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Quantifying Muscle Co-activation for Impaired
Finger Independence in Stroke Survivors

Yuwen Ruan, Henry Shin, and Xiaogang Hu

Abstract— Objective: Hand impairment frequently occurs in
individuals following a stroke. There is evidence of abnormal
muscle co-activation that contributes to impaired control of finger
independence. This study quantitatively analyzed hand muscle
co-activation patterns of chronic stroke survivors. Systematically
quantifying the degree of muscle co-activation patterns in stroke
survivors can help us to better understand the mechanisms behind
compromised finger independence and enables a more accurate
assessment of hand impairment. Methods: We analyzed muscle
co-activation patterns both macroscopically and microscopically
using high-density surface electromyographic (HD-sEMG) signals
and decomposed motor unit signals from extrinsic and intrinsic
flexor/extensor muscles. The muscle co-activation patterns
between both sides of stroke survivors and neurologically intact
controls were compared. Results: We observed increased levels of
co-activation in the affected sides of stroke survivors compared
with their contralateral sides and the control groups, with a
higher degree in the extrinsic muscles than the intrinsic muscles.
The asymmetry in muscle co-activation between hands correlated
with impaired finger force independence and clinical assessment
scales. In the micro-level analysis of motor unit action potentials
(MUAPs) distributions, we observed a notable increase in action
potential spread of MUAPs in the individual affected extrinsic
muscles, but the altered MUAP distribution did not correlate with
clinical assessment scales. Conclusion: We systematically
quantified abnormal muscle co-activation patterns in impaired
finger independence after stroke. Significance: With further
development, the outcomes provide a comprehensive
understanding of hand dexterity deficits in stroke survivors,
which may provide guidance for targeted rehabilitation strategies
and offer a potential for automated impairment evaluations.

Index Terms—finger independent control, hand impairment,
electromyography, muscle co-activation, stroke

I. INTRODUCTION

EREBRAL stroke is a prevalent neurological condition.
According to data collected by the National Health and
Nutrition Examination Survey (NHANES) from 2017 to 2020,
approximately 9.4 million Americans suffered a stroke [1].
Strokes invariably exert significant negative impacts on their
daily lives [2], [3]. Notably, around two-thirds of stroke
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survivors endure persistent deficits in hand function [4], [5],
and the recovery of hand dexterity is deemed important yet
challenging in the rehabilitation process. Hence, understanding
the mechanism of impairment and accurately evaluating
impaired hand function are vital for enhancing quality of life.

In individuals without neurological impairments, our central
nervous system can coordinate muscle activation patterns with
high selectivity depending on the task requirements. This
selectivity is achieved through the convergent and divergent
neuronal projections to the spinal motoneurons and
interneurons. However, in stroke survivors, the impairment of
corticospinal projections increases their reliance on remaining
undamaged descending pathways. This, in turn, could lead to
abnormal co-activation of muscles [6]-[8], which refers to
abnormal simultaneous activation of multiple muscle groups or
muscle compartments. For example, a prior study [8] has
suggested that the remaining intact cortical areas and pathways
in stroke survivors might offer compensatory coordination of
muscle activation, but with reduced selectivity. This abnormal
pattern of muscle activation results in the inability to achieve
independent finger control, which is a common manifestation
of hand impairment following a stroke. The extrinsic finger
muscle groups are unique multi-compartment and
multi-tendonous muscles. The complex anatomy largely
precludes accurate recordings of the activation of individual
compartments using traditional surface electrodes due to
inevitable crosstalk [9]. Furthermore, there are limited studies
regarding the size and anatomical organization of the intrinsic
muscles post-stroke, and the relative contributions of intrinsic
and extrinsic muscles to impaired finger flexion or extension
remain unclear [10].

