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defined for couples (u, V) consisting of a section u €

['(L) and a hermitian connection V with curvature Fy.
While the critical points of these functionals have been
well-studied in dimension two by the gauge theory com-
munity, it was shown in [52] that critical points in higher
dimension converge as € — 0 (in an appropriate sense) to
minimal submanifolds of codimension two, with strong
parallels to the correspondence between the Allen-Cahn
equations and minimal hypersurfaces. In this paper, we
complement this idea by showing the I'-convergence of E,
to (27 times) the codimension two area: more precisely,
given a family of couples (u., V) with sup_ E.(u, V) < oo,
we prove that a suitable gauge invariant Jacobian J(u,, V)
converges to an integral (n — 2)-cycle T, in the homology
class dual to the Euler class ¢;(L), with mass 27M(T) <
liminf,_ E.(u., V). We also obtain a recovery sequence,
for any integral cycle in this homology class. Finally, we
apply these techniques to compare min-max values for

the (n — 2)-area from the Almgren-Pitts theory with those
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obtained from the Yang-Mills-Higgs framework, showing
that the former values always provide a lower bound for the
latter. As an ingredient, we also establish a Huisken-type
monotonicity result along the gradient flow of E,.

1 | INTRODUCTION
1.1 | Background and motivation

The discovery in the late 1970s of deep connections between minimal hypersurfaces and the
Allen-Cahn equations opened up a rich line of investigation, shedding light onto the structure
of solutions of semilinear elliptic equations and the existence theory for minimal hypersurfaces.
Like minimal hypersurfaces, which arise as critical points of the (n — 1)-area functional, solutions
of the Allen—-Cahn equations

€Au = %W’(u) (1.1)

(wheree > 0and W : R — [0, 00) is a double-well potential) arise naturally as critical points for

the Allen-Cahn energies
w
F.(u) :=/ (Eldu|2+ ﬂ)
a\2 €

on WH2(Q, R). A recurring theme in the study of the correspondence between solutions of (1.1)
and minimal hypersurfaces is the convergence not only of critical points, but of the variational
theory for the functionals F, to that of the (n — 1)-area on the space of (n — 1)-boundariesase — 0.
The earliest results in this direction were obtained by Modica and Mortola [47] who established the
asymptotic convergence of F to (a constant multiple of) the perimeter functional for Caccioppoli
sets, in the framework of T-convergence introduced a few years earlier by De Giorgi [18]. De Giorgi’s
I'-convergence provides a natural weak notion of convergence for variational problems involving
a singular perturbation, well-suited to establishing convergence of minimizers to minimizers (see
[11] and [17] for a contemporary treatment of I'-convergence, and [1] for its application to the
study of phase transitions). The work of Modica-Mortola was later generalized by Modica [46]
and Sternberg [62], in their resolution of some conjectures of Gurtin [25].

While the I'-convergence results of [46, 47], and [62] imply that energy-minimizing solutions
of (1.1) (rather, their level sets and energy measures) converge to area-minimizing hypersurfaces,
a series of results obtained over the last 5 years [20, 22, 24] show that the min-max theory for the
Allen—-Cahn functionals F, likewise converges to the min-max theory for the area functional on
(n — 1)-boundaries in the geometric measure theory framework developed by Almgren and Pitts
[50]. Building on the analytic work of [33] and [66], these and related results have established
the min-max theory for the Allen-Cahn functionals as a valuable regularization of the Almgren-
Pitts min-max construction of minimal hypersurfaces, finding use, for instance, in Chodosh and
Mantoulidis’s work on the Multiplicity One conjecture in three-manifolds [16].
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672 | PARISE ET AL.

