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Abstract—With increasing of distributed energy resources
deployment behind-the-meter and of the power system levels,
more attention is being placed on electric load and generation
forecasting or prediction for individual residences. While pre-
diction with machine learning based approaches of aggregated
power load, at the substation or community levels, has been
relatively successful, the problem of prediction of power of
individual houses remains a largely open problem. This problem
is harder due to the increased variability and uncertainty in user
consumption behavior, which make individual residence power
traces be more erratic and less predictable. In this paper, we
present an investigation of the effectiveness of long short-term
memory (LSTM) models to predict individual house power. The
investigation looks at hourly (24 h, 6 h, 1 h) and daily (7 days,
1 day) prediction horizons for four different recent datasets.
We find that while LSTM models can potentially offer good
prediction accuracy for 7 and 1 days ahead for some data sets,
these models fail to provide satisfactory prediction accuracies for
individual 24 h, 6 h, 1 h horizons.

Index Terms—residential power load model; power load pre-
diction; machine learning; LSTM

I. INTRODUCTION AND LITERATURE REVIEW

We are interested in the problem of estimating the en-

ergy usage in individual residences, either by simulations

such as those described by [1], or through machine learning

approaches specifically for smart homes [2]. Despite a lot

of research done on the topic, electricity usage forecasting

remains a difficult problem.

Examples of recent studies that investigated ML models

include [3]–[11]. The work in [9] proposes a long short-

term memory (LSTM) recurrent neural network (RNN) based

framework for individual residential load forecasting. They

report better prediction accuracies for aggregated residential

loads compared to individual residences. The study in [12]

proposed a novel pooling-based deep recurrent neural network

for household load forecasting and reported that it performed

ARIMA by 19.5%, SVR by 13.1% and classical deep RNN by

6.5% in terms of RMSE. The study in [13] reported that LSTM

based RNN performed better compared with simple RNN

and gated recurrent unit (GRU) RNN to forecast consumer

electricity usage for a single user with 1-minute resolution

based on one year of historical data sets.

Because the energy usage of a residential house has a

higher correlation to residents’ behavior, the studies in [9],

[14] proposed to use an LSTM model to learn residents’

life patterns in order to achieve better meter-level forecasting.

The authors reported that the LSTM models achieved better

forecasting compared to approaches based on feed-forward

neural network (FFNN) and the k-nearest neighbor (KNN).

The study in [15] uses an LSTM model to predict the energy

usage of a house in order to then predict the electricity

bill. They report prediction accuracy better than 80%. The

work in [16] employs particle swarm optimization (PSO) to

automatically determine hyperparameters for an CNN-LSTM

model used to predict house global power. The study in [17]

investigated several LSTM based models and reported good

prediction results using standard LSTM models on the same

dataset used by [15], [16]. The work in [13] reported that

LSTM models performed better than deep neural networks

(DNN) models for prediction a single residential energy usage.

Previous work indicates that the most promising ML models

for prediction are convolutional neural networks (CNNs) [3]

and RNNs [6]–[8]. More specifically, the LSTM model, as an

enhanced version of an RNN model, was shown to perform

at least as well or better than any other machine learning

models. A summary of studies in this category is presented in

Table I. That is why in this paper, we propose to develop and

investigate LSTM models to predict the power in residential

buildings for horizons of 24 h, 6 h, 1h, 7 days, and 1 day.

This investigation is conducted on four different datasets.

II. LONG SHORT-TERM MEMORY (LSTM) MODELS

Due to lack of space and because LSTM models are not new,

providing a detailed description of them is outside the scope

of this paper. For details on LSTM models, we refer the reader

to previous literature, including [9], [18], [19]. Here, we only

present a general description.

An RNN is a type of neural network designed for sequence

problems. It includes cyclic connections between different lay-

ers, which gives it the ability to “remember” past information.

Outputs of units or modules from downstream layers may

feedback as input to upstream layers or to the network to-

gether with the next input vector. These recurrent connections

effectively add state (i.e., memory) to the model and enable it

to learn and exploit the ordering of observations used as input

sequences [19]. The difficulty with the standard RNN model

is that it is hard to train in the case of problems that require

learning long-term temporal dependencies. This is because the

loss function’s gradient decays exponentially with time, which

is known as the vanishing gradient problem. The introduction

of the LSTM model [18] attempted to address the vanishing

gradient problem. The LSTM model is a more complex RNN

network, which is enhanced with special units. The special

units include memory cells that can store information for

long periods of time. They also include three types of gates

(input, forget and output) that are used to control the flow
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Table I
PREVIOUS ML MODELS FOR BUILDING ENERGY USAGE FORECASTING.

