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Abstract

A famous theorem of Erd6s and Szekeres states that any sequence of n distinct real
numbers contains a monotone subsequence of length at least +/n. Here, we prove a
positive fraction version of this theorem. For n > (k — 1)2, any sequence A of n
distinct real numbers contains a collection of subsets Aq, ..., Ay C A, appearing
sequentially, all of size s = 2(n/k?), such that every subsequence (ay, . .., ax), with
a; € A;, is increasing, or every such subsequence is decreasing. The subsequence
S = (Ay, ..., Ay) described above is called block-monotone of depth k and block-
size s. Our theorem is asymptotically best possible and follows from a more general
Ramsey-type result for monotone paths, which we find of independent interest. We
also show that for any positive integer k, any finite sequence of distinct real numbers
can be partitioned into O (k* log k) block-monotone subsequences of depth at least k,
upon deleting at most (k — 1) entries. We apply our results to mutually avoiding
planar point sets and biarc diagrams in graph drawing.
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1 Introduction

In 1935, Erd6s and Szekeres [7] proved that any sequence of n distinct real num-
bers contains a monotone subsequence of length at least v/n. This is a classical result
in combinatorics and its generalizations and extensions have many important conse-
quences in geometry, probability, and computer science. See Steele [15] for seven
different proofs along with several applications.

In this paper, we prove a positive fraction version of the Erdés—Szekeres theorem.

We state this theorem using the following notion: A sequence (ay, az, . . ., dis) of ks
distinct real numbers is said to be block-increasing (resp. block-decreasing) with depth
k and block-size s if every subsequence (a;,, ai,, . .., a;), for (j — 1)s < i; < js,is

increasing (resp. decreasing). We call a sequence block-monotone if it’s either block-
increasing or block-decreasing. In other words, such a sequence consists of k parts,
each of size s and appearing sequentially, such that the parts (i.e., blocks) are in a
monotone position.

Theorem 1.1 Let k and n > (k — 1)? be positive integers. Then every sequence of n
distinct real numbers contains a block-monotone subsequence of depth k and block-size
s = Q(n/k>). Furthermore, such a subsequence can be computed within O (n* log n)
time.

We prove Theorem 1.1 by establishing a more general Ramsey-type result for mono-
tone paths, which we describe in detail in the next section. The theorem is also
asymptotically best possible, see Remark 2.5.

By a repeated application of Theorem 1.1, we can decompose any sequence of n
distinct real numbers into O (k log n) block-monotone subsequences of depth k£ upon
deleting at most (k — 1)2 entries. Our next result shows that we can obtain such a
partition, where the number of parts doesn’t depend on n.

Theorem 1.2 For any positive integer k, every finite sequence of distinct real numbers
can be partitioned into at most O (k> log k) block-monotone subsequences of depth at
least k upon deleting at most (k — 1)? entries.

Our proof of Theorem 1.2 is constructive and implies an algorithm for the claimed
partition whose time complexity is polynomial in k and n, where # is the length of the
given sequence. Theorem 1.2 is inspired by a similar problem of partitioning planar
point sets into convex-positioned clusters studied by Pér and Valtr [14]. A positive
fraction Erd6s—Szekeres-type result for convex polygons is given previously by Barany
and Valtr [3].

We give two applications of Theorems 1.1 and 1.2.

Mutually avoiding sets. Let A and B be finite point sets of R? in general position,
that is, no three points are collinear. We say that A and B are mutually avoiding if
no line generated by a pair of points in A intersects the convex hull of B, and vice
versa. Aronov et al. [1] used the Erd6s—Szekeres Theorem to show that every n-element
planar point set P in general position contains subsets A, B C P, each of size Q (1/n),
s.t. A and B are mutually avoiding. Valtr [16] showed that this bound is asymptotically
best possible by slightly perturbing the points in an /1 x 4/n grid. Following the same
ideas of Aronov et al., we can use Theorem 1.1 to obtain the following.
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Theorem 1.3 For every positive integer k there is a constant €, = Q2 (1/k?) s.t. every
sufficiently large point set P in the plane in general position contains 2k disjoint

subsets A1, ..., Ak, B1, ..., By, each of size at least €;|P|, s.t. every pair of sets
A ={ay,...,ax} and B = {by, ..., br}, with a; € A; and b; € B;, are mutually
avoiding.

This improves an earlier result of Mirzaei and the first author [11], who proved the
theorem above with ¢, = Q(1/k*). The result above is asymptotically best possible
for both k and | P|: Consider a k x k grid G and replace each point with a cluster of
| P|/k? points placed very close to each other so that the resulting point set P is in
general position. If we can find subsets A;’s and B;’s as in Theorem 1.3, but each of
size €| P| with €, = w(1/k?), then we can find mutually avoiding subsets in G of
size w(k), contradicting Valtr’s result in [16].

Finally, let us remark that a recent result due to Pach et al. [13] shows that every
n-element planar point set in general position determines at least n/ 0 Wlogn) pairwise
crossing segments. By using Theorem 1.3 instead of Lemma 3.3 from their paper, one
can improve the constant hidden in the O-notation.

Monotone biarc diagrams. A proper arc diagram is a drawing of a graph in the
plane, whose vertices are points placed on the x-axis, called the spine, and each edge
is drawn as a half-circle. A classic result of Bernhard and Kainen [5] shows that a
planar graph admits a planar proper arc diagram if and only if it’s a subgraph of a
planar Hamiltonian graph. A monotone biarc diagram is a drawing of a graph in the
plane, whose vertices are placed on a spine, and each edge is drawn either as a half-
circle or two half-circles centered on the spine, forming a continuous x-monotone
biarc. See Fig. 6 for an illustration. In [6], Di Giacomo et al. showed that every planar
graph can be drawn as a planar monotone biarc diagram.

