWT at the Demerara Rise peaked during the late BA and YD, but warmth may have been the
551 culmination of the Allerød warming, rather than specifically associated with the YD (Figures 5
552 and 6). YD warming at the Florida Margin may also have been the culmination of a longer-term
553 trend, but the larger warming than at the Demerara Rise may indicate that deepening of isopycnals
554 in response to reduced geostrophic flow contributed to the YD warming at the Florida Margin
555 (Valley et al., 2019) (Figure 6b).

556 Our record does not provide evidence for subsurface cooling during the YD as simulated in TraCE-
557 21K (Liu et al., 2009; Umling et al, 2019; He et al., 2020). The lack of a discernable BWT response
558 may indicate a muted response to a relatively smaller AMOC weakening, and/or when an AMOC
559 weakening begins from a stronger AMOC state. However, the absence of a discernible warming
560 at the Demerara Rise specifically associated with the YD should be confirmed with BWT
561 reconstructions from other tropical sites within AAIW depths, as our site may have been located
562 near the boundary between southern warming and northern cooling that is simulated with a
563 relatively modest AMOC reduction (e.g., He et al., 2020).

564 Cooling at the Demerara Rise between the end of the YD and the end of our record (~ 5 ka) may
565 have resulted in part from cooling in the northern-source water endmember, as cooling is also
566 observed at the Florida Margin, which presumably contained more waters of northern origin than
567 the Demerara Rise, as is the case in the modern. A cooling trend is not evident at the Brazil Margin
568 site, suggesting that cooling of AAIW was likely not the reason for the cooling trend. However,
569 an increase in the fraction of cold AAIW relative to northern sources may have contributed to the
570 Holocene cooling. The latter would imply a strengthening AMOC during this early-mid Holocene
571 interval.

572 5.2 Deglacial $\Delta[\text{CO}_3^{2-}]$ and nutrient variability at modern AAIW depths

573 During the late LGM and HS1, $\Delta[\text{CO}_3^{2-}]$ at the Demerara Rise was higher than at the Brazil Margin
574 site (Figure 6), providing strong evidence for a smaller contribution of AAIW to the Demerara
575 Rise compared to the Holocene, when the $\Delta[\text{CO}_3^{2-}]$ gradient was small or absent, as in the modern.
576 $\Delta[\text{CO}_3^{2-}]$ rose at the Brazil Margin site near the beginning of HS1 (Lacerra et al., 2019), probably
577 due to outgassing of CO_2 in the South Atlantic sector of the Southern Ocean (Yu et al., 2022).
578 There appears to have been little change in the Demerara Rise $\Delta[\text{CO}_3^{2-}]$ from the LGM to ~17 ka,
579 and the relatively high $\Delta[\text{CO}_3^{2-}]$ and low CdW imply that northern source waters continued to
580 dominate the water mass mixture at the Demerara Rise, even during early HS1.

581 From ~17 ka to ~16 ka, $\Delta[\text{CO}_3^{2-}]$ decreased gradually at the Demerara Rise site. Declining $[\text{CO}_3^{2-}]$
582 in northern source waters associated with rising atmospheric CO_2 (Yu et al., 2008) may have
583 contributed to the $\Delta[\text{CO}_3^{2-}]$ decrease. However, CdW was also increasing at both the Demerara
584 Rise and Florida Margin during this period, suggesting that at least some of the $\Delta[\text{CO}_3^{2-}]$ decrease
585 was associated with an increase in respired organic matter, possibly transported southward from
586 the North Atlantic source region, where it was likely accumulating due to a weak AMOC (e.g., Gu
587 et al., 2021; Schmittner & Lund, 2015; Yu et al., 2019, 2022). Though 17-16 ka is generally
588 considered a time of weak AMOC (e.g., McManus et al., 2004; Ng et al., 2018), we cannot
589 independently rule out a gradual increase in AAIW in the water mass mixture at the site, which
590 could also give rise to these signals. In addition, respired organic matter may have accumulated
591 within the tropical phosphate maximum itself, as occurs in the modern ocean due to relatively
592 weak ventilation (e. g., Duteil et al. 2012; Gebbie, 2014).

593 CdW increased abruptly at ~16 ka at the Florida Margin site (Figure 6d), which Valley et al. (2017)
594 attributed to renewed incursion of AAIW into the western tropical Atlantic in response to
595 strengthening of the upper branch of the AMOC. At the Demerara Rise, the *C. pachyderma*-based
596 CdW increased abruptly at about the same time, although the *H. elegans*-based CdW increased
597 abruptly earlier, approximately coincident with the initial $\Delta[\text{CO}_3^{2-}]$ decrease (Figure 5).
598 Regardless, by ~16 ka, CdW at both sites was similar to CdW at the Brazil Margin, consistent with
599 a strong presence of AAIW (Figure 6). The $\Delta[\text{CO}_3^{2-}]$ gradient between the Brazil Margin and
600 Demerara Rise decreased, also consistent with a greater AAIW influence in the northern tropics.
601 However, as CdW did not increase at the Brazil Margin site until the end of HS1, it is unlikely that
602 the main cause of high nutrients in the tropical Atlantic at modern AAIW depths was an increase
603 in the preformed nutrient content of AAIW (e. g., Poggemann et al., 2017).
604 Consistent with a more significant reinvigoration of the AMOC at the BA onset, the $\Delta[\text{CO}_3^{2-}]$
605 gradient between the Demerara Rise and the Brazil Margin sites collapsed (Figure 6), implying
606 more AAIW at the Demerara Rise during the BA than late HS1. The abrupt increase in CdW at
607 the Brazil Margin (Figure 6) also implies an expanded presence of AAIW into the South Atlantic
608 at the BA onset (Umling et al., 2019; Yu et al., 2022). As discussed in section 5.1, cooling at the
609 two tropical sites is also consistent with an AMOC reinvigoration. Neodymium isotope records
610 from the Demerara Rise suggest an increase in the AAIW contribution (Huang et al., 2014), also
611 supporting this explanation for the $\Delta[\text{CO}_3^{2-}]$ decrease at the BA onset.
612 During the YD, $\Delta[\text{CO}_3^{2-}]$ values between the Demerara Rise and Brazil Margin sites diverged,
613 implying a retreat of AAIW and a weak AMOC. CdW values at both the Demerara Rise and
614 Florida Margin were similar to subtropical North Atlantic values, also consistent with a relative
615 increase in the northern source compared to southern sources (Cane et al., 2008; Valley et al.,
616 2017).
617 From the end of the YD to the end of our record (~ 5 ka), Demerara Rise $\Delta[\text{CO}_3^{2-}]$ decreased and
618 CdW increased, both suggesting an increase in the proportion of AAIW relative to northern source
619 waters, which could imply an AMOC strengthening. An abrupt atmospheric CO₂ increase at the
620 end of the YD may have reduced $[\text{CO}_3^{2-}]$ of northern surface source waters, contributing to the
621 initial $\Delta[\text{CO}_3^{2-}]$ decrease. However, cooling at the Demerara Rise from the end of the YD to ~ 5
622 ka is also consistent with an increasing proportion of AAIW. Tropical CdW values diverge from

623 subtropical North Atlantic values (Cane et al., 2008; Valley et al., 2017) and subpolar North
624 Atlantic values (Bertram et al. 1995; Yu et al. 2007, 2019) (Figure S9 in Supporting Information
625 SI), also consistent with increasing AAIW relative to northern source waters at the sites, and an
626 AMOC strengthening. Although a Holocene decrease in CdW at the Florida Margin has been
627 interpreted to indicate a weakening of the AMOC (Valley et al., 2022), much of the CdW decrease
628 at the Florida Margin occurred after ~ 5 ka, so we do not rule out an early Holocene AMOC
629 strengthening, followed by a later Holocene weakening.

630 At the Demerara Rise site, the early-to-mid Holocene trend of decreasing $\Delta[\text{CO}_3^{2-}]$ was interrupted
631 by an abrupt increase in $\Delta[\text{CO}_3^{2-}]$ values at ~ 9 ka. Although *H. elegans* were rare in this interval
632 of 46CDH, CdW estimated from *C. pachyderma* suggests relatively low values that lasted until ~ 7
633 ka (Figure 6). These oscillations could reflect a brief reduction in the fraction of AAIW relative to
634 northern source waters in response to an abrupt decline in the AMOC, a change in the preformed
635 composition of an endmember, reduced accumulation of resired material in the tropical phosphate
636 maximum, or some combination of these mechanisms. Additional records are needed to confirm
637 this event as well as the Holocene trends, and if confirmed, to distinguish among possible
638 mechanisms.