Study Model Model Input Resolution Prediction Accuracy

Size Size of Data Horizon

[14] LSTM Layers 4, Units 512,512,512,1 2,3,6,12 steps 30-minute 30-minute MAPE 22%

[9] LSTM RNN Layers 2, Units 20 2, 6, 12 steps 30-minute 30-minute MAPE 44%

[12] Pooling RNN Layers 2,3,4,5, Units 5,10,20,30,50,100 48,96,336 steps 30-minute 30-minute RMSE 0.45 kWh

[15] LSTM Layers 4, Units 75,100,100,1 10-minute 1-minute 5-minute R2 score 0.835

[16] CNN-LSTM NA NA Minutely 1 min, 1 h, 1 day, 1 week MSE 0.35

[17] LSTM, ConvLST Layers 4, Units 100,50,50,7 7 days Daily 7 days RMSE 368 kW

[13] LSTM, DNN Layers 3, Units 50,100,1 30,40,50 Minutely 1 min MAPE 35,24,29%

Figure 1. LSTM block diagram with inputs and outputs.

of information. These gates are of crucial importance because

they decide whether to let new inputs in, erase the present cell

state, and let the state impact the output at a given time step.

Overall, the LSTM model can be understood as a chain of

connected blocks (Fig. 1) each with three inputs, specifically

implementing memory from previous blocks, and two outputs

selected by weights are determined during training.

III. PUBLIC DATABASES FOR SMART HOMES

Important questions remain for the adoption of ML ap-

proaches for electricity usage forecasting, such as the right

number of different variables that are measured and recorded,

the total length of time continuously recorded, or time-

resolution of the data. The results reported in previous lit-

erature depend also on the particular dataset that was used for

investigations. In Table II, we compare four public datasets

to highlight differences in their characteristics. Ideally, one

would conduct model evaluation on as many such datasets

as possible. Often though, results are reported only for a

single dataset, and the model performance (as prediction

accuracy) is quantified via different metrics (e.g., RMSE,

MAE, MAPE, etc.) or just as relative comparisons between

different approaches studied. For example, the study in [13]

used the AMPds2 dataset while the studies in [15], [16] used

the UCI dataset; and their models performance can vary quite

significantly.

In this paper, we investigate all four datasets listed in Table

II because we are interested in understanding the prediction

capability of LSTM models for a diverse group of datasets.

Specifically, we will use: 1) Honda Smart Home (HSM) datat-

set recorded from an advanced technological pilot home or

“living laboratory” located in Davis, CA [20]. Fig. 2 presents

a snap-shot of this dataset to visually highlight differences

among power traces collected at different resolutions (in this

case for the HVAC portion of the total net power of the house),

which make the prediction problem even more complex. 2)

AMPds2 dataset recorded at a house in Vancouver, Canada

[21]. It includes electricity, water, and natural gas measure-

ments with minutely resolution for two years. 3) SHINES field

Figure 2. HVAC power traces (Dec. 15, 2018) plotted at different resolutions,
from Honda Smart Home dataset.

demonstration was designed to be more representative of the

typical residential smart home’s construction, appliances, and

monitoring capabilities that mirror a generic utility installed

smart meter with a 15 minute resolution [22]. This dataset is

collected by the Electric Power Research Institute and includes

measurements from two houses, located in Pensacola, FL. 4)

UCI dataset includes measurements from a house near Paris,

France, collected with minutely resolution [23].

In our simulations, we pre-process the datasets to: 1) remove

the first and the last days so that data starts on a Sunday and

ends on a Saturday - this helps with the programming when

predictions are done for 7 days horizons, 2) replace missing

data values with the values at the same time from the previous

available day, and 3) convert all power values into kWh in

cases where the initial data is provided in kW.