In view of these and other applications, it is natural to seek an analogous correspondence
between certain geometric elliptic systems and minimal submanifolds of higher codimension. In
[49], the second- and third-named authors proposed a natural analog in codimension two, with
the role of the Allen-Cahn equations taken on by a well-studied family of elliptic systems from
gauge theory. Specifically, [49] considers the self-dual U(1)-Yang-Mills- Higgs energies: the gauge-
invariant functionals E.(u, V) acting on a section u € I'(L) and metric-compatible connection V
on a hermitian line bundle L — M by

E.(u,V) :=/ (|Vu|2+e2|Fv|2+%<1— |u|2)2>.
M 4e

The functionals E, are distinguished from formally similar functionals—such as fM(|Vu|2 +
AFy|? + ﬁ(l - |u|2)2) for 1 # e>—by their so-called self-duality: namely, E, enjoys additional
symmetry properties, such that minimizers of E, for bundles L — ¥ over a Riemann surface ?
satisfy a special first-order system known as the vortex equations.

The study of these functionals has a long history, which we do not attempt to survey here. In
his thesis work [64, 65], Taubes classified finite-energy critical points of E, for the trivial bundle
L =~ C x R? - R?, showing that all such critical points satisfy the first-order vortex equations,
are determined—up to gauge equivalence—by the finite zero set u~{0} c C (counted with mul-
tiplicity), and have quantized energy E.(u, V) = 22N € 27N corresponding to the mass of the
zero set N = |u~'{0}| (see [64, 65], and [35] for details). The asymptotic analysis as € — 0 of
the rescaled functionals E. was first taken up by Hong, Jost, and Struwe, who showed in [31]
that for minimizers (u., V.) of E. on line bundles L — X? over a Riemann surface X, energy
and curvature concentrate (subsequentially) as € — 0 at a collection of | deg(L)| points in Z,
outside of which u, converges to a unit section u, and V. to a flat connection V, for which
Voug = 0.

The results of [49] provide a far-reaching generalization of Hong-Jost-Struwe’s analysis, char-
acterizing the limiting behavior of arbitrary critical points on line bundles over a base manifold
M" of general dimension. Namely, it is shown in [49] that for sequences (u., V) of critical points
satisfying a uniform energy bound E.(u,, V.) < C, the energy densities

(1 - |ue|2)2

e.(u, Vo) i=|Veue|* + €2|FV€|2 + 2e2

converge subsequentially weakly in (C°)* to (the weight measure of) a stationary integral (n — 2)-
varifold V in M—that is, a (possibly singular) minimal variety of codimension two. In particular,
this gives a codimension-two analog to the results of Hutchinson-Tonegawa [33] for the Allen—
Cahn equations, showing that critical points for E, converge cleanly to critical points of the (n —
2)-area functional in the ¢ — 0 limit. We note, moreover, that the analysis in [49] depends strongly
on the specific choice of coupling constants in the definition of E,, suggesting that the self-dual
U(1)-Yang-Mills-Higgs energies provide more or less the unique codimension-two analog for the
Allen-Cahn energies, at least among similar functionals of Yang-Mills-Higgs type.

Remark 1.1. In particular, the convergence behavior for critical points (u,, V.) of E, in the O(1)
energy regime is considerably simpler than its counterpart for the non-gauged Ginzburg-Landau
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energies

w2y
M 4¢2

in the O(| loge|) energy regime, whose critical points in general exhibit partial energy concentra-
tion along a stationary, rectifiable (not necessarily integral) (n — 2)-varifold (cf., [7, 8, 15, 27, 30, 41,
42,55, 61, 63] for details of the asymptotic analysis of the complex Ginzburg-Landau equations, as
well as [9, 10, 51-53, 57] for related results for other functionals of Yang-Mills-Higgs type whose
behavior resembles that of G.). As remarked in [49], the variational theory for the functionals G,
is best understood as a relaxation of that for the Dirichlet energy on singular S!-valued maps, and
its relation to geometric measure theory and minimal submanifolds is subtle, and qualitatively
quite different from that of the Allen-Cahn or self-dual Yang-Mills-Higgs energies.