639 **6 Outstanding Questions**

640 We have interpreted millennial-scale $\Delta[\text{CO}_3^{2-}]$ and CdW variations at the Demerara Rise site as
641 evidence of a strong link between deglacial variations in the intensity of AMOC and the influence
642 of relatively low- $\Delta[\text{CO}_3^{2-}]$, high-CdW AAIW in the western tropical North Atlantic. In general,
643 when the AMOC is strong, more low- $\Delta[\text{CO}_3^{2-}]$, high-CdW AAIW crosses the equator to
644 compensate for the export of NADW (or its glacial equivalent) at depth (e.g., Gu et al., 2017), and
645 the $\Delta[\text{CO}_3^{2-}]$ and CdW at the Demerara Rise site decrease and increase respectively. Interpreted in
646 this way, the Demerara Rise $\Delta[\text{CO}_3^{2-}]$ and CdW reconstructions are generally consistent with the
647 view based on $^{231}\text{Pa}/^{230}\text{Th}$ data that the AMOC was modestly strong during the LGM, was weaker
648 during most of HS1, strengthened at the beginning of the BA, was weak again during the YD, and
649 recovered at the end of the YD (McManus et al., 1994, Ng et al., 2018). However, there are
650 departures from this simple model and questions remain about the mechanisms of nutrient and
651 $\Delta[\text{CO}_3^{2-}]$ variability, and the role of AMOC in driving deglacial BWT variability in the tropical
652 Atlantic at AAIW depths.

653 6.1 Timing of deglacial increase of AAIW in the northern subtropics

654 For example, increasing CdW at several sites (Poggemann et al., 2017; Valley et al., 2017),
655 including the Demerara Rise, and decreasing $\Delta[\text{CO}_3^{2-}]$ at the Demerara Rise may imply that the
656 presence of AAIW in the tropical North Atlantic increased before the end of HS1, possibly as early
657 as 17 ka, but more notably at 16 ka. Although one explanation for this increase is a greater
658 northward extent of AAIW due to reinvigoration of the upper AMOC cell, this mechanism implies
659 decoupling between the upper and lower AMOC cells (Valley et al., 2017). Moreover, CdW did
660 not increase at the Brazil Margin site, within AAIW, until \sim 14.5 ka, implying that this was when
661 AAIW expanded into the South Atlantic (Umling et al., 2019; Yu et al., 2022). The apparent delay
662 between AAIW expansion into the tropics (\sim 16 ka) and into the South Atlantic (\sim 14.5 ka) suggests
663 decoupling between the fraction of AAIW in the South Atlantic and its northward extent in the
664 tropical Atlantic. While model simulations suggest that on the millennial times scale, the northern
665 extent of the AAIW is closely related to the overall AMOC intensity, they also suggest that the
666 AAIW formation rate, and its circulation in the South Atlantic, may be decoupled from its
667 northward extent in the Atlantic (Gu et al., 2017), perhaps reconciling the different timing of the
668 CdW increase on the Brazil Margin and Demerara Rise. On the other hand, given evidence that
669 the overall AMOC was in a weak state until the end of HS1 (e.g., Ng et al., 2018), continued
670 accumulation of resired nutrients cannot be ruled out.

671 Although the BWT records might help distinguish between these hypotheses, the Florida Margin
672 and Demerara Rise sites have different signals in late HS1. The absence of a clear warming signal
673 at the Florida Margin during late HS1 may be consistent with an increase in AAIW and a
674 reinvigoration of the upper AMOC. On the other hand, the Demerara Rise site continued to warm
675 during late HS1, consistent with a weak AMOC and continued accumulation of resired material.
676 And, as the Brazil Margin reconstruction indicates that AAIW warmed in late HS1 (Figure 6b),
677 AAIW could have contributed to late HS1 tropical warming, as suggested by Poggemann et al.
678 (2018). Clearly additional BWT reconstructions are needed to better constrain tropical warming at
679 AAIW depths and to further evaluate these mechanisms.

680 6.2 AMOC weakening during the Allerød?

681 As discussed in Section 5.2, many lines of evidence suggest a significant reinvigoration of the
682 AMOC at the BA onset, including cooling at both the Demerara Rise and Florida Margin sites, a

683 diminished $\Delta[\text{CO}_3^{2-}]$ gradient between the Demerara Rise and the Brazil Margin sites, an abrupt
684 increase in CdW at the Brazil Margin (Figure 6), and Demerara Rise neodymium isotope records
685 (Huang et al., 2014).

686 However, as noted in Section 5.1, the driver of warming at the Demerara Rise and Florida Margin
687 during the Allerød (from the peak of the Bølling to the beginning of the YD) is unclear. One
688 possibility is that this warming was due to a weakening AMOC resulting from orographic effects
689 of a melting ice sheet (Umling et al., 2019; Zhu et al., 2014). The CdW estimated from both *C.*
690 *pachyderma* and *H. elegans* suggest that CdW began to decrease to YD values soon after the peak
691 of the Bølling, consistent with AMOC weakening. However, the $\Delta[\text{CO}_3^{2-}]$ increase, estimated from
692 *C. pachyderma* (thus registered on the exact same samples), does not increase until the beginning
693 of the YD, suggesting decoupling between the two, most likely at the northern source. Regardless,
694 additional data are needed to assess whether a post-Bølling AMOC decrease contributed to
695 deglacial warming in the tropical Atlantic, and if not, to explore other reasons for Allerød
696 warming.

697

698 **7 Summary**

699 Our new BWT reconstruction from the Demerara Rise confirms that the western tropical Atlantic
700 at AAIW depths warmed during HS1 independent of large local vertical displacement of
701 isopycnals as occurs at the Florida Margin in association with AMOC variability (Lynch-Stieglitz
702 et al., 2014; Valley et al., 2017). Early deglacial warming was likely due to rising greenhouse gases
703 and a weakening AMOC. Warming in AAIW may have contributed to warming at these sites late
704 in HS1 (Poggemann et al., 2018). Both the Florida Margin and Demerara Rise were colder early
705 in the BA (during the Bølling) than they were during the peak warmth of HS1 (Figures 5c and 6b),
706 consistent with reinvigoration of the AMOC (e. g., Pedro et al., 2018).

707 Although the Demerara Rise site was relatively warm during the YD, warmth appears to have been
708 the culmination of a warming trend during the Allerød, rather than specifically associated with the
709 YD. Greater warming at the Florida Margin than at the Demerara Rise may have been due to
710 isopycnal adjustment associated with reduced geostrophic flow (Valley et al., 2019). Additional
711 BWT reconstructions from the Atlantic at AAIW depths are needed to assess the extent of regional
712 BWT change during the YD.

713 Our new B/Ca record provides the first clear evidence that $\Delta[\text{CO}_3^{2-}]$ in the tropical Atlantic at
714 AAIW depths was tightly coupled to North Atlantic millennial-scale climate variability. We
715 suggest that changes in the contribution of northern and southern sourced waters, in response to
716 AMOC variability, were the main driver of the well-defined millennial $\Delta[\text{CO}_3^{2-}]$ variations – with
717 relatively high $\Delta[\text{CO}_3^{2-}]$ values during the LGM, early HS1, and the YD indicating greater
718 ventilation by northern sources, and lower values during the BA and after the YD indicating an
719 increased fraction of AAIW and a stronger AMOC. CdW reconstructions are generally consistent
720 with these inferences. The post-YD trend of increasing AAIW/stronger AMOC may have
721 extended to ~ 5 ka, with a superimposed millennial oscillation, but additional data are needed to
722 confirm these inferences.

723 Our B/Ca and Li/Ca records indicate that at the Demerara Rise site, changes in bottom water
724 $\Delta[\text{CO}_3^{2-}]$ are reflected in the micro-environment (calcifying pool) of all three species of benthic
725 foraminifera, including an infaunal species (*Uvigerina peregrina*). This finding suggests that
726 published BWT records based on Mg/Ca of benthic foraminifera should be carefully evaluated.
727 Specifically, our finding of relatively high $\Delta[\text{CO}_3^{2-}]$ at ~ 1000 m in the tropical North Atlantic
728 during both HS1 and the YD has implications for BWT estimates based on the Mg/Ca of the
729 calcitic foraminifera. For example, inferred warming during HS1 in the subpolar North Atlantic at
730 ~ 1300 m is based on the Mg/Ca of calcitic benthic foraminifera, especially *Cibicidoides* species
731 (Marcott et al., 2011). However, our new data adds to evidence that the Mg/Ca of *Cibicidoides*
732 species is strongly influenced by $\Delta[\text{CO}_3^{2-}]$ (Yu & Elderfield, 2008). Similarly, a Mg/Ca record of
733 the calcitic foraminifera *Globobulimina* in a core from ~ 1300 m in the eastern equatorial Atlantic
734 suggests temperatures and amplitude of BWT variability during the deglaciation (Weldeab et al.,
735 2016a) that are similar to those at the Florida Margin site (not shown). Although the Mg/Ca of this
736 infaunal genus appears to have a high sensitivity to BWT, making it less sensitive to changes in
737 $\Delta[\text{CO}_3^{2-}]$ (e.g., Weldeab et al., 2016b), evidence of temperatures at 1300 m as warm as the ~ 550
738 m at the Florida Margin site during HS1 and the YD should be confirmed. We do not rule out
739 warming during HS1 and the YD at these sites, but suggest that the BWT reconstructions may be
740 influenced by $\Delta[\text{CO}_3^{2-}]$ variations across these events and should be replicated using other
741 methods. Mg/Li of *U. peregrina* might be useful at sites where *H. elegans* are absent or scarce.

