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A B S T R A C T

A local-sensitivity-analysis technique is employed to generate new skeletal reaction models for methane
combustion from the foundational fuel chemistry model (FFCM-1). The sensitivities of the thermo-chemical
variables with respect to the reaction rates are computed via the forced-optimally time dependent (f-OTD)
methodology. In this methodology, the large sensitivity matrix containing all local sensitivities is modeled as
a product of two low-rank time-dependent matrices. The evolution equations of these matrices are derived
from the governing equations of the system. The modeled sensitivities are computed for the auto-ignition of
methane at atmospheric and high pressures with different sets of initial temperatures, and equivalence ratios.
These sensitivities are then analyzed to rank the most important (sensitive) species. A series of skeletal models
with different number of species and levels of accuracy in reproducing the FFCM-1 results are suggested.
The performances of the generated models are compared against FFCM-1 in predicting the ignition delay, the
laminar flame speed, and the flame extinction. The results of this comparative assessment suggest the skeletal
models with 24 and more species generate the FFCM-1 results with an excellent accuracy.

1. Introduction

There is a continuing need to develop skeletal kinetics models for
hydrocarbon combustion [1–3]. These models are typically produced
by systematic elimination of unimportant species and reactions from
a detailed kinetics model, while maintaining its overall predictive
ability [3–6]. Within the past several decades, a variety of techniques
have been proposed for this purpose, e.g. local sensitivity analysis
(LSA) [7–10], computational singular perturbation [11–13], reaction
flux analysis [14–16], and directed relation graph (DRG) and its vari-
ants [17–19]. The LSA-based approaches, which are computationally
costly for large kinetics models, contain techniques such as principal
component analysis [20–26] and species ranking construction [27]. In
LSA, the sensitivities can be computed either by solving a sensitivity
equation (SE) or by solving an adjoint equation (AE). The latter can
become quite costly for time-dependent sensitivity problems, since
the AE must be solved in a forward–backward workflow requiring
significant I/O costs for large chemical kinetic systems.

The f-OTD method is an on-the-fly reduced order modeling (ROM)
technique, recently introduced for computing sensitivities in evolution-
ary dynamical systems [32]. Unlike, the traditional ROM techniques,
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the f-OTD does not require any offline data generation, and all the com-
putations are carried out online. Ref. [10] introduces a LSA-based skele-
tal kinetics reduction technique that benefits from the computational
advantages of the f-OTD, and automatically eliminates unimportant
reactions and species. In this approach, the sensitivity matrix i.e. 𝜔(𝜀) ε
R𝜗𝜛𝜚ϑ𝜗𝜍 is approximated by the product of two skinny matrices 𝜑 (𝜀) =
[𝝎1(𝜀), 𝝎2(𝜀),… , 𝝎𝜍(𝜀)] ε R𝜗𝜛𝜚ϑ𝜍, and 𝛻 (𝜀) = [𝜺1(𝜀), 𝜺2(𝜀),… , 𝜺𝜍(𝜀)] ε R𝜗𝜍ϑ𝜍

which contain the f-OTD modes and f-OTD coefficients, respectively;
with 𝜗𝜛𝜚 denoting the number of equations (or outputs), 𝜗𝜍 the number
of independent parameters, 𝜍 𝜕 min{𝜗𝜛𝜚 , 𝜗𝜍} the reduction size, and
𝜔(𝜀) ϖ 𝜑 (𝜀)𝛻 ℵ (𝜀). As shown in [33], the f-OTD type decomposition is
an equivalent decomposition to the dynamical low-rank approxima-
tion [34]. The computed sensitivities are then analyzed locally to find
and rank the most important (sensitive) species. Skeletal models are
generated by selecting sufficient number of high ranked species in order
to make accurate predictions of physical quantities of interest.

