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Abstract

A novel methodology is developed to extract accurate skeletal reaction models for nuclear combustion. Local
sensitivities of isotope mass fractions with respect to reaction rates are modeled based on the forced optimally time-
dependent (f-OTD) scheme. These sensitivities are then analyzed temporally to generate skeletal models. The
methodology is demonstrated by conducting skeletal reduction of constant density and temperature burning of
carbon and oxygen relevant to Type Ia supernovae (SNe Ia). The 495-isotopes Torch model is chosen as the
detailed reaction network. A map of maximum production of 56Ni in SNe Ia is produced for different temperatures,
densities, and proton-to-neutron ratios. The f-OTD simulations and the sensitivity analyses are then performed with
initial conditions from this map. A series of skeletal models are derived and their performances are assessed by
comparison against currently existing skeletal models. Previous models have been constructed intuitively by
assuming the dominance of α-chain reactions. The comparison of the newly generated skeletal models against
previous models is based on the predicted energy release and 44Ti and 56Ni abundances by each model. The
consequences of ye≠ 0.5 in the initial composition are also explored where ye is the electron fraction. The
simulated results show that 56Ni production decreases by decreasing ye as expected, and that the 43Sc is a key
isotope in proton and neutron channels toward 56Ni production. It is shown that an f-OTD skeletal model with 150
isotopes can accurately predict the 56Ni abundance in SNe Ia for ye 0.5 initial conditions.

Unified Astronomy Thesaurus concepts: Stellar nucleosynthesis (1616); Reaction rate equations (2239); Stellar
physics (1621); Astrophysical fluid dynamics (101); Nuclear astrophysics (1129)

1. Introduction

Direct implementation of detailed reaction networks (RNs)
containing many isotopes and reactions in hydrodynamic flow
solvers is computationally very expensive. In most cases, it is
unavoidable to use efficient reaction kinetics models to conduct
large-scale hydrodynamic simulations pertaining to astrophy-
sical explosions, such as Type Ia supernovae (SNe Ia). These
reaction kinetics models, which are usually extracted from
detailed reaction networks, should reasonably estimate the
released energy and isotope abundances. Integration of the
ordinary differential equations representing the abundance
levels of a set of isotopes of reacting nuclei in the continuum
limit serves two functions in stellar models. The primary
function of hydrodynamics is to provide the magnitude and
sign of the nuclear energy generation rate (Weaver et al. 1978;
Bravo et al. 2019; Arnould & Goriely 2020). This is usually the
largest energy source in regions conducive to nuclear reactions,
and its accurate determination is essential for stellar models.
These models usually require accurate predictions of the energy
generated by nuclear burning over a wide range of tempera-
tures, densities, and compositions (Timmes 1999; Timmes et al.
2000; Röpke & Sim 2018). The other function is to describe the
evolution of the composition. In some stellar events, the
isotopic abundances themselves are of primary interest for
understanding the origin and evolution of the chemical
elements (Pagel 2009; Matteucci 2012; Kobayashi et al.
2020). Moreover, matching observational evidence of certain
isotopes, e.g., 56Ni in SN light curves, gives confidence in the

underlying computational model (Seitenzahl & Townsley 2017;
Bora et al. 2022).
Thousands of isotopes can participate in an RN during a

stellar phenomenon (Wanajo 2013; Nishimura et al. 2015;
Fernández et al. 2017; Lippuner & Roberts 2017; Psaltis et al.
2022). Accurate predictions of the nuclear energy generation
rate and the composition changes in such RNs is computation-
ally expensive. The largest block of memory in a stellar model
is usually used for storing the isotopic abundances of every
computational cell at all time steps. Even with modern methods
for solving stiff systems of ordinary differential equations
(ODEs), integration of the evolution equations of the isotopic
abundances dominates the total cost of a stellar model when the
number of isotopes evolved is (100) (Arnett 1996; Nouri
et al. 2019). To decrease the computational cost, one has to
make a choice between having fewer isotopes (order reduction)
or less spatial resolution (or mass resolution). The general
response to this trade-off has been the order reduction by using
simplified RNs within hydrodynamic solvers to calculate an
approximate energy generation rate and isotope mass fractions
during stellar explosions (Röpke & Sim 2018). As a
postprocessing step, the detailed nuclear composition of the
ejecta is computed using a large RN by employing Lagrangian
tracer particles (Thielemann et al. 1986; Townsley et al. 2016;
Leung & Nomoto 2018; Bravo et al. 2019; Seitenzahl &
Pakmor 2023). These particles represent passive mass elements
and can be evolved in situ, within the simulation, with time
steps dictated by the hydrodynamic solvers, or off-site, using
an additional reconstruction step based on the snapshot data
(Sieverding et al. 2023). Current large simulations can use at
least 106 tracer particles to calculate detailed 3D spatial
composition (Seitenzahl & Pakmor 2023).
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Order reduction techniques for nuclear reaction networks
require extensive experience and expertize. For example,
common α-chain RNs (with 13/19/21 isotopes; Paxton et al.
2011, 2015) contain a minimal set of nuclei to approximate the
energy generation rate for stellar simulations of SNe Ia (Paxton
et al. 2011). These RNs are optimized by decades of shared
knowledge (Yoshida et al. 2021). Order reduction techniques
for nuclear RNs also include explicit asymptotic (Guidry et al.
2013), quasi-steady-state (Mott et al. 2000; Guidry & Harris
2013), and quasi-equilibrium (Bodansky et al. 1968; Woosley
et al. 1973; Khokhlov 1981; Hix et al. 1998, 2007; Meyer et al.
1998; Timmes et al. 2000; Kushnir & Katz 2020) methods.
However, these RNs, while fast and lightweight, are rigid with
respect to adding or removing isotopes (Paxton et al. 2011).

In chemical combustion, recent advances in data-driven
techniques and sensitivity analysis have opened the possibility
of significantly enhancing the efficiency and flexibility of
generating reduced RNs (Lu & Law 2009). Recent skeletal
models, i.e., optimized subsets of detailed reaction networks,
can be prepared in an optimized and automated manner, with
consistent accuracy throughout the evolution of the network,
and can be adapted based on the availability of computing
resources. Utilizing such capabilities for nuclear combustion
can address certain issues regarding the model reduction of
nuclear RNs, e.g., scenarios where the experience required to
generate quality reduced models might be lacking. There is a
history of utilizing sensitivity analysis in nuclear combustion.
This includes studies of the Big Bang (Beaudet & Reeves 1983;
Delbourgo-Salvador et al. 1985; Krauss & Romanelli 1990;
Smith et al. 1993; Nollett & Burles 2000; Cyburt 2004), stellar
explosions (Hix et al. 2003; Parikh et al. 2008; Longland et al.
2010; Bravo & Martinez-Pinedo 2012; Longland 2012; Bliss
et al. 2020), and the r-process (Mumpower et al. 2012, 2015;
Sprouse et al. 2020; Barnes et al. 2021). Most of these
contributions are based on direct Monte Carlo simulations and
their focus is on understanding the impact of nuclear reaction
rate and/or other nuclear uncertainties on the resulting
nucleosynthesis predictions.

