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Abstract—With increasing of distributed energy resources
deployment behind-the-meter and of the power system levels,
more attention is being placed on electric load and generation
forecasting or prediction for individual residences. While pre-
diction with machine learning based approaches of aggregated
power load, at the substation or community levels, has been
relatively successful, the problem of prediction of power of
individual houses remains a largely open problem. This problem
is harder due to the increased variability and uncertainty in user
consumption behavior, which make individual residence power
traces be more erratic and less predictable. In this paper, we
present an investigation of the effectiveness of long short-term
memory (LSTM) models to predict individual house power. The
investigation looks at hourly (24 h, 6 h, 1 h) and daily (7 days,
1 day) prediction horizons for four different recent datasets.
We find that while LSTM models can potentially offer good
prediction accuracy for 7 and 1 days ahead for some data sets,
these models fail to provide satisfactory prediction accuracies for
individual 24 h, 6 h, 1 h horizons.

Index Terms—residential power load model; power load pre-
diction; machine learning; LSTM

I. INTRODUCTION AND LITERATURE REVIEW

We are interested in the problem of estimating the en-
ergy usage in individual residences, either by simulations
such as those described by [1], or through machine learning
approaches specifically for smart homes [2]. Despite a lot
of research done on the topic, electricity usage forecasting
remains a difficult problem.

Examples of recent studies that investigated ML models
include [3]-[11]. The work in [9] proposes a long short-
term memory (LSTM) recurrent neural network (RNN) based
framework for individual residential load forecasting. They
report better prediction accuracies for aggregated residential
loads compared to individual residences. The study in [12]
proposed a novel pooling-based deep recurrent neural network
for household load forecasting and reported that it performed
ARIMA by 19.5%, SVR by 13.1% and classical deep RNN by
6.5% in terms of RMSE. The study in [13] reported that LSTM
based RNN performed better compared with simple RNN
and gated recurrent unit (GRU) RNN to forecast consumer
electricity usage for a single user with 1-minute resolution
based on one year of historical data sets.

Because the energy usage of a residential house has a
higher correlation to residents’ behavior, the studies in [9],
[14] proposed to use an LSTM model to learn residents’
life patterns in order to achieve better meter-level forecasting.
The authors reported that the LSTM models achieved better
forecasting compared to approaches based on feed-forward
neural network (FFNN) and the k-nearest neighbor (KNN).

The study in [15] uses an LSTM model to predict the energy
usage of a house in order to then predict the electricity
bill. They report prediction accuracy better than 80%. The
work in [16] employs particle swarm optimization (PSO) to
automatically determine hyperparameters for an CNN-LSTM
model used to predict house global power. The study in [17]
investigated several LSTM based models and reported good
prediction results using standard LSTM models on the same
dataset used by [15], [16]. The work in [13] reported that
LSTM models performed better than deep neural networks
(DNN) models for prediction a single residential energy usage.
Previous work indicates that the most promising ML models
for prediction are convolutional neural networks (CNNs) [3]
and RNNs [6]-[8]. More specifically, the LSTM model, as an
enhanced version of an RNN model, was shown to perform
at least as well or better than any other machine learning
models. A summary of studies in this category is presented in
Table 1. That is why in this paper, we propose to develop and
investigate LSTM models to predict the power in residential
buildings for horizons of 24 h, 6 h, 1h, 7 days, and 1 day.
This investigation is conducted on four different datasets.

II. LONG SHORT-TERM MEMORY (LSTM) MODELS

Due to lack of space and because LSTM models are not new,
providing a detailed description of them is outside the scope
of this paper. For details on LSTM models, we refer the reader
to previous literature, including [9], [18], [19]. Here, we only
present a general description.