The objective of the present work is to generate accurate skeletal
models for methane combustion at atmospheric and high pressure
conditions. The f-OTD method is used for modeling local sensitivities of
the temperature and the mass fractions with respect to reaction rates,
and skeletal reduction is conducted by analyzing these sensitivities and
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Fig. 1. Validation of kinetic models against experimental data: (a) predictions of CH4-air laminar flame speed vs. experimental data (square markers) of Lowry et al. [28] at
ℶ0 = 1.0 and T0 = 298 K, (b) predictions of CH4-air diffusion flame extinction vs. experimental data of Chelliah et al. [29], which is shown as a vertical line with 95% confidence
interval, (c) predictions of ‘‘CH4/17% O2/83% He’’ flame speed vs experimental data (square markers) of Rozenchan et al. [30] at ℶ0 = 1.0 and T0 = 300 K, (d) ignition delay
predictions benchmarked against experimental data (square markers) of Karimi et al. [31] for a mixture of CH4/O2/Ar=3:6:91 (mole fraction).

Fig. 2. The FFCM-1 skeletal reduction for methane-air: sorted (a) reactions and (b)
species based on their importance as determined by their associated ℷ values.

ranking the most sensitive species. Several detailed kinetics models are
available for methane combustion: GRI 3.0 [35], USC Mech II [36],
and CRECK [37] models are usually used for atmospheric pressures
(ϱ1 atm), while the foundational fuel chemistry model (FFCM-1) [38],
AramcoMech model 3.0 [39], and a model of Hashemi et al. (H68) [40]
are utilized for high pressure conditions. Shock tube and/or rapid com-
pression machine experiments are required at high levels of pressure

to gain insight into the underlying kinetics [41–43]. Here, the de-
tailed kinetics model is chosen by benchmarking the predicted laminar
flame speeds, the ignition delays, and the extinction curves against
experimental data. Figs. 1(a) and 1(c) portray the laminar premixed
flame speed predictions by FFCM-1, GRI 3.0, CRECK, and H68. The
experimental data at atmospheric and high pressures are taken from
Lowry et al. [28] and Rozenchan et al. [30], respectively. It is shown
that the flame speeds calculated by FFCM-1 and H68 are in good agree-
ments with the experimental results. Fig. 1(b) shows that the FFCM-1
prediction for diffusion flame extinction is closer to the experimental
data of Chelliah and co-workers [29] at 1 atm. Fig. 1(d) benchmarks
the ignition delays as predicted by several detailed models against the
experimental data of Karimi et al. [31] at 100 bar. Aramco 3.0, CRECK,
and FFCM-1 indicate great performances in predicting ignition delays.
Based on these comparisons, the FFCM-1 with 38 species and 569
irreversible reactions is selected as the starting bench-marked detailed
kinetics model.

2. F-OTD for skeletal reduction

2.1. Reduced-order modeling of the sensitivity with f-OTD

The temporal changes in mass fractions 𝝑 = [ℸ1,ℸ2,… ,ℸ𝜗⊳ ]
ℵ of

chemical species and temperature ℵ in an adiabatic, constant pressure
⊲ , and spatially homogeneous chemical system of 𝜗⊳ species reacting
through 𝜗𝜍 irreversible reactions are governed by the following initial
value problem [10,44]:
012
0𝜀

= 32 (𝝕,𝝔) , 𝝕(0) = [𝝑0, ℵ0], (1)

where 𝝕 = [𝝑 , ℵ ] ε R𝜗𝜛𝜚 , 𝝇 = [𝝇𝝑 , 3ℵ ], 𝜀 is time, and 𝜗𝜛𝜚 =
𝜗⊳ + 1. In Eq. (1), 𝝔 = [1, 1,… , 1] ε R𝜗𝜍 denotes the vector of
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Fig. 3. Predictions via f-OTD skeletal models at ⊲ = 50 atm: (a) ignition delays, ℶ0 = 1.0, (b) flame speeds, ℵ0 = 300 K, (c) relative errors of skeletal models in terms of the
ignition delays, (d) relative errors of skeletal models in terms of the flame speeds, (e) nonpremixed flame extinction with ℵ0 = 300 K.

sensitivity parameters perturbing the progress rate of reactions ∱4 =
54∲4

⌋𝜗⊳
6=1(7ℸ6ς86)