Building on the ideas of [49], the aim of the present paper is to understand to what extent
the variational theory for the functionals E. converges to that of the (n — 2)-area, in the spirit of
similar results for the Allen-Cahn functionals. Our chief analytic result provides a key step toward
answering this question, establishing the I'-convergence of the functionals E, for pairs (1, V) on a
hermitian line bundle L — M to the mass functional on the space of integral (n — 2)-cycles dual to
c1(L). This convergence result—whose precise formulation we give in the following subsection—
may be thought of as a codimension-two analog of the classical results of Modica and Mortola;
and in spite of the very different setting, its proof bears a surprising resemblance to the original
arguments in [47]. In addition to implying the convergence of E.-minimizing pairs (u., V) to
area-minimizing (n — 2)-cycles, the I'-convergence framework—together with some topological
arguments—allows us to compare the energy of min-max critical points for E, to the areas of
corresponding min-max minimal varieties, along the lines of the comparison results for the Allen-
Cahn and Almgren-Pitts min-max constructions obtained in [22, 24].

1.2 | Convergence results for the self-dual Yang-Mills-Higgs energies

Let L —» M" be a hermitian line bundle over a closed, oriented Riemannian manifold (M", g).
Given a metric connection V on L, recall that the curvature Fy € Q*(M) ® $o(L) is given by

Fy(X,Y)u :=[Vx,Vylu — Vix yju = —iwy(X, Y)u 1.2)
for some two-form wy € Q*(M), which we will frequently identify with Fy when there is no con-
fusion. Given a pair (u, V) consisting of a section u € I'(L) and metric connection V, we define as

in [49] the two-form ¥(u, V) € Q*(M) by

¢(u, V)(X, Y) = 2(iVXu, Vyu>,

which is easily seen to satisfy the pointwise bound [¢(u)| < |Vul|? (cf., [49, Section 2]). For the
I'-convergence results, we will be particularly interested in the two-forms

Jw,V) :=9pw, V) + 1 — [u|P)ewy = d{(Vu, iu) + wy, (1.3)
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674 | PARISE ET AL.

whose role should be compared to that of the one-forms 1/2W(v) - dv for real-valued functions
U : M — R in the work of Modica-Mortola [47].

As with any I'-convergence result, our main theorem consists of two parts. First, we show that
for any family of pairs (u., V) with

sup E.(u., V) £ A < o0,
>0

there exists a subsequence (uej, Vej), with €; — 0, to which we can associate a limiting integral
(n — 2)-cycle I' with 2zM(T") < A. Second, we show that any integral (n — 2)-cycle dual to ¢;(L)
can be obtained in this way. More precisely, we have the following.

Theorem 1.2 (I'-convergence). For a hermitian line bundle L — M as above, the following hold:
() Liminfinequality. Given a family (u., V) of smooth sections with |u.| < 1 and metric connec-
tions with uniformly bounded energies E.(u., V.) < A, there exists an integral (n — 2)-cycle T
Poincaré dual to c;(L) € H*(M; Z), the Euler class of L, such that, up to a subsequence,
J(u,, V)= 2xnT, ase—0,

as currents. Moreover, the following liminf inequality holds:

27M(T) < lim ié‘lf E.(u., V).
€—

(ii) Recovery sequence. Given an integral (n — 2)-cycle T whose homology class [T'] € H,_,(M; Z) is
dual to ¢,(L) € H*>(M; Z), there exists a family (u., V.) of smooth sections and connections on
L such that

J(u,,V.) = 2nT, ase— 0,
as currents, and

lin(l)Ee(us, V) = 2zM(T).

