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ABSTRACT
As artificial intelligence becomesmore integral to daily life, the need
to design AI systems capable of understanding human interactions
is increasingly important. This paper delves into the integration of
social cognition in AI, tracing back to its historical foundations and
examining seminal theories like Newell’s Bands of Cognition, Min-
sky’s Society of Mind, etc., which have emphasized the importance
of social cognition since AI’s inception. We highlight the short-
comings of traditional computational theory of mind approaches,
particularly in their failure to capture the embodied nature of so-
cial cognition. Advocating for including embodied socio-cognitive
perspectives, we draw on theories such as Participatory Sensemak-
ing and frameworks like Observable Creative Sensemaking. The
paper further demonstrates the practical implementation of these
concepts in AI through two case studies: one in co-creative dance
AI and another in text-to-image generative AI systems.

CCS CONCEPTS
• Human-centered computing → Collaborative content cre-
ation; • Computing methodologies → Theory of mind.
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1 INTRODUCTION
The field of Human-Computer Interaction (HCI) has experienced a
paradigm shift [27], moving from a focus on purely cognitive con-
cerns to a more holistic approach in designing interactions focused
on situated, embodied, and social factors [17, 43, 52]. Artificial In-
telligence (AI) is seemingly undergoing a similar transformation:
while AI development historically concentrated on computational
models of specific cognitive processes, it is now evolving to embrace
holistic and embodied cognitive processes [9, 13, 37]. Consequently,
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there is an increasing emphasis on developing AI systems that align
more closely with the complexities of human experience [33, 49].

Social cognition refers to the study of how individuals interpret
and make sense of their interactions with others and themselves. It
encompasses methods bywhich people perceive, assess, and classify
their encounters in the social world [18]. In AI, this translates to
the development of systems that can not only process information
but also understand and adapt to the social and cultural context
of their interactions with humans. Integrating social cognition in
AI, particularly for enhancing decision-making in human-AI teams
and building shared understandings between humans and agents, is
central to the current paradigm shift in AI development [1, 2, 45, 61].

This paper aims to explore the historical context of AI develop-
ment with respect to social cognition, critique the limitations of tra-
ditional computational models of social cognition, and argue for the
inclusion of embodied socio-cognitive perspectives in AI, drawing
upon theories such as Participatory Sensemaking (PSM) [15]. Fur-
thermore, this paper will examine how contemporary frameworks,
mainly Observable Creative Sensemaking (OCSM) [16], practically
offer pathways to integrate embodied social cognition perspectives
into AI development. By bridging historical insights with modern
theoretical frameworks, this paper aims to contribute to the dis-
course of the human-centered perspective of social cognition in AI
systems.

2 HISTORICAL THEORETICAL CONTEXT OF
SOCIAL COGNITION IN AI

One of the primary objectives of AI has been to replicate human
cognition, a concept embodied in the distinction between Weak
AI (or Narrow AI) and Strong AI (or General AI). Weak AI refers
to systems designed for specific tasks without emulating human
cognition, while Strong AI aims to replicate human cognitive abil-
ities [44]. Pioneers like Simon, Newell, Minsky, Shanon, etc. laid
the foundation for AI by developing cognitive models that mimic
human problem-solving and reasoning, influencing the direction
of AI research and development [32, 47, 50, 51].In this section, we
discuss some of the seminal theories related to social cognition in
AI.

2.1 Newell’s Bands of Cognition
The consideration for social cognition in AI can be traced back to
foundational works, notably Newell’s Bands of Cognition. In his
work Unified Theories of Cognition [35], Newell introduced a frame-
work that categorizes cognitive processes across various scales,
acknowledging the multifaceted nature of human cognition. This
framework, known as Newell’s Bands of Cognition, represents a
layered approach to understanding cognition, ranging from the
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Figure 1: Newell’s time scale of human action [29, 35]

biological to the social and cultural levels, each ‘band’ representing
a different scale at which cognitive processes operate as shown in
Figure 1.

