
The Medium is the Message: How Secure Messaging Apps Leak
Sensitive Data to Push Notification Services

Nikita Samarin,1,2 Alex Sanchez,1 Trinity Chung,1 Akshay Dan Bhavish Juleemun,1 Conor
Gilsenan,1 Nick Merrill,1 Joel Reardon,3 and Serge Egelman1,2

{nsamarin,alexso,trinityc,adbjuleemun,conorgilsenan,!!,egelman}@berkeley.edu
joel.reardon@ucalgary.ca

1University of California, Berkeley; 2International Computer Science Institute (ICSI); 3University of Calgary

ABSTRACT
Like most modern software, secure messaging apps rely on third-
party components to implement important app functionality. Al-
though this practice reduces engineering costs, it also introduces
the risk of inadvertent privacy breaches due to miscon"guration
errors or incomplete documentation. Our research investigated se-
cure messaging apps’ usage of Google’s Firebase Cloud Messaging
(FCM) service to send push noti"cations to Android devices. We
analyzed 21 popular secure messaging apps from the Google Play
Store to determine what personal information these apps leak in
the payload of push noti"cations sent via FCM. Of these apps, 11
leaked metadata, including user identi"ers (10 apps), sender or re-
cipient names (7 apps), and phone numbers (2 apps), while 4 apps
leaked the actual message content. Furthermore, none of the data
we observed being leaked to FCMwas speci"cally disclosed in those
apps’ privacy disclosures. We also found several apps employing
strategies to mitigate this privacy leakage to FCM, with varying
levels of success. Of the strategies we identi"ed, none appeared to
be common, shared, or well-supported. We argue that this is fun-
damentally an economics problem: incentives need to be correctly
aligned to motivate platforms and SDK providers to make their
systems secure and private by default.

KEYWORDS
privacy, security, mobile, push noti"cations, FCM

1 INTRODUCTION
“She speaks, yet she says nothing.”

—William Shakespeare, Romeo and Juliet

Modern economies rely on the specialization of labor [74]. Soft-
ware engineering is no di!erent: modern software relies on myriad
third-party components to ful"ll tasks so that developers do not
need to waste time rebuilding speci"c functions from scratch [28].
This type of “code reuse” is a recommended practice and transcends
many branches of engineering (e.g., car manufacturers do not manu-
facture every component that goes into their cars, instead relying on
components from third-party suppliers). Software development kits
(SDKs) facilitate code reuse during software development and o!er
many bene"ts for developers. They provide well-trodden paths:

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(4), 967–982
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0151

Figure 1: An illustration of an Android push noti!cation.

documented work#ows for developers to follow so that these devel-
opers can consistently provide common functionality. Ultimately,
SDKs reduce engineering costs when used responsibly.

Yet, recent research has demonstrated that many software pri-
vacy issues (i.e., the inappropriate disclosure of sensitive user infor-
mation) are due to developers’ misuse of third-party services [4, 65].
That is, privacy breaches often occur due to developers not cor-
rectly con"guring SDKs, not reading SDK documentation, or SDKs
behaving in undocumented ways, often unbeknownst to develop-
ers. This is especially concerning when the third-party SDK may
transmit highly sensitive user data to third parties and the SDK is
ubiquitous across many software supply chains.

Heightened public concerns around the monitoring of online
communications have signi"cantly in#uenced consumer behavior
in the past decade. A 2014 PEW survey found that 70% of Ameri-
cans are concerned about government surveillance and 80% about
surveillance by corporations [53]. In response to these concerns,
more and more consumers have begun using secure messaging apps
to protect their communications based on the promises of privacy
made by these apps. Hundreds of millions of users now use apps
like Signal or Telegram, believing these apps to protect their privacy.
These applications are entrusted with a vast array of con"dential
user data, from personal conversations to potentially-sensitive mul-
timedia content, thereby placing a signi"cant emphasis on their
ability to make good on their promises of privacy and security.

967

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0151

Proceedings on Privacy Enhancing Technologies 2024(4) N. Samarin et al.

The misuse of third-party SDKs within secure messaging apps
may pose a heightened risk to users because those SDKs may leak
sensitive information to third parties. In particular, app developers
use third-party SDKs to implement push noti!cations, which display
important information to the user, including messages from other
app users (Figure 1). Because push noti"cation SDKs are generally
provided by third parties (as opposed to app developers), incorrect
usage may leak sensitive information to those third parties. For ex-
ample, an app that provides “end-to-end” encrypted messaging may
not actually provide end-to-end encryption if message payloads
are not encrypted before being sent to third-party push noti"ca-
tion APIs. To make matters worse, misuse of these SDKs may also
contribute to the misrepresentation of security and privacy assur-
ances to consumers as articulated in various disclosures, including
privacy policies, terms of service, and marketing materials.

The combined risk of sensitive information leakage and misrep-
resentation of privacy promises creates serious rami"cations for
users of secure messaging platforms. Oppressive regimes or other
adversaries may use court orders to compel companies involved
in the delivery infrastructure of push noti"cations to reveal the
contents of communications sent and received by human-rights
workers, political dissidents, journalists, etc. Worse, when this does
happen, both the developers of the apps and the users who are
endangered are unlikely to be aware that their communications are
being intercepted. This threat model is not just theoretical. Cru-
cially, since we performed our analysis, U.S. Senator Ron Wyden
published an open letter that con"rms that government agencies
do, in fact, collect user information by demanding push noti"cation
records from Google and other push noti"cation providers through
the use of legal processes [100]. Our work is highly prescient, as it
provides new insights into an emergent threat model.

To study the extent to which the delivery infrastructure may
access sensitive user information, we examined the use of Google’s
Firebase Cloud Messaging (FCM) to deliver push noti"cations to
secure messaging apps on Android devices. Google provides FCM
as a free service, and therefore, it is one of the most commonly
used third-party SDKs to deliver Android push noti"cations. More-
over, the majority of other push services, including OneSignal [58],
Pusher [63], and AirShip [3] internally rely on Google’s FCM to
deliver noti"cations to Android devices, making the usage of FCM
practically unavoidable for developers who wish to provide push
noti"cation support in their Android apps. (On Apple’s iOS, third-
party push noti"cation APIs are similarly built on top of Apple’s
push noti"cation service [59].) We focus on secure messaging apps
because these apps (1) market their abilities to keep message data
“private” or “secure” and (2) make heavy use of push noti"cations
to notify users of incoming messages and their contents (and there-
fore, when not implemented correctly, may run the risk of leaking
message contents and metadata to the push noti"cation service).

Prior work has investigated the potential security risks that push
noti"cations may pose, including by push noti"cation-based mal-
ware [41, 48] and botnets [41, 47]. To our knowledge, no work
has focused on the privacy risks of push noti"cation services used
by secure messaging apps. Therefore, we performed a study to
examine whether the push noti"cation records potentially stored
without end-to-end encryption by the delivery infrastructure may

misrepresent or compromise the privacy protections of secure mes-
saging and expose users to legal risks. Thus, we posed the following
research questions:

• RQ1: What personal data do secure messaging apps for
Android send via Google’s Firebase Cloud Message (FCM)?

• RQ2: What mitigation strategies do app developers use
to protect personal information from being disclosed to
Google’s FCM?

• RQ3: Do the observed data-sharing behaviors align with the
privacy assurances apps make in their public disclosures?

To answer these questions, we performed static and dynamic
analysis on a corpus of 21 secure messaging apps. We used dynamic
analysis to understand what data these apps sent over the network.
When we found that apps displayed data in push noti"cations,
but did not obviously send that data over the network, we used
static analysis to understand what mitigation strategies they used
to achieve this e!ect. In contrast, when segments of data displayed
in the app were verbatim in push noti"cations, we further examined
these messages to assess whether sensitive data was available in
plaintext to the delivery infrastructure. Finally, we analyzed apps’
privacy policies and other disclosures to identify the privacy claims
that apps made to users. By comparing observed behavior from our
app analysis to disclosed behavior, we identify undisclosed sharing
and potentially-misleading data practices: data that apps imply that
they will not disclose, but—intentionally or not—do disclose to the
delivery infrastructure through the use of push noti"cations.

We found that more than half of the apps in our corpus leak some
personal information to Google via FCM. Furthermore, none of the
data we observed being leaked to FCM was speci"cally disclosed in
those apps’ privacy disclosures. We also found several apps employ-
ing strategies to mitigate this privacy leakage to FCM, with varying
levels of success. Of those identi"ed strategies, none appeared to
be common, shared, or well-supported. While app developers are
ultimately responsible for the behavior of their apps, they are often
ill-equipped to evaluate their apps’ privacy and security properties
in practice. Given that the problems that we observe are pervasive
across app developers and stem from the use of third-party com-
ponents that can be easily used insecurely, we conclude that SDK
providers are best positioned to "x these types of issues through
both better guidance and privacy-preserving designs and defaults.

In this paper, we contribute the following:
• We demonstrate the widespread sharing of personal informa-
tion, perhaps inadvertently, with Google through developers’
use of push noti"cations.

• We highlight systemic mismatches between privacy disclo-
sures and observed behaviors in delivering push noti"cations
via FCM.

• We discuss developers’ negligence in deploying software
that they do not understand and the responsibility that SDK
and platform providers share in creating infrastructures that
are private/secure by default.

2 BACKGROUND
We provide an overview of push noti"cation services (PNS), specif-
ically Google’s Firebase Cloud Messaging (FCM). We describe the
threat model we consider in this paper and our overall motivation.

968

How Secure Messaging Apps Leak Sensitive Data to Push Notification Services Proceedings on Privacy Enhancing Technologies 2024(4)

Figure 2: Flow chart of FCM’s push noti!cation infrastructure
for messaging apps, highlighting the actors involved and the
interactions between them: an event occurs that triggers a
push noti!cation, e.g., a message from a sender (1) prompts
the app server to create and send the message to FCM (2),
which then forwards it to the recipient’s Android device (3).
If needed, the receiving app running on that device may also
query additional information from the app server (4).

2.1 Mobile Push Noti!cations
A push noti"cation is a short message that appears as a pop-up on
the desktop browser, mobile lock screen, or in a mobile device’s
noti"cation center (Figure 1). Push noti"cations are typically opt-
in1 alerts that display text and rich media, like images or buttons,
which enable a user to take a speci"c action in a timely fashion, even
when the app in question is in the background. Applications often
use push noti"cations as a marketing or communication channel,
but they can also be used as a security mechanism (e.g., as part of a
multi-factor authentication ceremony).

There is a di!erence between push messages and noti"cations.
“Push” is the technology for sending messages from the server-side
component of the app (the “app server”) to its client side (the “client
app”), even when the user is not actively using the app. Noti"cations
refer to the process of displaying timely information to the user by
the app’s user interface (UI) [12]. In the context of mobile apps, the
application server can send a push message without displaying a
noti"cation (i.e., a silent push); an app can also display a noti"cation
based on an in-app event without receiving any push messages. For
simplicity’s sake, we use the term “push noti"cations” in this paper
regardless of whether an actual noti"cation is displayed to the end
user (i.e., we refer to messages #owing through a cloud messaging
server to a user’s device, whereupon the device’s operating system
routes the messages to the appropriate app).

Although app developers could, in theory, implement their own
push noti"cation service, this is usually impractical as it requires the
app to continually run as a background service, thereby reducing
battery life. Instead, most mobile app developers rely on operating
system push noti!cation services (OSPNSs), including Firebase Cloud
Messaging (FCM) for Android or Apple Push Noti"cation Service
(APNS) for iOS devices [8]. FCM and other PNSs facilitate push

1Android and iOS require user permission before an app can display noti"cations.

noti"cations via an SDK the developer adds to their application.
When a user launches the app for the "rst time, the SDK registers
the device with the PNS by generating a push token (also known
as a registration token), which serves as a pseudonymous identi"er
that tells the push service where to forward the messages. The SDK
returns the push token to the client app, which should then be sent
and stored in a database on the app server. When the app wants to
send a push noti"cation, it looks up the appropriate push token and
sends it alongside the message to the PNS, which then forwards
the message to the correct device [94]. The push token is tied to
the app instance, and therefore, the developer should periodically
refresh it, e.g., if the user deletes and reinstalls the app.

In sum, there are three main actors involved in the process of
sending push noti"cations using FCM (see also Figure 2):

App Server sends event-speci"c messages to FCM (2). For in-
stance, in the context of a messaging app, a sender device
may send a message to the app server (1), which then sends
a push noti"cation request to FCM (2).

Firebase Cloud Messaging (FCM) is a cloud-based OSPNS
that forwards push messages to the appropriate user device
using the stored registration token(3), even if the client app
is o$ine or in the background. It also exposes an API to the
developer to enable push messaging in their applications.

Android Device runs the OS and the client app. Android uses
a system component that is part of Google Play Services to
receive push messages sent by FCM, which it then passes to
the appropriate app. Optionally, the client app can also query
additional information from the app server (4) in response
to a received push noti"cation.