The goal of this work is to develop skeletal RNs suitable for
situations pertaining to SNe Ia. A skeletal model is a subset of a
detailed reaction model which is generated by eliminating
unimportant isotopes and reactions (Smooke 1991; Peters &
Rogg 1993; Stagni et al. 2016; Li et al. 2020). The skeletal
reduction is usually the first step in developing a model
reduction. The next steps in the reduction include timescale
analysis techniques, e.g., quasi-steady-state approximation
(Stiefenhofer 1998; Girimaji & Ibrahim 2014), partial equili-
brium approximation (Rein 1992; Goussis 2012), and rate-
controlled constrained equilibrium (Keck 1990; Hadi et al.
2016) among others. To develop skeletal RNs for SNe Ia, first
local sensitivities of isotope mass fractions with respect to
reaction rates are analyzed during the constant density and
temperature (constant-ρT) burning of carbon and oxygen with
different initial conditions. The isotopes are ranked based on
their sensitivities (importance), and several sets of skeletal
models with different levels of accuracy are generated by
selecting different numbers of important isotopes. The
sensitivities are computed by the forced optimally time-
dependent (f-OTD) methodology (Donello et al. 2022). This
is an on-the-fly reduced-order modeling (ROM) technique,
recently introduced for computing sensitivities in evolutionary
dynamical systems. Unlike the traditional ROM techniques, the

f-OTD does not require any offline data generation, and all the
computations are carried out online. Nouri et al. (2022) and Liu
et al. (2024) conducted a similar sensitivity-based skeletal
kinetics reduction technique for chemical combustion, which
automatically eliminates unimportant reactions and species.
Time-dependent f-OTD modes are able to capture sudden
transitions associated with the largest finite-time Lyapunov
exponents (Babaee et al. 2017b). Time-dependent bases have
also been used for stochastic ROM (Sapsis & Lermusiaux 2009;
Cheng et al. 2013; Babaee et al. 2017a; Babaee 2019; Patil &
Babaee 2020) and on-the-fly ROM of the reacting species
transport equation (Ramezanian et al. 2021; Aitzhan et al.
2022). The f-OTD can be formulated as a special case of the
dynamical low-rank approximation (Koch & Lubich 2007).
The specific objectives here are (i) to introduce the f-OTD
technique for computing sensitivities for a nuclear combustion
system, and (ii) to find skeletal models for thermonuclear
burning in SNe Ia. The first set of skeletal models are
applicable to both neutron-rich and equal numbers of neutron
and proton scenarios. This is facilitated by the f-OTD skeletal
reduction technique, without a priori assumptions or expertize,
e.g., the assumption of an equal number of protons and
neutrons. Section 2 briefly presents the theory behind the
f-OTD method for constant-ρT burning in SNe Ia and the
automatic process of eliminating unimportant isotope/reaction
from a detailed RN. This elimination process is explained in
Section 3 with a simple example, starting from an RN with 21
isotopes and reducing it to a skeletal model with 10 isotopes.
Section 4 describes the application of the f-OTD skeletal
reduction method to the Torch RN3 (Timmes 1999; Timmes &
Swesty 2000; Anninos et al. 2019). This RN considers 495
isotopes, up to 91Tc, and 6012 reactions. Different skeletal
models with different levels of accuracy are extracted and their
ability to reproduce the energy release and 44Ti and 56Ni
abundances of the Torch model are analyzed. Section 5
provides the concluding remarks.

2. Skeletal Reduction with f-OTD Method

2.1. Reduced-order Modeling of the Sensitivity Matrix
with f-OTD

For the model description, let isotope k have total charge Zk
and atomic weight Ak. Let the aggregate total of isotope k have
a mass density ρk and a number density nk in a material with
the temperature T and the total mass density ρ. The mass
fraction of isotope k is defined as xk= ρk/ρ= nkAk/ρNA where
NA= 6.02252× 1023 particles mol−1 (Avogadro’s number).
The mean atomic weight is ( )A Am k k

1= å -x , and is the
equivalent of the mixture molar mass from the combustion
literature (Williams 1985). The nuclear abundance of isotope k
is yk= xk/Ak= nk/(ρNA), the mean charge per isotope is
Zm= Am∑Zkxk/Ak, and the electron abundance, or electron
number fraction, is ye= Zm/Am. This is related to the neutron
excess, η, by η= 1− 2ye, so that η= 0 corresponds to
ye= 0.5. The total scalar pressure, the total specific internal
energy, and the total specific entropy are denoted by ptot, etot,
and stot, respectively (Nouri et al. 2019). Other quantities such
as the specific heats or adiabatic indices can be determined via
an equation of state (Timmes & Arnett 1999) once the partial
derivatives of the pressure and the specific internal energy with

3 https://cococubed.com/code_pages/net_torch.shtml

2

The Astrophysical Journal Supplement Series, 272:34 (13pp), 2024 June Nouri et al.

https://cococubed.com/code_pages/net_torch.shtml


respect to the density and temperature are known. Consider a
nuclear system of ns isotopes reacting through nr reactions:

( )  j n, 1 ,... , 1
k

n

kj k
k

n

kj k r
1 1

s s

å ån n¢  =
= =

where k is a symbol for isotope k, and kjn¢ and kjn are the
stoichiometric coefficients of isotope k in reaction j. Changes of
abundances [ ]y , ,..., n

T
1 2 s= y y y in constant-ρT burning within

a carbon–oxygen white dwarf (WD) with constant temperature
and pressure can be described by the following initial value
problem (Timmes et al. 2000):
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where t ä [0, tf] is time, tf is the final time, and a =
[ ] 1, 1 ,..., 1 nrÎ is the vector of perturbation parameters. In
Equation (2),j is the progress rate of reaction j and is equal to
the following for one- and two-body reactions:
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Here, Kf,j and Kr,j are the forward and reverse rate of reaction j.
The quantity ( )k

n
k1

s kj n
=

¢n is the total possible number of
elementary reactions per unit volume (obtained by counting the
number of possible collisions) and is based on the number
density of particles. Because the collision energies are well
below the Coulomb barrier, most collisions do not result in
nuclear reactions. Thus, the reaction rate is the product of the
collision rate and the tunneling probability.

The abundances in Equation (2) are perturbed by infinite-
simal variations of αj, by letting αj= 1+ δαj, where δαj= 1
for j= 1, 2, K, nr. The perturbation with respect to αj amounts

to an infinitesimal perturbation of progress rates j. The
sensitivity matrix, ( ) [ ( ) ( ) ( )] s s sS t t t t, ,... n

n n
1 2 r

s r= Î ´ , con-
tains local sensitivity coefficients, sj= ∂y/∂αj, and can be
calculated by solving the sensitivity equation (SE),

( )dS
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a
¶
¶

are the Jacobian and the forcing

matrices, respectively.
The model reduction strategy is based on selecting reactions,

whose perturbations grow most intensely in the abundance
equation (Equation (2)). The selection of important reactions is
performed by instantaneous observation of modeled sensitiv-
ities. In f-OTD, the sensitivity matrix S(t) is modeled by
factorizing it into a time-dependent subspace in the
ns-dimensional phase space of abundances represented by a
set of f-OTD modes: ( ) [ ( ) ( ) ( )] u u uU t t t t, ,..., r

n r
1 2 s= Î ´ .

These modes are orthonormal ( ) ( )u ut ti
T

j ijd= at all t, where δij
is the Kronecker delta. The rank of ( ) S t n ns rÎ ´ is

{ }d n nmin ,s r= while the f-OTD modes represent a rank-r
subspace, where r= d. To this end, the sensitivity matrix is
approximated via the f-OTD decomposition (Figure 1) as
S(t)≈U(t)VT(t) where ( ) [ ( ) ( ) ( )] v v vV t t t t, ,..., r

n r
1 2 r= Î ´ is

the f-OTD coefficient matrix. This decomposition is a low-rank
approximation of the sensitivity matrix S(t). Therefore,
U(t)V(t)T closely approximates S(t) and it is not exact. Both
U(t) and V(t) are time dependent, and their explicit time
dependency on t is dropped for brevity. Figure 1 shows the
schematic of the decomposition of S into f-OTD components U
and V. The evolution equations for U and V are obtained by
substituting the sensitivity decomposition (S(t)≈U(t)VT(t))
into Equation (4):

( )dU
dt

QLU QFVC , 5a1= + -

( )dV
dt

VL F U, 5br
T T= +

where Q= I−UUT is the orthogonal projection onto the space
spanned by the complement of U and C V VT r r= Î ´ is a

Figure 1. Modeling sensitivity matrix S(t) as a multiplication of two low-ranked matrices U(t) and Y(t) that evolve according Equation (5). Reprinted from Nouri et al.
(2022) with permission.
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correlation matrix. Matrix C(t) is, in general, a full matrix implying
that the f-OTD coefficients are correlated. L U LUr

T r r= Î ´ is
a reduced linearized operator. Equation (5) represents a coupled
system of ODEs and constitutes the f-OTD evolution equations.
The f-OTD modes align themselves with the most instantaneously
sensitive directions of the abundance evolution equation
when perturbed by α. It is shown by Babaee et al. (2017b) that
when α is the perturbation to the initial condition, the OTD
modes converge exponentially to the eigen-directions of the
Cauchy–Green tensor associated with the most intense finite-time
instabilities.