IV. SIMULATION RESULTS FOR INDIVIDUAL RESIDENCE

POWER PREDICTION

A. Simulation Results

The prediction problem was formulated in five different

ways as indicated in Table III. We first looked at prediction

of the daily net total power for seven (7) days or one (1) day

ahead, when the input model was provided with the previous

most recent fourteen (14) daily net total power values. In this

case, each of the investigated four datasets (described in Table

II) was down-sampled from the minutely original observations

of net total power to daily totals. Then, we looked at prediction

of the hourly net total power for twenty-four (24), six (6), and

one (1) hours ahead. In each of these cases, the input features

supplied to the LSTM model included the previous most recent

forty-eight (48) hourly power values (i.e., a two day history).



Table II
CHARACTERISTICS OF DATASETS FOR RESIDENTIAL NET TOTAL POWER FORECASTING.

Dataset,

Location

Houses Length Resol.

(min)

Measured Variables Instrum.,

Avail.

Previous

Work

Honda Smart

Home (HSH)

Davis, CA

1 Jan. 2018 -

Dec. 2018

1 HVAC (kW), WH (BTU), PV supply (kW

DC), HVAC (kW), lighting (kW), appli-

ances (kW or BTU), temperature (F), ir-

radiance, floorplan, etc.

230+ sensors

[20]

NA

AMPds2

Vancouver,

Canada

1 Apr. 2012 -

March 2014

24 months

1 HVAC furnance fan, mains, heat pump,

clothes washer/dryer, plug loads (V, A),

temperature, humidity, wind speed, etc.

Sub-meters

[21]

[13], [14]

SHINES

Pensacola, FL

2 Aug. 2017 -

July 2020

36 months

15 Net power flow, HVAC, pool pump, bat-

tery, solar generation (kW), temperature,

humidity, wind speed

Sub-meters

[22]

NA

UCI

Paris, France

1 Dec. 2006 -

Nov. 2010

47 months

1 Mains (kW, V, A), laundry room, kitchen

appliances, water heater + HVAC (Wh)

Sub-meters

[23]

[15]–[17]

In this case, the original observations were down-sampled to

hourly totals. When we predict multiple values into the future,

the prediction problem is framed as a multi-step time series

forecasting with uni-variate input data.

Based on the information reported by other authors, includ-

ing for example, the information discussed in [17], we in-

vestigated several LSTM models, including multilayer LSTM,

encoder-decoder LSTM, CNN-LSTM encoder-decoder, and

ConvLSTM encoder-decoder models. Our current results in-

dicate no significant differences in the performance of these

models. As a result, we used a standard LSTM model with

three (3) layers in the remaining of this paper.

In all our simulations, the LSTM model has a number of

56, 28, and 14 units on each of the three layers. These values

were found empirically, via trial and error, and provided better

performance for each specific case. A number of three layers

is in alignment with most of the previous studies discussed

in Section I (see Table I). We developed our LSTM model

using Keras and coded in Python, drawing from and adapting

the approach in [17]. All our software source-codes with the

pre-processed datasets will be made available on github in

order to enable complete future replication of our results for

comparison purposes.

The size of the input features and the prediction horizons

are listed in the first two columns of Table III. In each case, the

LSTM model is trained on the first 70% portion and tested on

the remaining 30% portion of each of the datasets. To report

the performance of the LSTM model in each case, we use the

mean absolute percentage error (MAPE) because it offers an

easier to understand measure of how far are the predictions

from the true values, in comparison for example with other

measures such as RMSE or MAE. Each of the MAPE values

reported in Table III is the best out of five (5) different runs

of the same simulation experiment.

B. Discussion

Based on the insights we gained during our simulations, we

make the following observations:

• Results in Table III indicate that the LSTM model has sig-

nificantly better performance on some datasets. For example,

the LSTM model has the best performance on the AMPds2

and UCI datasets. However, it does rather poorly on the

HSH and SHINES datasets. Two examples of 7 days and

24 h ahead prediction for a random week and a random day

from the testing portions of the UCI and AMPds2 datasets

are shown in Fig. 3.

• While daily prediction for 7 or 1 days ahead can be done

relatively accurately (at least for the AMPds2 and UCI

datasets), the LSTM model does not achieve satisfactory

prediction accuracy for hourly, 24, 6, and 1 h ahead.

Hourly prediction for individual residences remains an open

problem, which we plan to address in our future work.

• An important factor that affects the prediction quality is the

normalization of data, which helps reduce MAPE signifi-

cantly in most cases. In all our simulations, datasets are

normalized to the standard interval (0, 1).
• Increasing the number of model layers beyond four (4) did

not improve the model performance. This is due to model

over-fitting, which was also noticed in previous studies [12].

