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Abstract—Accurate electrical energy demand forecasting is
essential to optimization and operation approaches aimed at
reducing the cost of electricity at the consumer and utility
level. Machine learning models, such as long short-term memory
(LSTM) models, have been increasingly employed in energy
usage prediction for different time-horizons into the future. The
prediction accuracy of such models depends a multitude of model
architecture and model training parameters, that are often left at
their default values or the strategy of selecting them is not even
reported. In this paper, we present a thorough investigation of the
impact of fifteen different such parameters on the performance
of LSTM models used to forecast HVAC energy usage in typical
residential homes for 24 hours. The objective is to arrive at a
select number of practical LSTM models, which are trained and
tested on data generated from the equivalent of a 21 year long
simulation of a testbed based on the IEEE 13 node test feeder.
Our investigation reveals several remarkable characteristics that
the highest ranked in terms of prediction accuracy LSTM models
have in common: models can use as few as two layers, training
should use more equivalent years of data available, batch size
should include 24 days of data, and the best optimizer used
during training is RMSprop.

Index Terms—Minimalistic LSTM model, prediction, residen-
tial HVAC energy usage, hyperparameter sensitivity analysis,
model size on disk

I. INTRODUCTION

Energy usage forecasting has attracted a lot of interest not
only for planning purposes, but, also for developing predictive
optimization and operation techniques, both at grid and house
levels. Among these forecasting methods, particularly those
that employ machine learning (ML) models and techniques
have become very popular, as discussed in several recent
survey papers [1]-[6]. Specifically, recurrent neural networks
(RNNs) models got significant attention in building energy
forecasting because they were found to provide better per-
formance [7]. Among the previous RNN models studied for
sequence-to-sequence (seq2seq) learning, two particular mod-
els have been particularly popular: long short term memory
(LSTM) and gated recurrent unit (GRU) models.

Previous studies show that despite the fact that they require
longer training times, LSTM models can provide better pre-
diction than GRU models in the context of energy forecasting
for the smart grid [7]. As such, one can find significantly
more studies investigating LSTMs in previous literature [8].
However, only a relatively small number of previous studies
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focused on the HVAC energy usage, despite the fact that
HVAC represents the major component in the energy usage
of a residential house, accounting for more than a third of the
total energy usage [9]. Therefore, in this paper, we focus on
the LSTM models used to forecast HVAC energy usage for
24 hour future horizons. More specifically, we are interested
in: 1) investigating how the multitude of parameters (learning
rate, momentum, activation functions, number of layers, epoch,
learning algorithms, etc.) that one can configure during LSTM
model definition and training affect the prediction accuracy;
which ones are the most important and affect model perfor-
mance the most, and 2) identifying the smallest LSTM models
that would require shorter training times for very large datasets
while still offering good prediction accuracy.

II. LITERATURE REVIEW

In this section, we present a discussion of related recent
studies that focused on the use of different types of RNN
models for prediction of power or energy usage in residential
homes. A seq2seq RNN model was presented in [10] for one-
hour horizon forecasting of residential HVAC loads. The study
in [11] presented a gated RNN-Conv model and reported an
accuracy of 8.99% mean absolute percentage error (MAPE) for
day-ahead forecasting. The study in [12] used an LSTM model
to forecast four-day residential total loads. The studies in [13]-
[15] used LSTM models for 2 day (48 points) prediction of
residential aggregated load prediction for 150 households. Day
ahead (i.e., 24 h horizon) prediction was investigated in the
studies from [16]-[21] for daily university air-conditioning
energy usage, residential building load, multi-building energy
usage, energy usage of office buildings, and building cooling
load prediction. The study in [22] investigated prediction for
hourly (24 h, 6 h, 1 h) and daily (7 days, 1 day) prediction
horizons of single house power load. The study in [23] focused
on prediction of one hour load in smart buildings.

An interesting line of research is the investigation of more
sophisticated RNN/LSTM or LSTM based hybrid models. For
example, the study in [24] used an LSTM encoder-decoder
(LSTM Enc-Dec) model to forecast seven-day heating and
cooling energy use of office buildings. Other recent studies that
reported LSTM Enc-Dec models include [25]-[28]. Seven-day
load forecasting using LSTM deep neural network (LSTM-



DNN) models for the heating, ventilation, and air-conditioning
(HVAC) systems was presented in [29]. Other studies [30]-
[38] investigated LSTM-DNN, LSTM domain adversarial
neural network (LSTM-DANN), RNN-LSTM, convolutional
neural network and LSTM (CNN-LSTM), k means CNN
and LSTM (KCNN-LSTM), GRU+RNN, Deep RNN+GRU
(DRNN-GRU), and CNN-GRU models.