Using the Erd6s—Szekeres Theorem, Bar-Yehuda and Fogel [2] showed that every
graph G = (V, E), with a given order on V, has a double-paged book embedding with
at most 0(«/f ) pages. That is, E can be partitioned into O (y/|E]) parts, s.t. for each
part E;, (V, E;) can be drawn as a planar monotone biarc diagram, and V' appears on
the spine with the given order. Our next result shows that we can significantly reduce
the number of pages (parts), if we allow a small fraction of the pairs of edges to cross
on each page.

Theorem 1.4 For any € > 0 and a graph G = (V, E), where V is an ordered set,
E can be partitioned into O (¢ > log el log |E|) subsets E; s.t. each (V, E;) can be
drawn as a monotone biarc diagram having no more than € |E;|? crossing edge-pairs,
and V appears on the spine with the given order.

This paper is organized as follows: In Sect. 2, we prove Theorem 1.1 in the setting
of monotone paths in multicolored ordered graphs. Section 3 is devoted to the proof
of Theorem 1.2. In Sect. 4, we present proofs for the applications claimed above.
Section 5 lists some remarks.
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2 A Positive Fraction Result for Monotone Paths

Several authors [8, 10, 12] observed that the Erd6s—Szekeres theorem generalizes to the
following graph-theoretic setting. Let G be a graph with vertex set [n] = {1, ..., n}.
A monotone path of length k in G is a k-tuple (vy, ..., vg) of vertices s.t. v; < v; for
alli < j and all edges v;v;4+1, fori € [k — 1], are in G.

Theorem 2.1 Let x be a g-coloring of the pairs of [n]. Then there must be a monochro-
matic monotone path of length at least n'/4.

Given subsets A, B C [n], we write A < B if every element in A is less than every
element in B.

Definition 2.2 Let G be a graph with vertex set [n] and let Vi,..., Vx C [n] and
P1s---» Pk+1 € [n]. Then we say that (p1, V1, p2, Vo, p3, ..., Pk, Vi, Pk+1) 1S a
block-monotone path of depth k and block-size s if

e |Vi| =sforalli,

e wehave p < Vi < pp < Vo < p3 <...< pir < Vk < Pk+1,

e and every (2k + 1)-tuple of the form

(P1, V1, P2, V2, ..., Dks Vk, Pk+1)s

where v; € V;, is a monotone path in G.
Our main result in this section is the following Ramsey-type theorem.

Theorem 2.3 There is an absolute constant ¢ > 0 s.t. the following holds. Given
integers q > 2, k > 1, and n > (ck)4, let x be a q-coloring of the pairs of [n].
Then x produces a monochromatic block-monotone path of depth k and block-size
s > n/(ck)q.

A careful calculation shows that we can take ¢ = 40 in the theorem above. We will
need the following lemma.

Lemma24 Letgq > 2and N > 34. Then for any q-coloring of the pairs of [N], there
is a monochromatic block-monotone path of depth 1 and block-size s > N /(g337).

Proof Let x be a g-coloring of the pairs of [N], and set r = 39. By Theorem 2.1,
every subset of size r of [V] gives rise to a monochromatic monotone path of length 3.
Hence, x produces at least

N

r

vy 50)

monochromatic monotone paths of length 3 in [ N]. Hence, there are at least 6(1;’ ) /(gr?)
monochromatic monotone paths of length 3, all of which have the same color. By
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averaging, there are two vertices py, p € [N],s.t.atleast N /(gr>) of these monochro-
matic monotone paths of length 3 start at vertex p; and ends at vertex p,. By setting
V] to be the “middle” vertices of these paths, (p1, Vi, p2) is a monochromatic block-
monotone path of depth 1 and block-size s > N/(gr) = N /(¢3%?). O

Proof of Theorem 2.3 Let x be a g-coloring of the pairs of [1] and let ¢ be a sufficiently
large constant that will be determined later. Set s = [n/(ck)?]. For the sake of
contradiction, suppose x does not produce a monochromatic block-monotone path
of depth k and block-size s. For each element v € [n], we label v with f(v) =
(b1, ..., by), where b; denotes the depth of the longest block-monotone path with
block-size s in color 7, ending at v. By our assumption, we have 0 < b; < k — 1,
which implies that there are at most k¢ distinct labels. By the pigeonhole principle,
there is a subset V C [n] of size at least n/k9, s.t. the elements of V all have the same
label.

By Lemma 2.4, there are vertices py, p» € V, asubset V' C V, and a color «
s.t. (p1, V’, p2) is a monochromatic block-monotone path in color «, with block-size
t > |V|/(g33%). By setting ¢ to be sufficiently large, we have

V] n n
t > > > =S
~ g331 T kig33% — | (ck)4

However, this contradicts the fact that f(p;) = f(p2), since the longest supported
monotone path with block-size s in color « ending at vertex p; can be extended to a
longer one ending at p,. This completes the proof. O

Proof of Theorem 1.1 Let A = (ay, ..., a,) be a sequence of distinct real numbers.
Let x be a red/blue coloring of the pairs of A s.t. fori < j, we have x (a;, a;) = red
ifa; < aj and x(a;,a;) = blue if a; > a;. In other words, we color the increasing
pairs by red and the decreasing pairs by blue.