The primary computational advantage of using f-OTD is
that the method only evolves two skinny matrices containing
(ns+ nr)× r elements as opposed to ns× nr elements in the
SE (Equation (4)). This reduces the required memory for
ODE solvers drastically and facilitates the application of stiff
solvers for evolving sensitivities. Moreover, in the f-OTD
decomposition, the sensitivities are stored in the compressed
form, i.e., matrices U and V are kept in the memory as
opposed to their multiplication UVT, i.e., the decompressed
form. Therefore, in comparison to the full SE, f-OTD
decomposition results in the memory compression ratio of
(ns× nr)/((ns+ nr)r).

2.2. Identification of Important Reactions and Isotopes

In the f-OTD skeletal reduction, modeled sensitivities are
computed in a factorized format by solving Equations (2), (5a),
and (5b), and the values of U, V, and y are stored at resolved
time steps ti ä [0, tf]. Equation (2) is initialized with different
sets of isotope abundances, temperature, and density within
their ranges of interest. Each simulation with a different initial
condition is identified as a case. At each resolved time step and
for each case, the eigen decomposition of S ST n nr rÎ ´ is
computed as AΛAT, and the vector ( ∣ ∣) ( ) w ai i i

nrl l= S S Î
is basically the average of eigenvectors of the STS matrix
weighted based on their associated eigenvalues (λi), and
prevents dealing with each eigenvector (ai) separately. Each
component of w, i.e., wi, is positive and associated with a
certain reaction (ith reaction). The larger the wi value, the more
important the reaction i is. The w imax, denotes the highest value
of wi through all resolved time steps and cases. The elements of
the wmax vector are sorted in descending order to find the
indices of the most important reactions in the detailed model.
Isotopes are also sorted based on their first presence in the
sorted reactions, i.e., isotopes which first show up in a higher-
ranked reaction would be more important than an isotope
which first participates in a lower-ranked reaction. This results
in a reaction and isotope ranking based on wmax vector. Finally,
a set of isotopes are chosen by defining a threshold ò on the
element of the wmax vector and eliminating isotopes whose
associated w imax, are less than ò. This terminates reactions
which include the eliminated isotopes from the detailed model.
Since the model reduction is reaction based, any nonreactive
isotope with a nonzero mass fraction in the initial condition
must be manually added to the skeletal model.

In summary, the nuclear combustion system is instanta-
neously observed, and the reactions are sorted based on their
effects on sensitivities to find the most important isotopes.
These isotopes and the reactions which connect them
together create the skeletal models. In combustion systems,
perturbations with respect to “fast” reactions generate very

large sensitivities for short time periods which vanish as
t→∞ . On the other hand, perturbations with respect to
“slow” reactions generate smaller and more sustained
sensitivities. The approach here is based on the instantaneous
observation of sensitivities; both slow and fast reactions can
leave an imprint on the instantaneous normalized reaction
vector (w) if their imprints are larger than the threshold value
(ò). However, if the sensitivities associated with fast and slow
reactions from predetermined times and locations are
combined with each other before dimension reduction, as
commonly done in principal component analysis type
schemes, the smaller sensitivities associated with slow
reactions would be outweighed by the large sensitivities
associated with fast reactions.

3. Skeletal Reduction on the Approx21 RN

The process of eliminating unimportant reactions and
isotopes from a kinetics model with f-OTD is demonstrated
in this section with a simple example. Let us start with the
Approx21 model, which is the default MESA network (Paxton
et al. 2011, 2015) for alpha chain reactions. Approx21 evolves
ns= 21 isotopes: n, p, 1H, 3He, 4He, 12C, 14N, 16O, 20Ne, 24Mg,
28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 56Cr, 52Fe, 54Fe, 56Fe, and 56Ni
through nr= 112 reactions. In this RN, (α,p)(p,γ) and (γ,p)(p,
α) links are included in order to obtain reasonably accurate
energy generation rates and abundance levels when the
temperature exceeds 2.5× 109 K. At these elevated tempera-
tures, the flows through the (α,p)(p,γ) sequences are faster than
the flows through the (α,γ) channels. An (α,p)(p,γ) sequence
is, effectively, an (α,γ) reaction through an intermediate
isotope. By assuming steady-state proton flows through
intermediate isotopes 27Al, 31P, 35Cl, 39K, 43Sc, 47V, 51Mn, and
55Co, this strategy avoids explicitly evolving the abundances of
the proton or intermediate isotopes.4 The skeletal reduction is
exemplified here by analyzing only one case for the constant-
ρT burning of a mixture of carbon and oxygen in a WD
progenitor.
The ignition initiates with T9= 3, ρ9= 1, and xC,0=xO,0= 0.5,

so ye= 0.5. Here, T9≡ T/(109 K) and ρ9≡ ρ/(109 g cm−3). The
sensitivities evolve in two phases. In the first, the full-dimensional
SE (Equation (4)) is solved for a very small time period, e.g., until
t= 10−12 s, to generate the initial conditions for the f-OTD
simulation. In the second phase, the sensitivity matrix (S) is
approximated by evolving the f-OTD equations (Equation (5)).
The U and Y matrices are initialized by eigenvalue decomposition
of the full sensitivity matrix (S) at the end of the first phase.
Figure 2 shows the evolution of the eigenvalues of the STS matrix.
It is indicated that (i) λ1 is an order of magnitude larger than λ2
most of the time, and (ii) the modeled sensitivities converge by
adding more modes. Therefore, f-OTD simulation with r= 1
provides a reasonable estimation of sensitivities, which is enough if
the final goal is to determine the importance of reactions/isotopes.
Figure 3 shows the ranking of reactions and isotopes in

Approx21 associated with the constant-ρT burning case. It is
apparent that reactions 4 (12C(12C,α)20Ne), equilibrium reactions
92 (24Mg(α,p)27Al(p,γ)28Si), 93 (28Si(α,p)31P(p,γ)32S), and 95
(36Ar(α,p)39K(p,γ)40Ca), and reaction 6 (16O(16O,α)28Si) are the
first five most important reactions, and isotopes 4He, 12C, 20Ne,
24Mg, and 28Si are the first five most important isotopes in
Approx21 for the ignition case considered.

4 https://cococubed.com/code_pages/burn_helium.shtml

4

The Astrophysical Journal Supplement Series, 272:34 (13pp), 2024 June Nouri et al.

https://cococubed.com/code_pages/burn_helium.shtml


The f-OTD-10 model is then created based on the algorithm
described in Section 2.2 and contains 10 most important
isotopes shown in Figure 3, i.e., 4He, 12C, 20Ne, 24Mg, 28Si, 32S,
36Ar, 40Ca, 16O, and 44Ti. Approx13 (Timmes et al. 2000) is a
13 isotope (4He, 12C, 16O, 20Ne, 23Mg, 28Si, 32S, 36Ar, 40Ca,
44Ti, 48Cr, 52Fe, and 56Ni) reaction network which is also
extracted from Approx21 but over a wider time range to
produce 56Ni. That is why Approx13 contains three more
isotopes, i.e., 48Cr, 52Fe, and 56Ni in comparison with f-OTD-
10. Nevertheless, this simple exercise demonstrates the ability
of f-OTD methodology to extract the relevant isotopes for a
given set of conditions and starting RN. Figure 4 demonstrates
the performance of f-OTD-10 RN in predicting the evolution of
isotope mass fractions over its design conditions (T9= 3,
ρ9= 1, xC,0= xO,0= 0.5, and t ä [0, 104] s).