Most of previous studies reported MAPE and/or root mean
square error (RMSE) values to quantify the performance of
their prediction models. However, it is difficult to directly
use these metrics to compare the performance of previously
reported LSTM models because their values significantly
depend on the particular dataset that was used for training
as well as on whether data normalization was used or not
among other factors [22]. Another challenge related to LSTM
model development is that it is generally unclear how model
architecture parameters and model training hyperparameters
affect model performance. Most previous works usually leave
this challenge unaddressed without providing explanations
of how model architecture was decided or fine-tuned, and
at best, some discuss standard hyperparameter selection and
optimization but for a rather small number of hyperparameters.

Therefore, in this paper our contribution is a thorough inves-
tigation of how fine-tuning of model architecture parameters
and model training hyperparameters - collectively referred to
as parameters in the remainder of this paper - affects pre-
diction performance of LSTM models used in HVAC energy
use forecasting. This sensitivity analysis provides insight into
what are the most important such parameters, which can be
fine-tuned to develop minimalistic LSTM models that can
still provide satisfactory prediction accuracies. Using extensive
simulations with a modified GridLab-D simulator, we generate
training data spanning the equivalent of 21 years and use
that to train LSTM models during the parameter fine-tuning
process. This process leads us to the best minimalistic LSTM
models for all 15 houses from the testbed constructed with
the IEEE 13 bus system. Simulation results demonstrate that
the identified models can provide better predictions as verified
via MAPE, RMSE, and CV-RMSE (coefficient of variation of
root mean square error) metrics when compared to a recently
reported LSTM model.

III. DATASET GENERATION

We use a custom simulation tool based on GridLab-D
simulation framework [39]. To generate training datasets, we
have modified the IEEE 13 node testcase and attached 15
houses to the 7 buses as illustrated in Fig. 1. For diversity,
all 15 homes are defined inside GridLab-D to have different
total areas while their models include HVAC, water heater,
lighting, and three other appliances. Particularly, the HVAC
load is simulated as a multi-state load dependent on the air
temperature and triggered at different temperature bands [40].
For simplicity, all setpoints for all houses’s HVAC are set to
the same value. Simulation of the entire testcase is done for
a total period of 21 years to generate datasets for each of
the 15 houses. The weather data for the simulation is from

Table 1
SPECIFIC VALUES FOR EACH OF THE 15 VARIABLE PARAMETERS.

\ Variable Parameter [ Specific Values Explored

Learning rate 0.00025, 0.0005, 0.001, 0.002, 0.004

Number epochs 800, 1000

Batch size 12, 24, 48, 72, 96, 120, 144

Optimzer RMSprop, Adam, Adamax, Nadam

Activation relu, sigmoid, softmax, tanh, selu, elu, hardSigmoid

Recurrent activation relu, sigmoid, softmax, tanh, elu, hardSigmoid

Number LSTM layers 1,2,3
Number units of LSTM layers 48, 72, 96
Loss function mse, mae
Number dropout layers 0,1, 2
Value recurrent dropout 0.2, 0.4, 0.5, 0.6
Value dropout 0.2,04,0.5,0.6
Number dense layers 1,2,3
Number output units of dense layers 24, 48, 72, 96
Length of dataset in equivalent years 2,5, 10, 21

Yakima, Washington available in GridLab-D. Dataset sizes that
are investigated include 2, 5, 10, and 21 years out of the total
21 year of simulation data.

Each hourly entry in these datasets includes: timestamp,
HVAC energy load, entire house energy load, heating setpoint,
mass temperature, inside air temperature, outdoor temperature,
system mode, and thermostat deadband. Therefore, the dataset
is multivariate; however, for simplicity, in this paper we focus
only on multi-step univariate input and multi-step univariate
output, with the variable of interest being the HVAC energy
usage. The HVAC load profiles inside GridLab-D are based on
equivalent thermal parameter (ETP) models that can generate
multi-state time-varying load models [40]. This model uses
more than one state to describe the energy usage of the HVAC.
Each state is governed by a physical model, with transitions
between states determined by either internal state transition
rules or external signals. For example, the HVAC State 1
represents no power draw, HVAC is off; in States 2 and 3, an
electric fan motor and a compressor motor are included. Like
State 3, State 4 provides heating with an associated electric
fan plus heating provided by resistive heating elements. In this
model, HVAC energy use depends on outdoor temperature,
heating setpoint, cooling setpoint, mass temperature, inside
air temperature, thermostat deadband, aux heat deadband,
heating coefficient of performance (COP), cooling COP, and
aux heat temperature. As examples, Fig. 2 shows the HVAC
load profiles for House #1 on the 16th of February and August.