Currently, the evaluation of impairments in stroke patients
heavily relies on standardized clinical assessments. During
these assessments, stroke survivors are instructed to perform a
variety of fundamental movements, and clinicians gauge their
motor function by assigning scores based on their performance.
The Action Research Arm Test (ARAT) and the
Chedoke-McMaster Stroke Assessment are two of the
commonly utilized assessments for hand function in stroke
survivors [11]. The ARAT comprises 19 items grouped into
four subsections: grasp, grip, pinch, and gross arm movement.
Each item's performance is rated on a 4-point scale, ranging
from 0 (no movement possible) to 3 (movement performed
normally) [12]. The Chedoke-McMaster Stroke Assessment
evaluates six dimensions: shoulder pain, postural control, the
arm, the hand, the leg, and the foot. Each dimension is
measured on a 7-point scale, with higher values signifying
better motor status. [13] Stroke survivors typically undergo
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these tests during their routine clinic visits, with clinicians
using the obtained scores as a foundation for determining the
subsequent steps in their treatment plan.

Despite the widespread utilization of standardized clinical
assessments, this evaluation method continues to possess
certain limitations. Firstly, the process of assessment through
standardized clinical evaluations is inherently subjective and
intermittent. The assignment of scores relies on clinicians and
is based solely on a single instance of hand movements,
resulting in a subjective and potentially inaccurate evaluation.
Multiple factors can influence the ultimate scores, including the
patients' level of concentration during the tests, their familiarity
with the assessment items, and the variability in scores assigned
by different clinicians for the same performance. Secondly,
clinical assessments are typically conducted in a controlled
clinical setting, which diverges from the real-world
environment of daily life. In everyday life, individuals
encounter unpredictable environmental obstacles and
distractions that are not taken into consideration during clinical
assessments. Consequently, to enhance the effectiveness of the
rehabilitation process, there is a pressing need for a more
objective and accurate assessment.

To evaluate hand function objectively and continuously in
stroke survivors, it is crucial to quantify the degree of hand
impairment. We hypothesize that the level of muscle
co-activation serves as an indicator of finger independent
control, thereby facilitating the measurement of hand
impairment. An earlier work quantified muscle co-activation
patterns at the elbow and shoulder in individuals with
hemiparetic strokes [6]. In our prior investigation [14], we
successfully demonstrated the feasibility of utilizing
high-density surface electromyographic (HD-sEMG) signals to
assess co-activation in extrinsic muscles. The findings revealed
a correlation between the muscle co-activation pattern and
finger independence as well as clinical assessment scales for
hand impairment. Accordingly, assessing and quantifying the
degree of muscle co-activation during finger movements in
stroke survivors may offer a more precise, objective, and
continuous evaluation of hand function impairment.

In this study, we evaluated the relation between abnormal
co-activation patterns and hand function impairment in stroke
survivors. We gathered HD-sEMG signals from both extrinsic
and intrinsic muscles during finger movements in both stroke
survivors and neurologically intact controls. To assess the
degree of muscle co-activation, we employed the 2D
cross-correlation coefficient of energy maps between
individual finger movements and four-finger movements.
Principal component analysis (PCA) was utilized to evaluate
finger force independence. Subsequently, motor unit
decomposition of HD-sEMG was performed to measure the
spatial spread of action potentials from individual motor units.
Our findings indicate a significant increase in the correlation
coefficient and the spread of action potentials on the affected
sides of stroke survivors compared to the contralateral sides and
intact controls. The observed abnormal muscle co-activation
demonstrates a strong correlation with finger force
independence and clinical assessment scales, which suggests

that the proposed quantification method for abnormal
co-activation could serve as an effective assessment for hand
function impairment in stroke survivors.

II. METHODS

A. Paticipants

We recruited 12 stroke subjects with the following inclusion
criteria: (1) Individuals with a single hemispheric stroke
incurred at least 6 months prior to enrollment; (2) Unilateral
impairment of hand function (Stage of Hand 2-6 on the
Chedoke-McMaster Stroke Assessment); (3) No marked
increase in muscle spasticity (modified Ashworth scale < 2),
and muscle tone with resting flexion force at neutral position <
20 N; (4) Passive range of motion to at least a neutral position;
(5) No hand deficits prior to the stroke. (6) Ability to provide
informed consent; (7) Medically stable: No concurrent severe
medical illness; (8) No upper extremity pain, inflammation, or
recent injury; (9) No history of multiple or recurrent vascular
episodes. We also recruited 12 neurologically intact control
subjects (age-matched with the stroke cohort). All the stroke
survivors and intact controls are right-handed. All participants
received and signed consent forms with the study protocol
approved by our local institutional review board.