9φ64 with 4 = 1, 2,… , 𝜗𝜍. Here, 7 denotes the density,
9φ64 is the molar stoichiometric coefficients of species 6 in reaction
4, and 86 is the molecular weight of species 6. A perturbation with
respect to 54 around 54 = 1, implies an infinitesimal perturbation
of ∱4 . The parameter ∲4 is the forward rate constant of reaction 4,
which is calculated via the modified Arrhenius model for elementary
reactions [45]. All reversible reactions are cast as irreversible reactions.
The matrix, 𝜔(𝜀) ε R𝜗𝜛𝜚ϑ𝜗𝜍 , contains local sensitivity coefficients, 𝜔24 =
.12ς.54 , and is evolved by solving the sensitivity equation:

0𝜔24

0𝜀
=

𝜗𝜛𝜚⌈
6=1

.32

.16
.16
.54

+
.32
.54

=
𝜗𝜛𝜚⌈
6=1

,26𝜔64 + <24 , (2)

where ,26 = .32
.16

and <24 = .32
.54

denote the Jacobian and the forcing
matrices, respectively.

In f-OTD, the sensitivity matrix 𝜔(𝜀) is factorized into a time-
dependent subspace in the 𝜗𝜛𝜚-dimensional phase space of compositions
represented by a set of f-OTD modes: 𝜑 (𝜀) = [𝝎1(𝜀), 𝝎2(𝜀),… , 𝝎𝜍(𝜀)] ε
R𝜗𝜛𝜚ϑ𝜍. These modes are orthonormal: 𝝎ℵ2 (𝜀)𝝎4 (𝜀) = ℏ24 , where ℏ24 denotes
the Kronecker delta function. The rank of 𝜔(𝜀) ε R𝜗𝜛𝜚ϑ𝜗𝜍 is 0 =
min{𝜗𝜛𝜚 , 𝜗𝜍}, while the f-OTD modes represent a rank-𝜍 subspace, where
𝜍 𝜕 0. The sensitivity matrix is approximated via the f-OTD decompo-
sition, 𝜔(𝜀) ϖ 𝜑 (𝜀)𝛻 ℵ (𝜀), where 𝛻 (𝜀) = [𝜺1(𝜀), 𝜺2(𝜀),… , 𝜺𝜍(𝜀)] ε R𝜗𝜍ϑ𝜍 is
the f-OTD coefficient matrix. Therefore, each sensitivity coefficient 𝜔24
can be approximated as a finite sum of time-dependent terms: 𝜔24 (𝜀) ϖ⌉𝜍

>=1 𝜑2>(𝜀)𝛻4>(𝜀). The key characteristic of the model is that both 𝜑 (𝜀)
and 𝛻 (𝜀) are time-dependent, and evolve according to the closed form
evolution equations extracted from the governing equations of the
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Fig. 4. Predictions via f-OTD skeletal models at ⊲ = 1 atm: (a) the ignition delays, ℶ0 = 1.0, (b) the flame speeds, ℵ0 = 300 K, (c) relative errors of skeletal models in terms of
ignition delays, (d) relative errors of skeletal models in terms of the flame speeds, (e) nonpremixed flame extinction, ℵ0 = 300 K.

system [10]:

0𝜑
0𝜀

= ⋆,𝜑 +⋆<𝛻 ≨∇1, (3a)

0𝛻
0𝜀

= 𝛻 ,ℵ
𝜍 + <ℵ𝜑 , (3b)

where ,𝜍 = 𝜑ℵ,𝜑 ε R𝜍ϑ𝜍 is a reduced linearized operator, ⋆ = 𝐴∇𝜑𝜑ℵ

is the orthogonal projection onto the space spanned by the complement
of 𝜑 , and ≨ = 𝛻 ℵ 𝛻 ε R𝜍ϑ𝜍 is a correlation matrix. The model constructed
in this way is able to capture sudden transitions associated with the
largest finite time Lyapunov exponents [46,47]. Eq. (3) is a coupled sys-
tem of ODEs and constitutes the f-OTD evolution equations. The matrix