742 **Acknowledgments**

743 We thank WHOI Seafloor Samples Repository for curating the samples, and WHOI NOSAMS
744 for radiocarbon analyses. We thank K. Pietro, G. Swarr, P.-Y. Lin, A.-L. Chen, and H.-Y. Chen
745 for technical assistance, and two anonymous reviewers for helpful comments. This work was
746 funded by NSF (OCE-2114579, OCE-1811305, OCE-1558341, AGS-0936472, OCE-0750880),
747 Taiwan NSC Postdoctoral Fellowship (NSC 98-2917-I-564-132), Taiwan MOST (104-2628-M-
748 001-007-MY3 and 110-2116-M-001-013), a WHOI Independent Research and Development
749 Award and the Investment in Science Fund at WHOI.

750

751 **Open Research**

752 Published data used in this study are available in Bryan & Marchitto (2008, 2010), Huang et al. (2014),
753 Lacerra et al. (2019), Marchitto et al. (2018), Oppo et al. (2018), Umling et al. (2019), and Valley et al.
754 (2017, 2019, 2022). Data generated for this study are available in Oppo et al. (2023a). Data and R scripts
755 to reproduce Figs. 5 and 6 are available in Oppo et al. (2023b). Inter-laboratory calibration data are
756 available in the Supporting Information.

757

758 **References**

759 Bainbridge, A. E. (1981, February 14). GEOSECS Atlantic Expedition Vol. 1 Hydrographic
760 Data, U. S. Government Printing Office, Washington D. C. NSF. Retrieved from
761 http://epic.awi.de/34900/1/atlantic-expedition_vol1.pdf

762 Barker, S., Kiefer, T., & Elderfield, H. (2004). Temporal changes in North Atlantic circulation
763 constrained by planktonic foraminiferal shell weights. *Paleoceanography*, 19(3), 1–16.
764 <https://doi.org/10.1029/2004PA001004>

765 Barnola, J. M., Raynaud, D., Korotkevich, Y. S., & Lorius, C. (1987). Vostok ice core provides
766 160,000-year record of atmospheric CO₂. *Nature*, 329(6138), 408–414.
767 <https://doi.org/10.1038/329408a0>

768 Bentov, S., Brownlee, C., & Erez, J. (2009). The role of seawater endocytosis in the
769 biomineralization process in calcareous foraminifera. *Proceedings of the National Academy
770 of Sciences of the United States of America*, 106(51), 21500–21504.
771 <https://doi.org/10.1073/pnas.0906636106>

772 Bentov, S., & Erez, J. (2006). Impact of biomineralization processes on the Mg content of
773 foraminiferal shells: A biological perspective. *Geochemistry, Geophysics, Geosystems*, 7(1).

774 https://doi.org/10.1029/2005GC001015
775 Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T. F., Fischer, H., ...
776 Chappellaz, J. (2015). Revision of the EPICA Dome C CO₂ record from 800 to 600-kyr
777 before present. *Geophysical Research Letters*, 42(2), 542–549.
778 https://doi.org/10.1002/2014GL061957
779 Bertram, C. J., Elderfield, H., Shackleton, N. J., & MacDonald, J. A. (1995). Cadmium/calcium
780 and carbon isotope reconstructions of the glacial northeast Atlantic Ocean.
781 *Paleoceanography*, 10(3), 563–578. https://doi.org/10.1029/94PA03058
782 Blaauw, M., & Christeny, J. A. (2011). Flexible paleoclimate age-depth models using an
783 autoregressive gamma process. *Bayesian Analysis*, 6(3), 457–474.
784 https://doi.org/10.1214/11-BA618
785 Bond, G. C., W. S. Broecker, S. Johnsen, J. F. McManus, L. Labeyrie, J. Jouzel, & G. Bonani
786 (1993). Correlations between climate records from North Atlantic sediments and Greenland
787 ice. *Nature*, 365, 143–147.
788 Boyle, E. A. (1992). Cadmium and $\delta^{13}\text{C}$ paleochemical distributions during the stage 2 glacial
789 maximum. *Annual Reviews Planetary Science*, 20, 245–287.
790 Boyle, E. A., & Keigwin, L. D. (1985). Comparison of Atlantic and Pacific paleochemical
791 records for the last 215,000 years: changes in deep ocean circulation and chemical
792 inventories. *Earth and Planetary Science Letters*, 76(1–2), 135–150.
793 https://doi.org/10.1016/0012-821X(85)90154-2
794 Boyle, E. A. (1988). Cadmium: Chemical tracer of deepwater paleoceanography.
795 *Paleoceanography*, 3(4), 471–489. https://doi.org/10.1029/PA003i004p00471
796 Boyle, E. A., Labeyrie, L., & Duplessy, J.-C. (1995). Calcitic foraminiferal data confirmed by
797 cadmium in aragonitic *Hoeglundina*: Application to the Last Glacial Maximum in the
798 northern Indian Ocean. *Paleoceanography*, 10(5), 881–900.
799 https://doi.org/10.1029/95PA01625
800 Boyle, E., & Rosenthal, Y. (1996). Chemical Hydrography of the South Atlantic During the Last
801 Glacial Maximum: Cd vs. $\delta^{13}\text{C}$. In G. Wefer, W. H. Berger, G. Siedler, D. J. Webb (eds.)
802 *The South Atlantic: Present and Past Circulation* (pp. 423–443). Heidelberg, Germany:
803 Springer-Verlag Berlin.
804 Bryan, S. P., & Marchitto, T. M. (2010). Testing the utility of paleonutrient proxies Cd/Ca and
805 Zn/Ca in benthic foraminifera from thermocline waters. *Geochemistry Geophysics
806 Geosystems*, 11, Q01005. https://doi.org/10.1029/2009gc002780
807 Bryan, S. P., & Marchitto, T. M. (2008). Mg/Ca-temperature proxy in benthic foraminifera: New
808 calibrations from the Florida Straits and a hypothesis regarding Mg/Li. *Paleoceanography*,
809 23(2), 1–17. https://doi.org/10.1029/2007PA001553
810 Came, R. E., Oppo, D. W., Curry, W. B., & Lynch-Stieglitz, J. (2008). Deglacial variability in
811 the surface return flow of the Atlantic meridional overturning circulation.
812 *Paleoceanography*, 23(1). https://doi.org/10.1029/2007PA001450
813 Corliss, B. H. (1991). Morphology and microhabitat preferences of benthic foraminifera from the
814 northwest Atlantic Ocean. *Marine Micropaleontology*, 17(3–4), 195–236.
815 https://doi.org/10.1016/0377-8398(91)90014-W
816 Dahl, K. A., Broccoli, A. J., & Stouffer, R. J. (2005). Assessing the role of North Atlantic
817 freshwater forcing in millennial scale climate variability: A tropical Atlantic perspective.
818 *Climate Dynamics*, 24(4), 325–346. https://doi.org/10.1007/s00382-004-0499-5
819 de Nooijer, L. J., Toyofuku, T., & Kitazato, H. (2009). Foraminifera promote calcification by

820 elevating their intracellular pH. *Proceedings of the National Academy of Sciences of the*
 821 *United States of America*, 106(36), 15374–15378. <https://doi.org/10.1073/pnas.0904306106>

822 Doss, W., Marchitto, T. M., Eagle, R., Rashid, H., & Tripati, A. (2018). Deconvolving the
 823 saturation state and temperature controls on benthic foraminiferal Li/Ca, based on downcore
 824 paired B/Ca measurements and coretop compilation. *Geochimica et Cosmochimica Acta*.
 825 <https://doi.org/10.1016/j.gca.2018.02.029>

826 Duteil, O., Koeve, W., Oschlies, A., Aumont, O., Bianchi, D., Bopp, L., ... Segschneider, J.
 827 (2012). Preformed and regenerated phosphate in ocean general circulation models: can right
 828 total concentrations be wrong? *Biogeosciences*, 9(5), 1797–1807.
 829 <https://doi.org/10.5194/bg-9-1797-2012>

830 Elderfield, H. (1996). A biomineralization model for the incorporation of trace elements into
 831 foraminiferal calcium carbonate. *Earth and Planetary Science Letters*, 142(3–4), 409–423.
 832 [https://doi.org/10.1016/0012-821X\(96\)00105-7](https://doi.org/10.1016/0012-821X(96)00105-7)

833 Elderfield, H., Greaves, M., Barker, S., Hall, I. R., Tripati, A., Ferretti, P., ... Daunt, C. (2010).
 834 A record of bottom water temperature and seawater $\delta^{18}\text{O}$ for the Southern Ocean over the
 835 past 440kyr based on Mg/Ca of benthic foraminiferal *Uvigerina* spp. *Quaternary Science*
 836 *Reviews*, 29(1), 160–169. <https://doi.org/10.1016/j.quascirev.2009.07.013>

837 Elderfield, H., Yu, J., Anand, P., Kiefer, T., & Nyland, B. (2006). Calibrations for benthic
 838 foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis. *Earth and*
 839 *Planetary Science Letters*, 250(3–4), 633–649. <https://doi.org/10.1016/j.epsl.2006.07.041>

840 Erez, J. (2003). The Source of Ions for Biomineralization in Foraminifera and Their Implications
 841 for Paleoceanographic Proxies. *Rev. Mineral. Geochem.*, 54, 115–149.