If n < (ck)2, notice that n/(ck)2 < 1. By our assumption n > (k — 1)2, the
classical Erd6s—Szekeres theorem gives us a monotone subsequence in A of length at
least k, which can be regarded as a block-monotone subsequence of depth at least k
and block-size s = 1 > n/(ck)>.

Ifn > (ck)?, by Theorem 2.3, there is a monochromatic block-monotone path of
depth k and block-size s > n/(ck)? in the complete graph on A, which can be regarded
as a block-monotone subsequence of A with the claimed depth and block-size.

Now we focus on computing such a block-monotone subsequence. If n < (ck)?, it
suffices to compute the longest monotone subsequence of A. It’s well known that the
longest increasing subsequence can be computed within O (nlogn) time, see [9], so
we are done with this case.

Ifn > (ck)?, wesets = [n/(ck)*]. We call a pair (a;, a,) s-gapped if there exist s
otherentries a, withi < x < jsatisfyinga; < ay < ajora; > ay > aj. We describe
an O (n? log n)-time algorithm that computes the longest increasing subsequence with
consecutive entries s-gapped.

Firstly, we preprocess A into a data structure s.t. we can answer within O (logn)
time whether any given pair (;, a;) is s-gapped or not. The classical data structure
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for 2-D orthogonal range counting works for our purpose and its preprocessing time
is O(nlogn), see [4, Exer. 5.10].

Next, let /(i) be the length of the longest increasing subsequence of A with consec-
utive entries s-gapped ending at a;. We compute each /(i) as i proceeds from 1 to n
as follows: After (1), ...,1(i — 1) are all determined, we have

1) = max {{(j) : (aj, a;) is s-gapped} + 1.
j<i

Here, we consider max () := 0. Hence we can compute /(i) by checking which pairs
in{(aj,a;) : j < i} are s-gapped using our preprocessed data structure. Clearly, this
computation of all /(i) takes O (n? logn) time.

While computing (i), let the algorithm record p(i), which is the index j < i
with the largest [(j) s.t. (a;, a;) is s-gapped. This recording process won’t increase
the magnitude of time complexity. After all /(i) and p(i) are determined, we find the
index iy with the largest /(i) =: L, and inductively setij.1 = p(i;) for j € [L — 1].
Then a;,,a;, ,,...,a; is the longest increasing subsequence of A with consecutive
entries s-gapped.

Let’s return to computing the block-monotone subsequence. By the previous argu-
ment on block-monotone paths, there exists a monotone subsequence S C A with
consecutive entries s-gapped whose length is at least k 4+ 1. We can use the algorithm
above to compute S within O (n”logn) time. Clearly, the entries of A “gapped” by
consecutive entries of S form a block-monotone subsequence as claimed, and they can
be found within O (n) time. Hence we conclude the theorem. ]

Remark 2.5 For each k, g, s > 0, the simple construction below shows Theorem 2.3
is tight up to the constant factor ¢?. We first construct K (k, ¢), for each k and ¢,
a g-colored complete graph on [k?], whose longest monochromatic monotone path
has length k: K (k, 1) is just a monochromatic copy of the complete graph on [k]. To
construct K (k, g) from K (k, g — 1), take k copies of K (k, ¢ — 1) with the same set of
q — 1 colors, place them in order and color the remaining edges by a new color. Now
replace each pointin K (k, g) by a cluster of s points, where within each cluster one can
arbitrarily color the edges. The resulting g-colored complete graph has no k subsets
Vi, Va, ..., Vi C [n] each of size s + 1 and edges between them monochromatic,
otherwise K (k,q) would have a monochromatic monotone path with length larger
than k. One example of the sharpness of the classical Erd6s—Szekeres theorem is the
sequence

Sy = (kok—1,..., 1,2k, 2k — 1, ... k+1,... kLK — 1, k(k— 1)+ 1).

Notice that if we color the increasing pairs of S(k) by red and the decreasing pairs of
S(k) by blue, we obtain the graph K (k, 2). If we replace each entry s; € S(k) by a
cluster of s distinct real numbers very close to s;, we obtain an example showing that
Theorem 1.1 is asymptotically best possible.
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3 Block-Monotone Sequence Partition

This section is devoted to the proof of Theorem 1.2. We shall consider this problem
geometrically by identifying each entry a; of a given sequence A = (a;)_, as a planar
point (i, a;) € R2. As we consider sequences of distinct real numbers, throughout this
section, we assume that all point sets have the property that no two members share the
same x-coordinate or the same y-coordinate.

Thus, we analogously define block-monotone point sets as follows: A set of ks
planar points is said to be block-increasing (resp. block-decreasing) with depth k and
block-size s if it can be written as {(x;, yi)}f.‘i | Stox; < x4 for all i and every
sequence (Y, Yip» - - -» Yir)» for (j — 1)s < i; < js, is increasing (resp. decreasing).
We say that a point set is block-monotone if it’s either block-increasing or block-
decreasing. For each j € [k] we call the subset {(x;, yi)}{i(j_l)sJrl the j-th block
of this block-monotone point set. Hence, Theorem 1.2 immediately follows from the
following.

Theorem 3.1 For any positive integer k, every finite planar point set can be parti-
tioned into at most O (k* log k) block-monotone point subsets of depth at least k and
a remaining set of size at most (k — 1)2.

Given a point set P C R2, let

UP):={(x.y) eR*:y >y, V('.y) e P}, (up)
D(P):={(x,y) eR*:y <y, V(' y) e P}, (down)
L(P):={(x,y)eR>:x <x', V() e P}, (left)
R(P):={(x,y) eR?>:x >x/, V(x',y) € P}. (right)

Our proof of Theorem 3.1 relies on the following definitions. The constant ¢ below
(and throughout this section) is from Theorem 2.3. See Fig. 1 for an illustration.