The SDKs distributed by FCM and other PNSs not only streamline
app development by reducing the amount of code that needs to be
written, but in many cases, their use is necessary for performance
and e%ciency reasons [79]. Developers would also need to request
the Android permission for unrestricted battery usage, something a
user might not necessarily grant. As such, mobile platform owners
only provide o%cial support for their managed OSPNSs: Google
for FCM and Apple for ASPNS.2

2.2 FCM Alternatives
Given the utility of push noti"cations, companies have started of-
fering push noti"cation services that compete with Google’s FCM.
These third-party PNS providers, such as Airship, Pushwoosh, and
Taplytics, may o!er advantages over FCM, including more features
or usable APIs. While it may seem that developers using third-party
PNSs can potentially avoid the security and privacy pitfalls of FCM,
Lou et al. demonstrated that third-party push providers rely on
FCM to deliver messages to Android devices with Google Play Ser-
vices [52]. The authors identi"ed the dual-platform structure of
push noti"cations. The "rst service (“host noti"cation platform”)
abstracts push messaging by providing an API that interfaces with
the second service (“transit noti"cation platform”), which provides
a stable system-level communication channel to deliver push no-
ti"cations to user devices. While both FCM and third-party PNSs
o!er developer-facing APIs for managing push noti"cations (i.e.,

2We studied Android because the operating system is open source, allowing us to
more easily build instrumentation to monitor app execution.

969

Proceedings on Privacy Enhancing Technologies 2024(4) N. Samarin et al.

the host noti"cation platform), only FCM ful"lls the role of the
transit noti"cation platform and delivers messages internally to
Android devices with Google Play Services.

Furthermore, we found statements by several popular third-party
PNSs, such as OneSignal [58], Pusher [63], and AirShip [3] that
mention their dependence on FCM for sending push noti"cations to
Android devices. For instance, OneSignal states in a blog post that
“Google mandates that Android apps distributed through Google
Play leverage a single, shared connection provided by FCM” and
“OneSignal itself uses the FCM API internally to send messages to
Android devices” [58]. Therefore, these third-party PNSs expose
users to risks associated with FCM push noti"cations while poten-
tially introducing their own problematic data collection practices.
For instance, Reuters has previously reported that Pushwoosh—a
third-party PNS—misrepresented itself as based in the U.S. despite
actually being headquartered in Russia [61]. Although Pushwoosh
denied the claims [46], the revelation still led the U.S. Army and
Centers for Disease Control and Prevention (CDC) to stop using
apps containing the Pushwoosh SDK.

Android devices without preinstalled Google Play Services either
do not properly support push noti"cations or use an alternative
platform. Most notably, Android devices sold in China do not in-
clude Google Play Services, but use another preinstalled service
provided by the phone manufacturer, such as Huawei Mobile Ser-
vices (HMS), to handle push noti"cations. There are other Android
variants outside of China that do not come with Google Play Ser-
vices preinstalled, such as FireOS, which runs on Amazon devices
and uses Amazon Device Messaging (ADM) instead of FCM. These
variants constitute a small share of the global Android market [31]
and are outside the scope of our analysis.

Other alternatives, such as Uni"edPush [86] or Samsung Push
Service [22], rely on apps to receive push noti"cations in place of
Google Play Services. However, we argue that such solutions do not
represent equivalent alternatives, as they require users to install
an additional app and developers may still use FCM as the push
service, unbeknownst to app users. Thus, we speci"cally focus on
data shared with Google’s FCM, regardless of the speci"c third-
party service running on top of it. (That is, our instrumentation
is agnostic as to whether it captured messages sent natively using
FCM or another third-party API built upon it.)

2.3 Threat Model
FCM acts as an intermediary between the server-side and client-side
applications and uses push tokens to identify the device where push
noti"cations should be forwarded. While e%cient, this architecture
poses three signi"cant privacy risks to users [27, 99]:

Disclosure. The contents of a push noti"cation and its meta-
data may be disclosed to unauthorized entities.

Linking. Push tokens may be linked or attributed to speci"c
users or behaviors.

Identi!cation. Individuals may become identi"ed based on
the information linked to their device’s push tokens.

The primary threat model that we consider is the use of legal
processes to request FCM push tokens linked to a targeted device
and stored by the app developer. In the context of secure messaging
apps, knowing the pseudonym (i.e., username) of the targeted user

may su%ce. Even if the app developer does not collect other identi-
fying personal information, they must still store registration tokens
to route the push noti"cations to the user’s device through FCM
servers. After obtaining the push tokens from the app publisher,
law enforcement can request that Google provide all information
linked to the given push token, which may include the contents
and metadata of the associated push noti"cations. Combining these
pieces of personal information increases the risk of identi"cation.

This threat model is not theoretical. In December 2023, U.S. Sen-
ator Ron Wyden published an open letter con"rming that govern-
ment agencies collect user information by demanding push noti"ca-
tion records from Google and Apple through legal processes [100].
Since then, journalists found more than 130 search warrants and
court orders going back to 2019 (e.g., [20, 87, 88]) in which inves-
tigators had demanded that tech companies, notably Wickr and
TeleGuard—both advertised as end-to-end encrypted secure mes-
saging apps—turn over push tokens associated with accounts of
speci"c users. In the case of TeleGuard, an FBI agent then asked
Google to hand over all information connected to the push token,
which Google responded to with account names and IP addresses
associated with those accounts [40]. Furthermore, Apple disclosed
in its transparency report for the second half of 2022 that it received
70 requests worldwide seeking identifying information about Apple
Accounts (formerly known as Apple IDs) associated with 794 push
tokens and provided data in response to 54 (77%) requests. Google
does not speci"cally break out government requests for push noti-
"cation records and, instead, reports these requests in aggregate
with other account data requests [9].

We hypothesize that many Android app developers transmit
sensitive information via established third-party push noti"cation
channels and do not realize that they are not properly securing
it. In a departure from “privacy-by-design” principles [16], the
o%cial Google Android Developers Blog recommends [69] that
developers using Google’s service “send as much data as possible in
the [push noti"cation] payload” and fetch the remainder of the data
from the app server if needed. In the next paragraph of the blog,
developers are advised that they “can also encrypt FCM messages
end-to-end using libraries like Capillary,” thereby indicating that
FCM does not encrypt payload data by default (i.e., developers need
to rely on additional libraries). There is no other mention of end-to-
end encryption in the blog. Thus, questions remain as to whether
developers follow this optional guidance.

Google’s FCM developer documentation [36] states that “depend-
ing on your needs, you may decide to add end-to-end encryption to
data messages” and “FCM does not provide an end-to-end solution.”
No further guidance is given on what information is appropriate
to send. In contrast, Apple’s documentation for sending noti"ca-
tions [8] instructs developers not to include “customer information
or any sensitive data in a noti"cation’s payload” and, if they must,
“encrypt it before adding it to the payload.” Even if the majority of
data sent using push noti"cation channels is not personal, there
are examples in which it might be, such as some user-generated
content in instant messaging apps or sensitive information sent
by a banking or a health-tracking app. In these cases, app vendors
may be held liable for failing to safeguard or minimize the amount
of personal information sent via push noti"cation servers and for
failing to disclose this practice in their privacy notices.

970

How Secure Messaging Apps Leak Sensitive Data to Push Notification Services Proceedings on Privacy Enhancing Technologies 2024(4)

Figure 3: Google’s guidance to send as much data as possible
via FCM payloads, noting that end-to-end encryption can
optionally be used via additional libraries [69]. It is unclear
whether the data "ows labeled “encrypted” refer to this op-
tion or the fact that the transmissions use TLS.

Given FCM’s role as an intermediary, we posed the question: do
apps leak user information through push noti"cations to the deliv-
ery infrastructure? We investigated this question by performing
both mobile app analysis and analysis of privacy disclosures.

3 RELATEDWORK
In this section, we provide an overview of related work on the
privacy and security risks of push noti"cations, mobile app analysis,
and analysis of privacy-relevant disclosures.

3.1 Risks of Push Noti!cations
Prior research has demonstrated how attackers can exploit mo-
bile push noti"cations to spam users with advertisements [50],
launch phishing attacks [102], and even issue commands to bot-
nets [2, 41, 47]. Other studies have revealed additional security is-
sues with PNSs that can result in the loss of con"dentiality (i.e., user
messages get exposed to unauthorized parties) and integrity (i.e.,
users receive malicious messages from unauthorized parties) [17].
By assuming that the victim installs a malicious app, prior work has
demonstrated how attackers can abuse platform-provided OSPNSs,
including Google’s FCM (formerly known as Google Cloud Messag-
ing or GCM, and Cloud to Device Messaging or C2DM prior to that),
to steal sensitive messages or even remotely control the victim’s de-
vice [48]. Warren et al. described “security” as a key nonfunctional
requirement for implementing push noti"cation mechanisms and
identi"ed the push-to-sync strategy back in 2014 (which they called
“poke-and-pull”) as a viable protection strategy for protecting user
data from PNSs [93].

As described previously (§ 2.2), push noti"cation architecture
can be separated into the host platform that provides the push API
and the transit platform that actually delivers the push noti"cation
internally. Several studies looked at the security issues of third-party
PNS SDKs while excluding system-level transit platforms, such as
FCM from Google. One study analyzed 30 di!erent third-party PNS
SDKs embedded in 35,173 Android apps and found that 17 SDKs
contain vulnerabilities to the con"dentiality and integrity of push
messages, which an attacker can exploit by running a malicious
app on the victim’s device [17]. Similarly, Lou et al. performed
a security and privacy analysis of the twelve most popular PNSs
and compared their behavior in 31,049 apps against information
practices disclosed in the privacy policies of those PNSs [52]. They
found that out of twelve third-party PNSs, six PNSs collect in-app
user behavior and nine collect location information, often without
awareness or consent of app users. As the authors focused only on
the host platforms, their analysis excluded FCM (and other transit
platforms) on the basis of them being a “trustful service provider.”
We complement this work by focusing instead on the privacy risks
of transit noti"cation platforms, in particular, FCM from Google.

In recent years, researchers have analyzed PNSs from the per-
spective of privacy protection goals that complement the classic
“CIA triad” (con"dentiality, integrity, and availability), such as un-
linkability, transparency, and intervenability [38]. One study, for
instance, considered an adversary with the capability to silently
sni! packets directed to or from the victim and actively trigger
push noti"cation messages to the target’s personal device [51]. The
authors demonstrated that under these assumptions, an adversary
on the same network can deidentify the victim even if they use an
online pseudonym. We complement these studies by focusing on
FCM privacy risks in the context of secure messaging apps.

3.2 Mobile App Analysis
Numerous studies have also investigated the security and privacy
rami"cations of mobile apps (e.g., [26, 43, 77, 83]). Most current
methods for evaluating mobile app actions depend on static analy-
sis [30, 37, 44, 105], which examines the app’s source code without
executing it. However, this technique is limited as it can only iden-
tify the potential behaviors of a program, not if and to what degree
the program exhibits them. For instance, it is generally infeasible to
predict the full set of execution branches that a program will take.
Alternative methods, such as taint tracking [23], which tracks the
#ow of data as it propagates through the application, come with
their own challenges, including a!ecting app stability [15].

A newer approach involves adding instrumentation to the An-
droid operating system to monitor apps’ access to personal informa-
tion at runtime [84, 95–97]. This allows researchers to investigate
di!erent app behaviors, including app-associated network tra%c.
Prior solutions to monitoring mobile app transmissions generally
involve using proxy software (e.g., Charles Proxy,3 mitmproxy,4
etc.) and su!er from serious shortcomings. First, they route all the
device tra%c through the proxy, without automatically attributing
tra%c to a speci"c app running on the device. While some tra%c
may contain clues (e.g., content and headers that may identify apps,

3https://www.charlesproxy.com/
4https://mitmproxy.org/

971

https://www.charlesproxy.com/
https://mitmproxy.org/

Proceedings on Privacy Enhancing Technologies 2024(4) N. Samarin et al.

e.g., HTTP User-Agent headers), other tra%c does not, and at-
tributing tra%c to the app is a laborious and uncertain process [64].
Second, proxies often cannot automatically decode various obfusca-
tions, including TLS with certi"cate pinning. Instead, by capturing
tra%c from the monitored device’s OS, these issues are eliminated.
This approach can bypass certi"cate pinning, extract decryption
keys from memory, and map individual sockets to process names,
thereby o!ering precise attribution to speci"c apps.

3.3 Analysis of Privacy Disclosures
Prior research has focused on understanding apps’ andwebsites’ pri-
vacy practices by analyzing disclosures made in privacy policies [7,
39, 92, 104, 105]. Some proposed systems, such as !"#$%&’%([7],
)*!+ [104] and &!,-"$, [24], which automate the process of com-
paring disclosures made in privacy policies about how user data is
used, collected, or sharedwith personal data transmissions observed
as a result of performing technical analyses [7, 72, 92, 104, 105]. The
literature also proposed systems, such as Polisis [39], PI-Extract [14]
and PrivacyFlash [103], which made it possible to transform privacy
policies into formats that are more understandable to users or auto-
generate policies that re#ect actual app behaviors. Linden et al. [49]
found that disclosures made in privacy policies improved as a result
of GDPR enforcement, but that more improvements would have
to be made before they can be considered usable and transparent
to users. Other recent studies have also examined the accuracy of
disclosures made in privacy policies [6, 57, 68, 92].