B. Experimental Protocol

Participants were seated upright in a chair with their forearm
in neutral position resting on a table and wrist in 0° (radial/
ulnar) deviation. The distal and intermediate phalanges of
individual fingers were attached to load cells (SM-100,
Interface, Inc) through a finger strap, and the load cells,
measuring each finger flexion/extension forces, were attached
to a custom-made holder fixed to the table (Fig. 1). A U-shaped
wooden block fixed to the table was placed to the palmer and
dorsal sides of the hand with form padding to reduce force
contamination from the wrist. To better illustrate the EMG
electrodes on the hand, the U-shaped block is not shown in Fig.
1. The force signals were amplified and sampled at 1 kHz. Two
HD-sEMG grids (each with 8x16 channels, with 3 mm
diameter recording electrodes and a 10 mm inter-electrode
spacing) were placed over the anterior and posterior sides of the
forearm to measure extrinsic finger muscles based on multiple
bony landmarks (Fig. 1). To facilitate electrode grid placement
for the flexor digitorum superficialis (FDS) muscle, an
ultrasound scan (Sonoscape S2) was first performed to identify
the anatomical distributions of the muscle. Additionally, two
grids (8x4 channel) were placed on the dorsal and palmar sides

HD EMG Grid

e A ]
Fig. 1: EMG and finger force setup. The fingers are fixed to the load cells
using Velcro straps.
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of the hand to record the intrinsic finger muscle activities. The
monopolar EMG signals were amplified with a gain of 1000 at
a bandwidth of 10-900 Hz and were sampled at 2048 Hz using
the EMG-USB2+ acquisition system (OT Bioelettronia, Inc).
We made an effort to have consistent electrode placement
between arms of the same subject.

Both groups performed the same tasks using both their hands
sequentially in two separate sessions. The hand testing order
was randomized across subjects, to balance any possible order
effect. Prior to the testing, subjects were asked to perform
maximal voluntary contractions (MVCs) for 3 s by
flexing/extending one or all their fingers isometrically. As the
MVC of individual fingers tends to be lower when all fingers
are activated concurrently[15], [16], the MVC was calculated
either from a single load cell in the case of individual finger
flexion/extension conditions, or from the sum of all 4-finger
flexion/extension forces.

The main experimental protocol consisted of a series of
isometric voluntary contractions, during which the subject was
asked to track trapezoidal force trajectories displayed on a
computer screen. Peak force amplitudes for the trapezoid were
set to percentages of the MVC. The forces on the instructed
fingers were displayed, but all the four finger forces were
recorded for later analysis. Two steady state force levels (20%
and 50% MVC) were tested in random order. The steady state
contraction of 8 s was used. During the experiment, subjects
were asked to flex/extend their individual finger isometrically
against the load cells, while minimizing the forces of other
fingers, and these trials were termed ‘single-finger tasks’. The
subjects also flex/extend all their four fingers simultaneously,
which were termed ‘all-finger tasks’. In all the tested conditions,
the subjects were instructed to minimize wrist motion, and they
were asked to repeat the movement when wrist motion was
observed, or wrist muscle activation was evident from the EMG
map. The subjects repeated the same task 5 times with a 60-s
rest period between contractions, and if necessary, longer
resting time was provided to minimize fatigue.

Clinical assessments: Clinical assessments were performed
on the recruited stroke participants by an occupational therapist.
The functional assessments included the Action Research Arm
Test (ARAT), and the motor impairment assessments included
the hand component of the Chedoke-McMaster Assessment.