Definition 3.2 A point set P is said to be a (k, t)-configuration if P can be written as
a disjoint union of subsets P = Yy U Yo U---U Yy 4 s.t.

e for every i € [t], Y»; is a block-monotone point set of depth k£ and block-size at
least | Y2411/ (3ck)? for all j € {0} U [1];

o cither Uf;ﬂr] Y; islocated entirely in R(Y;)NU (Y;) foralli € [2t], or U?glﬂ Y;
is located entirely in R(Y;) N D(Y;) for all i € [2¢].

Definition 3.3 A point set P is said to be a (k, [, t)-pattern if P can be written as a
disjoint union of subsets P = S U S U---US§ UY s.t.

e Y isa (k, t)-configuration;

e for every i € [/], S; is a block-monotone point set of depth k and block-size at
least |Y|/(3ck)?;

e foreveryi € [l],theset Y U UljziJrl S is located entirely in one of the following
regions: U (S;) N L(S;), U(S;) N R(S;), D(S;) N L(S;), and D(S;) N R(S;).
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Fig.1 (i) a (3, 2)-configuration. (ii) a (3, 2, 2)-pattern

If a planar point set P is a (k, 4k, t)-pattern or a (k, [, k)-pattern, the next two
lemmas state that we can efficiently partition P into few block-monotone point sets
and a small remaining set.

Lemma3.4 If P is a (k, 4k, t)-pattern, then P can be partitioned into O (klogk)
block-monotone point sets of depth at least k and a remaining set of size O (k).

Lemma 3.5 If P is a (k, [, k)-pattern, then P can be partitioned into O (k* logk +1)
block-monotone point sets of depth at least k and a remaining set of size O (k).

Starting with an arbitrary point set P, which can be regarded as a (k, 0, 0)-pattern,
we will repeatedly apply the following lemma until P is partitioned into few block-
monotone point sets, a set P’ that is either a (k, 4k, r)-pattern or a (k, [, k)-pattern,
and a small remaining set.

Lemma3.6 Forl < 4k andt < k, a (k,l,t)-pattern P can be partitioned into
O (k log k) block-monotone point sets of depth at least k, a point set P’, and a remaining
set of size O (k?), s.t. either (1) |P'| < k(3k — 1)?; or (ii) P' is a (k,, t + 1)-pattern;
or (iii) P’ is a (k, [ +t, 0)-pattern. Moreover, P’ always satisfies either (i) or (ii) when
t=0.

Before we prove the lemmas above, let us use them to prove Theorem 3.1.

Proof of Theorem 3.1 Let P be the given point set. For i > 0, we inductively construct
a partition F; U {P;, E;} of P s.t.

e Piisa(k,l;,t;)-pattern or | P;| < k(3k — )2,

o |Ei| = 0Gk?),

e F; is adisjoint family of block-monotone point sets of depth at least k, and | F;| =
O(iklogk).
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We start with Py = P, which is a (k, 0, 0)-pattern, and Fo = Eo = . Suppose
we have constructed the i-th partition F; U {P;, E;} of P.If |P;| < k(3k — 1)%, or
l; = 4k, ort; > k, we end this inductive construction process, otherwise, we construct
the next partition F; 41 U { P41, E;11} as follows: According to Lemma 3.6, P; can
be partitioned into r; = O (k log k) block-monotone point sets with depth at least k,
denoted as {A; 1, ..., A; }, apoint set P/, and a remaining set E; of size 0 (k%). We
define iy := Fi U{A; 1,..., Ai )}, Piy1 := P/,and E;y | := E; UE]. Clearly, we
have | Fjy1| = | Fi|+ri = O((i+Dklogk) and |Ej11| = |Ej|+|E]| = O((i+Dk?)
as claimed. By Lemma 3.6, we have either (i) | Piy1| < k(3k — 1)2, so the construction
ends; or (ii) P;1qisa (k, I;, t; + 1)-pattern, so l;+1 = l; and t;11 = t; + 1; or (iii) Pj4+1
is a (k,l; 4+ t;, 0)-pattern, so l;11 = [; + ¢t; and t;;1 = 0. Moreover, when t; = 0,
Lemma 3.6 guarantees that P; | always satisfies (i) or (ii).

Let Fy, U {Py, Ey} be the last partition of P constructed in this process. Here, Py,
isa (k, Iy, ty)-pattern. We must have either | Py, | < k(3k — 1)2, orly, >4k,ort, > k.
Since t;+1 < t; + 1l and l;+1 < [; +¢; for all i, we have #,, < k and [, < 5k. Since
we always construct the (i 4+ 1)-th partition with P; 1 satisfying either (i) or (ii) when
t; = 0, the sum /; + #; always increases by at least 1 after two inductive steps. So we
have w/2 < t,, + 1, < 6k and hence w < 12k.

Now we handle F,, U {Py,, E,,} based on how the construction process ends. If the
construction process ended with | Py, | < k(3k — 1)2, we define Ey+1 = EpU Py, and
Fus1 = Fu. Since w < 12k, we have | Fy11] = O(k*logk) and |Eyq1]| = O (k).