Additionally, Google’s Play Store requires developers to provide
privacy labels [35]. Privacy labels communicate information prac-
tices to users in a visually succinct way. For example, apps may
list the data types (e.g., names, phone numbers, identi"ers) col-
lected and shared with third parties. As with privacy policies, these
privacy labels are required by the Google Play Store’s terms of ser-
vice to be thorough and complete [35]. However, Google states in
their guidelines that “transferring user data to a ‘service provider’”
should not be disclosed as data sharing in the app’s privacy la-
bels [35], limiting their scope and potential utility. Other studies
have also demonstrated the inconsistencies between privacy labels
and privacy policies [76], privacy labels in the Google Play Store
and Apple App Store for the same apps [66], and practices disclosed
in privacy labels and behaviors observed among iOS apps [45, 101].

4 METHODS
Our primary research question concerns how secure messaging
apps’ usage of FCM impacts user privacy. To answer this question,
we identi"ed a set of apps from the Google Play Store and compared
the claims made in their privacy disclosure documents with our
static and dynamic analysis of those same apps.

The diagram in Figure 2 outlines the main actors and commu-
nications involved in push noti"cation usage in secure messaging
apps. The messaging app is installed on the phone/device of the
sender and the recipient. First, the sender composes their message,
and some content gets sent over the network to the app’s server (1).
Then, the server uses the FCM API to construct the push noti"ca-
tion with the required payload. The FCM API sends the noti"cation
to Google’s FCM server (2), which then forwards it to the recipient
device (3) using a long-lived TCP connection initiated by Google

Play Services. Finally, the data is parsed and packed into an intent
that is then broadcast to the app, which displays the message in the
form of a noti"cation. Inadvertent data leakage to Google occurs
when the server places user information as plaintext in the push
noti"cation payload. Crucially, users and developers are likely un-
aware that Google may receive and, sometimes, retain5 message
contents and other metadata associated with the push noti"cation.

As highlighted in § 3, numerous prior works evaluate the security
and privacy of end-to-end (e2e) encryption and its implementation
in secure messaging apps, including many of the ones in our corpus.
However, our work is explicitly not investigating these claims of
e2e encryption. Therefore, we are not interested in recording the
tra%c sent over a network connection. Rather, our interest is in
determining whether implementing push noti"cation functionality
in a given app leaks personal message content to parties other than
the app developer, speci"cally to Google via FCM. Therefore, we are
primarily interested in what data the app’s server sends to FCM
via network connection. However, because we are out-of-band
from this network connection, the best alternative is to record the
inbound/outbound tra%c on the recipient’s device to infer which
data may have been sent from the server to FCM. If the sender’s
plaintext message content is present in the push noti"cation sent
to the recipient’s device from FCM, then it is clear that the app
server did leak the user’s message content to FCM. However, if the
push noti"cation sent to the recipient’s device does not contain
the sender’s plaintext message, then it may be likely that the app
server did not leak the user’s message content to FCM.6 For apps
that fall into this category, we additionally want to understand the
techniques they leverage to avoid leaking user message content
and metadata to FCM.

4.1 App Selection
We selected messaging apps that made claims about the privacy
of users’ messages (herein, “secure messaging apps”). For example,
Telegram’s homepage promotes its app as “private” and states that
“Telegram messages are heavily encrypted” [78]. Similarly, Signal’s
homepage encourages people to “speak freely” because the Signal
app has a “focus on privacy” [71]. Signal publicly writes about what
data their app collects and the fact that—in response to a legal sub-
poena requesting a range of user information—Signal is only able
to provide “timestamps for when each account was created and the
date that each account last connected to the Signal service” [70].
WhatsApp also explicitly markets the privacy bene"ts of their app
and states, “[y]our privacy is our priority. With end-to-end encryp-
tion, you can be sure that your personal messages stay between
you and who you send them to” [80, 81]. Because secure messag-
ing apps make these claims about the privacy of users’ messages,
many users utilize these apps in sensitive contexts. For example,
Telegram, Signal, and WhatsApp, three of the apps we analyzed,
are frequently used by protesters worldwide [73, 89]. The apps in
our data set, a subset of all secure messaging apps, are widely used
and encompass over 2.8 billion users and 6.1 billion installs.

5E.g., FCM servers retain messages by default when the recipient device is o$ine.
6If the app server has access to the sender’s plaintext message, then it is always possible
that it is leaked to third-parties in ways that are not externally detectable, since tra%c
between the app server and these third parties is not observable.

972

How Secure Messaging Apps Leak Sensitive Data to Push Notification Services Proceedings on Privacy Enhancing Technologies 2024(4)

Material Representations. The selection of messaging apps
based on their privacy claims is not only a prudent approach for
users prioritizing the con"dentiality of their communications, but
also a legally-grounded strategy, re#ecting the enforceable nature
of such assertions. When companies publicly assert their services’
privacy and security features, these claims become material repre-
sentations that can signi"cantly in#uence consumer choices. Impor-
tantly, material misrepresentations are actionable under consumer
protection laws. For instance, under the FTC Act7 (and various
state consumer protection laws), businesses in the U.S. are prohib-
ited from materially misrepresenting their practices to consumers.
The Federal Trade Commission (FTC) and state attorneys general
actively monitor and pursue companies that fail to uphold their pri-
vacy promises (regardless of whether they are made in privacy poli-
cies [18] or marketing materials [19]). This enforcement protects
consumers and reinforces the message that privacy and security as-
sertions are material representations that have legal consequences
and can a!ect consumer choices.

One such notable case is that of Zoom, in which the company
faced a regulatory enforcement action for erroneously claiming to
o!er end-to-end encryption in its marketing materials, a feature
it did not fully provide at the time [25]. This incident underscores
the seriousness with which authorities treat misrepresentations
in the digital privacy domain, highlighting the risks companies
face when they do not accurately describe their data protection
measures. Thus, evaluating messaging apps based on their stated
privacy features is not only a measure of their utility in sensitive
contexts, but also an assessment of their compliance with legal
standards for truthfulness in advertising, ensuring that users can
rely on the integrity of these claims.

Selection Procedure. We aimed to create a corpus of secure
messaging apps that made privacy claims to users, such that it
includedwidely-used apps andwas of a tractable size to perform our
analyses. To create this corpus, we "rst had to identify a set of the
most popular secure messaging apps in the Google Play Store. We
focused on apps in the Communication category in the Google Play
Store, which included a broad range of messaging apps, including
email clients, mobile browsers, and SMS apps. Within this category,
we used open-source tooling8 to identify apps whose descriptions
included one or more keywords related to online messaging9 and
explicitly excluded keywords related to non-messaging apps.10

To establish this list of keywords, we manually reviewed the
descriptions of apps in the Communication category and iteratively
added keywords to our inclusion and exclusion lists until we man-
ually determined that the resulting set of apps included secure
messaging apps that do not fall back onto SMS. Then, we excluded
any app whose description did not include the terms “privacy” or
“security.” Finally, we only selected apps with more than a million
installations. This penultimate set contained 24 apps. We decided
not to analyze Google Messages because it is owned by Google
and, therefore, there is no notion of third-party leakage in that app;
Google runs the infrastructure that provides the push noti"cations.

715 U.S.C. §45.
8https://github.com/facundoolano/google-play-scraper
9“messaging,” “chat,” “internet,” “friend,” and “in touch.”
10“SMS,” “browser,” “VPN,” “recover,” and “voicemail.”

We also excluded Leo Messenger, which appeared to aggregate
other messaging apps and did not have messaging functionality in
its own right, as well as Gap Messenger, for which we were unable
to register. Therefore, the "nal set contained 21 apps.

4.2 App Analysis
We performed dynamic and static analysis on each secure messag-
ing app in our data set to learn how the usage of FCM impacted
user privacy. Speci"cally, did the app naïvely leverage the default
FCM behavior and include plaintext user content? Or, did the app
use speci"c techniques to protect the privacy of user messages
above and beyond what FCM o!ers by default? (For example, by
integrating the Capillary library [13] mentioned in Google’s blog.)

Data Types. In our analysis, we searched for speci"c data types
that we expected to appear in the content of push noti"cations. To
compile the list of these data types, we started with the data types
de"ned and used by Google’s privacy labels [35], which also enabled
us to compare observed practices with the privacy labels declared
by each app’s developer. As we present in Section 5, we found
evidence of the following data types being leaked to Google: (1)
Device or other IDs, (2) User IDs, (3) Name, (4) Phone Number, and (5)
Message Contents. Unlike (1) to (4), the contents of communications
are a!orded additional protections in many jurisdictions due to
their sensitive nature.11 We present additional information about
these data types in Appendix A.

We performed our analysis in early 2023 with an instrumented
version of Android 12, at a time when the majority of users (more
than 85%) had Android version 12 or below installed on their
phones [75]. Using a Pixel 3a phone, we installed each app from
Google Play Store and saved its Android package (APK) "les and
privacy disclosures. We also created test accounts where necessary.
We then used dynamic analysis to identify what personal infor-
mation got leaked to FCM and static analysis to understand what
strategies apps used to protect user privacy.

Data Leakages. We used dynamic analysis to record the con-
tents of a push noti"cation after our device received it from the
FCM server. We instrumented the keySet() method of the stan-
dard BaseBundle class [32], which gets called by the FCM SDK, and
logged the contents of the Bundle only if it contained the default
keys in a push noti"cation, such as “google.message_id.” Addition-
ally, we used Frida [29] to instrument the handleIntentmethod of
FirebaseMessagingService [34], which listens and receives FCM
push noti"cations as broadcasts from Google Play Services. This
method then delivers push noti"cation contents to app-speci"c
callback methods (e.g., onMessageReceived), which allow the app
to handle and display push messages as noti"cations to users.

The main goal was to trigger a push noti"cation so that the
resulting payload sent from Google’s FCM server to our test device
could be recorded (connection 3 in Figure 2). We installed each
app on two devices and triggered push noti"cations by sending
messages from one device to another. On the recipient’s Pixel 3a
device, we recorded the push noti"cation contents as they were
received by the app using the instrumented methods.

11E.g., Title I of the Electronic Communications Privacy Act of 1986 (ECPA) [90].

973

https://github.com/facundoolano/google-play-scraper

Proceedings on Privacy Enhancing Technologies 2024(4) N. Samarin et al.

Privacy Strategy. The push noti"cations that we observed fell
into one of the following three categories:

(1) No Protection. The FCM push noti"cation contained all of
the information (i.e., username and message contents) that
the app uses to display the noti"cation.

(2) Some Protection. The FCM push noti"cation contained
some personal information but, notably, did not include the
displayed message contents in plaintext.

(3) Full Protection. The FCM push noti"cation did not contain
any personal information, and any additional "elds were
empty or always contained unique values (i.e., not corre-
sponding to any persistent identi"ers).

For the "rst case, we simply assumed that the app does not use
any privacy protection strategies. For the latter two cases, deter-
mining the strategy was often straightforward. For instance, Skype
(in secret chat) included EndToEndEncryption as the value for the
messagetype key, while Session included the ENCRYPTED_DATA key
with a value corresponding to an encoded message. Signal, on the
other hand, received FCM push noti"cations that only contain the
empty "eld notification without any other content.

To validate the identi"ed strategies, we performed static analysis.
We "rst decompiled the APKs for each closed-source app using the
jadx

12 Dex to Java decompiler. Analyzing obfuscated code was
often complex. We searched for FirebaseMessagingService to
"nd services that extend it. We then examined the code of these ser-
vices to see how they implement the onMessageReceived method,
which gets invoked by the FCM SDK whenever the app running
on the client device receives a push noti"cation. Crucially, the SDK
also passes a hash table of type RemoteObject containing informa-
tion necessary to display the noti"cation to the user and, optionally,
a data payload to perform any custom functions triggered by the
receipt of a noti"cation.

We tried to determine whether the push noti"cations contain
sensitive content by observing the strings de"ned in code and used
in the names of the keys or in print statements. We then traced
the message and any variables assigned to the sensitive content
until we reached the code for displaying the noti"cation to the user.
Appendix B includes the questions we used to analyze the source
code of apps in our data set.

4.3 Privacy Disclosure Analysis
The "nal phase of our analysis involved comparing the claims that
app developers made in their privacy disclosures to the ground truth
that we observed from our dynamic and static analysis. Therefore,
we focused on the 11 app developers that we observed including
personal information in the push noti"cations sent via Google’s
FCM (§ 5). We wanted to determine whether a user could reason-
ably conclude that the app guarantees the security and privacy
of their personal information based on the information presented
by the app vendor in their Play Store description, o%cial website,
marketing and promotional materials, and other documentation.
Moreover, we wanted to understand whether developers disclose
the sharing of personal information for the purposes of providing
push noti"cations in their privacy policies.