C. Data Analysis

Muscle co-activation: We first quantified the degree of
muscle co-activation. The EMG signals during the 8 s
steady-state hold period were analyzed. Prior to the analysis,
potential motion artifact and power line noise were removed
with minimal distortion to the EMG signals [17]. The
sum-of-squared values of the monopolar EMG of each channel
were calculated as the energy of the EMG. The average of the
five repetitions were calculated for each channel. Then, the 2D
energy map was calculated based on the EMG channel
distribution to capture the spatial patterns of muscle activation.
Each constructed map was normalized such that the values at
each map ranged from 0 to 1. The 2D cross-correlation
coefficient of the energy maps between the individual finger

tasks and the four-finger task was calculated for each individual
muscle using Equation 1 to quantify the degree of muscle
co-activation patterns.

Zm Zn(Amn—4) Bmn—B) (1)
J(zmzn(Amn—A)szmznwmn—é)z)

where matrices A and B have m x n dimension (e.g., the
extrinsic muscle energy map has an 8 x 16 dimension). A and B
are the grand mean of matrix A and B, respectively. A high 2D
correlation coefficient signifies that the energy map during
individual finger tasks is similar to the energy map during
all-finger task. Therefore, a higher correlation signifies that
there is substantial muscle co-activation in single-finger tasks
similar to that in the all-finger task, thus indicating reduced
finger individualization.

To identify potential associations between the muscle
co-activation patterns and the force deficits and/or clinical
outcomes, the altered activation patterns of each muscle will
also be quantified by the asymmetry of -correlation
measurement between the affected and contralateral sides of
each stroke subject, defined by Equation 2.

Corteontra—CorTqffect

Top =

Correlation Asymmetry = 2
CorteontratCorrgffect

where  CorTeonirq and Corrypp., are the correlation
coefficients of the contralateral and affected sides, respectively.

Finger force independence: We then evaluated the degree
of independent finger force signifying hand dexterity by
calculating the dimensionality of the extension/flexion forces
during the ramp-up and ramp-down phases, using PCA [18].
We expected that the impaired hand would have a low
dimensionality, i.e., a highly correlated finger force output with
limited hand dexterity. The difference of variance accounted
for between the first PC (with the highest variance accounted
for) and the remaining three PCs was calculated, and the
average of the difference was used as an indicator of finger
independence. A higher difference indicated a smaller degree
of finger independence.

Motor unit action potential distribution: We first
performed motor unit decomposition of the HD-sEMG signals
from the extrinsic muscles using previously developed blind
source separation algorithms [19]-[21]. We only focused on the
extrinsic muscles, because the intrinsic finger muscles are small,
and any reinnervation may not be captured by changes in action
potential distribution. The action potential shapes from each
channel were calculated using a spike triggered averaging
technique [22], [23], which is a system identification method
that can extract action potentials based on discharge timings
while attenuating background noise and non-time-locked
information.

We then determined the spatial distribution of motor unit
action potentials. The monopolar action potentials were used to
determine ‘passive’ and ‘active’ channels. Specifically, if the
peak-to-peak amplitude within =10 ms of the spike timing for a
channel was larger than 3 x SD of the baseline (outside of the +
10 ms window), the channel was noted as ‘active’. Otherwise,
the channel was considered primarily baseline noise and was
noted as ‘passive’. This approach had been validated previously
[24]. Fig. 2 shows exemplar action potential distributions of
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Fig. 2: Monopolar action potential distribution of motor units. Active
channels with substantial amplitude are in red, and passive channels with
only baseline noise are in blue.

two motor units during middle finger extension of a stroke
survivor. The action potentials of a single motor unit in the
contralateral muscle are localized to a well-defined region. In
contrast, the action potentials of the motor unit in the affected
arm are distributed sporadically, indicating neuronal
reinnervation. There is evidence of motoneuron loss after
stroke and subsequent neuron reinnervation of the previously
denervated muscles. The neuron reinnervation can lead to
altered MUAP distributions. To quantify the spatial spread of
the action potentials of individual motor units, we calculated
the variability (standard deviation (SD)) of the active channel
spatial location. A higher variability signified more widely
distributed action potentials over the muscle.