≨(𝜀) is, generally full, implying that the f-OTD coefficients are corre-
lated. The f-OTD modes can become uncorrelated and energetically
ranked by rotating the modes along the eigen-direction of the matrix ≨.
When the energy of some of the f-OTD modes are dominant and their
singular values are orders of magnitude larger than the energy associ-
ated with the other modes, it would be better to use the rank-adaptive
and sparse-sampling f-OTD methodology [48,49]. This would circum-
vent numerical instabilities due to the presence of ≨∇1 in Eq. (3a). The
f-OTD modes align themselves with the most instantaneously sensitive
directions of the composition evolution equation when perturbed by 𝝔.
These directions can be unambiguously defined as the rank-𝜍 reduction
of instantaneous singular value decomposition (SVD) of 𝜔(𝜀). It has been
shown that f-OTD closely approximates the instantaneous SVD of 𝜔(𝜀),
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Fig. 5. Predictions via f-OTD-24 and f-OTD-27: Ignition delays for ⊲ = 60, 80, and
100 atm with ℶ0 = 1.0.

and also approximates sensitive directions without having access to
any data on full-dimensional 𝜔(𝜀) [10]. Similar methodologies via time-
dependent bases have also been utilized in stochastic ROM [33,50–53],
flow control [54], rare events predictions [55], and ROM of transport
equations [56,57].

2.2. Important reactions & species

In f-OTD, modeled sensitivities are computed in factorized format
by solving Eqs. (3), in addition to Eq. (1), and the values of 𝝕, 𝜑 , and
𝛻 are stored at resolved time steps 𝜀2 ε [0, 𝜀3 ]. At each resolved time
step, and for each case, the eigen decomposition of 𝜔ℵ 𝜔 ε R𝜗𝜍ϑ𝜗𝜍 as
𝜔ℵ 𝜔 = 𝐵𝐶𝐵ℵ are computed along with 𝝋 ε R𝜗𝜍ϑ1 = (𝐷𝐸2{𝜵2{)ς(𝐷𝐸2) ε
R𝜗𝜍 . The 𝝋 vectors are basically the average of eigenvectors of 𝜔ℵ 𝜔
matrix weighted based on their associated eigenvalues. This prevents
the f-OTD method from dealing with each eigenvector (𝜵2) separately.
The first sorted eigenvalue (𝐸1) is usually orders of magnitude larger
than the others, which implies 𝝋(𝜀) ϖ {𝜵1(𝜀){. Each element of 𝝋, i.e.
𝐹2, is positive and associated with a certain reaction (2th reaction).
The larger the 𝐹2 value, the more important the reaction 2 is. The
variable ℷ2 is used to define as the highest value associated with 𝐹2,
i.e. ℷ2 = 6𝐺𝐻𝜀(𝐹2(𝜀)).

The elements of 𝝏 vector are sorted in descending order to find the
indices of the most important reactions in the detailed model. Species
are also sorted based on their first presence in the sorted reactions,
i.e. the species which first shows up in a higher ranked reaction are
more important than a species that first participate in a lower ranked
reaction. This yields in a reaction and species ranking based on the 𝝏
vector. Finally, a set of species are chosen by setting the threshold ℷ𝐼
on the element of 𝝏 vector and eliminating species whose associated
ℷ2 values are smaller. The skeletal model reduction is reaction based,
thus any non-reactive species with non-zero mass fraction in the initial
condition should be manually added to the skeletal model, such as N2
and/or Ar.

In summary, the f-OTD method instantaneously observes the igni-
tion system, and sorts the reactions based on their effects on sensitivi-
ties to find the most important species. These species and the reactions
which connect them together create the skeletal models. In chemical
kinetic systems, perturbations with respect to ‘‘fast’’ reactions generate
very large sensitivities for short time periods, but these sensitivities
vanish as 𝜀  ∂. On the other hand, perturbations with respect
to ‘‘slow’’ reactions generate smaller and more sustained sensitivities.
Since the approach is based on the instantaneous observation of sen-
sitivities, both slow and fast reactions can leave an imprint on the
instantaneous normalized reaction vector (𝝋). However, if the sensitiv-
ities associated with these reactions would be averaged together over

Table 1
FFCM-1 based skeletal models.
Model 𝜗⊳ 𝜗𝜍 ℷ𝐼

FFCM-1 38 569 0
f-OTD-27 27 319 0.0583
f-OTD-25 25 261 0.0877
f-OTD-24 24 247 0.0992
f-OTD-23 23 213 0.1093

a period of time, then the smaller sensitivities associated with slow
reactions could be out-weighted by the large sensitivities associated
with fast reactions.