4. Skeletal Reduction on the Torch RN

In SNe Ia, the carbon and oxygen burn together to produce
nuclei from silicon to the iron peak that are being ejected into
the interstellar medium (Nomoto 1997; Woosley et al. 2002;
Lippuner & Roberts 2017; Johnson 2019). As this type of SN
does not produce a significant amount of free neutrons, it does
not synthesize elements beyond the iron peak (Johnson 2019).
Nevertheless, some heavier isotopes can contribute to reactions
involving isotopes important to light-curve observations, such
as 56Ni. The 495-isotope version of the Torch RN (Paxton et al.
2015) is chosen to represent the detailed RN in this section.
The Torch RN extends from 1H to 91Tc (Timmes 1999) with
ns= 495 and nr= 6012. The weak reactions are turned on, and
no screening is performed on the reaction rates (Fuller et al.
1985). The Helmholtz equation of state as developed by
Timmes & Swesty (2000) is used with Coulomb correction to
calculate the internal energy and the pressure. Several skeletal
RNs have been previously proposed based on the Torch model
for inline calculations (Timmes 1999; Timmes & Swesty 2000;
Anninos et al. 2019) and are used in the MESA code (Paxton
et al. 2011, 2015; Anninos et al. 2019). These include a bare
minimum model of the α-chain reactions using 13 isotopes, a
19-isotope RN to also accommodate some hydrogen burning
(Weaver et al. 1978), and a 21-isotope RN that adds 56Cr and
56Fe and respective equilibrium reaction sequences to the

19-isotope network to attain a lower ye value for pre-SN
models (Paxton et al. 2015). Several important isotopes are
produced in burning scenarios with ye significantly lower than
0.5. For example, Woosley (1997) suggests that 48Ca can only
be produced in nature in a subset of SNe Ia, with ye in the
range 0.41–0.42 and high burning density. The Torch RN
covers such scenarios. On the other hand, the performances of
the existing skeletal models have not been systematically
examined to cover both ye= 0.5 and ye< 0.5 scenarios. This
is addressed here by considering initial conditions with
different ye values and choosing the 21-isotope RN skeletal
model (hereafter denoted Approx21) for comparison with the
proposed skeletal RNs.
The SNe Ia progenitor population and burning scenarios

cover a wide range of temperatures and densities (Hillebrandt
& Niemeyer 2000) so that, most likely, a single skeletal model
with a limited number of isotopes (ns) cannot yield accurate
predictions over the full range of conditions that would be
covered by a detailed RN. Because of the importance of 56Ni in
SNe Ia, the skeletal models in this work are designed to predict
the evolution of Ni56x correctly. For this purpose, a map of
maximum production of this isotope is produced during the
course of constant-ρT burning in SNe Ia as shown in Figure 5.
The Torch RN is run 10,000 times on a 100× 100 grid of T9
and ρ9 for ye,0 values of 0.4955 and 0.5. It is observed that

56Ni
is only significantly produced within certain ranges of the
temperature and the density values, with a noticeable shift of
the 56Ni production near the peak. In particular, the peak
occurs around T9= 4.0 at lower densities. Moreover, the
maximum production of 56Ni is decreased by decreasing ye,0

Figure 2. Model reduction for Approx21: eigenvalues of the STS matrix. The
sensitivity matrix, S, initially evolves exactly via the SE (Equation (4)), and
then evolves approximately with the f-OTD equations (Equation (5)). The
f-OTD simulation (t > 10−9) only evolves r modes of the full-order model
(t < 10−9). Ignition data is gathered from the constant-ρT burning simulation
case described in Figure 3.

Figure 3. Model reduction for Approx21: reaction and isotope ranking based
on their associated wmax from one constant-ρT burning simulation case with
T9 = 3, ρ9 = 3, and initial composition of xC,0 = xO,0 = 0.5 with ye,0 = 0.5.
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Figure 4. Model reduction for Approx21: evolution of isotope mass fractions based on Approx21, Approx13, and f-OTD-10. The last two models are generated from
Approx21.

Figure 5. Maximum mass fraction of 56Ni during constant-ρT burning of SNe Ia.

Figure 6. 2-D version of Figure 5, to highlight the f-OTD cases (red circles).
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(Iliadis 2015). To generate skeletal reactions, simulations are
conducted of constant-ρT burning in SNe Ia for 24 cases, with
T9ä {2, 4, 6}, ρ9ä {0.001, 0.01, 0.1, 1.0}, and ye,0 ä {0.4955,
0.5}. To better show how these cases are distributed, a 2D
version of Figure 5 is shown in Figure 6. Each case (shown as a
red circle in Figure 6) denotes a set of initial condition for the
density, the temperature, the energy, and isotope mass
fractions. These conditions cover the burning stage, and are
of interest in multidimensional simulations (Fryxell et al. 2000;
Woosley et al. 2007).

The final time for each case is when the mass fraction of 56Ni
reaches its maximum. Figure 7 shows the evolution of isotope
mass fractions for two different cases. The red lines in Figure 7

show the 56Ni mass fraction and blue triangles denote the final
time of f-OTD simulations and sensitivity analysis. The initial
mass fractions of 12C, 16O, and 22Ne isotopes in cases with
ye,0= 0.5 are xC,0= xO,0= 0.5, and in cases with
ye,0= 0.4955 are xC,0= 0.45, xO,0= 0.45, and xNe,0= 0.1.
Note that for the conditions considered here, the sharp decline
in 56Ni mass fraction at t 10 s is likely due to electron
capture, causing the network composition to shift to more
neutron-rich isotopes of nickel and iron, which is not really
relevant to carbon/oxygen burning and therefore not used in
the f-OTD analysis. The f-OTD method is used to model the
sensitivity matrix with an r= 1 mode, and the generated
skeletal models by sensitivity analysis are denoted by f-OTD-n

Figure 7. Evolution of isotope mass fractions in Torch with different initial conditions, highlighting different scenarios for 56Ni evolution. The blue lines indicate the
final time of the f-OTD simulations and sensitivity analysis. The red and gray lines represent the 56Ni mass fraction and the 10 isotopes with the highest final mass
fractions observed during the portrayed ignition process. These isotopes are listed in the left-top corner of each panel.
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in which “n” identifies for the number of isotopes. The
predictive capabilities of f-OTD models are compared against
those obtained via Torch RN and the Approx21.

A ranking is provided of the first 150 important isotopes in
Table 1 in the Appendix considering the maximum characteristic
value associated with each isotope, i.e., w imax, . Different skeletal
models can be generated by applying a threshold ò on wmax and
eliminating isotopes and their associated reactions with

w imax, < from Torch RN. A comprehensive skeletal model
capable of reproducing the energy and isotope mass fraction
predictions of Torch RN with a certain accuracy can be

developed by specifying an acceptable error level, e.g., 5%, in
energy or 56Ni mass fraction estimations. Figure 8(a) shows the
isotopes in Torch selected for the f-OTD-150. Each square
belongs to an isotope, and isotopes with darker colors are ranked
higher (selected earlier) than isotopes with lighter colors. The
results show at least 114 isotopes are required to accurately
produce 56Ni with a f-OTD skeletal model. This is because of the
importance of some isotopes with 21�N, Z� 24, and
especially 43Sc in bridging between lighter and heavier isotopes
and two quasistatic equilibrium clusters (Iliadis 2015; Subedi
et al. 2020). It is shown in Figure 8(a) that 43Sc plays a key role

Figure 8. (a) The first 150 ranked isotopes of Torch RN sufficient for exact calculation of the maximum 56Ni abundance and energy in SNe Ia. The darker the squares,
the more important (higher-ranked) isotopes and the empty squares correspond to eliminated isotopes from the Torch RN. 43Sc is a key isotope in proton and neutron
channels toward 56Ni production. The f-OTD models with less than 114 isotopes (Appendix) do not contain 43Sc and do not produce the correct amount of 56Ni. (b)
The isotopes for Approx21 and (c) SK55.
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Figure 9. Model reduction on Torch RN: mass fraction estimations via Torch RN, Approx21, SK55, and f-OTD generated models for four different initial conditions
of xc12, xo16, T9, and ρ9.
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Figure 10. Model reduction on Torch RN: energy and ye estimations via Torch RN, Approx21, SK55, and f-OTD generated models for four different initial
conditions of xc12, xo16, T9, and ρ9.
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for proton and neutron channels. Figures 8(b) and (c) show the
isotopes used in the Approx21 model and SK55, a skeletal
model used by Townsley et al. (2019).