IV. PROPOSED APPROACH FOR PARAMETERS
FINE-TUNING

We are investigating fifteen (15) variable parameters, includ-
ing model architecture parameters, training hyperparameters,
and training dataset size as listed in Table 1. Fig. 3 illustrates
two of these variables occurring inside a typical LSTM cell.
These 15 parameters define a vast search space, which we
propose to explore using a simple heuristic algorithm. To
reduce complexity, the idea is to split the parameters into
two subgroups for simplicity, then, conduct searches in the
spaces defined by those subgroup variable parameters. This is
a divide-and-conquer approach in order to keep the execution
time of the proposed search to reasonable practical values. A
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Figure 1. Diagram of the modified IEEE 13 node testcase used in simulations with modified GridLab-D to generate up to the equivalent of 21 years long

datasest for each of the 15 houses.

simplified pseudocode description of the search is presented
in Fig. 4. The parameters in the first subgroup include: learn-
ing rate, number of epochs, batch size, optimizer, activation
function, and recurrent activation function. The remaining
parameters in the second subgroup include: number LSTM
layers, number units of LSTM layers, loss function, number of
dropout layers, value recurrent dropout, value dropout, number
of dense layers, number of output units of dense layers, and
number of years in dataset. Specific values for all parameters
that are explored in this search are listed in Table I.

As illustrated in Fig. 4, in the first step of the fine-tuning, an
exhaustive search explores the space defined by the parameters
in the first subgroup while the parameters in the second
subgroup are kept constant at typical values. The top best
models (e.g., 30 models - 2 for each house - but this number
could be modified by the user) from this first step are recorded
and stored. Sorting of best models is done based on the value

of CV-RMSE. The best models are those whose CV-RMSE
values are the smallest. In the second step, the parameters from
the first subgroup are kept constant while the variables in the
second subgroup are explored. Again, a constant number of
the best models found during this step are recorded and stored.
In the third step, a combination of all the previously recorded
models are evaluated and ranked using MAPE, RMSE, and
CV-RMSE. The best LSTM model is then selected. Best means
that we look first at CV-RMSE and select the model with the
lowest CV-RMSE value. If two models have the same CV-
RMSE value, then, we look at MAPE for deciding about the
best model. If MAPE is not available (i.e., values are nan),
we finally use RMSE and select the model with the lowest
RMSE value. This search process is repeated for each of the
houses in the testcase used for dataset generation, which will
be described in the next section.
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Figure 2. HVAC load profiles of House #1 during the 16th of February and
August for all years of the generated dataset, using an instrumented GridLab-
D simulator.

Figure 3. Simplified diagram of the LSTM cell illustrating the activation and
recurrent activation function parameters.

V. SENSITIVITY ANALYSIS

In this section, we conduct a parameter sensitivity analysis
to identify which are the most important parameters. During
the simulations in this experiment, we use early stopping to
avoid overfitting during training and to save simulation time;
early stopping was done based on validation loss values and
on patience (i.e., number of epochs with no improvement after
which training is stopped) value of 15% of the total number
of epochs. The following discussion is based on looking at

Algorithm: Heuristic for parameter fine-tuning

1: Step 1: Record top best LSTM models from exhaustive

2: search in space defined by 6 variables in first subgroup

3: for Ilr < 0.00025 to 0.004 do

4.  for epoch < 800 to 1000 do

5: for batch size < 12 to 144 do

6 for optimizer < RM Sprop to Nadam do

7 for activation < relu to hardSigmoid do

8 for rec activation < relu to hardSigmoid do

9: Remaining parameters kept constant

10: Train, test model, calculate error metrics
11: Record and store top LSTM models

12: end for

13: end for

14: end for

15: end for

16: end for

17: end for

18: Step 2: Record top best LSTM models from exhaustive
19: search in space defined by 9 variables in second subgroup
20: for num. LSTM layers < 1 to 3 do

21:  for output units LSTM layers < 48 to 96 do

22: for loss function < mse to mae do

23: for num. dropout layers <— 1to 2 do

24: for rec. dropout <— 0.2 to 0.6 do

25: for dropout <~ 0.2 to 0.6 do

26: for num. dense layers <— 1 to 3 do

27: for output units dense layers < 24 to 96 do
28: for length dataset < 2 to 21 do