Newell’s Bands of Cognition framework categorizes cognitive
processes across increasingly longer temporal durations. The Bi-
ological Band, operating on milliseconds to seconds, focuses on
the brain’s neurophysiological processes underpinning cognition.
The Cognitive Band–spanning seconds to minutes–deals with core
cognitive processes like perception and problem-solving, central to
cognitive psychology and traditional AI. The Rational Band, rang-
ing from minutes to days, involves rational behavior and decision-
making. The Social Band, extending from days to months, encom-
passes the influence of social interactions and cultural norms on
cognition. Lastly, the Historical and Evolutionary Band, covering
decades to centuries, examines the long-term evolution of cogni-
tive processes, including language development and cultural shifts.
Each band represents a distinct aspect and timescale of cognitive
functioning.

Newell’s Bands of Cognition framework acknowledges the com-
plexity of cognitive processes and highlights the significance of so-
cial and cultural dimensions in human cognition. This early recogni-
tion in AI research emphasizes that social interactions and cultural
contexts are integral to understanding human cognitive processes
to develop systems that aim to replicate or complement human
cognitive abilities.

2.2 Minsky’s Society of Mind
Minsky provided another theoretical framework in Society of Mind
for understanding social cognition in AI [32]. Minsky proposes that
the mind is not a single entity but rather a collection of smaller pro-
cesses, which he terms ’agents.’ These agents work independently
and collaboratively, like a society, to produce what we perceive
as thought, consciousness, and intelligence. This theory suggests
that complex cognitive functions, including those involved in social
cognition, emerge from the interactions and cooperation of simpler,
specialized mental processes.

Minsky’s concept offers a framework for developing more ad-
vanced and socially aware AI systems. By emulating the societal
structure of the mind, AI systems could potentially replicate the
human ability to understand and navigate social contexts. This

involves creating AI agents that can perform specific cognitive
tasks and enabling them to interact and integrate their functional-
ities to exhibit complex social cognition. Minsky’s model implies
that social cognition in AI could be achieved not through a single,
all-encompassing algorithm but through the orchestrated function-
ing of multiple specialized agents, each contributing to an overall
understanding of social dynamics, emotions, and interactions.

2.3 Brooks’ Subsumption Architecture
Rodney Brooks, an early advocate for embodied cognition in robot-
ics and AI, introduced the Subsumption Architecture, a bottom-up,
behavior-based approach [4] for AI logic. This architecture features
layered control systems, with each layer handling a specific be-
havior and independently interacting with the robot’s sensors and
actuators. Its decentralized design focuses on reactive behaviors,
enabling robots to adaptively respond to environmental stimuli
[6]. The architecture’s strength lies in its incremental development
and the emergence of complex behaviors from simple interactions.
Although initially intended for physical robot-environment inter-
actions, the principles of the Subsumption Architecture, like de-
centralized control and emergent behavior, are applicable to social
cognition in AI, suggesting that complex social behaviors in AI
could arise from simpler, socially focused behavioral modules [4–
6].

3 COMPUTATIONAL MODELS OF SOCIAL
COGNITION VIA THEORY OF MIND

In the previous section, we laid out the historical foundation for
social cognition in AI. In this section, we describe the prevalent
computational approach to incorporating social cognition in AI,
specifically through the lens of Theory of Mind (ToM). In cognitive
science, ToM has historically been instrumental in understanding
human social cognition. According to ToM, an individual can make
inferences about others’ mental states in a social situation and act
accordingly [39].

Various approaches have been developed to create AI systems
with artificial theory of mind over the years. One of the early ap-
proaches is the Computational Theory of Mind (CTM) [41]. Initially
suggested byWarrenMcCulloch andWalter Pitts in 1943 [30], posits
that the human mind functions like a computer (turning machine
[56]), and cognitive processes, including thinking, reasoning, and
problem-solving, can be modeled as information processing sys-
tems. Hilary Putnam introduced CTM into philosophy, advocating
for machine functionalism, which identifies mental states with ma-
chine states of a probabilistic automaton [40].Later, Fodor combined
CTMwith the Representational Theory of Mind (RTM), focusing on
mental representations and proposing that mental activity involves
Turing-style computation over a language of thought [19]. Overall,
CTM conceptualizes thoughts as software running on the hardware
of the brain, a perspective that has guided much of AI research and
cognitive psychology [20, 32].