842 Fontanier, C., MacKensen, A., Jorissen, F. J., Anschutz, P., Licari, L., & Griveaud, C. (2006).
 843 Stable oxygen and carbon isotopes of live benthic foraminifera from the Bay of Biscay:
 844 Microhabitat impact and seasonal variability. *Marine Micropaleontology*, 58(3), 159–183.
 845 <https://doi.org/10.1016/j.marmicro.2005.09.004>

846 Gaetani, G. A., & Cohen, A. L. (2006). Element partitioning during precipitation of aragonite
 847 from seawater: A framework for understanding paleoproxies. *Geochimica et Cosmochimica*
 848 *Acta*, 70(18), 4617–4634. <https://doi.org/10.1016/j.gca.2006.07.008>

849 Garcia, H. E., Weathers, W., Paver, C. R., Smolyar, I., Boyer, T. P., Locarnini, R. A., Zweng, M.
 850 M., Mishonov, A. V., Baranova, O. K., Seidov, D., & Reagan, J. R. (2018). World Ocean
 851 Atlas 2018, Volume 4: Dissolved Inorganic Nutrients. A. Mishonov Technical Ed.; NOAA
 852 Atlas NESDIS 84, 35pp.

853 Gebbie, G. (2014). How much did Glacial North Atlantic Water shoal? *Paleoceanography*,
 854 29(3), 190–209. <https://doi.org/10.1002/2013PA002557>

855 Gu, S., Liu, Z., Zhang, J., Rempfer, J., Joos, F., & Oppo, D. W. (2017). Coherent Response of
 856 Antarctic Intermediate Water and Atlantic Meridional Overturning Circulation During the
 857 Last Deglaciation: Reconciling Contrasting Neodymium Isotope Reconstructions From the
 858 Tropical Atlantic. *Paleoceanography*, 32(10). <https://doi.org/10.1002/2017PA003092>

859 Gu, S., Liu, Z., Oppo, D. W., Lynch-Stieglitz, J., Jahn, A., Zhang, J., ... Wu, L. (2021).
 860 Remineralization dominating the $\delta^{13}\text{C}$ decrease in the mid-depth Atlantic during the last
 861 deglaciation. *Earth and Planetary Science Letters*, 571, 117106.
 862 <https://doi.org/10.1016/j.epsl.2021.117106>

863 Hall, J. M., & Chan, L. H. (2004). Li/Ca in multiple species of benthic and planktonic
 864 foraminifera: Thermocline, latitudinal, and glacial-interglacial variation. *Geochimica et*
 865 *Cosmochimica Acta*, 68(3), 529–545. [https://doi.org/10.1016/S0016-7037\(00\)00451-4](https://doi.org/10.1016/S0016-7037(00)00451-4)

866 He, C., Liu, Z., Zhu, J., Zhang, J., Gu, S., Otto-Bliesner, B. L., ... Sun, J. (2020). North Atlantic
 867 subsurface temperature response controlled by effective freshwater input in “Heinrich”
 868 events. *Earth and Planetary Science Letters*, 539, 116247.
 869 <https://doi.org/10.1016/j.epsl.2020.116247>

870 Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin, W. E. N., ... Skinner, L.
 871 C. (2020). Marine20 - The Marine Radiocarbon Age Calibration Curve (0-55,000 cal BP).
 872 *Radiocarbon*, 62(4), 779–820. <https://doi.org/10.1017/RDC.2020.68>

873 Hines, S. K. V., Eiler, J. M., Southon, J. R., & Adkins, J. F. (2019). Dynamic Intermediate
 874 Waters Across the Late Glacial Revealed by Paired Radiocarbon and Clumped Isotope
 875 Temperature Records. *Paleoceanography and Paleoclimatology*, 34(7), 1074–1091.
 876 <https://doi.org/10.1029/2019PA003568>

877 Huang, K.-F., Oppo, D. W., & Curry, W. B. (2014). Decreased influence of Antarctic
 878 intermediate water in the tropical Atlantic during North Atlantic cold events. *Earth and*
 879 *Planetary Science Letters*, 389. <https://doi.org/10.1016/j.epsl.2013.12.037>

880 Huang, K.-F., You, C.-F., Lin, H.-L., & Shieh, Y.-T. (2008). In situ calibration of Mg/Ca ratio in
 881 planktonic foraminiferal shell using time series sediment trap: A case study of intense
 882 dissolution artifact in the South China Sea. *Geochemistry, Geophysics, Geosystems*, 9(4),
 883 Q04016. <https://doi.org/10.1029/2007GC001660>

884 Key, R.M., Olsen, van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T.,
 885 Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F. F. & Suzuki, T.
 886 (2015). Global Ocean Data Analysis Project, Version 2 (GLODAPv2), ORNL/CDIAC-162, NDP-
 887 093. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department
 888 of Energy, Oak Ridge, Tennessee. [doi:10.3334/CDIAC/OTG.NDP093_GLODAPv2](https://doi.org/10.3334/CDIAC/OTG.NDP093_GLODAPv2)

889 Kindler, P., Guillevic, M., Baumgartner, M., Schwander, J., Landais, A., & Leuenberger, M. (2014).
 890 Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core. *Climate of the Past*,
 891 10(2), 887–902. <https://doi.org/10.5194/cp-10-887-2014>

892 Kroopnick, P. M. (1985). The distribution of ^{13}C of ΣCO_2 in the world oceans. *Deep Sea*
 893 *Research Part A. Oceanographic Research Papers*, 32(1), 57–84.
 894 [https://doi.org/10.1016/0198-0149\(85\)90017-2](https://doi.org/10.1016/0198-0149(85)90017-2)

895 Lacerra, M., Lund, D. C., Gebbie, G., Oppo, D. W., Yu, J., Schmittner, A., & Umling, N. E.
 896 (2019). Less Remineralized Carbon in the Intermediate-Depth South Atlantic During
 897 Heinrich Stadial 1. *Paleoceanography and Paleoclimatology*, 34(7).
 898 <https://doi.org/10.1029/2018PA003537>

899 Lear, C. H., & Rosenthal, Y. (2006). Benthic foraminiferal Li/Ca: Insights into Cenozoic
 900 seawater carbonate saturation state. *Geology*, 34(11), 985–988.
 901 <https://doi.org/10.1130/G22792A.1>

902 Lear, C. H., Rosenthal, Y., & Slowey, N. (2002). Benthic foraminiferal Mg/Ca-
 903 paleothermometry: A revised core-top calibration. *Geochimica et Cosmochimica Acta*,
 904 66(19), 3375–3387. [https://doi.org/10.1016/S0016-7037\(02\)00941-9](https://doi.org/10.1016/S0016-7037(02)00941-9)

905 Lewis, E. R., & Wallace, D. W. R. (1998) *Program Developed for CO₂ System Calculations*.
 906 United States. <https://doi.org/10.15485/1464255>

907 Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P. U., ... Cheng, J. (2009).
 908 Transient simulation of last deglaciation with a new mechanism for Bolling-Allerod
 909 warming. *Science*, 325(5938), 310–314. <https://doi.org/10.1126/science.1171041>

910 Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M. M., Garcia, H. E.,
 911 Reagan, J. R., Seidov, D., Weathers, K., Paver, C. R. & Smolyar, I. (2018). *World Ocean*
 912 *Atlas 2018, Volume 1: Temperature*. A. Mishonov Technical Ed.; NOAA Atlas NESDIS

913 81, 52pp.

914 Lund, D. C., Tessin, A. C., Hoffman, J. L., & Schmittner, A. (2015). Southwest Atlantic water
 915 mass evolution during the last deglaciation, 477–494.
 916 <https://doi.org/10.1002/2014PA002657>.Received

917 Lynch-Stieglitz, J., Schmidt, M. W., Gene Henry, L., Curry, W. B., Skinner, L. C., Mulitza, S.,
 918 ... Chang, P. (2014). Muted change in Atlantic overturning circulation over some glacial-
 919 aged Heinrich events. *Nature Geoscience*, 7(2), 144–150. <https://doi.org/10.1038/ngeo2045>

920 Lynch-Stieglitz, J., Valley, S. G., & Schmidt, M. W. (2019). Temperature-dependent ocean-
 921 atmosphere equilibration of carbon isotopes in surface and intermediate waters over the
 922 deglaciation. *Earth and Planetary Science Letters*, 506, 466–475.
 923 <https://doi.org/10.1016/j.epsl.2018.11.024>

924 Marchitto Jr., T. M., Curry, W. B., & Oppo, D. W. (2000). Zinc concentrations in benthic
 925 foraminifera reflect seawater chemistry. *Paleoceanography*, 15(3).
 926 <https://doi.org/10.1029/1999PA000420>