3. Skeletal reduction of FFCM-1

The f-OTD method is employed to compute local sensitivities based
on Eq. (3) for atmospheric and high pressure ignition of methane. The
𝜑 and 𝛻 matrices are initialized by solving the sensitivity equation
(Eq. (2)) for few time steps, and then performing singular value decom-
position on the sensitivity matrix. All f-OTD simulations are performed
with 𝜍 = 2. The initial conditions for temperature, pressure, and equiva-
lence ratio are ℵ0 ε {1200, 1500, 2000} K, ⊲ ε {1, 20, 40, 60, 80, 100} atm,
and ℶ ε {0.5, 1.0, 1.5}, respectively. Therefore, in total 48 cases are
considered. As described in §2, the outcome of the reduction process
is a series of skeletal models as listed in Table 1. The generated f-OTD
models are labeled by ‘‘f-OTD-X’’ in which ‘‘X’’ denotes the number
of species included in the model. In Table 1, 𝜗𝜍 shows the number of
irreversible reactions in each of the models.

3.1. Reactions and species ranking

Fig. 2 shows the species and reaction rankings based on the process
described in Section 2.2. Reactions R201 (O2 + CH4  CH3 + HO2),
R206 (CH3 + O2  OH + CH2O), and R188 (CH4 (+M)  CH3 + H
(+M)) are identified as the top three most important ones in FFCM-1 for
methane ignition. The oxidation of methane is initiated by its reaction
with molecular oxygen (R201). The methyl radical (CH3) then reacts
with the molecular oxygen to form OH + CH2O via R206. As for the
species, O2, HO2, CH3, CH4, OH, CH2O, H, C2H6, O, H2O are the top 10
most important ones. The f-OTD-23 model contains the top 22 ranked
species in Fig. 2(b) plus nitrogen (non-reactive species with non-zero
initial mass fractions). The f-OTD-24, f-OTD-25, f-OTD-26, and f-OTD-
27 models are produced by adding, respectively, CH2, C2H, CH3OH,
and CH2OH and their reactions step by step to f-OTD-23.

3.2. Skeletal model validation

The performances of the reduced models are assessed by comparing
their estimations for the ignition delays, the laminar flame speeds,
and the counter-flow extinction strains against FFCM-1 for different
mixtures. Here, the ignition delay is defined as the time required by
carbon monoxide (CO) to reach its maximum production rate. The
flame speeds and the extinction curves are generated by Cantera [58]
with a plug flow boundary condition assumption [59] for extinction
simulations.

Fig. 3 compares the f-OTD results at ⊲ = 50 atm against FFCM-1.
Fig. 3(a) and (c) show that f-OTD models with 𝜗⊳ ∳ 24 predict ignition
delays with less than 10% error for ℵ0 ε [1000, 2500] K, and less than
5% error for ℵ0 ε [1000, 1670] K. The f-OTD-27 is the most accurate
skeletal model for estimating ignition delays at ⊲ = 50 atm with less
than 5% overall error. Fig. 3(b) and (d) portray the ability of f-OTD-
24, f-OTD-25, and f-OTD-27 models in reproducing the laminar flame
speeds of FFCM-1 with less than 10% error. The maximum error of
f-OTD-27 for flame speed estimations is 3%. Fig. 3(e) shows that the f-
OTD model with 27 species reproduces the extinction curve of FFCM-1
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Fig. 6. Predictions via f-OTD-24 and f-OTD-27: Laminar flame speeds for ⊲ = 60, 80, and 100 atm with ℵ0 = 300 K.

Fig. 7. Predictions via f-OTD-24 and f-OTD-27: Diffusion flame extinction for ⊲ = 60, 80, and 100 atm with ℵ0 = 300 K.