If the construction process ended with /,, > 4k, by Definition 3.3, we can par-
tition P, into l,, — 4k many block-monotone point sets of depth k, denoted as
{S1, ..., Si,—ar}, and a (k, 4k, t,))-pattern P,,. Then, by Lemma 3.4, P, can be parti-
tioned into r, = O (k log k) block-monotone point sets of depth at least k, denoted as
{Aw.1, ..., Ay, },and aremaining set E;, of size O (k*). We define E 11 = E,UE],
and

fw+l = —7:w U{Sla"'v Slw—4k7 Aw,la ey Aw,rw}-

Using w < 12k, [, < 5k, and other bounds we mentioned above, we can check that
|Fus1l = O(k*logk) and |Eyyy1| = O(K).

If the construction process ended with #,, > k, we actually have t,, = kand/l,, < 4k.
By Lemma 3.5, we can partition Py, intory,, = O (k2 log k +1,;)) block-monotone point
sets of depth at least k, denoted as {Ay, 1, ..., Aw,r, }, and a remaining set E,’U of size
O (k). We define Eyy = Ey UE! and Fyp1 = Fyy U{Aw.1, ..., Ay, ). Again,
we have | Fy1 1| = O(k*logk) and |E,y 1] = O(K3).

Overall, we can always obtain a partition Fy41 U {Ey1} of P with [Fyy1] =
0 (k? logk) and |Ey 41| = 0. Using the classical Erd6s—Szekeres theorem, we
can always find a monotone sequence of length at least k in E,,1 when |E,41]| >
(k — 1)>. By a repeated application of this fact, we can partition E, 1 into O(k?)
block-monotone point sets of depth k and block-size 1, and a remaining set E of size
at most (k — 1)2. We define F to be the union of Fw+1 and these block-monotone
sequences. The partition F U {E} of P has the desired properties, completing our
proof. O
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We now give proofs for Lemmas 3.4, 3.5, and 3.6. We need the following two facts.

Fact3.7 For any positive integer k, every point set P can be partitioned into
O(klogk) block-monotone point sets of depth k& and a remaining set P’ with
|P'| < max {|P|/k, (k — 1)*}.

This fact can be established by repeatedly using Theorem 1.1 to pull out block-
monotone point sets and applying the elementary inequality (1 — x~1)*log* < x~1
for any x > 1.

Fact 3.8 For any positive integer k and m, every block-monotone point set P with
depth k and | P| > m can be partitioned into a block-monotone point set of depth k, a
subset of size exactly m, and a remaining set of size less than k.

This fact can be established by taking out [m/k] points from each block of P. Then
we have taken out k - [m/k] = m + r points, where 0 < r < k.

Proof of Lemma 3.4 Write the given (k, 4k, t)-pattern P = S; U ... U Sy U Y asin
Definition 3.3. By definition, each block-monotone point set S; is contained in one of
the four regions: U(Y) N L(Y), U(Y)NR(Y), D(Y)NL(Y),and D(Y) N R(Y). By
the pigeonhole principle, there are k point sets among Si, . . ., S4 all contained in one
of the regions above. Without loss of generality, we assume there are k among them
all contained in U (Y) N L(Y). In fact, we can further assume that these point sets are
S1, ..., St as the proof also works for other cases.

We have S;; C D(S;) N R(S;) forall 1 <i < i’ <k.Indeed, since Y C D(S;) N
R(S;), Definition 3.3 guarantees that ¥ U U];=i+1 S is contained in D(S;) N R(S;)
and, in particular, S;/ is contained in this region. See Fig. 2 for an illustration.
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Fig.2 In proof of Lemma 3.4, S;; C D(S;) N R(S;) fori < i’
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Now by Fact 3.7, we can partition Y into {Ay, ..., A,, Y'}, where r = O (k logk),
s.t. each A; is block-monotone of depth 9¢2k, and either |Y’| < |Y|/(9¢%k) or |Y'| <
(9c’k — 12 If |Y'| < (9c¢®k — 1)2, we have partitioned P into O (k logk) block-
monotone point sets of depth at least k, which are {A1,..., A, S1, ..., Sar}, and a
remaining set Y’ of size 0 (k?), as wanted.

If |Y'| < |Y|/(9¢%k), by Definition 3.3 we have |Y'| < |S;| for i € [k]. We
can apply Fact 3.8 with m := |Y’| to obtain a partition S; = S/ U B; U E; where
S} is block-monotone of depth k, |B;| = |Y'|, and |E;| < k. Observe that X :=
Bi U By U---U By UY’ is block-monotone of depth k + 1 by its construction. Then
we have partitioned P into O(klogk) many block-monotone point sets, which are
{A1, ... A ST o S Skats -+ o, Sak, X, and a remaining set E = Ule E; of
size O (k?), as wanted. O

Proof of Lemma 3.5 Write the given (k, [, k)-pattern P = S; U ---U S UY as in
Definition 3.3 and the (k, k)-configuration ¥ = Y1 U - - - U Y241 as in Definition 3.2.
Since each S; is block-monotone of depth k, it suffices to partition ¥ into O (k2 log k)
many block-monotone point sets of depth at least k and a remaining set of size O (k>).