927 Marchitto, T. M., Bryan, S. P., Doss, W., McCulloch, M. T., & Montagna, P. (2018). A simple
 928 biomineralization model to explain Li, Mg, and Sr incorporation into aragonitic
 929 foraminifera and corals. *Earth and Planetary Science Letters*, 481, 20–29.
 930 <https://doi.org/10.1016/j.epsl.2017.10.022>

931 Marchitto, Thomas M. (2006). Precise multielemental ratios in small foraminiferal samples
 932 determined by sector field ICP-MS. *Geochemistry, Geophysics, Geosystems*, 7(5), Q05P13.
 933 <https://doi.org/10.1029/2005GC001018>

934 Marchitto, T. M., & Broecker, W. S. (2006). Deep water mass geometry in the glacial Atlantic
 935 Ocean: A review of constraints from the paleonutrient proxy Cd/Ca. *Geochemistry,*
 936 *Geophysics, Geosystems*, 7(12). <https://doi.org/10.1029/2006GC001323>

937 Marcott, S. A., Clark, P. U., Padman, L., Klinkhammer, G. P., Springer, S. R., Liu, Z., ...
 938 Schmittner, A. (2011). Ice-shelf collapse from subsurface warming as a trigger for Heinrich
 939 events. *Proceedings of the National Academy of Sciences of the United States of America*,
 940 108(33), 13415–13419. <https://doi.org/10.1073/pnas.1104772108>

941 Marriott, C. S., Henderson, G. M., Belshaw, N. S., & Tudhope, A. W. (2004). Temperature
 942 dependence of $\delta^{77}\text{Li}$, $\delta^{44}\text{Ca}$ and Li/Ca during growth of calcium carbonate. *Earth and*
 943 *Planetary Science Letters*, 222(2), 615–624. <https://doi.org/10.1016/j.epsl.2004.02.031>

944 Martin, P. A., Lea, D. W., Rosenthal, Y., Shackleton, N. J., Sarnthein, M., & Papenfuss, T.
 945 (2002). Quaternary deep sea temperature histories derived from benthic foraminiferal
 946 Mg/Ca. *Earth and Planetary Science Letters*, 198(1–2), 193–209.
 947 [https://doi.org/10.1016/S0012-821X\(02\)00472-7](https://doi.org/10.1016/S0012-821X(02)00472-7)

948 Max, L., Nürnberg, D., Chiessi, C. M., Lenz, M. M., & Mulitza, S. (2022). Subsurface ocean
 949 warming preceded Heinrich Events. *Nature Communications*, 13(1), 4217.
 950 <https://doi.org/10.1038/s41467-022-31754-x>

951 McCorkle, D. C., Martin, P. A., Lea, D. W., & Klinkhammer, G. P. (1995). Evidence of a
 952 dissolution effect on benthic foraminiferal shell chemistry: $\delta^{13}\text{C}$, Cd/Ca, Ba/Ca, and Sr/Ca
 953 results from the Ontong Java Plateau. *Paleoceanography*, 10(4), 699–714.
 954 <https://doi.org/10.1029/95PA01427>

955 McKay, N. P., Emile-Geay, J., & Khider, D. (2021). geoChronR – an R package to model,
 956 analyze, and visualize age-uncertain data. *Geochronology*, 3(1), 149–169.
 957 <https://doi.org/10.5194/gchron-3-149-2021>

958 McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D., & Brown-Leger, S. (2004).

959 Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate
960 changes. *Nature*, 428(6985), 834–837. <https://doi.org/10.1038/nature02494>

961 Menzel, L., Spence, P., & England, M. H. (2015). Contribution of enhanced Antarctic Bottom
962 Water formation to Antarctic warm events and millennial-scale atmospheric CO₂ increase.
963 *Earth and Planetary Science Letters*, 413, 37–50. <https://doi.org/10.1016/j.epsl.2014.12.050>

964 Middag, R., van Heuven, S. M. A. C., Bruland, K. W., & de Baar, H. J. W. (2018). The
965 relationship between cadmium and phosphate in the Atlantic Ocean unravelled. *Earth and*
966 *Planetary Science Letters*, 492, 79–88. <https://doi.org/10.1016/j.epsl.2018.03.046>

967 Ng, H. C., Robinson, L. F., McManus, J. F., Mohamed, K. J., Jacobel, A. W., Ivanovic, R. F., ...
968 Chen, T. (2018). Coherent deglacial changes in western Atlantic Ocean circulation. *Nature*
969 *Communications*, 9(1), 2947. <https://doi.org/10.1038/s41467-018-05312-3>

970 Nürnberg, D., Bijma, J., & Hemleben, C. (1996). Assessing the reliability of magnesium in
971 foraminiferal calcite as a proxy for water mass temperatures. *Geochimica et Cosmochimica*
972 *Acta*, 60(5), 803–814. [https://doi.org/10.1016/0016-7037\(95\)00446-7](https://doi.org/10.1016/0016-7037(95)00446-7)

973 Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C., Kozyr,
974 A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Pérez,
975 F. F. & Suzuki, T. (2016) The Global Ocean Data Analysis Project version 2 (GLODAPv2)
976 – an internally consistent data product for the world ocean, *Earth Syst. Sci. Data*, 8, 297–
977 323. [doi:10.5194/essd-8-297-2016](https://doi.org/10.5194/essd-8-297-2016)

978 Oomori, T., Kaneshima, H., Maezato, Y., & Kitano, Y. (1987). Distribution coefficient of Mg²⁺
979 ions between calcite and solution at 10–50°C. *Marine Chemistry*, 20(4), 327–336.
980 [https://doi.org/10.1016/0304-4203\(87\)90066-1](https://doi.org/10.1016/0304-4203(87)90066-1)

981 Oppo, D. W., Gebbie, G., Huang, K.-F., Curry, W. B., Marchitto, T. M., & Pietro, K. R. (2018).
982 Data Constraints on Glacial Atlantic Water Mass Geometry and Properties.
983 *Paleoceanography and Paleoclimatology*, 33(9). <https://doi.org/10.1029/2018PA003408>

984 Oppo, D. W., Lu, W., Huang, K.-F., Umling, N. E., Guo, W., Yu, J., Curry, W. B., Marchitto, T.
985 M., & Wang, S. (2023a). Demerara Rise d13C, d18O, Trace Metal and Reconstructed
986 Bottom Water Temperature Data Over the Past 20 ka. [Dataset]. NOAA National Centers
987 for Environmental Information. <https://doi.org/10.25921/71sa-8v70>

988 Oppo, D. W., Lu, W., Huang, K.-F., Umling, N. E., Guo, W., Yu, J., Curry, W. B., Marchitto, T.
989 M., & Wang, S. (2023b). Deglacial temperature and carbonate saturation state variability in
990 the tropical Atlantic at Antarctic Intermediate Water depths [Dataset]. *Zenodo*.
991 <https://doi.org/10.5281/zenodo.8229878>

992 Pedro, J. B., Jochum, M., Buijzer, C., He, F., Barker, S., & Rasmussen, S. O. (2018). Beyond the
993 bipolar seesaw: Toward a process understanding of interhemispheric coupling. *Quaternary*
994 *Science Reviews*, 192, 27–46. <https://doi.org/10.1016/j.quascirev.2018.05.005>

995 Poggemann, D.-W., Hathorne, E. C., Nürnberg, D., Frank, M., Bruhn, I., Reißig, S., & Bahr, A.
996 (2017). Rapid deglacial injection of nutrients into the tropical Atlantic via Antarctic
997 Intermediate Water. *Earth and Planetary Science Letters*, 463, 118–126.
998 <https://doi.org/10.1016/j.epsl.2017.01.030>

999 Poggemann, D. W., Nürnberg, D., Hathorne, E. C., Frank, M., Rath, W., Reißig, S., & Bahr, A.
1000 (2018). Deglacial Heat Uptake by the Southern Ocean and Rapid Northward Redistribution
1001 Via Antarctic Intermediate Water. *Paleoceanography and Paleoclimatology*, 33(11), 1292–
1002 1305. <https://doi.org/10.1029/2017PA003284>

1003 Rae, J. W. B., Foster, G. L., Schmidt, D. N., & Elliott, T. (2011). Boron isotopes and B/Ca in
1004 benthic foraminifera: Proxies for the deep ocean carbonate system. *Earth and Planetary*

1005 *Science Letters*, 302(3–4), 403–413. <https://doi.org/10.1016/j.epsl.2010.12.034>

1006 Rafter, P. A., Gray, W. R., Hines, S. K. V., Burke, A., Costa, K. M., Gottschalk, J., ... DeVries,
1007 T. (2022). Global reorganization of deep-sea circulation and carbon storage after the last ice
1008 age. *Science Advances*, 8(46), 1–10. <https://doi.org/10.1126/sciadv.abq5434>

1009 Rosenthal, Y., Lear, C. H., Oppo, D. W., & Linsley, B. K. (2006). Temperature and carbonate
1010 ion effects on Mg/Ca and Sr/Ca ratios in benthic foraminifera: Aragonitic species
1011 *Hoeglundina elegans*. *Paleoceanography*, 21(1). <https://doi.org/10.1029/2005PA001158>

1012 Rosenthal, Yair, Field, M. P., & Sherrell, R. M. (1999). Precise Determination of Element /
1013 Calcium Ratios in Calcareous Samples Using Sector Field Inductively Coupled Plasma
1014 Mass Spectrometry. *Analytical Chemistry*, 71(15), 3248–3253.