• Increasing the input feature size (for example, in the case

of prediction of 24 h ahead, increasing the number of input

values from 24 to 48, 96, or 168, i.e., the equivalent of 7

days) does not improve the model performance too much.

• Increasing the number of epochs (one of the hyperparame-

ters that one must decide during model development) that

is used during the process of model fitting has a huge

impact on the MAPE value when the trained model is tested

on the training portion of the data itself, and less on the

MAPE value achieved on the testing portion of the data. We

observed that usually a number of epochs > 200 suffices to

bring the MAPEtrain to lower than 15% (which means that

the model fits really well the training portion of the data).

However, that does not necessarily mean that MAPEtest is

low too, especially if that particular dataset exhibits widely

varying (i.e., erratic, not repeatable) patterns.

• When prediction is made for multiple steps ahead (e.g. 24 h,

6 h or 7 days), the prediction accuracy varies across future

predicted steps. The MAPE variation across 7 days values

during the testing of the LSTM model on the UCI dataset

and across 24 h values during the testing of the LSTM model

on the AMPds2 dataset is shown in Fig. 4. In other words,

some hours in the day are more predictable than others;

particularly, consumption during peak hours is harder to

predict due to its increased variability.



Table III
SIMULATIONS RESULTS DURING PREDICTION OF NET TOTAL POWER, DAILY OR HOURLY.

MAPEtest (%)

Input Size Prediction Horizon HSM Dataset AMPds2

Dataset

SHINES

Dataset

UCI Dataset

14 days (14 daily net total power values) 7 days (7 separate values) 42% 14% 58% 23%

14 days 1 day (1 value) 39% 13% 51% 22%

48 h (48 hourly net total power values) 24 h (24 separate values) 182% 35% 105% 64%

48 h 6 h (6 separate values) 167% 31% 107% 64%

48 h 1 h (1 value) 107% 31% 83% 46%

(a)

(b)

Figure 3. Examples of total net power predictions for 7 days (UCI dataset)
and 24 h (AMPds2 dataset).

• We noticed in some cases that while the prediction of the

Net Total power is rather poor, the prediction of individual

components (such as HVAC or Lighting power) of the same

dataset can be done with much better accuracy. For example,

Table IV reports the MAPE values for the Lighting power

component of the HSM dataset achieved with exactly the

same LSTM model. This component is easier to predict be-

cause it has variation patterns that are less erratic compared

to the patterns exhibited by the net total power - as it can

be seen in the examples in Fig. 5. Another indicator of the

difficulty of prediction is the “heat-map”. For example, Fig.

6 shows such a heat-map for the SHINES dataset, which

illustrates the increased randomness of the power values

and the lack of repeatable patterns. Similar challenges with

variable load predictions were reported in [24].

Figure 4. MAPE variation across 7 days (UCI dataset) and 24 h (AMPds2
dataset) prediction.

Table IV
MAPE VALUES FOR PREDICTION OF NET TOTAL POWER VS. PREDICTION

OF ONLY LIGHTING POWER FOR HSM DATASET.

What is Pre-

dicted

MAPE

7 days

MAPE

1 day

MAPE

24 h

MAPE

6 h

MAPE

1 h

Net Total

Power

42% 39% 182% 167% 107%

Lighting

Power

25% 28% 109% 112% 76%

Figure 5. Power traces showing Net Total and Lighting power for HSM
dataset, on the first two days of Feb. 2018.

V. CONCLUSION

We investigated the effectiveness of standard LSTM models

to predict power of individual residences. The investigation

looked at hourly (24 h, 6 h, 1 h) and daily (7 days, 1 day)

prediction horizons for four different datasets. Extensive sim-

ulations using a three layer LSTM model indicated that while

such models can potentially offer good prediction accuracy



(a)

(b)

Figure 6. Heat-maps of net total power for SHINES dataset. Solar generation
explains low values during the afternoon.

for 7 and 1 days ahead for some datasets, these models do

not achieve satisfactory prediction accuracies for 24 h, 6 h,

1 h prediction horizons. Future work will focus on framing

the prediction problem as a multi-variate multi-step prediction

problem, where additional variable measurements, such as

temperatures inside and outside, solar irradiance, etc., are

included into the input features.
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