For each j € {0} U [k], we apply Fact 3.7 to obtain a partition of ¥>;,; into
O (k log k) many block-monotone point sets of depth 9¢”k and a remaining set Y] i+
of size either at most [Y2; 41 |/(9¢%k) or at most (9c2k — 1)2. We can apply Fact 3.7
again to partition Y, i1 into O (k log k) many block-monotone point sets of depth K+ 1

.. 7 .
and a remaining set Y, 1 with

|Y2j+1 | 2 2

"

|Y2j+1| SmaX{m,(gc k—1)"¢. 3.1
Denote the block-monotone point sets produced in this process as {Aj 1, ..., Ajr;}

where r; = O (klogk).
Next we denote Ji = {j € {0} Ukl : |¥5;, | > (9c%k — 1)} and J» =

({0} U [k]) \ J;1. For each j € Jj andi € [k], we must have

Yl < [Y2 41l - |Y2i|7
J 9c2k(k+1) — k+1

where the second inequality is by Definition 3.2. Hence |Y;| > |U jen Yz”j 41 | We
jen Yz”j+1 | to obtain a partition Y2; = ¥}, U B; U E;
where Y2/i is block-monotone of depth &, |B;| = m, and |E;| < k. Since |B;| =
|Ujejl Y111, we can take a further partition B; = J ¢, Bj.i with |Bj ;| = [Y3) ]
for each j € Ji. Then we observe that

can apply Fact 3.8 with m := ||

=

X;:=Bj U-~-UBj,jUY2//j+1 UBj j+1U---UBj
is block-monotone of depth k + 1 for each j € J; by its construction.
Finally, let E := (J;_, E; U Ujer Yz”jH, it easy to check that |[E| = O(k3).

So we have partitioned Y into O (k?log k) many block-monotone point sets, which
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are Ul;zo{Aj,l, s A Y ULX Y jen ULYS, Yy, ., Yy}, and a remaining set E of
size O (k3), as wanted. ]

Proof of Lemma 3.6 Write the given (k, [, t)-pattern P = S; U --- U §; U Y as in
Definition 3.3 and its constituent (k, ¢)-configuration ¥ = Y7 U --- U Y241 as in
Definition 3.2. Denote a set with largest size among {Y2;41 : j € {0} U[¢]} as Y. By
Definition 3.2, we can assume without loss of generality that

2t+1
U Y; CRY;)NUY;) forall i e [21]. (3.2)
j=i+l1

If|Y;,| < Gk— 1)2, we can partition P into [+t = O (k) many block-monotone point
sets of depth k, which are {S1, ..., S;, Y2, Y4, ..., Ya}, and aset P’ := Ulj=0 Yaj41
of size at most k (3k — 1)? since t < k. So we conclude the lemma with P’ as described
in (i).

Now we assume |Y;| > (3k— 2. Apply Theorem 1.1 to extract a block-monotone
point set X C Y;, of depth 3k and block-size at least |Y;,|/ (3¢ck)? and name the i-th
block of X as B; for i € [3k]. Notice that X splits into three parts

X1:=B1U---UB;y, X2 = Bk+1 U---U By, X3 1= Bogy1 U---U Bz,

Our proof splits into two cases: X being block-increasing or X being block-decreasing.

Case 1. Suppose X is block-increasing, we define

Pr=S1U---USHUX2UYaU---UY;—1) U Yoy UYoyoU---UYj41)
U(YIU\X)

By Definition 3.3, we can check that P’ is a (k, k + [, 0)-pattern with ¥;, \ X being
its constituent (k, 0)-configuration. Let Z; := Y1 U Y3 U --- U Y; > and Z3 :=
Yig+2 UYjp44U---UY211. We claim that X; U Z; can be partitioned into O (k log k)
block-monotone point sets of depth at least k and a remaining set of size O (k?) for
i = 1, 3. Given this claim and the fact that P = P’ U X U Z; U Z3, we conclude the
lemma with P’ as described in (iii).

Now we justify this claim for X| U Z| and the justification for X3 U Z3 is similar.
By an argument similar to (3.1), we can apply Fact 3.7 three times to partition Z; into
{A1,..., Ay, Zi}, where r = O (klogk), s.t. each A; is block-monotone of depth at
least k and | Z}| < max {|Z]/(9c¢?k?), (9c*k — 1)?}. If | Z}| < (9c*k — 1)2, we have
partitioned X U Z; into O(klogk) block-monotone point sets of depth at least k,
which are {A1, ..., A, X1}, and a remaining set Z/1 of size O(kz) as claimed.

If |Z}] < 1Z11/(9ck?), noticing that |Z1] < ¢]Yj,| < k|Y;,|, we have |Z/] <
|Yiy|/(3ck)?> < |B;| for all i € [k]. We can take a partition B; = B! U B! with
|B!| = |Z}|. We observe that X := Z] U B] U--- U By is block-increasing of depth
k+1and X{ := B U---U B} is block-increasing of depth k by their constructions.

@ Springer



320 Discrete & Computational Geometry (2024) 71:308-325

So we have partitioned X| U Z; into O (k log k) block-monotone point sets of depth
at least k, which are {Ay, ..., A,, X|, X{}, as claimed.

Case 2. Suppose X is block-decreasing, we choose two points in the following
regions:

(x1,y1) € R(Bk) N D(Bi) N L(Bi41) N U (Bk+1),

(x2, y2) € R(Bak) N D(B2k) N L(Bak+1) N U(Boi+1)-

Also we require x or x; isn’t the x-coordinate of any element in P, and y;j or y; isn’t
the y-coordinate of any element in P. We use the linesx = x; and y = y; fori = 1,2
to divide the plane into a 3 x 3 grid and label the regions R;,i =1, ..., 9, as in Fig. 3.

We define
Y =Y1UYaU- - UY-1 URINY; ) UX2 U(R3NY) UYjgp1 U+ U Yoy,

Using condition (3.2) and Definition 3.2, we can check that Y’ is a (k,t + 1)-
configuration. And P’ := S; U---U S UY isa (k,[,t + 1)-pattern according
to Definition 3.3. Let Z; = (¥Yi, \ X) N (Rs U Rg U Rg U Ryg), and Z; :=
(Yi, \ X) N (R1 U Ry U Ry). We claim that X; U Z; can be partitioned into O (k log k)
block-monotone point sets of depth at least k and a remaining set of size O (k?) for
i = 1, 3. Given this claim and the fact that P = P/ U X U X3U Z; U Z3, we conclude
the lemma with P’ as described in (ii).