D. Statistical Analysis

The 2D correlation measures (Equation 1) were tested using
paired t-tests for bilateral comparisons in stroke survivors.
Independent t-tests were performed between the intact controls
and each side of stroke survivors. Because the correlation
ranges from 0 to 1, a z-transformation was performed on the
correlation coefficient values prior to statistical evaluations.
We then performed a linear regression between the force
independence deficits (quantified by PCA) and the abnormal
muscle co-activation patterns of different finger muscles
(asymmetry index of 2D correlation measures in Equation 2),

Index Middle
Proximal Distal
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T

which provided information regarding the contribution of
specific muscle impairment to reduced hand dexterity. Because
the correlation asymmetry values range from -1 to I, a
z-transformation was performed, and the normality of the
regression residual was evaluated to ensure that the regression
was valid. We also evaluated potential associations between
abnormal muscle co-activation and the clinical assessment
scores of stroke survivors. Lastly, spatial distribution of action
potential (variability of active channels) was evaluated using
paired t-tests for bilateral comparisons in stroke survivors and
independent t-tests between controls and each side of stroke
survivors. The Bonferroni correction was used to compensate
for increased type I error in multiple t-tests.

III. RESULTS

A. Muscle Co-activation Patterns

We first quantified the muscle activation patterns in intrinsic
and extrinsic finger muscles during voluntary effort. The 2D
energy map across individual channels was then used to capture
the spatial patterns of muscle activation. Fig. 3 shows examples
of 2D energy maps of the extrinsic extensor (8x16 channel) and
dorsal intrinsic (8x4 channel) finger muscles in a stroke
survivor with moderate hand impairment (hand component of
Chedoke=4 out of 7). The activation patterns on the
contralateral arm (bottom row) exhibited distinct localized
activation across different tasks (i.e., generation of forces with
different fingers); this distinction was especially prominent in
the intrinsic muscles. In contrast, the activation patterns on the
affected side (top row) tended to show widespread activation
with less distinction between patterns across different tasks.

To quantify the degree of muscle co-activation, we
calculated the 2D cross-correlation coefficient of the energy
maps between the single-finger and the four-finger tasks for
each individual muscle to quantify the degree of muscle
co-activation patterns in the single-finger force tasks (Fig. 4).
For the extrinsic extensor muscle (Fig. 4A), the correlation
coefficient (co-activation level) of all the affected fingers of
stroke survivors were significantly higher than the control
group (p < 0.05). We also found a significantly higher
correlation coefficient in the affected fingers (index, ring, and
little) than the contralateral fingers of stroke survivors (p <
0.05). In addition, we observed a higher correlation in the
contralateral fingers (index, ring, and little) of stroke survivors
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Fig. 3: Normalized extrinsic and intrinsic muscle activation from a stroke subject during single-finger and four-finger extensions. Warmer color indicates

higher EMG energy.
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Fig. 4: Muscle co-activation quantified by EMG 2D correlation between
single-finger and four-finger tasks. (A): EMG correlation coefficient of the
extrinsic extensor muscle of the affected and contralateral sides of stroke
survivors and average of both sides of the controls. (B): EMG correlation
coefficient of the extrinsic flexor muscle. (C): EMG correlation coefficient of
the dorsal intrinsic muscle. (D): EMG correlation coefficient of the palmer
intrinsic muscle.