The Torch RN is user friendly and flexible to work with any
subset of its own isotopes. This means that by providing a
ranked list of isotopes from the Appendix, e.g., 16O (1st rank) to
45Ca (150th rank), one can use an f-OTD generated
network with the associated isotopes. Figures 9 and 10
show the performance of the f-OTD models in reproducing the
energy and mass fractions of 12C, 44Ti, and 56Ni, and ye. The
radioactive decays of 44Ti and 56Ni have significant observational
applications, and the production of these two isotopes is sensitive
to the temperature, density, and ye evolution (Magkotsios et al.
2010). The energy in Figure 10 is normalized by its initial value.
The predictions via the Approx21 and SK55 are also presented.
The second and third rows of panels correspond to situations
exactly similar to the test cases, but the first and last rows portray
the estimations for arbitrary situations within the initial condition
domain, i.e., T9ä [2, 6], ρ9ä [0.001, 1.0], and ye,0ä [0.4955, 0.5].
It is apparent that the f-OTD models with ns� 150 exactly predict
the energy evolution of Torch RN and 56Ni mass fraction within
their designed ρ9–T9–ye ranges. The Approx21 and SK55 models
usually overpredict the maximum 56Ni mass fraction, and
Approx21 cannot be used when ye,0≠ 0.5. Replacing Torch with
f-OTD models using 114–150 isotopes yields compression ratios
ranging from 3.3 to 4.3. Figure 11 compares the evolution of mass
fractions as predicted by the Torch model, without any
approximation, and nuclear statistical equilibrium (NSE) assump-
tion. The NSE results are generated by using the instantaneous
values of ρ9–T9–ye extracted from non-NSE calculations. The
Torch and f-OTD-150 are used as the base reaction network for
NSE estimations. It is shown in Figures 11(a) and (b) that only at
late time for T9= 5 are the NSE and non-NSE mass fraction
predictions of 44Ti and 56Ni (but not 12C) close to each other.

5. Conclusions

A systematic method for skeletal model reduction of nuclear
reaction networks is developed for generating models for the
carbon–oxygen combustion in SNe Ia covering a range of
temperatures and electron number fractions, ye= Zm/Am. In

this method, the sensitivities of abundances with respect to
reaction rates are modeled using the f-OTD method and are
analyzed instantaneously. This results in reaction and isotope
rankings based on the correlations between their sensitivities. A
key feature of this approach is that it factorizes the sensitivity
matrix into a multiplication of two low-ranked time-dependent
matrices which evolve based on evolution equations derived
from the governing equations of the system. The generated
skeletal models are comparatively assessed based on their
ability to predict the energy and mass fractions. In particular,
the skeletal models as derived here are the first to address
situations covering both ye= 0.5 and ye< 0.5. To employ any
of the skeletal models developed in this work or to create new
f-OTD skeletal models with different numbers of isotopes, one
only needs to feed a list of more than 114 ranked isotopes from
the Appendix into the Torch RN (see footnote 3). Further
reduction in the number of isotopes (e.g., by using equilibrium
assumptions) is a potential future follow-up to this work.
The overall costs of generating an f-OTD model depend on

solving the mass fraction equations (which is roughly the same
as one non-f-OTD Torch simulation, ctorch), the U equation,
whose cost scales as r× ctorch, and the V equation, whose cost
scales as r× nr/ns× ctorch. For example, the total cost to
generate the f-OTD-150 model with r= 1 modes, for which 10
cases with different densities and temperatures were used, was
∼120ctorch, which would be negligible, for example, compared
to a Monte Carlo simulation with ∼10,000 trials. On the other
hand, f-OTD-150 should run ∼3.3 faster than Torch.
The skeletal reduction technique as described here can be

readily extended to other situations. For example, lower values
of ye and higher densities to examine the production of 48Ca,
50Ti, or 54Cr. It can also be applied to more complex RNs to
examine the production of heavier elements in core-collapse
SNe. With respect to the development of the methodology
itself, it can be extended by including the sensitivity analysis
based also on transport properties, or even the equation of state
(Nouri et al. 2019). Most importantly, as shown recently
(Donello et al. 2022), the f-OTD methodology can be used for
solving partial differential equations for multidimensional
combustion problems in a cost-effective manner—by

Figure 11. Comparison between mass fractions as predicted by the Torch model (black dotted lines) without any equilibrium assumptions and NSE mass fractions
estimated based on Torch and f-OTD-150 models (green solid and red dashed lines). NSE and non-NSE simulations have same ye at each time.
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exploiting the correlations between the spatiotemporal sensitiv-
ities of different species with respect to different parameters.
This analysis can be especially insightful for problems
containing rare events by providing more insights into global
phenomena.
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Appendix
Isotope Ranking Based on All Cases (ye,0� 0.5)

Table 1 contains the ranking of the first 150 important
isotopes of the Torch reaction network based on the maximum
characteristic value associated with each isotope, i.e., wmax,i.
Different skeletal models can be generated by applying a
threshold ò on bwmax and eliminating isotopes and their
associated reactions with w imax, < from Torch RN.

Table 1
The First 150 Important Isotopes of Torch RN Ranked by f-OTD Analysis

Rank Isotope wmax Rank Isotope wmax Rank Isotope wmax Rank Isotope wmax

1 16O 0.967 41 32P 0.112 81 27Mg 0.020 121 61Ni 0.003
2 20Ne 0.967 42 35Cl 0.105 82 50V 0.018 122 45Sc 0.002
3 4He 0.967 43 52Cr 0.094 83 54Cr 0.018 123 45Ti 0.002
4 12C 0.935 44 52Mn 0.094 84 39K 0.016 124 40K 0.002
5 23Na 0.796 45 56Ni 0.094 85 24Na 0.014 125 52V 0.002
6 p 0.796 46 35S 0.093 86 2H 0.014 126 18F 0.002
7 31P 0.761 47 57Co 0.085 87 59Co 0.012 127 44Ti 0.002
8 28Si 0.743 48 57Ni 0.085 88 59Ni 0.012 128 56Mn 0.001
9 13N 0.732 49 30P 0.083 89 53Co 0.011 129 58Cu 0.001
10 54Fe 0.707 50 51Cr 0.081 90 38Ar 0.011 130 7Li 0.001
11 55Co 0.707 51 51Mn 0.081 91 3H 0.010 131 41K 0.001
12 17F 0.704 52 23Mg 0.076 92 3He 0.010 132 55Ni 0.001
13 29P 0.681 53 21Ne 0.075 93 11C 0.010 133 6Li 0.001
14 24Mg 0.669 54 18O 0.066 94 40Ca 0.009 134 15O 0.001
15 25Mg 0.669 55 34S 0.066 95 41Sc 0.009 135 40Ar 0.001
16 n 0.669 56 55Mn 0.066 96 14O 0.009 136 47Sc 0.001
17 13C 0.667 57 9Be 0.066 97 48V 0.009 137 50Mn 0.001
18 14N 0.624 58 14C 0.061 98 48Cr 0.009 138 51Fe 0.001
19 17O 0.624 59 36Ar 0.052 99 49Ti 0.008 139 7Be 0.001
20 30Si 0.518 60 37K 0.052 100 29Al 0.007 140 35Ar 0.001
21 33S 0.518 61 57Fe 0.052 101 50Ti 0.007 141 43Ca 0.001
22 22Ne 0.447 62 52Fe 0.051 102 47Ti 0.007 142 44Ca 0.001
23 32S 0.441 63 28Al 0.048 103 47V 0.007 143 44Sc 0.001
24 33Cl 0.441 64 37Ar 0.046 104 48Ti 0.007 144 34P 0.001
25 25Al 0.385 65 50Cr 0.044 105 27Si 0.006 145 38K 0.001
26 55Fe 0.352 66 58Co 0.042 106 39Ar 0.006 146 42Ca 0.001
27 29Si 0.330 67 58Ni 0.042 107 54Co 0.005 147 20F 0.001
28 11B 0.295 68 23Ne 0.042 108 60Cu 0.005 148 45V 0.001
29 15N 0.285 69 51V 0.040 109 34Cl 0.005 149 28Mg 0.001
30 21Na 0.264 70 37Cl 0.040 110 49Mn 0.005 150 45Ca 0.001
31 54Mn 0.191 71 26Al 0.038 111 57Cu 0.004
32 27Al 0.177 72 22Na 0.033 112 58Fe 0.004
33 56Fe 0.163 73 49V 0.030 113 46Ti 0.004
34 56Co 0.163 74 49Cr 0.030 114 43Sc 0.004
35 26Mg 0.161 75 59Cu 0.027 115 10B 0.004
36 33P 0.155 76 53Cr 0.027 116 60Ni 0.003
37 31Si 0.142 77 19F 0.025 117 61Cu 0.003
38 53Mn 0.128 78 32Si 0.024 118 25Na 0.003
39 53Fe 0.128 79 36S 0.022 119 19O 0.003
40 31S 0.124 80 36Cl 0.022 120 41Ca 0.003

12

The Astrophysical Journal Supplement Series, 272:34 (13pp), 2024 June Nouri et al.