An RNN is a type of neural network designed for sequence
problems. It includes cyclic connections between different lay-
ers, which gives it the ability to “remember” past information.
Outputs of units or modules from downstream layers may
feedback as input to upstream layers or to the network to-
gether with the next input vector. These recurrent connections
effectively add state (i.e., memory) to the model and enable it
to learn and exploit the ordering of observations used as input
sequences [19]. The difficulty with the standard RNN model
is that it is hard to train in the case of problems that require
learning long-term temporal dependencies. This is because the
loss function’s gradient decays exponentially with time, which
is known as the vanishing gradient problem. The introduction
of the LSTM model [18] attempted to address the vanishing
gradient problem. The LSTM model is a more complex RNN
network, which is enhanced with special units. The special
units include memory cells that can store information for
long periods of time. They also include three types of gates
(input, forget and output) that are used to control the flow
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Table 1
PREVIOUS ML MODELS FOR BUILDING ENERGY USAGE FORECASTING.

Study | Model Model Input Resolution | Prediction Accuracy
Size Size of Data Horizon
[14] LSTM Layers 4, Units 512,512,512,1 2,3,6,12 steps 30-minute | 30-minute MAPE 22%
9] LSTM RNN Layers 2, Units 20 2, 6, 12 steps 30-minute | 30-minute MAPE 44%
[12] Pooling RNN Layers 2,3,4,5, Units 5,10,20,30,50,100 | 48,96,336 steps | 30-minute | 30-minute RMSE 0.45 kWh
[15] LSTM Layers 4, Units 75,100,100,1 10-minute 1-minute 5-minute R? score 0.835
[16] CNN-LSTM NA NA Minutely 1 min, 1 h, 1 day, 1 week | MSE 0.35
[17] LSTM, ConvLST | Layers 4, Units 100,50,50,7 7 days Daily 7 days RMSE 368 kW
[13] LSTM, DNN Layers 3, Units 50,100,1 30,40,50 Minutely 1 min MAPE 35,24,29%
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connected blocks (Fig. 1) each with three inputs, specifically
implementing memory from previous blocks, and two outputs
selected by weights are determined during training.

IITI. PUuBLIC DATABASES FOR SMART HOMES

Important questions remain for the adoption of ML ap-
proaches for electricity usage forecasting, such as the right
number of different variables that are measured and recorded,
the total length of time continuously recorded, or time-
resolution of the data. The results reported in previous lit-
erature depend also on the particular dataset that was used for
investigations. In Table II, we compare four public datasets
to highlight differences in their characteristics. Ideally, one
would conduct model evaluation on as many such datasets
as possible. Often though, results are reported only for a
single dataset, and the model performance (as prediction
accuracy) is quantified via different metrics (e.g., RMSE,
MAE, MAPE, etc.) or just as relative comparisons between
different approaches studied. For example, the study in [13]
used the AMPds2 dataset while the studies in [15], [16] used
the UCI dataset; and their models performance can vary quite
significantly.

In this paper, we investigate all four datasets listed in Table
IT because we are interested in understanding the prediction
capability of LSTM models for a diverse group of datasets.
Specifically, we will use: 1) Honda Smart Home (HSM) datat-
set recorded from an advanced technological pilot home or
“living laboratory” located in Davis, CA [20]. Fig. 2 presents
a snap-shot of this dataset to visually highlight differences
among power traces collected at different resolutions (in this
case for the HVAC portion of the total net power of the house),
which make the prediction problem even more complex. 2)
AMPds?2 dataset recorded at a house in Vancouver, Canada
[21]. It includes electricity, water, and natural gas measure-
ments with minutely resolution for two years. 3) SHINES field

Figure 2. HVAC power traces (Dec. 15, 2018) plotted at different resolutions,
from Honda Smart Home dataset.

demonstration was designed to be more representative of the
typical residential smart home’s construction, appliances, and
monitoring capabilities that mirror a generic utility installed
smart meter with a 15 minute resolution [22]. This dataset is
collected by the Electric Power Research Institute and includes
measurements from two houses, located in Pensacola, FL. 4)
UCI dataset includes measurements from a house near Paris,
France, collected with minutely resolution [23].

In our simulations, we pre-process the datasets to: 1) remove
the first and the last days so that data starts on a Sunday and
ends on a Saturday - this helps with the programming when
predictions are done for 7 days horizons, 2) replace missing
data values with the values at the same time from the previous
available day, and 3) convert all power values into kWh in
cases where the initial data is provided in kW.