than that of the control group (p < 0.05). For the extrinsic flexor
muscle (Fig. 4B), the correlation coefficient of all the affected
fingers of stroke survivors were significantly higher than the
contralateral side of stroke survivors and the control group (p <
0.05). In addition, we found a higher correlation in the
contralateral ring and little fingers of stroke survivors than that
of the control group (p < 0.05). For the dorsal intrinsic muscle
(Fig. 4C), the correlation coefficient of the affected fingers
(index, ring, and little) of stroke survivors were significantly
higher than the contralateral side of stroke survivors and the
control group (p < 0.05). For the palmer intrinsic muscle (Fig.
4D), the correlation coefficient of all the affected fingers of
stroke survivors were significantly higher than the control
group (p < 0.05). We also found a significantly higher
correlation coefficient in the affected fingers (index, middle,
and little) than the contralateral fingers of stroke survivors (p <
0.05). In addition, we found a higher correlation in the
contralateral ring and little fingers of stroke survivors than that
of the control group (p < 0.05). Lastly, we observed higher
correlation coefficients in the extrinsic muscles than that of the
intrinsic muscles (p < 0.05).

B. Finger Force Independence

We quantified the degree of independent finger force output
by calculating the dimensionality (PCA) of the joint
extension/flexion forces. As shown in Fig. 5, four PCs were
required to capture the majority of the variance in the finger
forces of the contralateral hand. In contrast, a single PC was
sufficient to capture the majority of the force variance in the
affected hand. The average difference of variance accounted for
between the first PC and the remaining three PCs was
calculated as an index of finger independence. A higher
difference indicates less finger independence (more deficits).

Fig. 6 illustrates the muscle co-activation (EMG correlation
coefficient) in association with the finger independence
(difference of variance between the first and the remaining
PCs). The results revealed that abnormal muscle co-activation
in both flexors and extensors, especially the extrinsic muscles (r
= 0.69 for extrinsic extensor and r = 0.73 for extrinsic flexor),
tend to exhibit a higher association with finger force
independence compared with the intrinsic finger muscles (r =
0.48 for dorsal intrinsic and r = 0.52 for palmer intrinsic). These
findings suggest that excessive extrinsic muscle co-activation
plays a greater role in impairment of finger independence than
the intrinsic muscles.

We also quantified the association between abnormal muscle
co-activation (EMG correlation asymmetry) and clinical
assessment scales (Fig. 7). Our derived abnormal muscle
co-activation index showed high correlation with ARAT (r =
0.83) and Chedoke scores (r = 0.78), indicating an effective
metric to quantify hand impairment of stroke survivors.
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Fig. 6: Association between muscle co-activation (EMG correlation
coefficient) and finger independence. All the contralateral extrinsic and
intrinsic finger muscles and the control group were averaged respectively
with error bars representing standard errors.
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Fig. 7: Association between abnormal muscle co-activation (EMG
correlation asymmetry) and clinical assessment scales.

C. Motor Unit Action Potential Distribution

We analyzed the spatial distribution of motor unit action
potentials to identify potential spinal motoneuron reinnervation
of the extrinsic muscle. To quantify the spatial spread of the
action potentials of individual motor units, we calculated the
SD of the active channel spatial locations of individual finger
muscles (Fig. 8A). The results showed that there was a
significant increase in the spread of action potentials for the
index, middle, and ring & little fingers of the affected side in
comparison with the contralateral side of stroke survivors and
control subjects (p < 0.05). We merged the ring & little fingers
because the spatial pattern of muscle activation and action
potential distribution largely overlaps between these fingers
[24]-[26]. We also quantified the association between
asymmetry of channel variability and clinical scales (Fig. 8B).
However, we only found weak correlations between these
variables (ARAT: r = 0.24) and Chedoke: r = 0.27).