ORCID iDs

A. G. Nouri https://orcid.org/0000-0001-7390-5212
Y. Liu https://orcid.org/0000-0001-5261-8994
P. Givi https://orcid.org/0000-0002-9557-5768
H. Babaee https://orcid.org/0000-0002-6318-2265
D. Livescu https://orcid.org/0000-0003-2367-1547

References

Aitzhan, A., Nouri, A., Givi, P., & Babaee, H. 2022, arXiv:2201.02097
Anninos, P., Hoffman, R., Grewal, M., Lavell, M., & Fragile, P. 2019, ApJ,

885, 136
Arnett, W. D. 1996, Supernovae and Nucleosynthesis: An Investigation of the

History of Matter, from the Big Bang to the Present (Princeton, NJ:
Princeton Univ. Press)

Arnould, M., & Goriely, S. 2020, PrPNP, 112, 103766
Babaee, H. 2019, RSPSA, 475, 20190506
Babaee, H., Choi, M., Sapsis, T., & Karniadakis, G. 2017a, JCoPh, 344, 303
Babaee, H., Farazmand, M., Haller, G., & Sapsis, T. P. 2017b, Chaos, 27,

063103
Barnes, J., Zhu, Y., Lund, K., et al. 2021, ApJ, 918, 44
Beaudet, G., & Reeves, H. 1983, in ESO Workshop on Primordial Helium

(Garching: European Southern Observatory), 53
Bliss, J., Arcones, A., Montes, F., & Pereira, J. 2020, PhRvC, 101, 055807
Bodansky, D., Clayton, D., & Fowler, W. 1968, ApJS, 16, 299
Bora, Z., Vinkó, J., & Könyves-Tóth, R. 2022, PASP, 134, 054201
Bravo, E., Badenes, C., & Martínez-Rodríguez, H. 2019, MNRAS, 482, 4346
Bravo, E., & Martinez-Pinedo, G. 2012, PhRvC, 85, 055805
Cheng, M., Hou, T., & Zhang, Z. 2013, JCoPh, 242, 843
Cyburt, R. 2004, PhRvD, 70, 023505
Delbourgo-Salvador, P., Gry, C., Malinie, G., & Audouze, J. 1985, A&A,

150, 53
Donello, M., Carpenter, M., & Babaee, H. 2022, SJSC, 44, A128
Fernández, R., Foucart, F., Kasen, D., et al. 2017, CQGra, 34, 154001
Fryxell, B., Olson, K., Ricker, P., et al. 2000, ApJS, 131, 273
Fuller, G., Fowler, W., & Newman, M. 1985, ApJ, 293, 1
Girimaji, S., & Ibrahim, A. 2014, J. Fluids Eng., 136, 031201
Goussis, D. 2012, CTM, 16, 869
Guidry, M., Budiardja, R., Feger, E., et al. 2013, CS&D, 6, 015001
Guidry, M., & Harris, J. 2013, CS&D, 6, 015002
Hadi, F., Janbozorgi, M., Sheikhi, M., & Metghalchi, H. 2016, JNET, 41, 257
Hillebrandt, W., & Niemeyer, J. C. 2000, ARA&A, 38, 191
Hix, W., Khokhlov, A., Wheeler, J., & Thielemann, F. 1998, ApJ, 503, 332
Hix, W., Parete-Koon, S., Freiburghaus, C., & Thielemann, F. 2007, ApJ,

667, 476
Hix, W., Smith, M., Starrfield, S., Mezzacappa, A., & Smith, D. 2003, NuPhA,

718, 620
Iliadis, C. 2015, Nuclear Physics of Stars (New York: Wiley)
Johnson, J. 2019, Sci, 363, 474
Keck, J. C. 1990, PECS, 16, 125
Khokhlov, A. 1981, SvAL, 7, 410
Kobayashi, C., Karakas, A., & Lugaro, M. 2020, ApJ, 900, 179
Koch, O., & Lubich, C. 2007, SIAM J. Matrix Anal. Appl., 29, 434
Krauss, L., & Romanelli, P. 1990, ApJ, 358, 47
Kushnir, D., & Katz, B. 2020, MNRAS, 493, 5413
Leung, S., & Nomoto, K. 2018, ApJ, 861, 143
Li, Y., Chen, Y., & Wu, G. 2020, Fuel, 264, 116856
Lippuner, J., & Roberts, L. 2017, ApJS, 233, 18

Liu, Y., Babaee, H., Givi, P., et al. 2024, Fuel, 357, 129581
Longland, R. 2012, A&A, 548, A30
Longland, R., Iliadis, C., Champagne, A., et al. 2010, NuPhA, 841, 1
Lu, T., & Law, C. 2009, PECS, 35, 192
Magkotsios, G., Timmes, F., Hungerford, A., et al. 2010, ApJS, 191, 66
Matteucci, F. 2012, Chemical Evolution of Galaxies (Berlin: Springer)
Meyer, B., Krishnan, T., & Clayton, D. 1998, ApJ, 498, 808
Mott, D., Oran, E., & van Leer, B. 2000, JCoPh, 164, 407
Mumpower, M., McLaughlin, G., & Surman, R. 2012, PhRvC, 86, 035803
Mumpower, M., Surman, R., Fang, D., et al. 2015, PhRvC, 92, 035807
Nishimura, N., Takiwaki, T., & Thielemann, F. 2015, ApJ, 810, 109
Nollett, K., & Burles, S. 2000, PhRvD, 61, 123505
Nomoto, K. 1997, Sci, 276, 1378
Nouri, A., Babaee, H., Givi, P., Chelliah, H., & Livescu, D. 2022, CoFl, 235,

111 684
Nouri, A., Givi, P., & Livescu, D. 2019, PrAeS, 108, 156
Pagel, B. 2009, Nucleosynthesis and Chemical Evolution of Galaxies

(Cambridge: Cambridge Univ. Press)
Parikh, A., José, J., Moreno, F., & Iliadis, C. 2008, ApJS, 178, 110
Patil, P., & Babaee, H. 2020, JCoPh, 415, 109511
Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3
Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS, 220, 15
Peters, N., & Rogg, B. (ed.) 1993, Reduced Kinetic Mechanisms for

Applications in Combustion Systems (Berlin: Springer)
Psaltis, A., Arcones, A., Montes, F., et al. 2022, ApJ, 935, 27
Ramezanian, D., Nouri, A., & Babaee, H. 2021, CMAME, 382, 113882
Rein, M. 1992, PhFlA, 4, 873
Röpke, F., & Sim, S. 2018, SSRv, 214, 72
Sapsis, T., & Lermusiaux, P. 2009, PhyD, 238, 2347
Seitenzahl, I., & Pakmor, R. 2023, in Handbook of Nuclear Physics, ed.