Integrating ToM into AI represents is significant area of interest
even in the current landscape of AI development, attracting consid-
erable interest among scholars. This line of thought, which posits
that AI systems equipped with ToM could understand and interpret
the mental states of others, is seen as a crucial step towards more
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advanced, socially aware AI [10, 60]. Various methods are being
explored to develop CTM in AI. These include applying inverse re-
inforcement learning while treating CTM as a multi-agent problem
[7], using game theory for CTM formulation [23], and employing
Bayesian inference to enable agents to form mental models through
observation [59]. Additionally, theoretical frameworks like the mu-
tual theory of mind are being developed to enhance long-term
human-AI interactions [57].

4 EMBODIED SOCIAL COGNITION THEORIES
The theories and frameworks discussed earlier, while important,
exhibit notable limitations [25, 34, 46]. One primary limitation
is their tendency to conceptualize the mind as an isolated entity,
capable of simulating, theorizing, and inferring others’ mental states
solely through observation. This perspective, known as the inner-
world hypothesis, has been critiqued by Fuchs and De Jaegher
[21] for its oversimplification of mental processes. Additionally,
theories such as ToM often localize social cognition within a single
participant’s mind, assuming a third-person observational stance
rather than an interactive one. Another critical shortcoming of these
approaches is their lack of emphasis on embodiment. They adhere
to cartesian dualism, the separation of mind and body as proposed
by René Descartes, leading to a reductive view of social cognition.
In contrast, the embodied social cognition approach, as discussed by
Meier et al. [31], and Niedenthal et al. [36], emphasizes the integral
role of physical embodiment in social interactions, moving beyond
the view of the body as merely a transmission device between two
‘cartesian minds.’

These limitations are also highlighted in the works of Such-
man and Damiso. Suchman’s work in “Plans and Situated Actions”
critiques the symbolic, plan-based AI systems for their failure to ac-
count for the situated nature of human interaction [53]. She argues
that human actions are more contingent and emergent in real-world
contexts than what is often assumed in symbolic AI models. Simi-
larly, Damasio argues against the traditional separation of emotion
and reason, showing that emotions are integral to rational thinking
[12]. He demonstrates through neurological studies how emotional
aspects are crucial for effective decision-making, challenging the
cartesian dualism of separating mind and body. These critiques
highlight the need for AI to integrate more holistic models that
encompass not only computational aspects but also the embodied
and socially situated nature of cognition [54].

4.1 Enactivism
Embodied cognition, particularly enactivism, moves away from
dualism by positing that cognition emerges from sensorimotor
activity and interaction with the environment rather than from pas-
sive observation [48]. Enactivism is categorized into three varieties:
autopoietic, sensorimotor, and radical [58]. Autopoietic enactivism,
as described by Di Paolo and Thompson [54], views cognition as
an organism’s active modification of its relationship with the en-
vironment to maintain its identity, blurring the line between men-
tal and non-mental processes. Sensorimotor enactivism focuses
on cognition by actively exploring the environment and forming
sensorimotor dependencies, essentially ‘thinking by doing’ [48].
Radical enactivism, on the other hand, rejects the notion of mental

states and internal representations, arguing that cognition is simply
dynamic, adaptive interactions with the environment [8, 11, 58].
This approach analyzes cognition through the interplay of biologi-
cal, sensorimotor, and social dynamics without relying on internal
mental representations.

Figure 2: Degrees of participation and sense-making [16]

4.2 Participatory Sensemaking (PSM)
Participatory Sensemaking (PSM) is a cognitive framework by Di
Paolo and De Jaegher, grounded in enactive cognition, to under-
stand social cognition. It positions itself close to autopoietic enac-
tivism but incorporates elements from sensorimotor enactivism.
PSM emphasizes the embodiment of interaction, evolving levels of
autonomous identity, joint sensemaking, and experience, focusing
on how understanding is collaboratively built through physical
exploration and interaction [15].

From an enactive standpoint, social cognition is seen as a byprod-
uct of social interaction, where participants unconsciously coordi-
nate movements and speech, akin to coupled physical and biological
systems [15, 54]. PSM is formally defined as “The coordination of
intentional activity in interaction, whereby individual sensemaking
processes are affected, and new domains of social sensemaking can
be generated that were not available to each individual on their
own“ [15].

The effect of coordination and interaction on sensemaking can
be analyzed through different degrees of participation in social
interaction (Figure-2), as outlined by Di Paolo and De Jaegher [15].
For example, in a scenario where two individuals build with Lego
blocks, individual sensemaking occurs when they work indepen-
dently without shared meaning. Orientational sensemaking arises
when one individual influences or is influenced by the other’s build-
ing approach, leading to an exchange or modification of ideas. This
spectrum illustrates how participation levels affect the emergence
of shared understanding in social interactions.