29: Remaining parameters kept constant

30: Train, test model, calculate error metrics
31: Record and store top LSTM models

32: end for

33: end for

34: end for

35: end for

36: end for

37 end for

38: end for

39: end for

40: end for

41: Step 3: Re-evaluate all recorded models

42: Retain best LSTM model for each given house

Figure 4. Pseudocode description of the three-step heuristic search to identify
the best LSTM model.

the top best 16 LSTM models from among the collection of
top 3 models for all 15 houses. The number 16 was chosen
arbitrarily. We report in Table II the main findings of this
investigation and make the following observations:

¢ A learning rate of 0.001 was the most likely to help in
identifying the best LSTM models.

o Despite using early stopping to stop the training once
models’ loss starts to increase, a number of 1000 epochs
lead to the best models (including the top 2). Only 12.5%
of models were obtained when training used 800 epochs.

o The batch size of 24 was used during training of 15 out
of 16 best models.

o Contrary to the popular previous approach of using the
Adam optimizer, all 16 best models were obtained using
RMSprop optimizer.




Table 11
RESULTS BASED ON THE TOP 16 BEST LSTM MODELS.

Variable Parameter \

Sensitivity Analysis Result

Learning rate (Ir)

50% of models obtained with I = 0.001; 25% obtained with [r = 0.002

Number epochs

87.5% of models obtained with 1000 epochs

Batch size batch size of 24 led to 15 out of 16 best models
Optimzer RMSprop was the optimizer that led to all best 16 models
Activation Top two models used relu and tanh

Recurrent activation

tanh used by 75% of best 16 models

Number LSTM layers

Two layer LSTM networks are found to be best

Number units of LSTM layers

72 units used by 75% of best 16 models

Loss function

mse was used for identifying all best models

Number dropout layers

1 dropout layer used by all best models

Value recurrent dropout

0.4 and 0 impact equally the fine-tuning

Value dropout

0.2 used by two thirds of best models

Number dense layers

2 dense layers used by all

Number output units of dense layers

Top 2 models used 24 and 96 dense output units

Length of dataset in equivalent years

21 equivalent years lead to best models

« No activation function seems to be used by the majority
of the best 16 models. relu and tanh are used by the top 2
models; however, selu, elu, and sigmoid functions helped
achieve good models too.

o 12 out of 16 best models use tanh as recurrent activation
functions. The remaining models used elu, relu.

o All best models had two layers.

e 75% of the 16 best models were fine-tuned to use 72
units for LSTM layers, while 25% of the models used 96
units.

o The mse loss function was used in the training of all best
16 models.

¢ One dropout layer was used by all 16 best models.

o 50% models were found with a value of 0.4 for recurrent
dropout, while the remaining 50% of models were found
with a value of 0.0.

e 62.5% of models used a value of 0.2 for dropout, while
25% of models used a value of 0.4 and only 12.5% of
models used a value of 0.5. The top 2 models used 0.2
and 0.5 dropout values.

« Two dense layers were used by all best models.

o 37.5% of models use 96 output units, 25% of models use
24 output units, 18.75% of models use 72 output units,
and 12.5% of models used 48 output units. The top 2
models were identified for 24 and 96 dense output units.

o As expected, the longest datasets (i.e., the equivalent of
21 years) resulted in 15% better prediction in contrast
with 10 year long datasets.

Based on the sensitivity, we observe that the length of the
datasets had the largest impact on the performance of models;
21 year long datasets helped arrive to the best models, confirm-
ing that larger datasets are desirable for model development.
Next in importance are number of epochs, recurrent activation
function, learning rate, and batch size.

VI. PERFORMANCE OF IDENTIFIED MINIMAL LSTM
MODELS

Once the minimal LSTM models for each house are iden-
tified as described in section IV, they are tested using 30% of
the datasets generated using the procedure from section III (the
other 70% of each dataset is used for training and validation).
The performance of the best LSTM models is measured
using three performance metrics (i.e., MAPE, RMSE, and
CV-RMSE) and the best LSTM model is selected for each
house. MAPE, RMSE, and CV-RMSE values are calculated
and reported monthly, i.e., looking at each 24 h prediction in
contrast with the 24 h expected value separately for each day
of a given month of the year. Table III reports the average
values of the four metrics over all 15 houses for each month.
Important to note is the column with CV-RMSE values, which
for the most part are less than 30%, which indicates an
acceptable prediction accuracy [41]-[43]. Specific examples of
MAPE, RMSE, and CV-RMSE plots for House #1 for three
different dataset lengths are shown in Fig. 5. We note that
the larger the dataset, the smaller the values of these metrics,
which indicate better models. Also, specific examples of actual
daily predictions using the developed LSTM models are shown
in Fig. 6 for House #1 on the 16th of February and August of
year 21.