12https://github.com/skylot/jadx

To achieve this, several researchers from our team "rst located
statements by app vendors that talk about the security and pri-
vacy of messages. We also determined whether the apps (that we
observed sharing personal information with Google) claimed to
support end-to-end encryption by default, potentially misleading
the users about the privacy of their messages or their metadata. Fi-
nally, we read each privacy policy to determine whether they stated
that the particular types of personal information we observed might
be shared with service providers for the purpose of app functional-
ity. If it did, we further recorded whether the privacy policy listed
the speci"c service providers or the speci"c types of data shared
for the purpose of app functionality, which we compared against
the results of our app analysis. By cross-referencing the di!erent
sources of information about an app’s privacy practices, we aimed
to build a holistic picture of how each developer frames the privacy
risks associated with use of their app. We saved static copies of
each privacy disclosure and the privacy policies using the Internet
Archive’s Wayback Machine [11].

4.4 Ethical Research
Our work involves reverse-engineering the client apps of popular
Android secure instant messengers in order to glean the types of
information being leaked to Google’s FCM servers in push noti"ca-
tions. We performed our analysis by running each app on our test
devices, with test accounts, on a segmented and private network,
and observing both the network tra%c that resulted and, when
that network tra%c did not reveal personal information, the static
code. We were only interested in observing the leakage of personal
information pertaining to our test devices; we did not interact with
other app users nor did we make any attempts to obtain personal in-
formation of other users. Our study did not involve human subjects,
nor did it involve unauthorized access to protected systems.

As we discuss in Section 5, we found inconsistencies between
the observed app behavior and promises made by developers of
several apps from our data set (see also Table 1). We disclosed our
"ndings to those developers to ensure these inconsistencies can be
addressed promptly (see § 7 for a further discussion).

5 RESULTS
We present "ndings from our analysis of secure messaging apps,
including the personal information observed being shared with
Google’s FCM servers and the mitigation strategies employed by
apps to prevent such leakage. Additionally, we analyzed statements
made by app developers to determine whether they make any pri-
vacy or security guarantees and whether they disclose the sharing
of personal information for push noti"cations.13

5.1 App Analysis
We found that almost all analyzed applications used FCM. Of the
popular secure messaging apps that we identi"ed, 20 of 21 apps
relied on FCM to deliver push noti"cations to users. One exception
among those apps was Briar messenger, which prompted the user
to enable unrestricted battery usage, allowing the app to poll for
new messages in the background. (Several other apps in our dataset

13Supplemental materials are available at https://github.com/blues-lab/fcm-app-
analysis-public.

974

https://github.com/skylot/jadx
https://github.com/blues-lab/fcm-app-analysis-public
https://github.com/blues-lab/fcm-app-analysis-public

How Secure Messaging Apps Leak Sensitive Data to Push Notification Services Proceedings on Privacy Enhancing Technologies 2024(4)

App Privacy
Strategy

Message
Content Device IDs User IDs Name Phone #

Skype (default) None ! ! ! ! "
(secret chat) E2EE " ! ! ! "

Snapchat E2EE " " ! ! "
Viber Push-to-Sync " ! ! " !
LINE E2EE " " " ! "
Discord None ! " ! ! "
WeChat None ! " ! ! "
JusTalk None ! " ! ! "
SafeUM E2EE " " ! " "
YallaChat E2EE " " ! ! "
Comera Push-to-Sync " " ! " !
Wire Push-to-Sync " ! ! " "

Table 1: This table contains all analyzed apps, for which we observed personal information leakage to FCM servers in the
process of delivering push noti!cations. The speci!c observed category of data is indicated by! (evidence) and" (no evidence).

also prompted us to enable unrestricted battery usage, however,
those apps still relied on FCM.) Since our study focuses on FCM,
we excluded Briar and analyzed only those applications that relied
on FCM to deliver push noti"cations.

Of the 20 apps we analyzed, 11 included personal information
in data sent to Google via FCM such that that data was visible to
Google. All 11 apps leaked message metadata, including device
and app identi"ers (3 apps), user identi"ers (10 apps), the sender’s
or recipient’s name (7 apps), and phone numbers (2 apps). More
alarmingly, we observed 4 apps—which have cumulative installs in
excess of one billion—leak message contents. We present informa-
tion about the observed practices in Table 1.

It is worth noting that not all of the observed behaviors here are
necessarily undisclosed sharing. Undisclosed sharing occurs when
data we observed being shared from our static and/or dynamic
analysis was not disclosed in the privacy disclosures we analyzed.
Whether the observed behaviors do constitute undisclosed shar-
ing depends on the "ndings from our privacy disclosure analysis,
discussed below (§5.3).

5.2 Mitigation Strategies
Of the 16 apps that did not send message contents to Google.14 our
static analysis revealed two general mitigation strategies described
below: end-to-end encryption and push-to-sync. Ultimately, we
observed 9 apps out of 16 employ either end-to-end encryption or
push-to-sync strategies to prevent leaking any personal information
to Google via FCM. The remaining 7 apps still leaked metadata, but
not the message contents. See Table 2 for more information.

End-to-End Encryption. We determined that 8 apps employed
an end-to-end encryption strategy to prevent privacy leakage to
Google via FCM. In this strategy, when the user launches the app
for the "rst time, the app provisions a keypair and does a secure key
exchange between the user’s device and the app’s server. The app
will then develop a session key that it can use to decrypt messages
from the server. The server encrypts messages it sends using the
session key before it goes to FCM.

14Skype used e2e encryption to protect message contents only in secret chats, which
is not the default.

firebase:message:10276:START:{
google.delivered_priority=high,
google.sent_time=1677001395829,
google.ttl=2419200,
google.original_priority=high,
from=312334754206,
google.message_id=0:1677001395846147...,
notification=,
google.c.sender.id=312334754206

}

Figure 4: Example payload from within the RemoteMessage
object received by the Signal app. Note the empty noti!ca-
tion !eld, indicating the correct usage of the push-to-sync
noti!cation strategy.

As depicted in Table 2, of the 8 apps that utilized the end-to-end
encryption (e2e) strategy, only 4 (Facebook Messenger, Telegram,
Session, and KakaoTalk) did not leak any personal information to
Google via FCM. The remaining 4 (Snapchat, SafeUM, YallaChat,
and LINE) still leaked metadata, including user identi"ers (3 apps)
and names (3 apps).

Push-to-Sync. We observed 8 apps employ a push-to-sync strat-
egy to prevent privacy leakage to Google via FCM. In this mitigation
strategy, apps send an empty (or almost empty) push noti"cation
to FCM. Some apps, such as Signal, send a push noti"cation with
no data (aside from the "elds that Google sets; see Figure 4). Other
apps may send an identi"er (including, in some cases, a phone num-
ber). This push noti"cation tells the app to query the app server
for data, the data is retrieved securely by the app, and then a push
noti"cation is populated on the client side with the unencrypted
data. In these cases, the only metadata that FCM receives is that the
user received some message or messages, and when that push noti-
"cation was issued. Achieving this requires sending an additional
network request to the app server to fetch the data and keeping
track of identi"ers used to correlate the push noti"cation received
on the user device with the message on the app server.

975

https://play.google.com/store/apps/details?id=com.skype.raider
https://play.google.com/store/apps/details?id=com.snapchat.android
https://play.google.com/store/apps/details?id=com.viber.voip
https://play.google.com/store/apps/details?id=jp.naver.line.android
https://play.google.com/store/apps/details?id=com.discord
https://play.google.com/store/apps/details?id=com.tencent.mm
https://play.google.com/store/apps/details?id=com.juphoon.justalk
https://play.google.com/store/apps/details?id=com.safeum.android
https://play.google.com/store/apps/details?id=com.yallatech.yallachat
https://play.google.com/store/apps/details?id=com.is.core.app
https://play.google.com/store/apps/details?id=com.wire

Proceedings on Privacy Enhancing Technologies 2024(4) N. Samarin et al.

App Version Uses FCM? Privacy
Strategy

Observed
Data Leakage

Min Installs
(millions)

Facebook Messenger v403.1.0.17.106 ! e2ee # 5,000
WhatsApp v2.23.12.78 ! Push-to-Sync # 5,000

Skype v8.93.0.408 ! none (default)
e2ee (secret chat) $ 1,000

Snapchat v12.28.0.22 ! e2ee $ 1,000
Telegram v9.4.4 ! e2ee # 1,000
Viber v19.4.0.0 ! Push-to-Sync $ 1,000
LINE v13.4.2 ! e2ee $ 500
Discord v172.24 ! none $ 100
Kakao Talk v10.0.7 ! e2ee # 100
Kik v15.50.1.27996 ! Push-to-Sync # 100
Signal v6.11.7 ! Push-to-Sync # 100
WeChat v8.0.30 ! none $ 100
JusTalk v8.6.10 ! none $ 10
SafeUM v1.1.0.1548 ! e2ee $ 5
YallaChat v1.4.2 ! e2ee $ 5
Briar v1.4.23 " Polling # 1
Comera v4.0.1 ! Push-to-Sync $ 1
Element v1.5.22 ! Push-to-Sync # 1
Session v1.16.7 ! e2ee # 1
Threema v5.0.6 ! Push-to-Sync # 1
Wire v3.82.38 ! Push-to-Sync $ 1

TOTAL installs 15,026
Table 2: Our data set of analyzed apps. Usage of Firebase Cloud Messaging (FCM) is indicated by !(does use) and "(does not
use). Whether or not an app leaked personal information to FCM is indicated by#(no evidence) and $(evidence). See Table 1 for
details on which personal data is leaked by apps marked with $. Apps are sorted by minimum install count and alphabetically
by app name.

As detailed in Table 2, only 5 (Whatsapp, Signal, Threema, El-
ement, and Kik) did not leak any personal information to Google.
The remaining 3 (Viber, Wire, and Comera) leaked metadata, in-
cluding user identi"ers (all 3 apps), device and app identi"ers (2
apps), and phone numbers (2 apps).

5.3 Privacy Disclosure Analysis
We analyzed privacy disclosures for the 11 apps that included per-
sonal information in the push noti"cations sent via Google’s FCM.
One of our aims was to determine whether a user could reasonably
conclude that the app guarantees the security and privacy of their
personal information based on the information presented by the
app vendor in their Play Store description, o%cial website, market-
ing and promotional materials, and other documentation. Table 3
provides details for each app.

Marketing Claims. First, we discuss the 4 apps that leaked
the actual contents of push noti"cation messages: Skype, WeChat,
Discord, and JusTalk. We found that out of these four apps, only
JusTalk claimed to be end-to-end secure, stating: “All users’ personal
information (including calling and messaging data) is end-to-end
encrypted and is split into multiple random paths which ensure
it can’t be monitored or saved by servers. Moreover, all the per-
sonal data is never shared with any third party. Enjoy safe and
free calls” [42]. Nevertheless, we clearly observed the contents of
our messages being sent without end-to-end encryption via FCM’s
servers while delivering push noti"cations (see Figure 5).

firebase:message:10279:START:{
google.delivered_priority=high,
google.sent_time=1677010922128,
google.ttl=2419200,
google.original_priority=high,
resend=0,
MtcImTextKey=Hello Dustin! How are you doing?,
MtcImTimeKey=1677010922031,
MtcImUserDataKey={},
MtcImInfoTypeKey=Text,
from=144552557193,
toUid=9999_43035938,
google.message_id=0:1677010922135234%...,
MtcImLabelKey=P2P/9999_43036012,
MtcImDisplayNameKey=Charlotte,
google.c.sender.id=144552557193,
MtcImMsgIdKey=0,
MtcImImdnIdKey=97866160-0e6a-495a-9932...,
MtcImSenderUidKey=9999_43036012

}

Figure 5: Payload contained inside the RemoteMessage
object received by JusTalk. Note the MtcImTextKey and
MtcImDisplayNameKey, which contain the unencrypted mes-
sage contents and username, respectively.

976

https://play.google.com/store/apps/details?id=com.facebook.orca
https://play.google.com/store/apps/details?id=com.whatsapp
https://play.google.com/store/apps/details?id=com.skype.raider
https://play.google.com/store/apps/details?id=com.snapchat.android
https://play.google.com/store/apps/details?id=org.telegram.messenger
https://play.google.com/store/apps/details?id=com.viber.voip
https://play.google.com/store/apps/details?id=jp.naver.line.android
https://play.google.com/store/apps/details?id=com.discord
https://play.google.com/store/apps/details?id=com.kakao.talk
https://play.google.com/store/apps/details?id=kik.android
https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms
https://play.google.com/store/apps/details?id=com.tencent.mm
https://play.google.com/store/apps/details?id=com.juphoon.justalk
https://play.google.com/store/apps/details?id=com.safeum.android
https://play.google.com/store/apps/details?id=com.yallatech.yallachat
https://play.google.com/store/apps/details?id=org.briarproject.briar.android
https://play.google.com/store/apps/details?id=com.is.core.app
https://play.google.com/store/apps/details?id=im.vector.app
https://play.google.com/store/apps/details?id=network.loki.messenger
https://play.google.com/store/apps/details?id=ch.threema.app
https://play.google.com/store/apps/details?id=com.wire

How Secure Messaging Apps Leak Sensitive Data to Push Notification Services Proceedings on Privacy Enhancing Technologies 2024(4)

Although the three remaining apps do not claim to employ end-
to-end encryption, both WeChat and Discord made statements
about their concern for privacy. For instance, WeChat said in their
Play Store description: “- BETTER PRIVACY: Giving you the highest
level of control over your privacy, WeChat is certi"ed by TRUSTe”
[62]. Although Skype does not reference secure messaging for their
normal (default) chat functionality, they promise that “Skype private
conversations uses the industry standard Signal Protocol, allowing
you to have end-to-end encrypted Skype audio calls, send text
messages, image, audio, and video "les” [56]. Although we did
not observe the content of the message being leaked when testing
Skype’s private conversation feature, we still observed the app
leaking device IDs, user IDs, and names via Google’s FCM.