5 MOVING TOWARDS EMBODIED SOCIAL
COGNITION IN AI

Contemporary AI research is increasingly acknowledging the im-
portance of embodiment and social context. This shift is evident in
developing AI systems designed to understand and interact with hu-
mans in more nuanced and contextually aware ways. For instance,
in robotics, researchers are focusing on developing socially aware
robots that can understand and respond to human emotions and
social dynamics, as seen in the work of Breazeal [3] on sociable
robots. Additionally, AI in healthcare is being tailored to consider
patients’ emotional and social contexts, enhancing the effectiveness
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Figure 3: 4-Point Scale of OCSM Parameters

of AI-assisted therapies and diagnostics [38]. In computational co-
creativity, systems like Drawing Apprentice[14], Shimon [24], etc.
have been developed to enable embodied co-creation with AI agents.
Scholars have also proposed interaction frameworks to support em-
bodied meaning construction through bidirectional communication
between AI and humans in co-creative tasks [22, 42].

Integrating embodied social cognition into AI requires reliable
methods for understanding and quantifying the dynamics of in-
teraction. As social cognition involves more than just processing
information; it also encompasses interpreting and responding to
complex and dynamic social interactions. The Observable Creative
Sensemaking (OCSM) [16] framework is one example of how this
can be achieved. While it’s not the only method for facilitating
social cognition in AI, frameworks like OCSM offer valuable tools
for developing AI that can navigate and respond to the nuances
of social interactions. Drawing on principles from Participatory
Sensemaking (PSM) [15], OCSM offers a methodology for quanti-
fying interaction dynamics by focusing on observable behavioral
states within creative processes, especially in nuanced, non-verbal,
and embodied contexts.

OCSM functions based on three key observable behavioral di-
mensions: participation, newness, and appropriateness, each as-
sessed on a 4-point qualitative scale as shown in Figure-3. The scale
for ‘participation’ assesses the degree of involvement and contribu-
tion of individuals in the creative process, ranging from individual
exploration to collaborative engagement. ‘newness’ measures the
novelty of contributions within the context of the interaction, rang-
ing from repetition of a previous idea to introducing a new idea.
Lastly, ‘appropriateness’ gauges the relevance and suitability of
contributions to the context of the interaction, from being entirely
off-topic to highly pertinent. This structure enables the continu-
ous and systematic quantification of interaction dynamics over
time, effectively capturing the nuances of social interactions. Its
focus on observable behavioral states facilitates the integration of
OCSM into AI agents, enabling the measurement of these critical
dimensions in real-time interactions.

6 CASE STUDIES
In this section, we present two case studies to illustrate the practical
application of OCSM in expanding AI capabilities by integrating
embodied social cognition. The first case study details our ongo-
ing project using the OCSM to improve decision-making in an
embodied co-creative dance AI. The second, a speculative study,
explores applying OCSM to text-to-image AI systems for enhanced
socio-cognitive abilities.

6.1 Case study-1: Social cognition through
OCSM for LuminAI

6.1.1 Background: Our co-creative dance AI application (shown in
Figure-4), called LuminAI [26, 28], integrates OCSM into its opera-
tions, utilizing its five-module software design: perception, descrip-
tion, learning, transformation, and selection [55]. This integration
occurs across both training and interaction phases, enhancing in-
teractive dance capabilities.

6.1.2 Objective: The goal is to evolve the co-creative dance AI
agent into a more intuitive and responsive dance partner that can
understand and adapt to the creative process of human dancers
through OCSM.

6.1.3 Implementation: During the training phase, the co-creative
dance AI system employs three key modules:

• Perception Module: This module processes a dataset of
videos featuring dancers improvising. It focuses on distin-
guishing the dancer from the background and identifying
keyframes based on the dancer’s movements.

• Description Module: Here, expert dancers create a dataset
by annotating the keyframe movements with OCSM state
descriptors.

• Learning Module: In this module, we utilize the dataset
created earlier to train a neural network to recognize body
actions and OCSM state descriptors. This training is vital
because the neural network learns to categorize the dataset
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Figure 4: LuminAI Installation [55]

into distinct clusters and has the ability to attribute simi-
lar OCSM state descriptors during a live interaction, thus
enabling social cognition based on observable embodied be-
havioral states.