Now we justify this claim for X U Z; and the justification for X3 U Z3 is similar.
By an argument similar to (3.1), we can apply Fact 3.7 twice to partition Z; into
{A1,..., A, Zﬁ }, where r = O (klogk), s.t. each A; is block-monotone of depth at
least k and |Z/| < max {|Z1|/(3ck)?, (9c*k — 1)?}. If |Z|| < (9c’k — 1), we have

X =X X =X

Fig. 3 Division of the plane into nine regions according to (x;, y;), i = 1, 2. Each ellipse represents a
cluster of points as defined in the proof
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partitioned X U Z; into O (k logk) block-monotone point sets of depth at least k,
which are {A1, ..., A,, X1}, and a remaining set Z’1 of size O(k?) as claimed.

If |Z}| < |Z1]/(Bck)?, since |Z1| < |Yy|, we have |Z{| < |Y;,|/(3ck)* < |B|
for all i € [k]. We can take a partition B; = B/ U B/ with |B/| = |Z]|. We observe
that X| := B U---U B, U Z] is block-decreasing of depth k 4+ 1 and X/ :=
B U --- U B} is block-decreasing of depth k by their constructions. So we have
partitioned X; U Z; into O (k logk) block-monotone point sets of depth at least k,
which are {A, ..., A,, X], X{}, as claimed.

Finally, when ¢ = 0 is given in the hypothesis, the condition (3.2) and its opposite,
ie., U?Zﬂrl Y; C R(Y;))ND(Y;) foralli € [2¢], are both trivially true. Hence, when
Y| > Bk — 1)2, no matter whether X is block-increasing or block-decreasing, we
can always use the arguments in Case 2 to conclude the lemma as described in (ii). O

4 Applications
4.1 Mutually Avoiding Sets

We devote this subsection to the proof of Theorem 1.3. The proof is essentially the
same as in [1], but we include it here for completeness. Given a non-vertical line L
in the plane, we denote L™ to be the closed upper-half plane defined by L, and L™
to be the closed lower-half plane defined by L. We need the following result, which
is [1, Lemma 1].

Lemma4.1 Let P, Q C R? be two n-element point sets with P and Q separated by
a non-vertical line L and P U Q in general position. Then for any positive integer
m < n, there is another non-vertical line H s.t. |[HT N P| = |HY N Q| = m or
[H-NP|=|H NQ|=m.

Proof of Theorem 1.3 Let k be as given and n > 24k>. Let P be an n-element point set
in the plane in general position. We start by taking a non-vertical line L to partition the
plane s.t. each half-plane contains |n/2 | points from P. Then by Lemma4.1, we obtain
anon-vertical line H with, say, HTN(LTNP) = H*N(L™NP) = |n/6]. Next, we
find a third line N, by first setting N = H, and then sweeping N towards the direction
of H~, keepingitparallel with H,until H"NNTNLY or H"NNTNL~ contains [1/6]
points from P. Without loss of generality, let us assume Q := PN (H-NNTNL™)
first reaches |n/6] points, and the region H~ N N+ N L™ has less than [n/6] points
from P. Hence, both Q; ;== PN(H+tNL™)and Q, := PN (N~ NL7) have at least
|n/6] points. See Fig. 4 for an illustration. O

We can apply an affine transformation so that L and H are perpendicular, and N is
on the right side of H. Think of L as the x-axis, H as the y-axis, and N as a vertical
line with a positive x-coordinate. After ordering the elements in Q according to their
x-coordinates, we apply Theorem 1.1 to Q to obtain disjoint subsets Q1, ..., Qa1 C
0 s.t. (Q1, ..., Q1) is block-monotone of depth 2k + 1 and block-size Q(n/kz),
where each entry represents its y-coordinate. Without loss of generality, we can assume
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Q

L%J points

Q, 0,

L%J points L%J points

Fig.4 The division of plane into regions according to L, H, N

Fig. 5 An example when A;’s are increasing. Each ellipse represents a cluster of points as defined in the
proof

H

it is block-decreasing, otherwise we can work with Q, rather than Q; in the following
arguments.

Now fix a point ¢ € Q1. We express the points in Q; in polar coordinates (p, 6)
with g being the origin. We can assume no two points in Q; are at the same distance
to g, otherwise a slight perturbation may be applied. By ordering the points in Q; with
respect to 6, in counter-clockwise order, we apply Theorem 1.1 to Q; to obtain disjoint
subsets Ay, ..., Ax C Q; s.t. (Aq, ..., Ay) is block-monotone of depth k and block-
size Q2 (n/k?), where each entry represents its distance to g. If it’s block-decreasing,
take B; = Q; fori € [k], and if it’s block-increasing, take B; = Q1+ [t is easy to
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check that the sets {A1, ..., Ax} and {Bj, ..., B} have the claimed properties. See
Fig. 5 for an illustration. O

4.2 Monotone Biarc Diagrams

We devote this subsection to the proof of Theorem 1.4. Our proof is constructive, hence
implying a recursive algorithm for the claimed outcome. We start by making the simple
observation that our main results hold for sequences of (not necessarily distinct) real
numbers, if the term “block-monotone” now refers to being block-nondecreasing or
block-nonincreasing. More precisely, a sequence (a1, az, . . ., dis) of real numbers is
said to be block-nondecreasing (resp. block-nonincreasing) with depth k and block-
size s if every subsequence (a;,, i, . . ., a;; ), for (j—1)s < i; < js,isnondecreasing
(resp. nonincreasing).