For the remaining 7 apps that did not leak message contents,
we observed each of these apps make claims that could lead users
to believe that the apps do not share any personal information
with anyone and, except for Snapchat, claimed to be end-to-end
encrypted. For instance, SafeUM messenger put it plainly: “[w]e
never share your data with anyone. Never” [67].

Privacy Policies. We additionally read each privacy policy to un-
derstandwhether developers disclosed the sharing of personal infor-
mation for the purposes of providing push noti"cations. We found
that all 11 apps that shared personal information with Google’s
FCM servers stated that personal user data may be shared with
service providers (such as FCM) for the purpose of app functionality.
However, only two apps (JusTalk and YallaChat) enumerated the
types of personal information shared with such service providers,
which did not cover the types of information we observed being
shared, namely user IDs and names (for both apps) and message
contents (for JusTalk, as discussed above). Furthermore, three apps
(Viber, WeChat and Comera) did not specify which companies serve
as their service providers. Out of the remaining 8 apps, only 4 men-
tioned Google in the context of push noti"cations and/or FCM.

Given that only YallaChat included information about the types
of data shared with Google’s FCM, we were unable to determine
whether the speci"c data types we observed being shared would be
covered by these statements or not. For instance, Viber’s privacy
policy stated, without giving any speci"cs: “[w]e may disclose
your Personal Information to a contractor or service provider for
a business purpose. The types of personal information we share
for a business purpose, vary, depending on the purpose and the
function provided by the third party to whom we disclose such
information” [91]. While these statements may technically address
personal data sharing in the context of push noti"cations, they do
not meaningfully inform users about what information pertaining
to them is being shared and with whom.

6 DISCUSSION
The democratization of mass communications via the Internet has
created a new paradigm in which anyone can have a platform to
send a message. Consequently, anyone can now become a software
engineer and distribute software worldwide. By and large, this is a
good thing. However, it raises issues of professional responsibility
that have long been addressed by other more mature branches of
engineering. In most jurisdictions, one cannot simply decide to
become a civil engineer and erect a multi-story building. Due to

the inherent safety risks—to the individual, neighbors, and society—
most jurisdictions require that plans be submitted for approval.
In granting that approval, the plans are "rst checked for confor-
mance with building codes, which have been set (and periodically
revised) by professional societies with deep expertise. Once plans
are approved, multiple levels of oversight still occur: at various
steps during construction, building inspectors con"rm that both
the plans have been followed and that no other safety issues have
been identi"ed. Moreover, after construction has been completed,
governments are empowered to continually monitor for code vi-
olations, going so far as to condemn structures that pose safety
hazards. Of course, there is a reason for this oversight: building
codes are written in blood.

In the past decade or two, software engineering as a discipline
has only just begun to reckon with the complex sociotechnical is-
sues relating to harm and liability. While the collapse of a building
is likely to be more lethal than the inappropriate ex"ltration of
sensitive user information, the latter may still pose risks to user
safety—even lethal ones. We chose to examine secure messaging
apps in this study because they can often embody these risks: on-
line messaging apps are increasingly being used by activists living
in oppressive regimes [85], who may "nd themselves in serious
jeopardy if their communications are inappropriately revealed. In
this speci"c instance, the inappropriate disclosure of users’ com-
munication and metadata does not require malice on the part of a
service provider for harm to come to the user. By nature of such
data collection, the service provider exposes the user to legal pro-
cesses: this may result in data the user legitimately did not believe
to exist coming into the hands of governments and private actors.
We emphasize that this risk is not merely theoretical; as previously
noted, U.S. Senator Ron Wyden published a letter that con"rms
that government agencies do, in fact, collect user information by
demanding push noti"cation records from Google and Apple [100].

Our analysis found that several prevalent secure messaging
apps—which imply that they will not share certain information
with third parties—do indeed share that information in plaintext
with Google via FCM (see Table 1). We found evidence of undis-
closed data leakage to FCM in apps that account for over 2 billion
installs. Users of these apps are likely unaware of these data leak-
ages: some of the privacy disclosures made by these apps often
explicitly promise not to share such personal information with
third parties, whereas others were so vaguely written that it was
unclear whether these behaviors are being disclosed (and how they
might comport in consumers’ minds with the companies’ marketing
materials that imply messaging data will be kept private). Conse-
quently, consumers may have a false sense of security when using
these apps for communicating. The undisclosed leakage of commu-
nication contents can harm users and potentially even innocent
bystanders who may be mentioned in communications.

6.1 Recommendations
Just as a contractor or owner-builder is ultimately responsible for
the adherence to local building codes and the risks associated with
deviations from them, software developers publishing apps for
public usage are responsible for the behaviors of those apps. This

977

Proceedings on Privacy Enhancing Technologies 2024(4) N. Samarin et al.

App E2EE S/P Discloses
PI Sharing

Discloses
Companies

Discloses
Shared PI

Skype (default) " " ! ! "
(secret chat) ! ! ! ! "

Snapchat " ! ! ! "
Viber ! ! ! " "
LINE ! ! ! ! "
Discord " ! ! ! "
WeChat " ! ! " "
JusTalk ! ! ! ! !
SafeUM ! ! ! ! "
YallaChat ! ! ! ! !
Comera ! ! ! " "
Wire ! ! ! ! "

Table 3: This table contains information about the disclosures made by developers of apps, for which we observed information
leakage to FCM. ! indicates that we found evidence (or " if not) for each of the following statements: (E2EE) developer
states the app uses end-to-end encryption, (S/P) developer makes security or privacy-speci!c claims in the Google Play Store
description or on their o#cial websites, (discloses PI sharing) developer discloses in their privacy policy the sharing of personal
information to service providers for app functionality purposes, (discloses companies) if the disclosure includes names of
companies and (discloses shared PI) if the disclosure includes speci!c types of personal information.

responsibility includes verifying that third-party components func-
tion as expected and that the ultimate behavior of the app is in
accordance with platform guidelines, the developer’s disclosures,
and applicable laws/regulations. The use of these third-party com-
ponents is not unique to software engineering: other branches of
engineering generally involve complex supply chains, yet there is
often a great deal of oversight. When Airbus builds a plane, they
may use engines from Rolls-Royce or electronics from Siemens; but
in addition to simply specifying the speci"cations and tolerances
that Airbus expects these components to conform to, they nonethe-
less validate those third-party components by launching chickens
at them at 600+ km/h (amongst other validation tests) [98]. Such
integration validations rarely exist for software in practice, despite
being recommended for nearly half a century now [28]. Indeed,
while we have no reason to believe that misleading or confusing
security and privacy claims are the result of malice, we believe that
the poor privacy practices that we document in this paper could
have been discovered and mitigated by the developers had they
inspected the tra%c sent and received by their applications during
quality assurance processes. Thus, we o!er recommendations to
di!erent stakeholders on ways to address the identi"ed security
and privacy issues.

6.1.1 App Developers. As the parties ultimately responsible for
their apps, app developers should perform the type of dynamic
analysis that we performed in this study as part of each and every
release cycle. This will help to ensure that users’ personal data
#ows in accordance with reasonable expectations, applicable laws
and regulations, as well as platform policies. However, the best
way to ensure that push noti"cations do not leak sensitive user
information is to avoid sending sensitive user information via FCM
in the "rst place. We argue that developers should implement the
push-to-sync approach: the developer’s server should only send the
app a unique noti"cation ID via FCM, which can then be used to
fetch the noti"cation content from the developer’s servers securely.

Several developers correctly used the push-to-sync approach, which
resulted in no personal data being leaked by those apps. Others
should adopt this architecture in their apps.

6.1.2 Platforms and SDK Providers. At the same time, platform
owners and SDK providers are well-positioned to identify and cor-
rect issues in their tools and highlight security and privacy risks
in their documentation. For its part, Google provides an API that
results in developers systematically making very similar privacy
mistakes. This is not helped by Google’s guidance, which instructs
developers to “send as much data as possible in the FCM payload,”
and that if they want to do so securely, they must use an addi-
tional library [69]. This guidance departs from Google’s own data
minimization and secure-by-default principles [33] and recommen-
dations from other push noti"cation providers, such as Apple [10].

We argue that the availability of usable, secure push noti"ca-
tions libraries, including Google’s Capillary [13], does not solve the
underlying problem. Developers generally trust Google’s security
practices and are largely unaware of the risk of personal informa-
tion leakage via push noti"cations. Furthermore, under current
regulatory regimes, Google is not obligated to do anything about
this: they provide a free API for developers, and despite the fact that
using it to send messages securely admittedly takes additional non-
obvious steps, there are no legal requirements that Google—or any
other SDK provider—provide a secure-by-default API. Furthermore,
as mentioned previously, Android app developers are e!ectively
required to use Google’s FCM to send push noti"cations for battery
consumption reasons. We argue, therefore, that real-world change
will require either applying regulatory pressure or other market-
corrective forces on platform owners to enforce privacy-by-design
principles for critical SDKs in the software supply chain, such as
Google’s FCM. Such a change would improve the privacy and secu-
rity of nearly all Android apps, because the use of FCM to deliver
push noti"cations on Android is nearly universal.

978

https://play.google.com/store/apps/details?id=com.skype.raider
https://play.google.com/store/apps/details?id=com.snapchat.android
https://play.google.com/store/apps/details?id=com.viber.voip
https://play.google.com/store/apps/details?id=jp.naver.line.android
https://play.google.com/store/apps/details?id=com.discord
https://play.google.com/store/apps/details?id=com.tencent.mm
https://play.google.com/store/apps/details?id=com.juphoon.justalk
https://play.google.com/store/apps/details?id=com.safeum.android
https://play.google.com/store/apps/details?id=com.yallatech.yallachat
https://play.google.com/store/apps/details?id=com.is.core.app
https://play.google.com/store/apps/details?id=com.wire

How Secure Messaging Apps Leak Sensitive Data to Push Notification Services Proceedings on Privacy Enhancing Technologies 2024(4)

The use of these types of APIs also represents the classic usable
security problem (wherein application developers are the “user”):
the user is not quali"ed to be making the decisions that are forced
upon them, whereas those forcing them to make these decisions
are in a much better position to make those decisions on the users’
behalf. Prior research shows that developers, despite being the
party ultimately responsible for the behaviors of their software,
are woefully unprepared to make these types of decisions [1, 4].
And thus, we are faced with a situation in which the parties most
equipped to "x these types of problems (e.g., by creating more
usable documentation that highlights security and privacy risks,
making SDK settings secure by default, proactively auditing how
their services are used in practice, etc.) are not incentivized to do so,
whereas the parties who are ultimately responsible are generally
incapable and do not understand their risks or responsibilities. As
a result, this is fundamentally an economics problem concerning
misaligned incentives [5]: in a perfect world, the responsibility
for handling users’ data responsibly would be placed upon those
according to their abilities, shifted from those according to their
needs [54]. This is not the world in which we currently live.

Yet, things are improving. In recent years, the U.S. Government
has promoted the strategy of shifting the burden of software se-
curity away from individuals, small businesses, and local govern-
ments and onto the organizations that are most capable and best-
positioned to reduce risks [82]. In line with this initiative, the U.S.
Cybersecurity and Infrastructure Security Agency (CISA) and 17
U.S. and international partners published an update in August 2023
to joint guidance for implementing secure-by-design principles [21].
One secure product development practice, in particular, highlights
the need to provide secure defaults for developers by “providing
safe building blocks...known as ‘paved roads’ or ‘well-lit paths.’”
We believe that push noti"cation providers can similarly apply
privacy-by-design principles [60] to safeguard the privacy of users
who cannot easily manage the risks.

Without correctly aligned incentives to motivate platforms and
SDK providers to make their systems secure by default (including
documentation that highlights security and privacy risks), devel-
opers will continue to be placed in this position and will continue
to consistently make these types of mistakes. Thus, until software
engineering becomes a more mature "eld with formalized over-
sight, validation, disclosure, and auditing procedures, these types
of errors will proliferate, leaving end users at risk.

7 RESPONSIBLE DISCLOSURE
Responsible disclosure is a critical component of security and pri-
vacy research. We reported our substantive "ndings to the 11 app
developers who leaked at least one personal data type to Google’s
FCM service. We tried contacting the developers via various contact
methods, including formal bug bounty programs, emailing security
teams, or failing that, general support contacts. The app developers
for whom we could "nd contact information were sent a summary
report on or before June 7, 2024. We received an acknowledgment
of our email from 5 developers of the 11 we contacted.