1015 Sarmiento, J. L., Gruber, N., Brzezinski, M. A., & Dunne, J. P. (2004). High-latitude controls of
1016 thermocline nutrients and low latitude biological productivity. *Nature*, 427(6969), 56–60.
1017 <https://doi.org/10.1038/nature02127>

1018 Schlitzer, R. (2015). Ocean Data View. Available on <https://odv.awi.de/> (2015).

1019 Schmidt, M. W., Chang, P., Hertzberg, J. E., Them, T. R., Ji, L., J., L., & Otto-Bliesner, B. L.
1020 (2012). Impact of abrupt deglacial climate change on tropical Atlantic subsurface
1021 temperatures. *Proceedings of the National Academy of Sciences of the United States of
1022 America*, 109(36), 14348–14352. <https://doi.org/10.1073/pnas.1207806109>

1023 Schmittner, A., & Lund, D. C. (2015). Early deglacial Atlantic overturning decline and its role in
1024 atmospheric CO₂ rise inferred from carbon isotopes ($\delta^{13}\text{C}$). *Climate of the Past*, 11(2), 135–
1025 152. <https://doi.org/10.5194/cp-11-135-2015>

1026 Seierstad, I. K., Abbott, P. M., Bigler, M., Blunier, T., Bourne, A. J., Brook, E., ... Vinther, B.
1027 M. (2014). Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice
1028 cores for the past 104ka reveal regional millennial-scale $\delta^{18}\text{O}$ gradients with possible
1029 Heinrich event imprint. *Quaternary Science Reviews*, 106, 29–46.
1030 <https://doi.org/10.1016/j.quascirev.2014.10.032>

1031 Szuts, Z. B., & Meinen, C. S. (2017). Florida Current Salinity and Salinity Transport: Mean and
1032 Decadal Changes. *Geophysical Research Letters*, 44(20), 10,495–10,503.
1033 <https://doi.org/10.1002/2017GL074538>

1034 Thiagarajan, N., Subhas, A. V., Southon, J. R., Eiler, J. M., & Adkins, J. F. (2014). Abrupt pre-
1035 Bolling-Allerod warming and circulation changes in the deep ocean. *Nature*, 511(7507),
1036 75–78. <https://doi.org/10.1038/nature13472>

1037 Tuerena, R. E., Ganeshram, R. S., Geibert, W., Fallick, A. E., Dougans, J., Tait, A., ...
1038 Woodward, E. M. S. (2015). Global Biogeochemical Cycles, 1830–1844.
1039 <https://doi.org/10.1002/2015GB005164>. Received

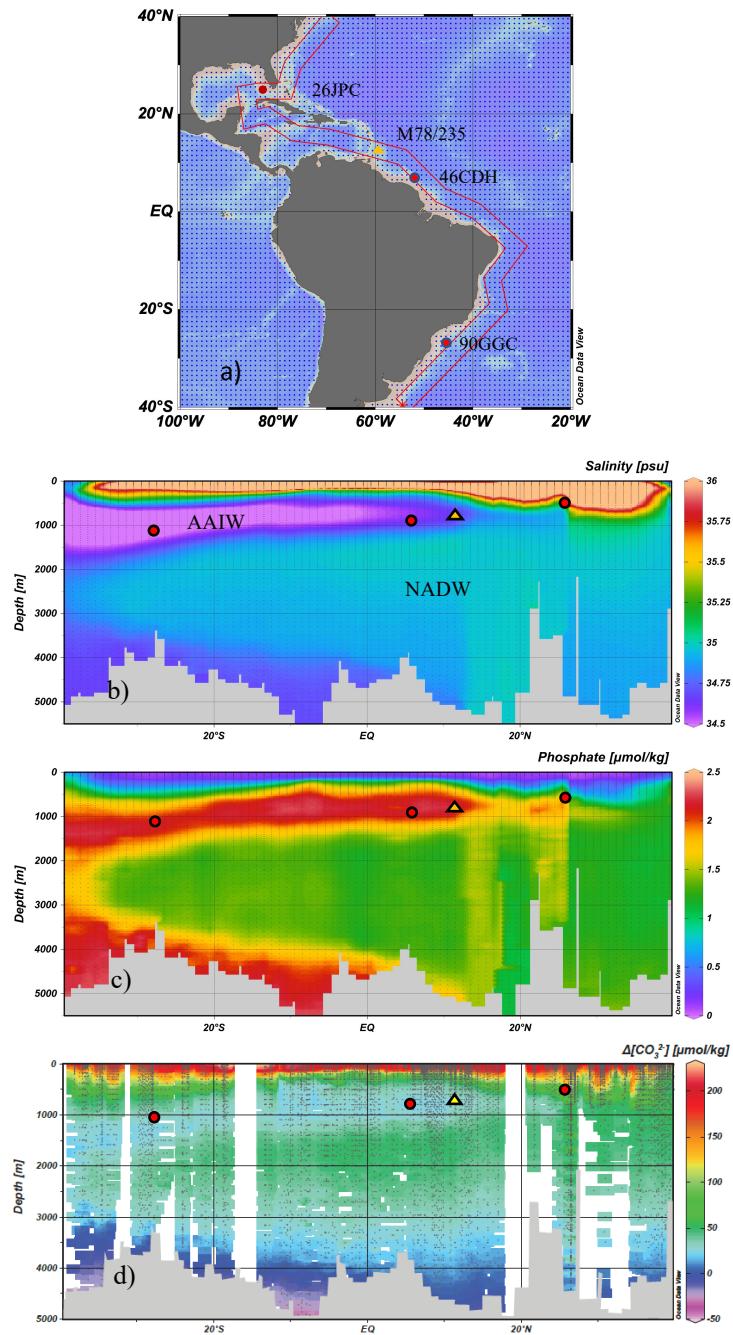
1040 Umling, N. E., Oppo, D. W., Chen, P., Yu, J., Liu, Z., Yan, M., ... Toledo, F. A. L. (2019).
1041 Atlantic Circulation and Ice Sheet Influences on Upper South Atlantic Temperatures During
1042 the Last Deglaciation. *Paleoceanography and Paleoclimatology*, 34(6).
1043 <https://doi.org/10.1029/2019PA003558>

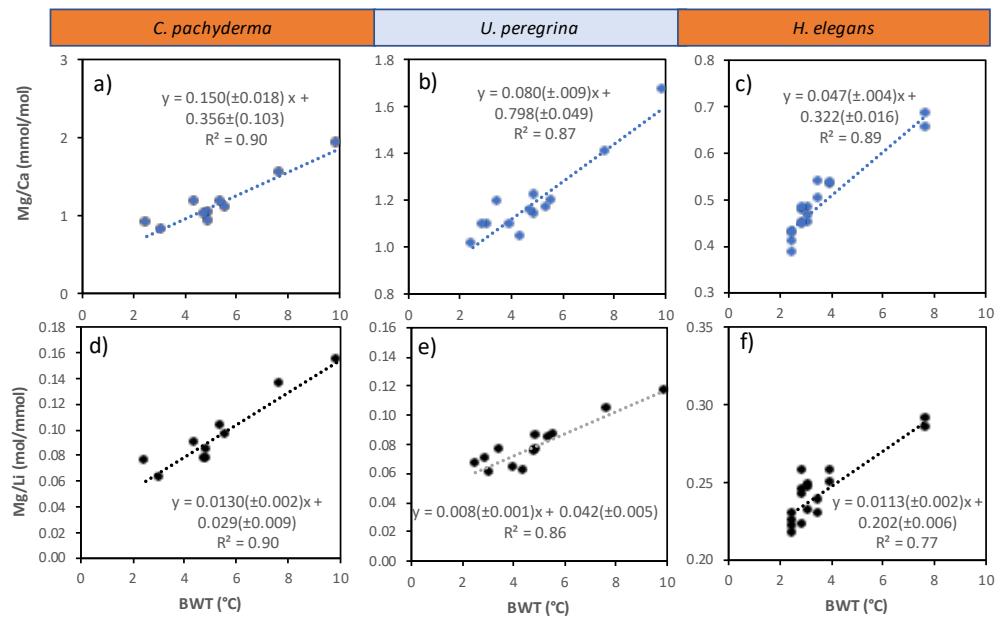
1044 Valley, S. G., Lynch-Stieglitz, J., & Marchitto, T. M. (2019). Intermediate water circulation
1045 changes in the Florida Straits from a 35 ka record of Mg/Li-derived temperature and Cd/Ca-
1046 derived seawater cadmium. *Earth and Planetary Science Letters*, 523, 115692.
1047 <https://doi.org/10.1016/j.epsl.2019.06.032>

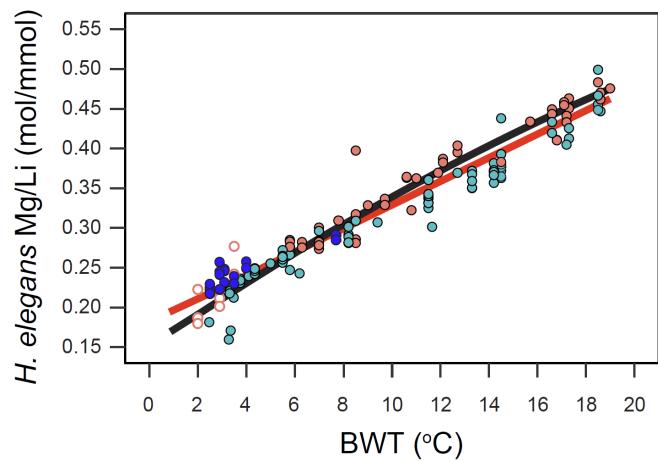
1048 Valley, S. G., Lynch-Stieglitz, J., Marchitto, T. M., & Oppo, D. W. (2022). Seawater Cadmium
1049 in the Florida Straits Over the Holocene and Implications for Upper AMOC Variability.
1050 *Paleoceanography and Paleoclimatology*, 37(5), 1–12.