Theorem 4.2 For any positive integer k, every finite sequence of (not necessarily
distinct) real numbers can be partitioned into at most O (k2 log k) block-monotone
subsequences of depth at least k upon deleting at most (k — 1)? entries.

To see our main results imply the above variation, it suffices to slightly perturb the
possibly equal entries of a given sequence until all entries are distinct. Algorithms for
our main results can also be applied after such a perturbation.

We need the following lemma from [2] for Theorem 1.4.

Lemma4.3 For any graph G = (V, E) with V = [n], there exists b € [n] s.t. both
the induced subgraphs of G on {1,2,...,b}and {b+ 1,b+ 2, ..., n} have no more
than |E|/2 edges.

Proof For U C [n],let Gy denote the induced subgraph of G on U. Let b be the largest
among [n] s.t. E(G[p)) < |E|/2, so E(Gp+1]) > |E|/2. Notice that E(G[p+1]) and
E(Gup\[p)) are two disjoint subsets of £, s0 E(Gu\[p]) < |E|— E(Gp+1)) < |EI/2,
as wanted. O

Proof of Theorem 1.4 We prove by induction on |E|. The base case when |E| = 1 is
trivial. For the inductive step, by the given order on V, we can identify V with [n]. We
find such a b according to Lemma 4.3. Consider the set E’ of edges between [b] and
[n]\[p]. By writingeachedgee € E"as (x, y),wherex € [b]andy € [n]\[b], we order
the elements in E’ lexicographically: for (x, y), (x’, ¥') € E,wehave (x, y) < (x/,y')
when x < x’ orwhen x =x"and y < y'.

Given the order on E’ described above, consider the sequence of right-endpoints
in E’. We apply Theorem 4.2 with parameter k = [¢~!] to this sequence, to decom-
pose it into Cx = O (k*logk) many block-monotone sequences of depth k, upon
deleting at most (k — 1)? entries. For each block-monotone subsequence of depth k,
we draw the corresponding edges on a single page as follows. If the subsequence is
block-nonincreasing of depth k and block-size s, we draw the corresponding edges
as semicircles above the spine. Then, two edges cross only if they come from the
same block. Since there are a total of (%) pairs of edges, and only (3) such pairs
from the same block, the fraction of pairs of edges that cross in such a drawing is at
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SN :

(i) (ii)

Fig.6 (i) a proper arc diagram. (ii) a monotone biarc diagram

most 1/k. See Fig. 6(i). Similarly, if the subsequence is block-nondecreasing of depth
k and block-size s, we draw the corresponding edges as monotone biarcs, consisting
of two semicircles with the first (left) one above the spine, and the second (right) one
below the spine. Furthermore, we draw the monotone biarc s.t. it crosses the spine at
b+ 1—4/n —r/(2n?), where £ and r are the left and right endpoints of the edge
respectively. See Fig. 6(ii). By the same argument above, the fraction of pairs of edges
that cross in such a drawing is at most 1/k.

Hence, E’ can be decomposed into Cy + (k — 1)> many monotone biarc diagrams,
s.t. each monotone biarc diagram has at most 1/k-fraction of pairs of edges that are
crossing. O

For edges within [b], Lemma 4.3 and the inductive hypothesis tell us that they
can be decomposed into (Cy + (kK — 1)2)(10g |E| — 1) monotone biarc diagrams, s.t.
the fraction of pairs of edges that are crossing in each diagram is at most 1/k. The
same argument applies to the edges within [n] \ [b]. However, notice that two such
monotone biarc diagrams, one in [b] and another in [n] \ [b], can be drawn on the
same page without introducing more crossings. Hence, we can decompose E \ E’ into
at most (Cy + (k — 1)2)(10g |E| — 1) such monotone biarc diagrams, giving us a total
of (Cr + (k — 1)?) log | E| monotone biarc diagrams.

5 Final Remarks

1. We call a sequence (ay, az, ..., a,) of n distinct real numbers e-increasing (resp.
€-decreasing) if the number of decreasing (resp. increasing) pairs (a;, a;), where
i < j,islessthan en®. And we call a sequence e-monotone if it’s either e-increasing or
e-decreasing. Clearly, a block-monotone sequence of depth k is an e-monotone
sequence with € = k~!. Hence, Theorem 1.1 implies the following.

Corollary 5.1 For alln > 0 and € > 0, every sequence of n distinct real numbers
contains an €-monotone subsequence of length at least Q2 (en).

This corollary is also asymptotically best possible. To see this, for n > (k — 1)? and
a sequence A = (a;)]_, of distinct real numbers, we can apply Corollary 5.1 with
€ = (64k)~! to A and obtain an e-monotone subsequence S C A and then apply [13,
Lemma 2.1] to S to obtain a block-monotone subsequence of depth k and block-size
Q(n/k?). So Corollary 5.1 implies Theorem 1.1.
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2.Let f (k) be the smallest number N s.t. every finite sequence of distinct real numbers
can be partitioned into at most N block-monotone subsequences of depth atleast k upon
deleting (k — 1)? entries. Our Theorem 1.2 is equivalent to saying f (k) = O (k* logk).
The K (k, 2)-type constructionin Remark 2.5 implies f (k) > k. Whatis the asymptotic
order of f(k)?

3. We suspect our algorithm presented in Theorem 1.1 can be improved. How fast can
we compute a block-monotone subsequence as large as asserted in Theorem 1.1? Can
we do it within time almost linear in n for all £?
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