I. Tanihata et al. (Singapore: Springer), 3809
Seitenzahl, I., & Townsley, D. 2017, in Handbook of Supernovae, ed.

A. W. Alsabti & P. Murdin (Cham: Springer), 1955
Sieverding, A., Waldrop, P., Harris, J. A., et al. 2023, ApJ, 950, 27
Smith, M., Kawano, L., & Malaney, R. 1993, ApJS, 85, 219
Smooke, M. D. 1991, Reduced Kinetic Mechanisms and Asymptotic

Approximations for Methane-Air Flames: A Topical Volume (Berlin:
Springer)

Sprouse, T., Perez, R., Surman, R., et al. 2020, PhRvC, 101, 055803
Stagni, A., Frassoldati, A., Cuoci, A., Faravelli, T., & Ranzi, E. 2016, CoFl,

163, 382
Stiefenhofer, M. 1998, J. Math. Biol., 36, 593
Subedi, S., Meisel, Z., & Merz, G. 2020, ApJ, 898, 5
Thielemann, F. K., Nomoto, K., & Yokoi, K. 1986, A&A, 158, 17
Timmes, F. X. 1999, ApJS, 124, 241
Timmes, F. X., & Arnett, D. 1999, ApJS, 125, 277
Timmes, F. X., Hoffman, R. D., & Woosley, S. E. 2000, ApJS, 129, 377
Timmes, F. X., & Swesty, F. D. 2000, ApJS, 126, 501
Townsley, D., Miles, B., Shen, K., & Kasen, D. 2019, ApJL, 878, L38
Townsley, D., Miles, B., Timmes, F., Calder, A., & Brown, E. 2016, ApJS,

225, 3
Wanajo, S. 2013, ApJL, 770, L22
Weaver, T. A., Zimmerman, G. B., & Woosley, S. E. 1978, ApJ, 225, 1021
Williams, F. A. 1985, Combustion Theory (2nd ed.; Menlo Park, CA: The

Benjamin/Cummings Publishing Company)
Woosley, S. 1997, ApJ, 476, 801
Woosley, S., Arnett, W., & Clayton, D. 1973, ApJS, 26, 231
Woosley, S., Heger, A., & Weaver, T. 2002, RvMP, 74, 1015
Woosley, S. E., Almgren, A., Bell, J. B., et al. 2007, JPhCS, 78, 012081
Yoshida, T., Takiwaki, T., Kotake, K., et al. 2021, ApJ, 908, 44

13

The Astrophysical Journal Supplement Series, 272:34 (13pp), 2024 June Nouri et al.