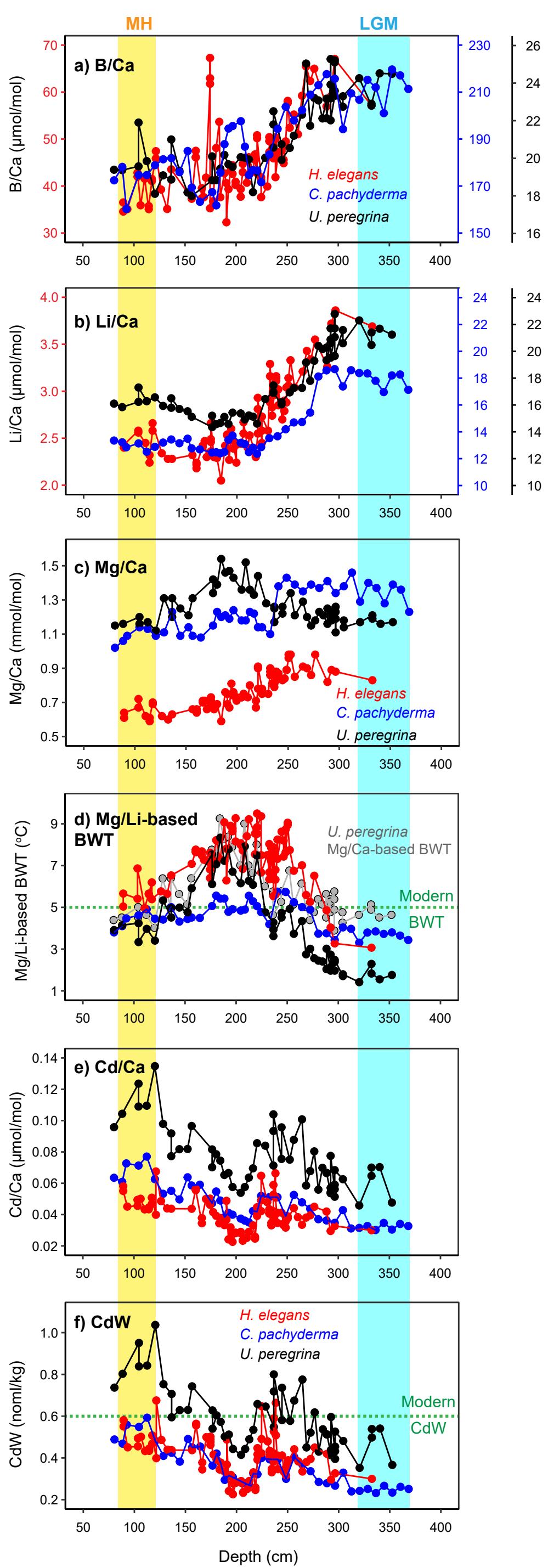
1051 https://doi.org/10.1029/2021PA004379
 1052 Valley, S., Lynch-Stieglitz, J., & Marchitto, T. M. (2017). Timing of Deglacial AMOC
 1053 Variability From a High-Resolution Seawater Cadmium Reconstruction.
 1054 *Paleoceanography*, 32(11), 1195–1203. https://doi.org/10.1002/2017PA003099
 1055 Weldeab, S., Arce, A., & Kasten, S. (2016). Mg/Ca- ΔCO_3^{2-} pore water-temperature calibration for
 1056 *Globobulimina* spp.: A sensitive paleothermometer for deep-sea temperature reconstruction.
 1057 *Earth and Planetary Science Letters*, 438, 95–102.
 1058 https://doi.org/10.1016/j.epsl.2016.01.009
 1059 Weldeab, S., Friedrich, T., Timmermann, A., & Schneider, R. R. (2016). Strong middepth
 1060 warming and weak radiocarbon imprints in the equatorial Atlantic during Heinrich 1 and
 1061 Younger Dryas. *Paleoceanography*, 31(8), 1070–1082.
 1062 https://doi.org/10.1002/2016PA002957
 1063 Xie, R. C., Marcantonio, F., & Schmidt, M. W. (2012). Deglacial variability of Antarctic
 1064 Intermediate Water penetration into the North Atlantic from authigenic neodymium isotope
 1065 ratios. *Paleoceanography*, 27(3), 1–12. https://doi.org/10.1029/2012PA002337
 1066 Yu, J., Menzel, L., Jin, Z. D., Thorneley, D. J. R., Foster, G. L., Rohling, E. J., ... Roberts, A.
 1067 P. (2019). More efficient North Atlantic carbon pump during the Last Glacial Maximum.
 1068 *Nature Communications*, 10(1), 1–11. https://doi.org/10.1038/s41467-019-10028-z
 1069 Yu, J., Broecker, W. S., Elderfield, H., Jin, Z., McManus, J., & Zhang, F. (2010). Loss of carbon
 1070 from the deep sea since the last glacial maximum. *Science*, 330(6007), 1084–1087.
 1071 https://doi.org/10.1126/science.1193221
 1072 Yu, J., & Elderfield, H. (2007). Benthic foraminiferal B/Ca ratios reflect deep water carbonate
 1073 saturation state. *Earth and Planetary Science Letters*, 258(1–2), 73–86.
 1074 https://doi.org/10.1016/j.epsl.2007.03.025
 1075 Yu, J., & Elderfield, H. (2008). Mg/Ca in the benthic foraminifera *Cibicidoides wuellerstorfi* and
 1076 *Cibicidoides mundulus*: Temperature versus carbonate ion saturation. *Earth and Planetary
 1077 Science Letters*, 276(1–2), 129–139. https://doi.org/10.1016/j.epsl.2008.09.015
 1078 Yu, J., Elderfield, H., & Piotrowski, A. M. (2008). Seawater carbonate ion- $\delta^{13}\text{C}$ systematics and
 1079 application to glacial-interglacial North Atlantic ocean circulation. *Earth and Planetary
 1080 Science Letters*, 271(1–4), 209–220. https://doi.org/10.1016/j.epsl.2008.04.010
 1081 Yu, J., Oppo, D. W., Jin, Z., Lacerra, M., Ji, X., Umling, N. E., ... Xu, C. (2022). Millennial and
 1082 centennial CO₂ release from the Southern Ocean during the last deglaciation. *Nature
 1083 Geoscience*, 15(4), 293–299. https://doi.org/10.1038/s41561-022-00910-9
 1084 Zhang, J., Liu, Z., Brady, E. C., Jahn, A., Oppo, D. W., Clark, P. U., ... Lindsay, K. (2017).
 1085 Asynchronous warming and oxygen isotope evolution of deep Atlantic water masses during
 1086 the last deglaciation. *Proceedings of the National Academy of Sciences*, 114(42), 11075–
 1087 11080. https://doi.org/10.1073/pnas.1704512114
 1088 Zhu, J., Liu, Z., Zhang, X., Eisenman, I., & Liu, W. (2014). Linear weakening of the AMOC in
 1089 response to receding glacial ice sheets in CCSM3. *Geophysical Research Letters*, 41(17),
 1090 6252–6258. https://doi.org/10.1002/2014GL060891
 1091
 1092 Figure Captions.
 1093 Figure 1. Location of cores discussed. (a) In red, from south to north, Brazil Margin site KNR159–
 1094 5–90GGC (e. g., Lacerra et al., 2019; Umling et al., 2019), Demerara Rise site KNR197-3-46CDH
 1095 (Huang et al., 2014; Oppo et al., 2018; this study), and Florida Strait site KNR166-2-26JPC (e.g.,
 1096 Lynch-Stieglitz et al., 2014; Valley et al., 2017, 2019). Tobago Basin site M78/235-1 is shown in