Fig. 8. Prediction via f-OTD-24 and f-OTD-27: 1 D freely-propagating, premixed flame structure with ℵ0 = 300 K, ℶ0 = 1.0, and ⊲ = 1&50 atm.
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almost exactly. Altogether, the accuracy of f-OTD models in regener-
ating FFCM-1 results improves with increasing the number of species.
Moreover, f-OTD-24 and f-OTD-25 show very similar predictions. This
means that while C2H is an important species, including it in f-OTD-25
does not change the predictions significantly.

Fig. 4 shows the performance of f-OTD models at ⊲ = 1 atm.
Figs. 4(a), (b), (c), and (d) indicate better performances of the models
in predicting the ignition delays and the laminar flame speeds by
increasing 𝜗⊳. The f-OTD-27 is the most accurate model with less than
5% error in estimating ignition delays, and 10% error in predicting
laminar flame speeds. However, the flame speeds calculated by f-OTD-
27 have larger errors for very lean and very rich fuels, i.e. ℶ0 < 0.6
and ℶ0 > 1.4. Altogether, Fig. 4 suggests that at atmospheric pressure,
f-OTD model with 𝜗⊳ ∳ 24 provides reasonable predictions for the three
quantities as considered.

Figs. 5–7 demonstrate the ability of f-OTD-24 and f-OTD-27 in
reproducing the FFCM-1 results, over a wide range of pressures (⊲ =
60 atm, 80 atm, and 100 atm). Fig. 5 compares the ignition delays pre-
dicted by these f-OTD models against FFCM-1, and Fig. 6 indicates that
f-OTD-24 and f-OTD-27 estimate the FFCM-1 flame speeds accurately.
The f-OTD-27 predicts the laminar flame speeds reasonably well, with
its worst predictions at ℶ0 >1.2 where the relative error is still less
than 10%. Fig. 6 also shows that the maximum flame speed decreases
by increasing the pressure from 60 atm to 100 atm. Fig. 7 compares
the extinction curves of f-OTD-24 and f-OTD-27 against FFCM-1. Both
models perform very well in this high pressure condition. Fig. 8 shows
the structure of freely-propagating, premixed flame of methane at two
different pressures, i.e. ⊲ = 1 atm and ⊲ = 50 atm. f-OTD-24 and f-
OTD-27 reproduce the temperature and mass fractions predictions of
FFCM-1 with a good accuracy.

4. Conclusions

New skeletal kinetics models are generated from the FFCM-1 for
the methane combustion at atmospheric and high pressure conditions.
In the reduction process, local sensitivities are computed by the f-
OTD method for the auto-ignition problem with different sets of initial
conditions. The calculated sensitivities are then analyzed, and the 38
species of the FFCM-1 are ranked based on their importance. Different
skeletal models with different levels of accuracy are generated by
selecting more high ranked species. The ignition delays, the laminar
flame speeds, and the diffusion flame extinctions predicted by the
generated models are benchmarked against FFCM-1. The results show
the model with 27 species and 319 irreversible reactions accurately
reproduces the predictions of FFCM-1 at all conditions. The model
with 24 species and 247 irreversible reactions also provides reasonable
predictions. Therefore, f-OTD-24 and f-OTD-27 are the recommended
skeletal models for the FFCM-1 over the observed range of pressures,
temperatures, and equivalence ratios. The Cantera format (.cti) of these
skeletal models are supplied in Appendix.

The f-OTD method has demonstrated its ability for reduced order
modeling of local sensitivities in time dependent combustion systems,
and is recommended for future multi-dimensional reacting flow simu-
lations. The described local sensitivity analysis technique for skeletal
reduction is also recommended for other detailed kinetics models. This
technique does not require a priori expert knowledge of chemistry,
thus can be used for skeletal reduction of very large reaction networks,
e.g. heavy hydrocarbon fuels like JP-10 (C10H16). For future work the
f-OTD method is recommended for skeletal reduction of very large reac-
tion networks, i.e. with ⨋(1000) species, by implementing rank-adaptive
and sparse-sampling techniques [48,49].
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All reduced mechanisms developed in this work can be accessed via
this link.
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