[d
Remark 1.3. Since the curvature forms w, := iFy_satisfy

J(ue, Ve) = we + d{V.u,iu.),

if E.(u., V.) = O(1), the boundedness of (V u,, iu. ) in L>(M) together with part (i) above implies
that the curvatures w, also have a subsequential limit as currents. Simple examples show that
this limit may fail to coincide with 27T under our assumptions—for example, by taking u, =
1 and V., = d — ia for a fixed one-form a with da # 0 on the trivial bundle C X M. However,
assuming that V. is critical for the energy E.(u., -)—hence, a minimizer by convexity of E. in

V.—the corresponding Euler-Lagrange equation (2.3) gives (V. u,, iu.) — 0, since €2
L?(M). Thus, in this case

w. = 0in

27T = lim w,
e—0
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as currents. Together with Corollary 1.4 below, this implies that for a sequence of minimizers
(u¢, V), the curvature forms iwe converge subsequentially to an integral, area-minimizing cycle
I'whose associated varifold agrees with the energy concentration varifold V from [49, Theorem 1.1]
(up to a subsequence). This answers a question raised in [49].

Readers familiar with the I'-convergence theory developed for the normalized Ginzburg-

| Ge | in recent decades (see in particular [2-4, 13, 38]) will notice some formal
oge

similarities between the above result and analogs for the functionals | IGE X
oge

Landau functionals

Namely, the results of
[3] and [38] show that for any complex-valued map u : M — C with

G.(u) < 2mAlog(1/e)
and 0 < € < 1 sufficiently small, the Jacobian 2-form
Ju 1= 2dul A du?

(which coincides with both ¢(u, V) and J(u, V) when V is the standard flat connection on the triv-
ial bundle) is weakly close to (27 times) an integral (n — 2)-boundary I'" of mass M(T") < A + o(1).
The proof requires some delicate analysis: in particular, the mass ||Ju||;1 of the Jacobians them-
selves is not bounded in general by the energy |C1;(E)_(gue)| for small €, and the proof of the associated

I'-convergence result relies instead on a subtle application of the degree estimates of Sandier [54]
and Jerrard [36] (see also [56, 59]).
In our setting, by contrast, the two-forms J(u, V) are easily seen to enjoy a pointwise bound

1 2
(u, V)| < |Vul® + (1 = [ul?)|Fy| < |Vul|® + €*|Fy|* + 4—€2(1 — ul®) (1.4)

by the energy integrand e.(u, V), so that ||J(u, V)||;1 < E.(u, V) automatically. As a consequence,
to prove part (i) of Theorem 1.2, the only challenge lies in showing that the limiting (n — 2)-cycle
I is integer rectifiable (and lies in the correct homology class).

To achieve this, we establish a compactness result for sections u, € I'(L) with E.(u,, V.) = 0(1),
showing that they converge subsequentially (after change of gauge) to a singular unit section,
whose topological singular set I' coincides with the limit of i] (ue, V). These singular unit
sections (modulo the action of the gauge group) provide a natural codimension-two analog of
Caccioppoli sets, and it is not difficult to see that their topological singular sets are integral (n — 2)-
cycles (indeed, this is a consequence of results in [3] and [37]). Again, we note that the broad
outlines of the argument are very much reminiscent of those in [47] for the Allen-Cahn energies,
with the bound (1.4) playing the role of the simple estimate |1/2W(v) - dv| < %ldvl2 + WO for
real-valued functionsv : M — R. )

1.3 | Applications to the study of minimizers and min-max
constructions

As an immediate corollary of Theorem 1.2, we see that minimizers of E, converge to (n — 2)-cycles
which are area-minimizing in their homology class, answering a question raised in [49].
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Corollary 1.4. Let L — M be a nontrivial hermitian line bundle over a closed, oriented n-manifold
™", g). If (u., V) minimize E.(u, V) among all pairs (u, V) on L, then

lin(l) E.(u., V) =2rmin{M(T) | T € Z,_,(M; Z) Poincaré dual to c;(L)}, (1.5)
€—>
and along a subsequence € = €; — 0, we have weak convergence

limJ(u., V,) = limwy_ = 2z2T

€—0 e-0 €

of J(ue, V) and the curvatures wy_to an (n — 2)-cycle I' minimizing mass in the homology class dual
to ¢ (L).