In the interaction phase, the co-creative dance AI system utilizes
the remaining modules:

• TransformationModule:As dancers perform, a Kinect sen-
sor captures their movements. The transformation module
utilizes the trained model from the training phase to apply
OCSM descriptors to understand the ongoing interaction by
determining the appropriate movement cluster.

• Selection Module: This module selects the most similar
sequence from the identified movement cluster based on
the observed body action sequence. It ensures that the AI
agent’s responses are aligned with the ongoing interaction
dynamics.

6.1.4 Outcome: The use of OCSM in co-creative dance AI demon-
strates its effectiveness in both descriptive and generative capacities.
In the training phase, OCSM is used for labeling and categorizing
dance movements. During live interaction, it serves as a heuris-
tic to guide real-time improvisational responses. This showcases
the advantages of integrating embodied social cognition in AI via
OCSM, enabling it to effectively comprehend and respond to the
context of ongoing interactions.

6.2 Case Study-2: Enhancing a Text-to-Image
Generative AI Model with OCSM

6.2.1 Background: A text-to-image generative AI model, like Mid-
journey, typically creates visual content from textual prompts. In
this speculative case study, we propose integrating the OCSM into
Midjourney to enhance its understanding of the creative process.

6.2.2 Objective: The goal is to speculatively transformMidjourney
into a co-creative AI partner that can adapt to and participate in
the user’s creative journey rather than simply acting as a tool for
image generation.

6.2.3 Implementation: The implementation of OCSM into Midjour-
ney might involve the following three interaction mechanisms-

• PromptUnderstanding:Midjourney uses the OCSM frame-
work to evaluate ’Newness’ and ’Appropriateness’ in user
prompts. The AI model gauges these parameters to under-
stand the user’s creative intent and expectations.

• Adaptive Image Generation: The AI model not only ana-
lyzes prompts for ’Newness’ and ’Appropriateness’ but also
engages in dialogue with users. This interaction, aiming for
’Orientational Sensemaking’, helps align the AI’s output with
the user’s evolving creative direction, adapting the image
generation process accordingly.

• Interactive Feedback Loop: Through ongoing dialogue,
Midjourney refines its understanding of ’Newness’ and ’Ap-
propriateness’ based on user feedback and generatesmultiple
image options. This collaborative process, moving towards
’Joint Sensemaking’, allows the AI to adjust its outputs, en-
hancing the co-creative experience with the user.

6.2.4 Outcome: Integrating OCSM into Midjourney enables AI to
participate actively in the creative process. The model becomes
more adept at interpreting creative prompts, engaging in a dynamic
dialogue with users, and producing images that are not only con-
textually relevant but also aligned with the user’s evolving creative
journey. This case study demonstrates the potential of social cogni-
tion via OCSM in enriching the capabilities of generative AI models,
particularly in creative and interactive applications.

7 DISCUSSION AND CONCLUSION
Integrating social cognition into AI presents significant challenges,
particularly in accurately interpreting nuanced human intentions.
Approaches like the computational theory of mind, while useful,
have limitations, notably in their lack of emphasis on embodied
and situated interaction. Theories such as participatory sensemak-
ing and frameworks like OCSM offer solutions to these issues but
depend heavily on extensive annotated data from domain experts.
Furthermore, implementing models like OCSM in AI involves com-
plex processing of non-verbal cues, which brings about technical
difficulties and ethical concerns, especially regarding privacy and
autonomy. Therefore, developing ethical frameworks and extend-
ing the use of models like OCSM across various domains is crucial
for creating AI systems that are not only technically advanced but
also socially and ethically attuned.

In this paper, we have explored the evolving landscape of Artifi-
cial Intelligence (AI), focusing on integrating social cognition. We
have traced AI’s historical roots in emulating human cognition and
examined foundational theories like Bands of Cognition, Society of
Mind, and Subsumption Architecture, highlighting the importance
of social cognition in AI. Additionally, we discussed the prevalent
approach of using computational models of the theory of mind for
social cognition in AI, pointing out their limitations in addressing
the social and embodied aspects of human cognition.We introduced
alternative frameworks like PSM and OCSM, demonstrating their
application in AI through case studies such as co-creative dance AI
and potential uses in text-to-image AI systems.
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