IV. DiscusSIioN

Besides muscular weakness and spasticity, a common
manifestation of hand impairment following a stroke is the
inability to control finger independently due to abnormal
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muscle co-activation patterns. In this study, we quantified the
degree of muscle co-activation at the macro- and micro-levels
based on HD-sEMG signals from both extrinsic and intrinsic
muscle groups. We compared the macro-level muscle
co-activation patterns of the affected and contralateral sides of
stroke survivors, alongside the neurologically intact controls.
Our results revealed a significantly higher co-activation level in
the affected extrinsic muscles and to a lesser degree in the
affected intrinsic muscles of stroke survivors, in comparison
with the contralateral side and the control group. Moreover, the
asymmetry in muscle co-activation exhibited a strong
correlation with impaired finger independence and clinical
assessment  scales (ARAT and Chedoke-McMaster
Assessment). Through the micro-level analysis of MUAP
distribution, we observed a significant increase in the spread of
action potentials for individual extrinsic muscles on the
affected side. However, the altered MUAP distribution did not
correlate with clinical assessment scales. Collectively, we
identify the abnormalities of muscle co-activation that can
contribute to impaired finger independence. Our research
outcomes provide a systematic understanding of the
pathophysiology of hand dexterity deficits of stroke survivors.
This understanding can provide a theoretical basis for the
development of early intervention strategies that can potentially
reduce or even prevent these maladaptive changes after the
initial lesion.

A. The Comparison between Extrinsic and Intrinsic Muscles

The examination of extrinsic and intrinsic muscles in the
context of post-stroke hand impairment has been relatively
imbalanced in the literature, with a predominant focus on
extrinsic muscles while paying less attention to the
co-activation of intrinsic muscles [14][25][26]. Our study
sought to rectify this by delving into the activation patterns of
both muscle groups. The results revealed notably higher
degrees of co-activation within the extrinsic muscle
compartments compared to the intrinsic muscles on the affected
sides of stroke survivors. Additionally, the co-activation of
extrinsic muscles exhibited a stronger association with finger
independence in contrast to the intrinsic muscles. Our results

© ARAT
| | @ Chedoke 6
o8 ) 5
[ ] [} S %
°
o o o 4 '8
" =
° 8 o ° -
o o [¢]
°
o o 2

06 -05 -04 03 -02 01 0

Channel Variability Asymmetry

Fig. 8: Motor unit action potential distribution and clinical association. (A): The channel variability of individual finger
muscles of the affected and contralateral sides of stroke survivors and average of both sides of the controls. (B): Association
between MUAP distribution (channel variability asymmetry) and clinical assessment scales.
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suggest that excessive co-activation in the extrinsic muscles
plays a more substantial role in impairing finger independence
than their intrinsic counterparts.

This observed phenomenon can be attributed to several
potential reasons. Firstly, the extrinsic muscle group
encompasses multiple multi-compartments and
multi-tendonous muscles that control finger movements [29].
For instance, the extensor digitorum communis (EDC) is a
multifaceted muscle crucial for the extension of four digits. Its
compartments intricately manage the extension of individual
fingers. After a stroke, maladaptive changes in cortical
activation and damaged corticospinal projections can amplify
shared inputs among these components, leading to the observed
abnormal co-activation. Previous studies on motor unit
synchronization have shown that there is a higher degree of
independence in the intrinsic and the extrinsic muscles [30], [31]
in intact controls. In addition, there is also evidence that
impairment (such as muscle atrophy) is more severe in the
extrinsic muscles than the intrinsic muscles post stroke [32],
[33]. Secondly, the differential findings between extrinsic and
intrinsic muscles may also be due to anatomical and
physiological differences between these muscles [34]. The
different intrinsic muscles are organized mechanically more
independently compared with extrinsic muscles. The level of
shared neural input among intrinsic muscles is weak relative to
extrinsic compartments [35], [36]. Lastly, considering
anatomical factors, extrinsic muscle compartments partially
overlap, are organized obliquely, and are located at different
depths relative to the skin surface [37], [38], posing challenges
in isolating them using skin surface EMG signals. Future work
using ultrasound-based muscle deformation [39] or
HD-sEMG-based source localization approaches [40] to
capture activation of individual muscle compartments can help
address these challenges.

B. The Comparison between Contralateral Side and Controls

When quantifying motor impairment in stroke survivors, the
affected side garner primary attention. The contralateral side
always serves as control references, presumed to mirror intact
controls [25][29]. However, our results show that the muscle
activation patterns in the contralateral side also demonstrated
abnormalities compared with intact controls. In our analysis of
muscle co-activation, the muscle co-activation on the
contralateral sides of stroke survivors were notably higher than
those observed in intact controls in the extrinsic extensor
compartments (index, ring, and little fingers) and extrinsic
flexor compartments (ring and little fingers).