VII. COMPARISON WITH STATE-OF-THE-ART MODELS

In this section, we present a comparison of the developed
minimalistic LSTM models to a previous recent work that
also investigated LSTM models [22], but in the context of
predicting the entire house energy usage. For this compari-
son, we use the SHINES dataset [44], which was also used
by [22]. The SHINES dataset was also split into 70% for
training and validation and 30% for testing. We obtained the
implementation of the LSTM models from [22], and used it in
our comparison for prediction of HVAC energy usage instead,
which is the focus of our paper. To make the comparison fair,
both LSTM models were trained for the same umber of epochs
(i.e., 150) using only three years (used by [22]) worth of data.



Table III
AVERAGE OVER ALL 15 HOUSES OF MAPE, RMSE, AND CV-RMSE

RESULTS.

[ Month [ MAPE (%) | RMSE (kWh) | CV-RMSE(%) |
January 13.8 0.31 10.16
February 22.3 0.32 17.43
March 33.68 0.30 24.04

April nan 0.25 30.82
May nan 0.21 36.1
June 50.78 0.21 43
July nan 0.21 30.1
August nan 0.18 48.1
September nan 0.22 35.02
October nan 0.26 28.74
November 21.01 0.32 16.61
December 14.23 0.31 9.99
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Figure 5. Examples of MAPE, RMSE, and CV-RMSE results for House #1
for three different dataset lengths.
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Figure 6. Examples of normalized HVAC load predictions for House #1 in
year 21 of the dataset.

Our investigation focuses on 24 h future horizon prediction
with 24 h input because this is the main focus of our models
in this paper. The results of this testing are summarized in
Table IV, where we report MAPE, RMSE, and CV-RMSE
for House #1. First, we observe that looking again at the CV-
RMSE column, we can see that the performance of our models
is not as good as in the case of the 21 equivalent years dataset
discussed before; more values in this column are higher than
30%. We attribute this to the fact that the SHINES dataset
is shorter (only 3 years) and that the HVAC profiles exhibit
increased variations. This is further aggravated by the fact that
we use different models for different months, and this requires
us to split datasets into 12 months, which in turn makes the
training data for each month even smaller.

Second, we observe that the LSTM model developed in
this work performs better (14% in terms of CV-RMSE) than
the LSTM model from [22]. For a more detailed comparison
of both models, in addition to the average values of MAPE,
RMSE, and CV-RMSE, we report in Table III the model
size and the memory footprint of the model (when saved on
disk). We observe that our models have a very small memory
footprint. One advantage of smaller trained models is that
they can be more efficient and thus more suitable for realtime
predictions and optimizations. Finally, examples of specific
plots obtained with both models for selected days are shown
in Fig. 7.



Table IV
TESTING OF DEVELOPED LSTM MODEL USING THE SHINES DATASET. COMPARISON AGAINST LSTM MODEL FROM [22].

\ | This work | [22] | This work | [22] | This work | [22] |
[ Month | MAPE (%) [ MAPE (%) | RMSE (kWh) | RMSE (kWh) [ CV-RMSE (%) | CV-RMSE (%) |
January 967 1317 1.72 1.69 88 87
February 1193 1514 1.05 1.09 83 87
March 368 534 2.77 4.15 130 218
April 903 1132 2.73 3.54 89 115
May 346 348 2.38 2.58 44 48
June 311 358 2.22 2.81 25 33
July 20 22 1.65 2.04 18 23
August 1075 1408 3.15 3.54 41 45
September 1048 1025 2.26 2.58 30 34
October 2736 2364 3.57 3.59 74 76
November 1765 1791 1.69 1.80 132 139
December 913 940 2.03 1.99 154 153
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Figure 7. Examples of normalized HVAC load predictions for House #1 using
SHINES dataset; predictions for Feb 2020 and Aug 2019.

Table V

QUALITATIVE COMPARISON OF DEVELOPED LSTM MODELS WITH PRIOR
WORK USING THE SHINES DATASET .

Metric Model Model from | Difference
in this work [22] (%)
MAPE (%) 970 1063 9
RMSE (kWh) 2.28 2.61 12.5
CV-RMSE (%) 75.66 88.1 14
Model Trainable Params 38788 23278 66.5
Memory Footprint (KB) 335 331 1.5

VIII. CONCLUSION

We presented an investigation of the impact of fifteen
different model architecture and model training parameters
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