With Theorem 1.2 in place, the proof of the corollary follows standard lines: by part (i)
of the theorem, we know that the forms J(u., V.) for a minimizing family (u., V.) converge
subsequentially to an integral (n — 2)-cycle T, in the correct homology class, of mass M(T) <
i liminf._, E.(u, V), providing one inequality in (1.5). The opposite inequality follows from
part (ii) of the theorem, which guarantees the existence of a recovery sequence (u,, V. ) for a mass-
minimizing cycle I'. The convergence of the curvature two-forms wy_ follows from the discussion
in Remark 1.3.

For the min-max applications, we will focus on the trivial bundle L = C X M — M over a given
closed, oriented (M", g). We then consider a Banach space X consisting of pairs (u,V = d — ia),
equipped with an appropriate norm, with respect to which E, is a smooth functional satisfying a
variant of the Palais—Smale condition (as in Section 5 below or Section 7 of [49]). Removing from
X the degenerate set

Xy :={u,V)eX : u=0}

(on which E, ~ 1/¢? blows up as € — 0), we see that the action of the gauge group of maps G =
Maps(M, S') given by

¢, V) :=(¢-u,V—i¢p*(dd))
restricts to an action on the complement X \ X,,.
For the purposes of intuition, we can view the gauge-invariant functionals E, as functions on
the moduli space
whose topology may be compared with that of the space

Z =01, \(M;Z)C Z,,(M;Z)

ofintegral (n — 2)-boundaries in M, equipped with the flat metric. Indeed, we claim (see Section 5)
that there are geometrically natural isomorphisms between the homotopy groups

(O ﬂk(M,*) bd ﬂk(Z,O),
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where *€ M denotes the collection of pairs (u, V) € X with |[u|=1and Vu=0,and 0 € Z is
the O-cycle. (Intuitively, one can think of this isomorphism as being induced by the zero locus
map (u, V) — u~{0}, but of course this will not define a continuous map into Z in practice.) This
isomorphism is nontrivial only when k = 1 or 2.

For k = 1,2, to any class a € 7 (Z,0), one can associate a min-max width

W(a) := inf sup M(p(x)) (1.6)

X xesk

for the (n — 2)-area functional. In practice, we work with the discretized variant W*(«) of these
min-max widths introduced by Almgren and Pitts (see [50], or Section 5 below), which correspond
to the masses of stationary (n — 2)-varifolds. Likewise, for each nontrivial class 8 € 7 (M, *) and
€ > 0, one can consider the min-max energies

EPB) = }2% max E.(F(x)),

which are realized as critical values of the functionals E.. (In practice, rather than working with
families in 77, (M, %), in Section 5 we work equivalently with the families [0,1] = X and D?> — X
giving their lifts in the Banach space X.) In rough terms, the results of Section 5 yield the following
comparison.

Theorem 1.5 (Min-max comparison). Let M be the moduli space of pairs (u, V) with u # 0 and Z
the space of integral (n — 2)-boundaries as above. With respect to the aforementioned isomorphism
@ : 1. (M, %) > m(Z,0), the min-max energies satisfy

liminf £.(8) > W*(@(8)) 1.7)

for any 8 € m (M, *). In particular, the mass of the stationary integral (n — 2)-varifold Vy g
associated to the critical points (u, V.) by the results of [49] is bounded below by the mass of the
corresponding min-max (n — 2)-varifold V gy produced by Almgren’s min-max construction.

While we have restricted our attention here to the comparison of one- and two-parameter min-
max constructions associated to the homotopy groups of M and Z, we believe that the techniques
used in the proof of Theorem 1.5 should apply to all natural min-max constructions for the energies
E., with appropriate modifications to the topological part of the argument. In particular, while
Theorem 1.5 can be compared to [24, Proposition 8.19] in the Allen-Cahn setting, we expect that
the same ideas can be used to prove an analog of [22, Theorem 6.1] treating higher-parameter
families detecting cohomology classes in H*(M; Z) of higher degree.