IV. SIMULATION RESULTS FOR INDIVIDUAL RESIDENCE
POWER PREDICTION

A. Simulation Results

The prediction problem was formulated in five different
ways as indicated in Table III. We first looked at prediction
of the daily net total power for seven (7) days or one (1) day
ahead, when the input model was provided with the previous
most recent fourteen (14) daily net total power values. In this
case, each of the investigated four datasets (described in Table
IT) was down-sampled from the minutely original observations
of net total power to daily totals. Then, we looked at prediction
of the hourly net total power for twenty-four (24), six (6), and
one (1) hours ahead. In each of these cases, the input features
supplied to the LSTM model included the previous most recent
forty-eight (48) hourly power values (i.e., a two day history).



CHARACTERISTICS OF DATASETS FOR RESIDENTIAL NET TOTAL POWER FORECASTING.

Table II

Dataset, Houses | Length Resol. | Measured Variables Instrum., Previous
Location (min) Avail. Work
Honda Smart | 1 Jan. 2018 - | 1 HVAC (kW), WH (BTU), PV supply (kW | 230+ sensors | NA
Home (HSH) Dec. 2018 DC), HVAC (kW), lighting (kW), appli- | [20]
Davis, CA ances (kW or BTU), temperature (F), ir-
radiance, floorplan, etc.

AMPds2 1 Apr. 2012 - |1 HVAC furnance fan, mains, heat pump, | Sub-meters [13], [14]
Vancouver, March 2014 clothes washer/dryer, plug loads (V, A), | [21]
Canada 24 months temperature, humidity, wind speed, etc.
SHINES 2 Aug. 2017 - | 15 Net power flow, HVAC, pool pump, bat- | Sub-meters NA
Pensacola, FL July 2020 tery, solar generation (kW), temperature, | [22]

36 months humidity, wind speed
UCI 1 Dec. 2006 - | 1 Mains (kW, V, A), laundry room, kitchen | Sub-meters [15]-[17]
Paris, France Nov. 2010 appliances, water heater + HVAC (Wh) [23]

47 months

In this case, the original observations were down-sampled to
hourly totals. When we predict multiple values into the future,
the prediction problem is framed as a multi-step time series
forecasting with uni-variate input data.

Based on the information reported by other authors, includ-
ing for example, the information discussed in [17], we in-
vestigated several LSTM models, including multilayer LSTM,
encoder-decoder LSTM, CNN-LSTM encoder-decoder, and
ConvLSTM encoder-decoder models. Our current results in-
dicate no significant differences in the performance of these
models. As a result, we used a standard LSTM model with
three (3) layers in the remaining of this paper.

In all our simulations, the LSTM model has a number of
56, 28, and 14 units on each of the three layers. These values
were found empirically, via trial and error, and provided better
performance for each specific case. A number of three layers
is in alignment with most of the previous studies discussed
in Section I (see Table I). We developed our LSTM model
using Keras and coded in Python, drawing from and adapting
the approach in [17]. All our software source-codes with the
pre-processed datasets will be made available on github in
order to enable complete future replication of our results for
comparison purposes.

The size of the input features and the prediction horizons
are listed in the first two columns of Table III. In each case, the
LSTM model is trained on the first 70% portion and tested on
the remaining 30% portion of each of the datasets. To report
the performance of the LSTM model in each case, we use the
mean absolute percentage error (MAPE) because it offers an
easier to understand measure of how far are the predictions
from the true values, in comparison for example with other
measures such as RMSE or MAE. Each of the MAPE values
reported in Table III is the best out of five (5) different runs
of the same simulation experiment.

B. Discussion
Based on the insights we gained during our simulations, we

make the following observations:

« Results in Table III indicate that the LSTM model has sig-
nificantly better performance on some datasets. For example,
the LSTM model has the best performance on the AMPds2
and UCI datasets. However, it does rather poorly on the

HSH and SHINES datasets. Two examples of 7 days and
24 h ahead prediction for a random week and a random day
from the testing portions of the UCI and AMPds2 datasets
are shown in Fig. 3.