At the time of publication, the remaining 6 app developers to
whom we disclosed our "ndings had not replied; discussions are
ongoing with several companies regarding how they should "x

the identi"ed issues. We look forward to continue engaging in pro-
ductive conversations to help developers understand how to adapt
their push message architectures to better protect user privacy.

8 LIMITATIONS
Many apps beyond secure messaging apps might send private data
through push noti"cations. Our study only focused on secure mes-
saging apps because most of them claim to focus on user privacy,
thus, they would be among the most likely apps to take proactive
steps to prevent the leakage of user data to FCM (and presumably
users of these apps are more likely to believe that their communica-
tions are secure). We suspect that privacy leakage via Google FCM
may be even more prevalent within apps in other contexts. Future
work should look at both less popular secure messaging apps and
apps in other contexts to observe to what extent, if at any, they
mitigate the leakage of sensitive personal data to Google via FCM.

We also performed our analysis using an older Pixel 3a device
running Android 12. We are unaware of any substantial changes
in Android 13 and 14 that would have a material impact on our
observed "ndings. Our device supported security updates and the
installation of all the apps that we analyzed for this research. We
ran these apps and received push noti"cations from FCM without
observing any undesirable impact on app performance. Further-
more, at the time we began our analysis in early 2023, the majority
of users (more than 85%) used Android version 12 or below [75].
While most people who use a mobile phone use an Android device,
iOS also has a signi"cant share of the mobile phone market and
tends to bill itself as having more privacy-preserving practices. Fu-
ture work can also explore whether private user data is leaked to
Apple or other third parties via the push noti"cation infrastructure
available to developers in the iOS ecosystem.

We looked speci"cally at privacy leakage through push noti"ca-
tions that rely on FCM. As far as we know, FCM is also used in other
applications, on Android and beyond; how this fact a!ects privacy
leakage across other applications is not well understood. Future
work could investigate the privacy implications of FCM across those
applications. Within the Android ecosystem, there may exist other
patterns or tools provided by Google or by other popular third-party
libraries that also incur unexpected privacy leakage. Future work
could look for such patterns beyond the Android platform, such
as iOS, and identify how other ecosystem players like Apple and
Google can craft a more trustworthy ecosystem to provide more
privacy-preserving defaults to the broadest base of users.

“The personal and social consequences of any medium—
that is, of any extension of ourselves—result from the
new scale that is introduced into our a"airs by each
extension of ourselves, or by any new technology”

—Marshall McLuhan [55].

ACKNOWLEDGMENTS
This work was supported by the U.S. National Science Foundation
under grant CCF-2217771, the Center for Long-Term Cybersecurity
(CLTC) at U.C. Berkeley, the KACST-UCB Center of Excellence for
Secure Computing, an NSERC Discovery Grant, and a grant from
the Silicon Valley Community Foundation. We would especially
like to thank the O%ce of U.S. Senator RonWyden for outreach that

979

Proceedings on Privacy Enhancing Technologies 2024(4) N. Samarin et al.

inspired this work, as well as Chris Hoofnagle for early support
and feedback, and of course, Refjohürs Lykkewe.

REFERENCES
[1] Yasemin Acar, Michael Backes, Sascha Fahl, Simson Gar"nkel, Doowon Kim,

Michelle L Mazurek, and Christian Stransky. 2017. Comparing the usability of
cryptographic apis. In 2017 IEEE Symposium on Security and Privacy (SP). IEEE,
154–171.

[2] Mansour Ahmadi, Battista Biggio, Steven Arzt, Davide Ariu, and Giorgio Gi-
acinto. 2016. Detecting misuse of google cloud messaging in android badware.
In Proceedings of the 6th Workshop on Security and Privacy in Smartphones and
Mobile Devices. 103–112.

[3] AirShip. 2023. Android SDK Setup. https://docs.airship.com/platform/mobile/
setup/sdk/android/. (Accessed on 10/10/2023).

[4] Noura Alomar and Serge Egelman. 2022. Developers say the darnedest things:
Privacy compliance processes followed by developers of child-directed apps.
Proceedings on Privacy Enhancing Technologies 4, 2022 (2022), 24.

[5] R. Anderson. 2001. Why information security is hard - an economic perspective.
In Seventeenth Annual Computer Security Applications Conference. 358–365. https:
//doi.org/10.1109/ACSAC.2001.991552

[6] Benjamin Andow, Samin Yaseer Mahmud, Wenyu Wang, Justin Whitaker,
William Enck, Bradley Reaves, Kapil Singh, and Tao Xie. 2019. PolicyLint:
Investigating Internal Privacy Policy Contradictions on Google Play. In 28th
USENIX security symposium (USENIX security 19). USENIX, Berkeley, CA, USA,
585–602.

[7] Benjamin Andow, Samin Yaseer Mahmud, Justin Whitaker, William Enck,
Bradley Reaves, Kapil Singh, and Serge Egelman. 2020. Actions Speak Louder
than Words:Entity-Sensitive Privacy Policy and Data Flow Analysis with
PoliCheck. In 29th USENIX Security Symposium (USENIX Security 20). USENIX,
Berkeley, CA, USA, 985–1002.

[8] Apple. 2023. Noti"cations Overview. Apple Developer. https://
developer.apple.com/noti"cations/.

[9] Apple. 2023. Push Token Requests. https://www.apple.com/legal/transparency/
push-token.html. (Accessed on 06/01/2024).

[10] Apple Inc. 2023. Generating a remote noti"cation . https://developer.apple.com/
documentation/usernoti"cations/setting_up_a_remote_noti"cation_server/
generating_a_remote_noti"cation. (Accessed on 10/10/2023).

[11] Internet Archive. 2023. Wayback Machine. https://archive.org/. (Accessed on
10/10/2023).

[12] Kayce Basques and Matt Gaunt. 2023. Push noti"cations overview. https:
//web.dev/articles/push-noti"cations-overview. (Accessed on 10/10/2023).

[13] Android Developers Blog. 2018. Project Capillary: End-to-end encryption for
push messaging, simpli"ed. https://android-developers.googleblog.com/2018/
06/project-capillary-end-to-end-encryption.html. (Accessed on 10/10/2023).

[14] Duc Bui, Kang G Shin, Jong-Min Choi, and Junbum Shin. 2021. Automated
Extraction and Presentation of Data Practices in Privacy Policies. Proceedings
on Privacy Enhancing Technologies (PoPETs) 2021, 2 (2021), 88–110.

[15] L. Cavallaro, P. Saxena, and R. Sekar. 2008. On the Limits of Information Flow
Techniques for Malware Analysis and Containment. In Proc. of DIMVA. Springer-
Verlag, 143–163. http://dx.doi.org/10.1007/978-3-540-70542-0_8

[16] Ann Cavoukian. 2009. Privacy by design. (2009).
[17] Yangyi Chen, Tongxin Li, XiaoFeng Wang, Kai Chen, and Xinhui Han. 2015.

Perplexed messengers from the cloud: Automated security analysis of push-
messaging integrations. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. 1260–1272.

[18] U.S. Federal Trade Commission. 2021. FloHealth, Inc. https://www.ftc.gov/legal-
library/browse/cases-proceedings/192-3133-#o-health-inc.

[19] U.S. Federal Trade Commission. 2024. Avast, Ltd. https://www.ftc.gov/system/
"les/ftc_gov/pdf/Complaint-Avast.pdf.

[20] Cox, Joseph. 2023. Here’s a Warrant Showing the U.S. Government is Moni-
toring Push Noti"cations. https://www.404media.co/us-government-warrant-
monitoring-push-noti"cations-apple-google-yahoo/. (Accessed on 06/01/2024).

[21] Cybersecurity and Infrastructure Security Agency (CISA). 2023. Shift-
ing the Balance of Cybersecurity Risk: Principles and Approaches for Se-
cure by Design Software. https://www.cisa.gov/sites/default/"les/2023-10/
SecureByDesign_1025_508c.pdf. (Accessed on 06/01/2024).

[22] Samsung Electronics. 2023. Samsung Push Service. https://play.google.com/
store/apps/details?id=com.sec.spp.push. (Accessed on 06/01/2024).

[23] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth.
2010. TaintDroid: An Information-#ow Tracking System for Realtime Privacy
Monitoring on Smartphones. In Proc. of the 9th USENIX conference on Operating
systems design and implementation (OSDI). 393–407.

[24] Ming Fan, Le Yu, Sen Chen, Hao Zhou, Xiapu Luo, Shuyue Li, Yang Liu, Jun Liu,
and Ting Liu. 2020. An empirical evaluation of GDPR compliance violations in
Android mHealth apps. In 2020 IEEE 31st international symposium on software
reliability engineering (ISSRE). IEEE, New York, NY, USA, 253–264.

[25] Federal Trade Commision (FTC). 2020. FTC Requires Zoom to Enhance
its Security Practices as Part of Settlement. https://www.ftc.gov/news-
events/news/press-releases/2020/11/ftc-requires-zoom-enhance-its-security-
practices-part-settlement. (Accessed on 01/01/2024).

[26] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner. 2012. Android
permissions: user attention, comprehension, and behavior. In Proceedings of
the 8th Symposium on Usable Privacy and Security (Washington, D.C.) (SOUPS
’12). ACM, New York, NY, USA, Article 3, 14 pages. https://doi.org/10.1145/
2335356.2335360

[27] European Union Agency for Cybersecurity (ENISA). 2023. Engineering Personal
Data Sharing. https://www.enisa.europa.eu/publications/engineering-personal-
data-sharing. (Accessed on 06/01/2024).

[28] Frederick P. Brooks, Jr. 1975. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley.

[29] Frida. 2022. https://frida.re/.
[30] C. Gibler, J. Crussell, J. Erickson, and H. Chen. 2012. AndroidLeaks: Automati-

cally Detecting Potential Privacy Leaks in Android Applications on a Large Scale.
In Proc. of the 5th international conference on Trust and Trustworthy Computing
(TRUST). Springer-Verlag, 291–307.

[31] GizChina. 2023. HARMONYOS IS NOW FIRMLY THE THIRD LARGEST
MOBILE PHONE OPERATING SYSTEM. https://www.gizchina.com/2023/
05/20/harmonyos-is-now-"rmly-the-third-largest-mobile-phone-operating-
system/. (Accessed on 01/01/2024).

[32] Google. 2023. BaseBundle. Android Developers. https://developer.android.com/
reference/android/os/BaseBundle.

[33] Google. 2023. Design for Safety. Google Developers. https://
developer.android.com/quality/privacy-and-security.

[34] Google. 2023. FirebaseMessagingService. https://"rebase.google.com/docs/
reference/android/com/google/"rebase/messaging/FirebaseMessagingService.
(Accessed on 06/01/2024).

[35] Google. 2023. Play Console Help: Provide information for Google Play’s
Data safety section. https://support.google.com/googleplay/android-developer/
answer/10787469. (Accessed on 06/01/2024).

[36] Google for Developers. 2024. About FCM messages. Developer documenta-
tion for Firebase. https://"rebase.google.com/docs/cloud-messaging/concept-
options.

[37] M. I. Gordon, D. Kim, J. Perkins, Gilhamy, N. Nguyenz, and M. Rinard. 2015.
Information-Flow Analysis of Android Applications in DroidSafe. In Proc. of
NDSS Symposium.

[38] Marit Hansen, Meiko Jensen, and Martin Rost. 2015. Protection goals for privacy
engineering. In 2015 IEEE Security and Privacy Workshops. IEEE, 159–166.

[39] Hamza Harkous, Kassem Fawaz, Rémi Lebret, Florian Schaub, Kang G Shin,
and Karl Aberer. 2018. Polisis: Automated analysis and presentation of privacy
policies using deep learning. In 27th USENIX Security Symposium (USENIX
Security 18). USENIX, Berkeley, CA, USA, 531–548.

[40] Harwell, Drew and Scha!er, Aaron. 2024. The FBI’s new tactic: Catching
suspects with push alerts. https://www.washingtonpost.com/technology/2024/
02/29/push-noti"cation-surveillance-fbi/. (Accessed on 06/01/2024).

[41] Sangwon Hyun, Junsung Cho, Geumhwan Cho, and Hyoungshick Kim. 2018.
Design and analysis of push noti"cation-based malware on android. Security
and Communication Networks 2018 (2018).

[42] JusTalk. 2023. Is it safe to use JusTalk? https://web.archive.org/web/
20230407183707/https://justalk.com/support/general/g6. (Accessed on
10/10/2023).

[43] P. G. Kelley, L. F. Cranor, and N. Sadeh. 2013. Privacy as part of the app decision-
making process. In Proceedings of the SIGCHI conference on human factors in
computing systems. 3393–3402.

[44] J. Kim, Y. Yoon, K. Yi, and J. Shin. 2012. ScanDal: Static Analyzer for Detecting
Privacy Leaks in Android Applications. IEEE Workshop on Mobile Security
Technologies (MoST) (2012).

[45] Simon Koch, Malte Wessels, Benjamin Altpeter, Madita Olvermann, and Martin
Johns. 2022. Keeping privacy labels honest. Proceedings on Privacy Enhancing
Technologies 4, 486-506 (2022), 2–2.