Moreover, let us point out that in the Allen-Cahn setting, Akashdeep Dey has recently suc-
ceeded in proving a bound in the opposite direction [20], concluding that the min-max energies for
the Allen—-Cahn functionals in fact coincide with the corresponding Almgren-Pitts widths in the
€ — 0limit. Though establishing a codimension-two analog of Dey’s bound for the self-dual Yang-
Mills-Higgs functionals lies beyond the scope of the present paper, we optimistically conjecture
that such an estimate should hold, giving equality in (1.7).

A key element in the proof of the min-max comparison theorem is the L? gradient flow
associated to the Yang-Mills-Higgs energies: that is, the following system of coupled nonlinear
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parabolic equations:

. 1
oy = =ViVu + E(l — lu, |Puy,
(1.8)

a[OCt = —dde([ + E_Z(iu[, V[“[),

subject to some initial data (ug, Vo, = d — ictp). The necessity of its introduction is due to some
technical difficulties emerging in the proof of Theorem 1.5 when passing from maps continu-
ous in the flat norm, which are given by the I'-convergence theory, to maps continuous in the
mass norm, the relevant ones in the Almgren-Pitts setting. Indeed, the former can exhibit a phe-
nomenon called concentration of mass whereby the energy density accumulates at small scales,
preventing a direct application of the so-called interpolation theory developed by Marques, Neves
and collaborators, which would give a corresponding continuous map in the mass norm. (We
note that, in codimension one, the concentration-of-mass problem can be avoided by appealing
to results of Zhou [67].)

Since we expect the gradient flow of E, to approximate a (weak) mean curvature flow of codi-
mension two, a Huisken-type monotonicity formula should be expected to hold, thus providing
the desired (n — 2)-energy density bounds at all scales after running the flow for a fixed amount
of time (uniformly in €). This provides us with a canonical regularization preventing concentra-
tion of mass, without increasing the total energy. At the end of the paper, we check that the flow
satisfies long-time existence, uniqueness and continuous dependence on the initial data.

2 | NOTATION AND PRELIMINARIES

Let (M", g) be a closed, oriented Riemannian manifold and let L — M be a complex line bundle
over M, endowed with a hermitian structure (-, -). We will denote by W : L — R the nonlinear
potential

W = 301 Y,

and for a hermitian connection V on L, a section u € T'(L), and a parameter € € (0, 1), we denote
by E.(u, V) the scaled Yang-Mills-Higgs energy

E.(u,V) := / (IVul? + |Fy|* + e 2W(w)) dvol, = / e.(u, V) dvol,, 2.1)
M M

where dvolg denotes the volume form on M, e.(u, V) is the energy density and Fy is the curvature
of V. As discussed in the introduction, working with U(1)-connections allows us to identify Fy
with the real, closed, two-form w = wy via

Fv(X, Y)u = [VX, Vy]u - V[X,y]u = —ia)v(X, Y)u (22)

The Euler-Lagrange equations for critical points of (2.1) are given by

<

<

e
I

= =1 - [uPu,
% (2.3)

™
r
QU
*
e
<
|

= (Vu,iu).
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Here V* denotes the formal adjoint of V and d* the formal adjoint of d. We refer to [49, Sec-
tion 2] for further details and to the appendix of the same paper for the regularity of solutions to
these equations.

A key feature of the energies E, is their gauge-invariance: that is, for any ¢ € G = Maps(M, S1),
the energy E.(u, V) is invariant under the change of gauge

¢, V)= (¢u,V —i¢*(do)),
corresponding to a fiberwise rotation of L. As discussed in the introduction, an important first step
in understanding the I'-convergence theory for E. is identifying an appropriate gauge-invariant
analog of the Jacobian two-form 2du' A du? for complex-valued maps. To this end, for a pair
(u, V), we consider the two-forms ¥ (u, V) given by
P(u, VYIX,Y) 1= 2iVyu, Vyu),
for vector fields X and Y, and define the gauge-invariant Jacobians
Jw, V) := 3, V) + (1 = [ulP)wy.