After a hemispheric stroke, the lesion can induce
interhemispheric imbalance involving hyperexcitability of the
contralesional hemisphere, and lesion-responsive
reorganizations may occur on both hemispheres. The
hyperexcitable contralesional hemisphere can contribute to
increased muscle co-activations in both extrinsic extensor and
flexor muscles as well as the intrinsic flexors. Our results
extend previous observations of motor deficits in the
ipsilesional side of stroke survivors [41]-[44]. Besides
adaptations in the contralesional hemisphere, both hemispheres

naturally contribute to unilateral hand motor functions [41],
which can also lead to ipsilesional motor deficits.

C. The MUAP Distribution Changes at the Micro Level

Alongside examining muscle co-activation patterns at a
macro level, our study delved into the micro-level analysis of
MUAP distribution. The results revealed a significant increase
in the spatial spread of action potentials on the affected side
compared to both the contralateral side of stroke survivors and
intact controls. These micro-level changes likely contribute to
the observed abnormal muscle co-activation pattern evident in
the macro-EMG signals. The observed changes in action
potential distributions reflect signs of motoneuron loss and
subsequent reinnervations of muscle fibers. There is evidence
that neuronal reinnervation and motor unit re-distribution can
occur in intrinsic finger muscles of chronic stroke survivors
[46], partly due to motoneuron death and muscle fiber atrophy
or loss [47]-[49]. The reinnervation process is typically not
well organized, such that different fiber types can be
reinnervated, leading to polyphasic action potentials and altered
contractile properties of the motor units[50], [51]. Our findings
provide knowledge regarding the extent of reinnervation and
altered MUAP distribution across compartments of the
extrinsic muscles. If their restructuring is similarly
disorganized, this could contribute to increased coupling across
fingers.

However, our investigation found a weak association
between MUAP distribution and clinical scales (Fig. 8B).
While these micro-level changes may play a role in muscle
co-activation, they do not seem to reliably contribute to hand
functional impairments in stroke survivors. Instead, the
asymmetry in EMG correlation, which reflects muscle
co-activation patterns at the macro level, emerges as a more
accurate and robust assessment tool for evaluating hand
functional impairments.

D. Limitations

As outlined in the Introduction section, standardized clinical
assessments inherently possess subjectivity and intermittency.
The ARAT and Chedoke scores acquired from a single test
session for our stroke subjects might not offer an entirely
objective and accurate measurement of hand function
impairments. The inherent bias within these clinical scores
could potentially limit the correlation observed between
abnormal muscle co-activation and clinical assessment scales.

Our findings show a correlation between HD-sEMG metrics
and clinical assessments, but only in chronic (>6 months post
stroke) stroke survivors, limiting our data's diversity. An
ongoing study on subacute stroke survivors aims to compare
their metrics with those of chronic patients. We also plan to
expand our sample size to evaluate the feasibility of these
outcome measures more comprehensively for clinical use.

Our study was conducted in a controlled laboratory setting
with complex data post-processing procedures, currently
unsuitable for direct home use. While HD-sEMG metrics show
promise as objective measures compared to clinical scales,
future home deployment requires further advancements in
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wearable sensing and computing technologies. This would
allow HD-sEMG recordings to be obtained from a fully
wearable system, and derived metrics to be calculated
automatically, without user interactions.

V. CONCLUSION

Overall, using HD-sEMG recording arrays and specialized
signal processing techniques, we systematically quantified
activation patterns of extrinsic and intrinsic finger muscles in
stroke survivors and intact controls. The results revealed that
abnormal co-activation correlated with finger independence
and clinical assessment scales. We also found that altered
MUAP distribution was evident in extrinsic finger muscles,
which may partly contribute to the abnormal muscle
co-activation patterns. Our work can provide a better
understanding of the mechanisms of impaired finger
independence and provide a novel perspective for hand
function assessment in stroke survivors.
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