While daily prediction for 7 or 1 days ahead can be done
relatively accurately (at least for the AMPds2 and UCI
datasets), the LSTM model does not achieve satisfactory
prediction accuracy for hourly, 24, 6, and 1 h ahead.
Hourly prediction for individual residences remains an open
problem, which we plan to address in our future work.

An important factor that affects the prediction quality is the
normalization of data, which helps reduce MAPE signifi-
cantly in most cases. In all our simulations, datasets are
normalized to the standard interval (0, 1).

Increasing the number of model layers beyond four (4) did
not improve the model performance. This is due to model
over-fitting, which was also noticed in previous studies [12].
Increasing the input feature size (for example, in the case
of prediction of 24 h ahead, increasing the number of input
values from 24 to 48, 96, or 168, i.e., the equivalent of 7
days) does not improve the model performance too much.
Increasing the number of epochs (one of the hyperparame-
ters that one must decide during model development) that
is used during the process of model fitting has a huge
impact on the MAPE value when the trained model is tested
on the fraining portion of the data itself, and less on the
MAPE value achieved on the festing portion of the data. We
observed that usually a number of epochs > 200 suffices to
bring the M AP Ey,.4iy to lower than 15% (which means that
the model fits really well the training portion of the data).
However, that does not necessarily mean that M AP Ey.4; is
low too, especially if that particular dataset exhibits widely
varying (i.e., erratic, not repeatable) patterns.

When prediction is made for multiple steps ahead (e.g. 24 h,
6 h or 7 days), the prediction accuracy varies across future
predicted steps. The MAPE variation across 7 days values
during the testing of the LSTM model on the UCI dataset
and across 24 h values during the testing of the LSTM model
on the AMPds2 dataset is shown in Fig. 4. In other words,
some hours in the day are more predictable than others;
particularly, consumption during peak hours is harder to
predict due to its increased variability.



Table IIT
SIMULATIONS RESULTS DURING PREDICTION OF NET TOTAL POWER, DAILY OR HOURLY.

dataset can be done with much better accuracy. For example,
Table IV reports the MAPE values for the Lighting power
component of the HSM dataset achieved with exactly the
same LSTM model. This component is easier to predict be-
cause it has variation patterns that are less erratic compared
to the patterns exhibited by the net total power - as it can
be seen in the examples in Fig. 5. Another indicator of the
difficulty of prediction is the “heat-map”. For example, Fig.
6 shows such a heat-map for the SHINES dataset, which
illustrates the increased randomness of the power values
and the lack of repeatable patterns. Similar challenges with
variable load predictions were reported in [24].

MAPE;est (%)
Input Size Prediction Horizon HSM Dataset | AMPds2 SHINES UCI Dataset
Dataset Dataset
14 days (14 daily net total power values) | 7 days (7 separate values) 42% 14% 58% 23%
14 days 1 day (1 value) 39% 13% 51% 22%
48 h (48 hourly net total power values) 24 h (24 separate values) 182% 35% 105% 64%
48 h 6 h (6 separate values) 167% 31% 107% 64%
48 h 1 h (1 value) 107% 31% 83% 46%
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Figure 5. Power traces showing Net Total and Lighting power for HSM
dataset, on the first two days of Feb. 2018.

V. CONCLUSION

We investigated the effectiveness of standard LSTM models
to predict power of individual residences. The investigation
looked at hourly (24 h, 6 h, 1 h) and daily (7 days, 1 day)
prediction horizons for four different datasets. Extensive sim-
ulations using a three layer LSTM model indicated that while
such models can potentially offer good prediction accuracy
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for 7 and 1 days ahead for some datasets, these models do
not achieve satisfactory prediction accuracies for 24 h, 6 h,
1 h prediction horizons. Future work will focus on framing
the prediction problem as a multi-variate multi-step prediction
problem, where additional variable measurements, such as
temperatures inside and outside, solar irradiance, etc., are
included into the input features.
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