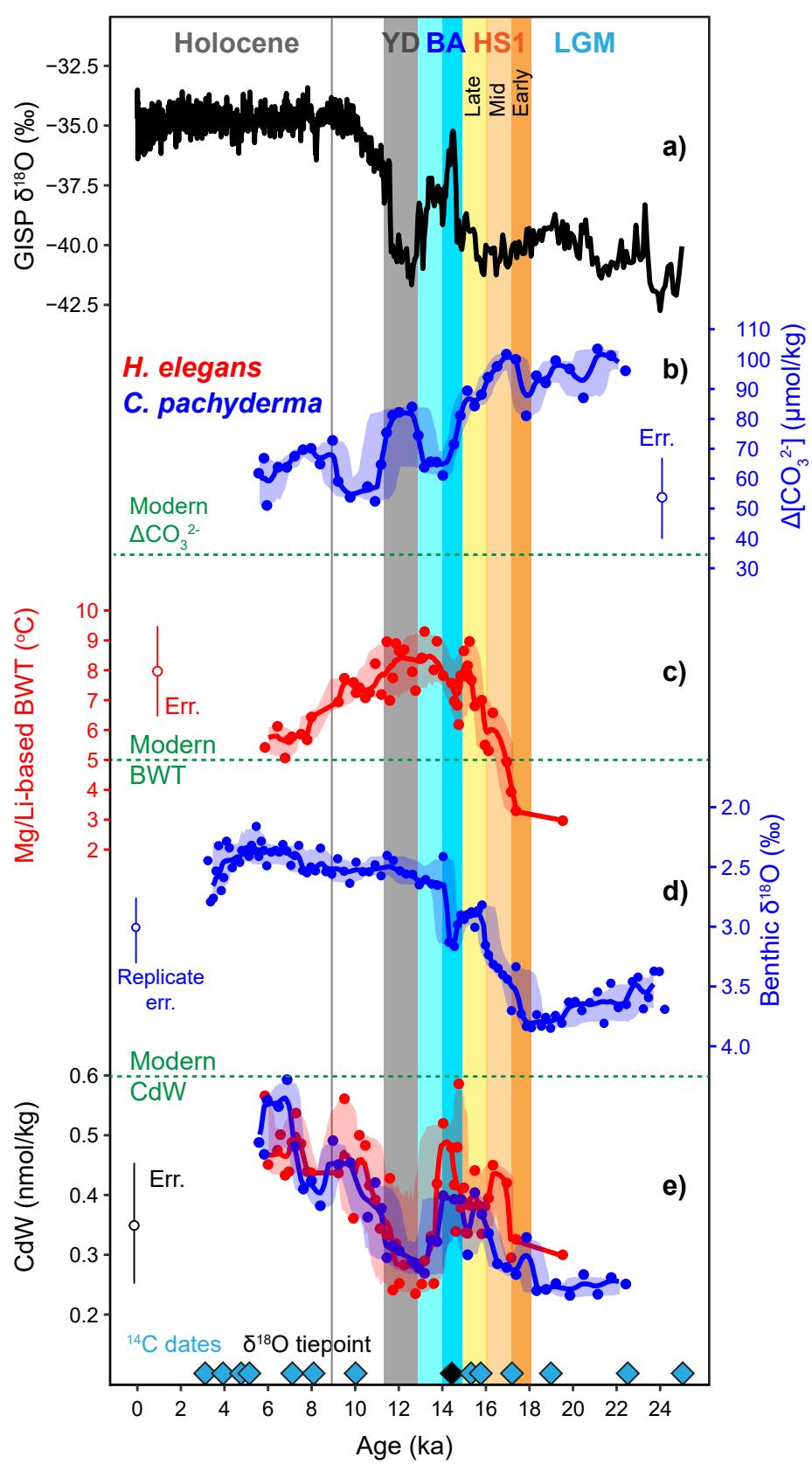
1097 yellow (Poggemann et al., 2017, 2018). (b-d) Salinity, phosphate, and $\Delta[\text{CO}_3^{2-}]$ sections versus
1098 latitude along western Atlantic transect (top). In b, the cores of the low and high salinity water
1099 masses are labelled as AAIW and NADW, respectively. Hydrographic data are from the World
1100 Ocean Circulation Experiment (Garcia et al., 2018; Locarnini et al., 2018) and from GLODAP
1101 (Olsen et al., 2018; Key et al., 2018). Carbonate saturation state was calculated with CO2SYS
1102 (Lewis & Wallace, 1998). Figure was made in Ocean Data View (Schlitzer, 2015).


1103
1104 Figure 2. Core-top relationships between BWT and Mg/Ca (a-c) and Mg/Li (d-f). Panels a) and d)
1105 are for *C. pachyderma*, b) and e) are for *U. peregrina* and c) and f) are for *H. elegans*. Li/Ca versus
1106 BWT and Mg/Ca, Li/Ca, and Mg/Li versus saturation state are shown in Figure S6 in Supporting
1107 Information SI. *H. elegans* data are corrected for lab offsets as discussed in Supporting
1108 Information SI.


1109
1110 Figure 3. Relationship between bottom water temperature (BWT) and core-top *H. elegans* Mg/Li
1111 data generated at INSTAAR (red) (Bryan & Marchitto, 2008; Marchitto et al., 2018; Valley et al.
1112 2019; 2022) and WHOI (Demerara Rise in blue, other sites in cyan; this study, Umling et al., 2019)
1113 (Data Set S3). Solid black line indicates calibration from Marchitto et al. (2018). Red line shows
1114 linear calibration from this study ($\text{Mg/Li} = 0.1794 + 0.01484 \times \text{BWT}$). Gravity or piston core
1115 samples that were not dated or with age > 1 ka (open symbols) were excluded from linear
1116 calibration.


1117
1118 Figure 4. Downcore records vs. depth at 46CDH (Data Set S5 in Supporting Information S1). Blue,
1119 black, and red correspond to *C. pachyderma*, *U. peregrina*, and *H. elegans*, respectively. In panel
1120 d, BWT reconstructions are based on Mg/Li, except for the record in grey, which is based on the
1121 Mg/Ca of *U. peregrina*. For *U. peregrina* and *C. pachyderma*, local calibrations are used. For *H.*
1122 *elegans*, the new linear calibration is used. In panel f, CdW is estimated using distribution
1123 coefficients from Boyle (1992) and Boyle et al. (1995). In a and b, axes for *H. elegans* and the
1124 calcitic foraminifera are shown on the left and right, respectively. Modern seawater values are
1125 shown in d and c. The depths of the LGM and MH (7-6 ka) are shaded.


1126
1127 Figure 5. Records from KNR197-3-46CDH compared to (a) Greenland $\delta^{18}\text{O}$ (Seierstad et al.,
1128 2014). (b) $\Delta[\text{CO}_3^{2-}]$ reconstruction, (c) BWT reconstruction, (e) benthic $\delta^{18}\text{O}$, and (e) CdW
1129 reconstruction. Reconstructions based on *H. elegans* and *C. pachyderma* are shown in red and
1130 blue, respectively. Thick colored lines correspond to the median proxy ensemble member, and
1131 ribbons denote 95% highest-density probability ranges as determined by R-package
1132 "geoChronR" (McKay et al., 2021). Solid symbols denote sample averages (benthic $\delta^{18}\text{O}$) or raw
1133 proxy data (others) on their median BACON age. Radiocarbon control and benthic $\delta^{18}\text{O}$ tie point
1134 are shown in blue and black diamonds, respectively. Shading denotes climate events discussed
1135 in text. Heinrich Stadial 1 (HS1) is divided into an early, middle, and late interval. The Bølling is
1136 denoted by cyan, and the Allerød by light blue. Solid vertical line denotes the 9-ka event
1137 discussed in text. Errors for individual estimates shown are B) $\pm 10\mu\text{mol/mol}$ (Oppo et al. (2018),
1138 c) $\pm 1.4^\circ\text{C}$, D) average $\pm 0.08\%$ (1 standard deviation of replicate $\delta^{18}\text{O}$ measurements), and e)
1139 $\pm 0.1\text{nmol/kg}$. Due to uncertain distribution coefficients, the uncertainty for CdW estimates is
1140 larger than shown, as discussed in text.


1141
1142 Figure 6. Reconstructions from Demerara Rise core KNR197-3-46CDH (red), Brazil Margin core
1143 KNR159-5-90GGC (purple), and Florida Margin core KNR166-2-26JPC (green) compared to
1144 North Greenland $\delta^{18}\text{O}$ (Seierstad et al., 2014) (a) and atmospheric CO_2 (Beretier et al., 2015) (e).
1145 Reconstructions in b) are based on the Mg/Li of *H. elegans* (Umling et al., 2019; Valley et al.
1146 2019; this paper); in c) based on the B/Ca of *C. pachyderma* (Lacerra et al. 2019, and this paper),
1147 and in d) on the Cd/Ca of *H. elegans* (Umling et al., 2019; Valley et al. 2017; this paper). For
1148 KNR197-3-46CDH, the CdW reconstruction based on Cd/Ca of *C. pachyderma* is also shown in
1149 blue. Modern values in b-d are shown as stars on the left. Bold solid lines and shading in b-d are
1150 the median proxy ensemble member and 95% highest-density probability ranges, respectively.
1151 Individual data points are shown on their median BACON age. Named climate intervals are
1152 shaded. The Bølling is denoted by cyan, and the Allerød by light blue.