https://orcid.org/0000-0001-7390-5212
https://orcid.org/0000-0001-7390-5212
https://orcid.org/0000-0001-7390-5212
https://orcid.org/0000-0001-7390-5212
https://orcid.org/0000-0001-7390-5212
https://orcid.org/0000-0001-7390-5212
https://orcid.org/0000-0001-7390-5212
https://orcid.org/0000-0001-7390-5212
https://orcid.org/0000-0001-5261-8994
https://orcid.org/0000-0001-5261-8994
https://orcid.org/0000-0001-5261-8994
https://orcid.org/0000-0001-5261-8994
https://orcid.org/0000-0001-5261-8994
https://orcid.org/0000-0001-5261-8994
https://orcid.org/0000-0001-5261-8994
https://orcid.org/0000-0001-5261-8994
https://orcid.org/0000-0002-9557-5768
https://orcid.org/0000-0002-9557-5768
https://orcid.org/0000-0002-9557-5768
https://orcid.org/0000-0002-9557-5768
https://orcid.org/0000-0002-9557-5768
https://orcid.org/0000-0002-9557-5768
https://orcid.org/0000-0002-9557-5768
https://orcid.org/0000-0002-9557-5768
https://orcid.org/0000-0002-6318-2265
https://orcid.org/0000-0002-6318-2265
https://orcid.org/0000-0002-6318-2265
https://orcid.org/0000-0002-6318-2265
https://orcid.org/0000-0002-6318-2265
https://orcid.org/0000-0002-6318-2265
https://orcid.org/0000-0002-6318-2265
https://orcid.org/0000-0002-6318-2265
https://orcid.org/0000-0003-2367-1547
https://orcid.org/0000-0003-2367-1547
https://orcid.org/0000-0003-2367-1547
https://orcid.org/0000-0003-2367-1547
https://orcid.org/0000-0003-2367-1547
https://orcid.org/0000-0003-2367-1547
https://orcid.org/0000-0003-2367-1547
https://orcid.org/0000-0003-2367-1547
http://arxiv.org/abs/2201.02097
https://doi.org/10.3847/1538-4357/ab4ae0
https://ui.adsabs.harvard.edu/abs/2019ApJ...885..136A/abstract
https://ui.adsabs.harvard.edu/abs/2019ApJ...885..136A/abstract
https://doi.org/10.1016/j.ppnp.2020.103766
https://ui.adsabs.harvard.edu/abs/2020PrPNP.11203766A/abstract
https://doi.org/10.1098/rspa.2019.0506
https://ui.adsabs.harvard.edu/abs/2019RSPSA.47590506B/abstract
https://doi.org/10.1016/j.jcp.2017.04.057
https://ui.adsabs.harvard.edu/abs/2017JCoPh.344..303B/abstract
https://doi.org/10.1063/1.4984627
https://ui.adsabs.harvard.edu/abs/2017Chaos..27f3103B/abstract
https://ui.adsabs.harvard.edu/abs/2017Chaos..27f3103B/abstract
https://doi.org/10.3847/1538-4357/ac0aec
https://ui.adsabs.harvard.edu/abs/2021ApJ...918...44B/abstract
https://ui.adsabs.harvard.edu/abs/1983prhe.work...53B/abstract
https://doi.org/10.1103/PhysRevC.101.055807
https://ui.adsabs.harvard.edu/abs/2020PhRvC.101e5807B/abstract
https://doi.org/10.1086/190176
https://ui.adsabs.harvard.edu/abs/1968ApJS...16..299B/abstract
https://doi.org/10.1088/1538-3873/ac63e7
https://ui.adsabs.harvard.edu/abs/2022PASP..134e4201B/abstract
https://doi.org/10.1093/mnras/sty2951
https://ui.adsabs.harvard.edu/abs/2019MNRAS.482.4346B/abstract
https://doi.org/10.1103/PhysRevC.85.055805
https://ui.adsabs.harvard.edu/abs/2012PhRvC..85e5805B/abstract
https://doi.org/10.1016/j.jcp.2013.02.033
https://ui.adsabs.harvard.edu/abs/2013JCoPh.242..843C/abstract
https://doi.org/10.1103/PhysRevD.70.023505
https://ui.adsabs.harvard.edu/abs/2004PhRvD..70b3505C/abstract
https://ui.adsabs.harvard.edu/abs/1985A&A...150...53D/abstract
https://ui.adsabs.harvard.edu/abs/1985A&A...150...53D/abstract
https://doi.org/10.1137/20M1388565
https://ui.adsabs.harvard.edu/abs/2022SJSC...44A.128D/abstract
https://doi.org/10.1088/1361-6382/aa7a77
https://ui.adsabs.harvard.edu/abs/2017CQGra..34o4001F/abstract
https://doi.org/10.1086/317361
https://ui.adsabs.harvard.edu/abs/2000ApJS..131..273F/abstract
https://doi.org/10.1086/163208
https://ui.adsabs.harvard.edu/abs/1985ApJ...293....1F/abstract
https://doi.org/10.1115/1.4026015
https://doi.org/10.1080/13647830.2012.680502
https://ui.adsabs.harvard.edu/abs/2012CTM....16..869G/abstract
https://doi.org/10.1088/1749-4699/6/1/015001
https://ui.adsabs.harvard.edu/abs/2013CS&D....6a5001G/abstract
https://doi.org/10.1088/1749-4699/6/1/015002
https://ui.adsabs.harvard.edu/abs/2013CS&D....6a5002G/abstract
https://doi.org/10.1515/jnet-2015-0052
https://ui.adsabs.harvard.edu/abs/2016JNET...41..257H/abstract
https://doi.org/10.1146/annurev.astro.38.1.191
https://ui.adsabs.harvard.edu/abs/2000ARA&A..38..191H/abstract
https://doi.org/10.1086/305968
https://ui.adsabs.harvard.edu/abs/1998ApJ...503..332H/abstract
https://doi.org/10.1086/520672
https://ui.adsabs.harvard.edu/abs/2007ApJ...667..476H/abstract
https://ui.adsabs.harvard.edu/abs/2007ApJ...667..476H/abstract
https://doi.org/10.1016/S0375-9474(03)00904-7
https://ui.adsabs.harvard.edu/abs/2003NuPhA.718..620H/abstract
https://ui.adsabs.harvard.edu/abs/2003NuPhA.718..620H/abstract
https://doi.org/10.1126/science.aau9540
https://ui.adsabs.harvard.edu/abs/2019Sci...363..474J/abstract
https://doi.org/10.1016/0360-1285(90)90046-6
https://ui.adsabs.harvard.edu/abs/1981PAZh....7..741K/abstract
https://doi.org/10.3847/1538-4357/abae65
https://ui.adsabs.harvard.edu/abs/2020ApJ...900..179K/abstract
https://doi.org/10.1137/050639703
https://doi.org/10.1086/168962
https://ui.adsabs.harvard.edu/abs/1990ApJ...358...47K/abstract
https://doi.org/10.1093/mnras/staa594
https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.5413K/abstract
https://doi.org/10.3847/1538-4357/aac2df
https://ui.adsabs.harvard.edu/abs/2018ApJ...861..143L/abstract
https://doi.org/10.1016/j.fuel.2019.116856
https://ui.adsabs.harvard.edu/abs/2020Fuel..26416856L/abstract
https://doi.org/10.3847/1538-4365/aa94cb
https://ui.adsabs.harvard.edu/abs/2017ApJS..233...18L/abstract
https://doi.org/10.1016/j.fuel.2023.129581
https://ui.adsabs.harvard.edu/abs/2024Fuel..35729581L/abstract
https://doi.org/10.1051/0004-6361/201220386
https://ui.adsabs.harvard.edu/abs/2012A&A...548A..30L/abstract
https://doi.org/10.1016/j.nuclphysa.2010.04.008
https://ui.adsabs.harvard.edu/abs/2010NuPhA.841....1L/abstract
https://doi.org/10.1016/j.pecs.2008.10.002
https://doi.org/10.1088/0067-0049/191/1/66
https://ui.adsabs.harvard.edu/abs/2010ApJS..191...66M/abstract
https://doi.org/10.1086/305562
https://ui.adsabs.harvard.edu/abs/1998ApJ...498..808M/abstract
https://doi.org/10.1006/jcph.2000.6605
https://ui.adsabs.harvard.edu/abs/2000JCoPh.164..407M/abstract
https://doi.org/10.1103/PhysRevC.86.035803
https://ui.adsabs.harvard.edu/abs/2012PhRvC..86c5803M/abstract
https://doi.org/10.1103/PhysRevC.92.035807
https://ui.adsabs.harvard.edu/abs/2015PhRvC..92c5807M/abstract
https://doi.org/10.1088/0004-637X/810/2/109
https://ui.adsabs.harvard.edu/abs/2015ApJ...810..109N/abstract
https://doi.org/10.1103/PhysRevD.61.123505
https://ui.adsabs.harvard.edu/abs/2000PhRvD..61l3505N/abstract
https://doi.org/10.1126/science.276.5317.1378
https://ui.adsabs.harvard.edu/abs/1997Sci...276.1378N/abstract
https://doi.org/10.1016/j.combustflame.2021.111684
https://ui.adsabs.harvard.edu/abs/2022CoFl..23511684N/abstract
https://ui.adsabs.harvard.edu/abs/2022CoFl..23511684N/abstract
https://doi.org/10.1016/j.paerosci.2019.04.004
https://ui.adsabs.harvard.edu/abs/2019PrAeS.108..156N/abstract
https://doi.org/10.1086/589879
https://ui.adsabs.harvard.edu/abs/2008ApJS..178..110P/abstract
https://doi.org/10.1016/j.jcp.2020.109511
https://ui.adsabs.harvard.edu/abs/2020JCoPh.41509511P/abstract
https://doi.org/10.1088/0067-0049/192/1/3
https://ui.adsabs.harvard.edu/abs/2011ApJS..192....3P/abstract
https://doi.org/10.1088/0067-0049/220/1/15
https://ui.adsabs.harvard.edu/abs/2015ApJS..220...15P/abstract
https://doi.org/10.3847/1538-4357/ac7da7
https://ui.adsabs.harvard.edu/abs/2022ApJ...935...27P/abstract
https://doi.org/10.1016/j.cma.2021.113882
https://ui.adsabs.harvard.edu/abs/2021CMAME.382k3882R/abstract
https://doi.org/10.1063/1.858267
https://ui.adsabs.harvard.edu/abs/1992PhFlA...4..873R/abstract
https://doi.org/10.1007/s11214-018-0503-8
https://ui.adsabs.harvard.edu/abs/2018SSRv..214...72R/abstract
https://doi.org/10.1016/j.physd.2009.09.017
https://ui.adsabs.harvard.edu/abs/2009PhyD..238.2347S/abstract
https://ui.adsabs.harvard.edu/abs/2017hsn..book.1955S/abstract
https://doi.org/10.3847/1538-4357/acc8d1
https://doi.org/10.1086/191763
https://ui.adsabs.harvard.edu/abs/1993ApJS...85..219S/abstract
https://doi.org/10.1103/PhysRevC.101.055803
https://ui.adsabs.harvard.edu/abs/2020PhRvC.101e5803S/abstract
https://doi.org/10.1016/j.combustflame.2015.10.013
https://ui.adsabs.harvard.edu/abs/2016CoFl..163..382S/abstract
https://ui.adsabs.harvard.edu/abs/2016CoFl..163..382S/abstract
https://doi.org/10.1007/s002850050116
https://doi.org/10.3847/1538-4357/ab9745
https://ui.adsabs.harvard.edu/abs/2020ApJ...898....5S/abstract
https://ui.adsabs.harvard.edu/abs/1986A&A...158...17T/abstract
https://doi.org/10.1086/313257
https://ui.adsabs.harvard.edu/abs/1999ApJS..124..241T/abstract
https://doi.org/10.1086/313271
https://ui.adsabs.harvard.edu/abs/1999ApJS..125..277T/abstract
https://doi.org/10.1086/313407
https://ui.adsabs.harvard.edu/abs/2000ApJS..129..377T/abstract
https://doi.org/10.1086/313304
https://ui.adsabs.harvard.edu/abs/2000ApJS..126..501T/abstract
https://doi.org/10.3847/2041-8213/ab27cd
https://ui.adsabs.harvard.edu/abs/2019ApJ...878L..38T/abstract
https://doi.org/10.3847/0067-0049/225/1/3
https://ui.adsabs.harvard.edu/abs/2016ApJS..225....3T/abstract
https://ui.adsabs.harvard.edu/abs/2016ApJS..225....3T/abstract
https://doi.org/10.1088/2041-8205/770/2/L22
https://ui.adsabs.harvard.edu/abs/2013ApJ...770L..22W/abstract
https://doi.org/10.1086/156569
https://ui.adsabs.harvard.edu/abs/1978ApJ...225.1021W/abstract
https://doi.org/10.1086/303650
https://ui.adsabs.harvard.edu/abs/1997ApJ...476..801W/abstract
https://doi.org/10.1086/190282
https://ui.adsabs.harvard.edu/abs/1973ApJS...26...231W/abstract
https://doi.org/10.1103/RevModPhys.74.1015
https://ui.adsabs.harvard.edu/abs/2002RvMP...74.1015W/abstract
https://doi.org/10.1088/1742-6596/78/1/012081
https://ui.adsabs.harvard.edu/abs/2007JPhCS..78a2081W/abstract
https://doi.org/10.3847/1538-4357/abd3a3
https://ui.adsabs.harvard.edu/abs/2021ApJ...908...44Y/abstract

	1. Introduction
	2. Skeletal Reduction with f-OTD Method
	2.1. Reduced-order Modeling of the Sensitivity Matrix with f-OTD
	2.2. Identification of Important Reactions and Isotopes

	3. Skeletal Reduction on the Approx21 RN
	4. Skeletal Reduction on the Torch RN
	5. Conclusions
	AppendixIsotope Ranking Based on All Cases (ye,0 ⩽ 0.5)
	References