[46] Konev, Max. 2022. Statement on the Reuters Story Regarding Push-
woosh. https://blog.pushwoosh.com/blog/statement-on-the-reuters-story-
regarding-pushwoosh/. (Accessed on 06/01/2024).

[47] Hayoung Lee, Taeho Kang, Sangho Lee, Jong Kim, and Yoonho Kim. 2014.
Punobot: Mobile botnet using push noti"cation service in android. In Information
Security Applications: 14th International Workshop, WISA 2013, Jeju Island, Korea,
August 19-21, 2013, Revised Selected Papers 14. Springer, 124–137.

[48] Tongxin Li, Xiaoyong Zhou, Luyi Xing, Yeonjoon Lee, Muhammad Naveed,
XiaoFeng Wang, and Xinhui Han. 2014. Mayhem in the push clouds: Under-
standing and mitigating security hazards in mobile push-messaging services. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communica-
tions Security. 978–989.

[49] Thomas Linden, Rishabh Khandelwal, Hamza Harkous, and Kassem Fawaz. 2018.
The privacy policy landscape after the GDPR. arXiv preprint arXiv:1809.08396
(2018), 1–18.

980

https://docs.airship.com/platform/mobile/setup/sdk/android/
https://docs.airship.com/platform/mobile/setup/sdk/android/
https://doi.org/10.1109/ACSAC.2001.991552
https://doi.org/10.1109/ACSAC.2001.991552
https://developer.apple.com/notifications/
https://developer.apple.com/notifications/
https://www.apple.com/legal/transparency/push-token.html
https://www.apple.com/legal/transparency/push-token.html
https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/generating_a_remote_notification
https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/generating_a_remote_notification
https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/generating_a_remote_notification
https://archive.org/
https://web.dev/articles/push-notifications-overview
https://web.dev/articles/push-notifications-overview
https://android-developers.googleblog.com/2018/06/project-capillary-end-to-end-encryption.html
https://android-developers.googleblog.com/2018/06/project-capillary-end-to-end-encryption.html
http://dx.doi.org/10.1007/978-3-540-70542-0_8
https://www.ftc.gov/legal-library/browse/cases-proceedings/192-3133-flo-health-inc
https://www.ftc.gov/legal-library/browse/cases-proceedings/192-3133-flo-health-inc
https://www.ftc.gov/system/files/ftc_gov/pdf/Complaint-Avast.pdf
https://www.ftc.gov/system/files/ftc_gov/pdf/Complaint-Avast.pdf
https://www.404media.co/us-government-warrant-monitoring-push-notifications-apple-google-yahoo/
https://www.404media.co/us-government-warrant-monitoring-push-notifications-apple-google-yahoo/
https://www.cisa.gov/sites/default/files/2023-10/SecureByDesign_1025_508c.pdf
https://www.cisa.gov/sites/default/files/2023-10/SecureByDesign_1025_508c.pdf
https://play.google.com/store/apps/details?id=com.sec.spp.push
https://play.google.com/store/apps/details?id=com.sec.spp.push
https://www.ftc.gov/news-events/news/press-releases/2020/11/ftc-requires-zoom-enhance-its-security-practices-part-settlement
https://www.ftc.gov/news-events/news/press-releases/2020/11/ftc-requires-zoom-enhance-its-security-practices-part-settlement
https://www.ftc.gov/news-events/news/press-releases/2020/11/ftc-requires-zoom-enhance-its-security-practices-part-settlement
https://doi.org/10.1145/2335356.2335360
https://doi.org/10.1145/2335356.2335360
https://www.enisa.europa.eu/publications/engineering-personal-data-sharing
https://www.enisa.europa.eu/publications/engineering-personal-data-sharing
https://frida.re/
https://www.gizchina.com/2023/05/20/harmonyos-is-now-firmly-the-third-largest-mobile-phone-operating-system/
https://www.gizchina.com/2023/05/20/harmonyos-is-now-firmly-the-third-largest-mobile-phone-operating-system/
https://www.gizchina.com/2023/05/20/harmonyos-is-now-firmly-the-third-largest-mobile-phone-operating-system/
https://developer.android.com/reference/android/os/BaseBundle
https://developer.android.com/reference/android/os/BaseBundle
https://developer.android.com/quality/privacy-and-security
https://developer.android.com/quality/privacy-and-security
https://firebase.google.com/docs/reference/android/com/google/firebase/messaging/FirebaseMessagingService
https://firebase.google.com/docs/reference/android/com/google/firebase/messaging/FirebaseMessagingService
https://support.google.com/googleplay/android-developer/answer/10787469%20
https://support.google.com/googleplay/android-developer/answer/10787469%20
https://firebase.google.com/docs/cloud-messaging/concept-options
https://firebase.google.com/docs/cloud-messaging/concept-options
https://www.washingtonpost.com/technology/2024/02/29/push-notification-surveillance-fbi/
https://www.washingtonpost.com/technology/2024/02/29/push-notification-surveillance-fbi/
https://web.archive.org/web/20230407183707/https://justalk.com/support/general/g6
https://web.archive.org/web/20230407183707/https://justalk.com/support/general/g6
https://blog.pushwoosh.com/blog/statement-on-the-reuters-story-regarding-pushwoosh/
https://blog.pushwoosh.com/blog/statement-on-the-reuters-story-regarding-pushwoosh/

How Secure Messaging Apps Leak Sensitive Data to Push Notification Services Proceedings on Privacy Enhancing Technologies 2024(4)

[50] Tianming Liu, HaoyuWang, Li Li, Guangdong Bai, Yao Guo, and Guoai Xu. 2019.
Dapanda: Detecting aggressive push noti"cations in android apps. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 66–78.

[51] Pierpaolo Loreti, Lorenzo Bracciale, and Alberto Caponi. 2018. Push attack:
binding virtual and real identities usingmobile push noti"cations. Future Internet
10, 2 (2018), 13.

[52] Jiadong Lou, Xiaohan Zhang, Yihe Zhang, Xinghua Li, Xu Yuan, and Ning Zhang.
2023. Devils in Your Apps: Vulnerabilities and User Privacy Exposure in Mobile
Noti"cation Systems. In 2023 53rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 28–41.

[53] Mary Madden. 2014. Public Perceptions of Privacy and Security in the Post-
Snowden Era. Pew Research Center. https://www.pewresearch.org/internet/
2014/11/12/public-privacy-perceptions/.

[54] Karl Marx. 1875. Critique of the Gotha program.
[55] Marshall McLuhan. 1964. Understanding Media. (1964).
[56] Microsoft. 2023. What are Skype Private Conversations? https:

//web.archive.org/web/20230606085952/https://support.skype.com/en/
faq/fa34824/what-are-skype-private-conversations. (Accessed on 10/10/2023).

[57] Ehimare Okoyomon, Nikita Samarin, Primal Wijesekera, Amit Elazari Bar On,
Narseo Vallina-Rodriguez, Irwin Reyes, Álvaro Feal, Serge Egelman, et al. 2019.
On the ridiculousness of notice and consent: Contradictions in app privacy
policies. InWorkshop on Technology and Consumer Protection (ConPro 2019), in
conjunction with the 39th IEEE Symposium on Security and Privacy. IEEE, New
York, NY, USA.

[58] OneSignal. 2023. Firebase Cloud Messaging (FCM) Compared to OneSig-
nal. https://web.archive.org/web/20230603040346/https://onesignal.com/blog/
"rebase-vs-onesignal/. (Accessed on 10/10/2023).

[59] OneSignal. 2023. What is a push noti"cations service and how does it
work? https://onesignal.com/blog/what-is-a-push-noti"cations-service-and-
how-does-it-work/. (Accessed on 2/23/24).

[60] Frank Pallas, Katharina Koerner, Isabel Barberá, Jaap-Henk Hoepman, Meiko
Jensen, Nandita Rao Narla, Nikita Samarin, Max-R Ulbricht, Isabel Wagner, Kim
Wuyts, et al. 2024. Privacy Engineering From Principles to Practice: A Roadmap.
IEEE Security & Privacy 22, 2 (2024), 86–92.

[61] James Pearson and Marisa Taylor. 2022. Russian software dis-
guised as American "nds its way into U.S. Army, CDC apps.
https://www.reuters.com/technology/exclusive-russian-software-disguised-
american-"nds-its-way-into-us-army-cdc-2022-11-14/. (Accessed on
06/01/2024).

[62] Google Play. 2023. WeChat: About this app. https://web.archive.org/
web/20230323082225/https://play.google.com/store/apps/details?id=
com.tencent.mm&hl=en_US&gl=US. (Accessed on 10/10/2023).

[63] Pusher. 2023. Con"gure FCM. https://pusher.com/docs/beams/getting-started/
android/con"gure-fcm/. (Accessed on 10/10/2023).

[64] A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez, S. Sundaresan, J. Amann,
and P. Gill. 2017. Studying TLS usage in Android apps. In Proceedings of the 13th
International Conference on emerging Networking EXperiments and Technologies.
350–362.

[65] Irwin Reyes, Primal Wijesekera, Joel Reardon, Amit Elazari Bar On, Abbas
Razaghpanah, Narseo Vallina-Rodriguez, Serge Egelman, et al. 2018. “Won’t
somebody think of the children?” examining COPPA compliance at scale. Pro-
ceedings on Privacy Enhancing Technologies (PoPETs) 2018, 3 (2018), 63–83.

[66] David Rodriguez, Akshath Jain, Jose M Del Alamo, and Norman Sadeh. 2023.
Comparing Privacy Label Disclosures of Apps Published in both the App Store
and Google Play Stores. In 2023 IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW). IEEE, 150–157.

[67] SafeUM. 2023. Privacy Policy. https://web.archive.org/web/20230220213832/
https://safeum.com/privacypolicy.html. (Accessed on 10/10/2023).

[68] Nikita Samarin, Shayna Kothari, Zaina Siyed, Oscar Bjorkman, Reena Yuan, Pri-
mal Wijesekera, Noura Alomar, Jordan Fischer, Chris Hoofnagle, and Serge Egel-
man. 2023. Lessons in VCR Repair: Compliance of Android App Developers with
the California Consumer Privacy Act (CCPA). arXiv preprint arXiv:2304.00944
(2023).

[69] Jingyu Shi. 2023. Notifying your users with FCM. https://android-
developers.googleblog.com/2018/09/notifying-your-users-with-fcm.html. (Ac-
cessed on 10/10/2023).

[70] Signal. 2023. Grand jury subpoena for Signal user data, Central District of Cali-
fornia (again!). https://web.archive.org/web/20230921202338/https://signal.org/
bigbrother/cd-california-grand-jury/. (Accessed on 10/10/2023).

[71] Signal. 2023. Signal. https://signal.org/. (Accessed on 10/10/2023).
[72] Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini, James Hester, Ram Kr-

ishnan, Jaspreet Bhatia, Travis D Breaux, and Jianwei Niu. 2016. Toward a
framework for detecting privacy policy violations in android application code.
In Proceedings of the 38th International Conference on Software Engineering. ACM,
New York, NY, USA, 25–36.

[73] Ivan Slobozhan, Tymo"i Brik, and Rajesh Sharma. 2023. Di!erentiable charac-
teristics of Telegram mediums during protests in Belarus 2020. Social Network
Analysis and Mining 13, 1 (2023), 19.

[74] Adam Smith. 1776. An Inquiry Into the Nature and Causes of the Wealth of
Nations. Strahan and Cadell, London, UK. https://books.google.com/books?id=
mt1SAAAAcAAJ

[75] StatCounter Global Stats. 2023. Android Version Market ShareWorldwide. https:
//gs.statcounter.com/android-version-market-share/all/worldwide/2023. (Ac-
cessed on 06/01/2024).

[76] Anne Stopper and Jen Caltrider. 2023. See no evil: Loopholes in Google’s data
safety labels keep companies in the clear and consumers in the dark. mozilla
foundation.

[77] J. Tan, K. Nguyen, M. Theodorides, H. Negron-Arroyo, C. Thompson, S. Egel-
man, and D. Wagner. 2014. The E!ect of Developer-Speci"ed Explanations for
Permission Requests on Smartphone User Behavior. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.

[78] Telegram. 2023. Telegram Messenger. https://telegram.org/. (Accessed on
10/10/2023).

[79] Telegram-FOSS on GitHub. 2024. Noti"cations. https://github.com/Telegram-
FOSS-Team/Telegram-FOSS/blob/master/Noti"cations.md. (Accessed on
06/01/2024).

[80] The Drum. 2023. WhatsApp’s 3D billboard touts privacy features.
https://www.thedrum.com/news/2022/10/10/whatsapp-s-3d-billboard-
touts-privacy-features. (Accessed on 10/10/2023).

[81] The Verge. 2023. Now Mark Zuckerberg’s making fun of Apple for iMessage,
too. https://www.theverge.com/2022/10/17/23409018/mark-zuckerberg-meta-
whatsapp-imessage-privacy-security-ads. (Accessed on 10/10/2023).

[82] The White House. 2023. National Cybersecurity Strategy. https://
www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-
Strategy-2023.pdf. (Accessed on 06/01/2024).

[83] C. Thompson, M. Johnson, S. Egelman, D. Wagner, and J. King. 2013. When
It’s Better to Ask Forgiveness than Get Permission: Designing Usable Audit
Mechanisms for Mobile Permissions. In Proceedings of the 2013 Symposium on
Usable Privacy and Security (SOUPS).

[84] L. Tsai, P. Wijesekera, J. Reardon, I. Reyes, S. Egelman, D. Wagner, N. Good, and
J. Chen. 2017. Turtle Guard: Helping Android Users Apply Contextual Privacy
Preferences. In Thirteenth Symposium on Usable Privacy and Security (SOUPS
2017). USENIX Association, Santa Clara, CA, 145–162. https://www.usenix.org/
conference/soups2017/technical-sessions/presentation/tsai

[85] Zeynep Tufekci. 2017. Twitter and tear gas: The power and fragility of networked
protest. Yale University Press.

[86] Uni"edPush. 2023. Uni"edPush. https://uni"edpush.org/. (Accessed on
10/10/2023).

[87] United States District Court for the Central District of Califor-
nia. 2022. Application for a Warrant re: Case No. 2:22-MJ-03119.
https://www.documentcloud.org/documents/24192891-search-warrant-
for-google-account-for-push-noti"cation-data. (Accessed on 06/01/2024).

[88] United States District Court for the District of Columbia. 2021. Application for
a Warrant re: Case No. 21-sc-270. https://www.documentcloud.org/documents/
24192911-6d68977d-f8ef-4080-9742-290c!8a6c28. (Accessed on 06/01/2024).

[89] Aleksandra Urman, Justin Chun-ting Ho, and Stefan Katz. 2021. Analyzing
protest mobilization on Telegram: The case of 2019 anti-extradition bill move-
ment in Hong Kong. Plos one 16, 10 (2021), e0256675.

[90] U.S. Congress. 1986. H.R.4952 - Electronic Communications Privacy Act of 1986
. https://www.congress.gov/bill/99th-congress/house-bill/4952. (Accessed on
10/10/2023).

[91] Viber. 2023. Privacy Notice for California Residents. https://web.archive.org/
web/20230310001732/https://www.viber.com/en/terms/ccpa-privacy-rights/.
(Accessed on 10/10/2023).

[92] Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky Slavin, Travis D Breaux,
and Jianwei Niu. 2018. Guileak: Tracing privacy policy claims on user input
data for android applications. In Proceedings of the 40th International Conference
on Software Engineering. ACM, New York, NY, USA, 37–47.

[93] Ian Warren, Andrew Meads, Satish Srirama, Thiranjith Weerasinghe, and Car-
los Paniagua. 2014. Push noti"cation mechanisms for pervasive smartphone
applications. IEEE Pervasive Computing 13, 2 (2014), 61–71.

[94] Mark Wickham. 2018. Push Messaging. Practical Android: 14 Complete Projects
on Advanced Techniques and Approaches (2018), 135–172.

[95] Primal Wijesekera, Arjun Baokar, Ashkan Hosseini, Serge Egelman, David
Wagner, and Konstantin Beznosov. 2015. Android permissions remysti"ed: A
"eld study on contextual integrity. In 24th USENIX Security Symposium (USENIX
Security 15). 499–514.

[96] Primal Wijesekera, Arjun Baokar, Lynn Tsai, Joel Reardon, Serge Egelman,
David Wagner, and Konstantin Beznosov. 2017. The feasibility of dynamically
granted permissions: Aligning mobile privacy with user preferences. In 2017
IEEE Symposium on Security and Privacy (SP). IEEE, New York, NY, USA, 1077–
1093.

981

https://www.pewresearch.org/internet/2014/11/12/public-privacy-perceptions/
https://www.pewresearch.org/internet/2014/11/12/public-privacy-perceptions/
https://web.archive.org/web/20230606085952/https://support.skype.com/en/faq/fa34824/what-are-skype-private-conversations
https://web.archive.org/web/20230606085952/https://support.skype.com/en/faq/fa34824/what-are-skype-private-conversations
https://web.archive.org/web/20230606085952/https://support.skype.com/en/faq/fa34824/what-are-skype-private-conversations
https://web.archive.org/web/20230603040346/https://onesignal.com/blog/firebase-vs-onesignal/
https://web.archive.org/web/20230603040346/https://onesignal.com/blog/firebase-vs-onesignal/
https://onesignal.com/blog/what-is-a-push-notifications-service-and-how-does-it-work/
https://onesignal.com/blog/what-is-a-push-notifications-service-and-how-does-it-work/
https://www.reuters.com/technology/exclusive-russian-software-disguised-american-finds-its-way-into-us-army-cdc-2022-11-14/
https://www.reuters.com/technology/exclusive-russian-software-disguised-american-finds-its-way-into-us-army-cdc-2022-11-14/
https://web.archive.org/web/20230323082225/https://play.google.com/store/apps/details?id=com.tencent.mm&hl=en_US&gl=US
https://web.archive.org/web/20230323082225/https://play.google.com/store/apps/details?id=com.tencent.mm&hl=en_US&gl=US
https://web.archive.org/web/20230323082225/https://play.google.com/store/apps/details?id=com.tencent.mm&hl=en_US&gl=US
https://pusher.com/docs/beams/getting-started/android/configure-fcm/
https://pusher.com/docs/beams/getting-started/android/configure-fcm/
https://web.archive.org/web/20230220213832/https://safeum.com/privacypolicy.html
https://web.archive.org/web/20230220213832/https://safeum.com/privacypolicy.html
https://android-developers.googleblog.com/2018/09/notifying-your-users-with-fcm.html
https://android-developers.googleblog.com/2018/09/notifying-your-users-with-fcm.html
https://web.archive.org/web/20230921202338/https://signal.org/bigbrother/cd-california-grand-jury/
https://web.archive.org/web/20230921202338/https://signal.org/bigbrother/cd-california-grand-jury/
https://signal.org/
https://books.google.com/books?id=mt1SAAAAcAAJ
https://books.google.com/books?id=mt1SAAAAcAAJ
https://gs.statcounter.com/android-version-market-share/all/worldwide/2023
https://gs.statcounter.com/android-version-market-share/all/worldwide/2023
https://telegram.org/
https://github.com/Telegram-FOSS-Team/Telegram-FOSS/blob/master/Notifications.md
https://github.com/Telegram-FOSS-Team/Telegram-FOSS/blob/master/Notifications.md
https://www.thedrum.com/news/2022/10/10/whatsapp-s-3d-billboard-touts-privacy-features
https://www.thedrum.com/news/2022/10/10/whatsapp-s-3d-billboard-touts-privacy-features
https://www.theverge.com/2022/10/17/23409018/mark-zuckerberg-meta-whatsapp-imessage-privacy-security-ads
https://www.theverge.com/2022/10/17/23409018/mark-zuckerberg-meta-whatsapp-imessage-privacy-security-ads
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/tsai
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/tsai
https://unifiedpush.org/
https://www.documentcloud.org/documents/24192891-search-warrant-for-google-account-for-push-notification-data
https://www.documentcloud.org/documents/24192891-search-warrant-for-google-account-for-push-notification-data
https://www.documentcloud.org/documents/24192911-6d68977d-f8ef-4080-9742-290cff8a6c28
https://www.documentcloud.org/documents/24192911-6d68977d-f8ef-4080-9742-290cff8a6c28
https://www.congress.gov/bill/99th-congress/house-bill/4952
https://web.archive.org/web/20230310001732/https://www.viber.com/en/terms/ccpa-privacy-rights/
https://web.archive.org/web/20230310001732/https://www.viber.com/en/terms/ccpa-privacy-rights/

Proceedings on Privacy Enhancing Technologies 2024(4) N. Samarin et al.

[97] PrimalWijesekera, Joel Reardon, Irwin Reyes, Lynn Tsai, Jung-Wei Chen, Nathan
Good, David Wagner, Konstantin Beznosov, and Serge Egelman. 2018. Contex-
tualizing privacy decisions for better prediction (and protection). In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems. 1–13.

[98] Wikipedia. 2023. Chicken Gun. https://en.wikipedia.org/wiki/Chicken_gun.
[99] Kim Wuyts, Laurens Sion, and Wouter Joosen. 2020. Linddun go: A lightweight

approach to privacy threat modeling. In 2020 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW). IEEE, 302–309.

[100] Ron Wyden. 2023. Wyden Smartphone Push Noti"cation Surveil-
lance Letter. https://www.wyden.senate.gov/imo/media/doc/
wyden_smartphone_push_noti"cation_surveillance_letter.pdf. (Accessed on
01/01/2024).

[101] Yue Xiao, Zhengyi Li, Yue Qin, Xiaolong Bai, Jiale Guan, Xiaojing Liao, and Luyi
Xing. 2022. Lalaine: Measuring and characterizing non-compliance of apple
privacy labels at scale. arXiv preprint arXiv:2206.06274 (2022).

[102] Zhi Xu and Sencun Zhu. 2012. Abusing Noti"cation Services on Smartphones
for Phishing and Spamming.. In WOOT. 1–11.

[103] Sebastian Zimmeck, Rafael Goldstein, and David Baraka. 2021. PrivacyFlash
Pro: Automating Privacy Policy Generation for Mobile Apps.. In NDSS. Internet
Society, Reston, VA, USA, 18 pages.

[104] Sebastian Zimmeck, Peter Story, Daniel Smullen, Abhilasha Ravichander, Ziqi
Wang, Joel R Reidenberg, N Cameron Russell, and Norman Sadeh. 2019. MAPS:
Scaling privacy compliance analysis to a million apps. Proceedings on Privacy
Enhancing Technologies (PoPETs) 2019, 3 (2019), 66–86.

[105] Sebastian Zimmeck, Ziqi Wang, Lieyong Zou, Roger Iyengar, Bin Liu, Florian
Schaub, Shomir Wilson, Norman M Sadeh, Steven M Bellovin, and Joel R Rei-
denberg. 2017. Automated Analysis of Privacy Requirements for Mobile Apps..
In NDSS. Internet Society, Reston, VA, USA, 15 pages.

Data Type Description

Device or
other IDs

Identi"ers that relate to an individual
device, browser or app. For example,
an IMEI number, MAC address, Wi-
devine Device ID, Firebase installa-
tion ID, or advertising identi"er.

User IDs
Identi"ers that relate to an identi"able
person. For example, an account ID,
account number, or account name.

Name How a user refers to themselves, such
as their "rst or last name, or nickname.

Phone
number A user’s phone number.

Messages
Any other types of messages. For
example, instant messages or chat
content.

Table 4: Google Play Store’s data types applicable to our study.
Note that Google refers to the ‘Messages’ data type as ‘Other
in-app messages.’

A DATA TYPES
Table 4 enumerates the data types that we searched for during
our analysis of Android apps. Google de"nes and uses these data
types to populate the information presented to users in the form of
privacy labels in the app’s listing on Google Play Store [35].

B CODE ANALYSIS WORKFLOW
We used this set of questions to analyze the source code of apps in
our data set. These questions can also assist with data #owmapping,
or in other words, tracing data contained in a push noti"cation from
its creation until the noti"cation is displayed to the user.

• Does the app’s AndroidManifest.xml register a service that
extends FirebaseMessagingService?

• Locate the Java .java (or Kotlin .kt) source "le corresponding
to the registered service.

• Which FCM methods (e.g., onMessageReceived(),
onNewToken(), etc.) does the service override?

• The onMessageReceived() method gets invoked when the
client app receives an FCM push noti"cation. Does the ser-
vice override onMessageReceived() method?

• Data payload contained in an FCM push noti"cation can be
accessed by calling remoteMessage.getData(). Does the
onMessageReceived()method invoke getData() on its ar-
gument of type RemoteMessage?

• Is there any indication that RemoteMessage contains sensi-
tive data, based on the names of the keys or logging?

• Trace the code execution from the onMessageReceived()
method until the message is displayed to the user.

• Does RemoteMessage get passed as a parameter to any func-
tion?

• What mechanisms (if any) are in place to ensure that noti"-
cation contents do not get leaked to Google’s FCM server?

982

https://en.wikipedia.org/wiki/Chicken_gun
https://www.wyden.senate.gov/imo/media/doc/wyden_smartphone_push_notification_surveillance_letter.pdf
https://www.wyden.senate.gov/imo/media/doc/wyden_smartphone_push_notification_surveillance_letter.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Mobile Push Notifications
	2.2 FCM Alternatives
	2.3 Threat Model

	3 Related Work
	3.1 Risks of Push Notifications
	3.2 Mobile App Analysis
	3.3 Analysis of Privacy Disclosures

	4 Methods
	4.1 App Selection
	4.2 App Analysis
	4.3 Privacy Disclosure Analysis
	4.4 Ethical Research

	5 Results
	5.1 App Analysis
	5.2 Mitigation Strategies
	5.3 Privacy Disclosure Analysis

	6 Discussion
	6.1 Recommendations

	7 Responsible Disclosure
	8 Limitations
	Acknowledgments
	References
	A Data Types
	B Code Analysis Workflow