A straightforward computation shows that

d(Vu, in) = p(u) — [ulPwy = J(u, V) - wy, 2.4
from which we deduce that J(u, V) is closed and cohomologous to w. Moreover, as mentioned in

the introduction, it is easy to check that 1(u, V) satisfies the pointwise estimate |(u, V)| < |Vul?,
which together with Young’s inequality implies

1 2
[J(u, V)| < |Vul? + 2wy | + E(l —ul®)” = e.(u, V), (2.5)

so that J(u, V) has L! norm bounded above by E.(u, V). Throughout the paper, we identify J(u, V)
with an (n — 2)-current, with the assignment

J(u, V),n) :=/J(u,V)/\7;

M

for all » € Q"2(M); under this identification, note that the mass of J(u, V) is precisely
M (u, V) = IV, Vi < Ee(u, V).

Finally, given a smooth reference connection V,, on L with associated curvature two-form w,
it will be useful to note that, by (2.4), we can write

J, V) =d(Bu,V))+ w, (2.6)

w100 Aq (172 vdo/Z001°01/10p/w0o" Kay1mKxeaqriaurfuoy/:sdny woiy papeofumod *T 20T ‘TIE0L60T

“Kreiquy Ansaatun [y

dYy) SUONIPUOD) PUE SWLIDL Y1 39§ “[$Z0Z/01/10] U0 Aeiqr] dutuQ Adqim

oo Kol

royue

So[n1 10j AIRIQET AUIUQ A9[IAY UO (SUOT

ASULDI' SUOWWO)) dANEa1) [qearjdde ayy Aq pautoos axe saponIe Y asn Jo



680 | PARISE ET AL.

where
Bu,V = Vy—ia) :=(Vu,iu) + a = (Vou,iu) + (1 — |u|*)a, 2.7)

implicitly using the fact that V can be written as V, — i, for « € Q!(M), so that wy = w, + da.

2.1 | Notions from geometric measure theory

For the convenience of the reader, we collect here some terminology and notation from geomet-
ric measure theory used throughout the paper. We follow [60] and we refer the reader to it for
further details.

We denote by 7, (M; Z) the space of integer rectifiable k-currents with finite mass. Recall that
an integral k-current is an integer rectifiable k-current whose boundary has finite mass (and, as a
consequence, is itself an integer rectifiable (k — 1)-current). We denote by I, (M; Z) the space of
k-dimensional integral currents in M and by Z;.(M; Z) the subset of those currents T € I;.(M; Z)
satisfying 0T = 0.

Given T € I;(M; Z) we denote by |T| the associated integral varifold and by ||T|| the induced
Radon measure on M. The definition of mass used in this paper is

M(T) := sup{T(¢) | ¢ € QM) lIgllcoa) < 13,
where the last norm is understood with respect to the Euclidean norm on covectors. Setting
M(S,T) :=M(S —T) for S,T € 1;(M; Z) we obtain a metric on I,(M; Z) known as the mass
metric. We can topologize the space I, (M; Z) differently via the so-called flat distance
F(S,T) :=inf{M(P) + M(Q) | S =T =P +9Q, P € I}(M; Z), Q € 1;.,(M; 2)},
for S,T € I,(M; Z). Writing F(T) = F(T,0), note that we trivially have

F(T) <M(T) forallT € 1,(M; Z).

Some further concepts from geometric measure theory relevant to the min-max comparison are
introduced in Section 5 below.

3 | THE LIMINF INEQUALITY

3.1 | The distributional gauge-invariant Jacobian and singular unit
sections

In the classical I'-convergence theory for the Allen-Cahn energies, it is important to iden-
tify the space of (n — 1)-boundaries in M with the distributional derivatives of functions in
BV(M,{-1,1}), which arise as limits of the functions ®(v.) for real-valued functions v, :
M — R with F.(v.) = O(1), where ®(s) := fos V2w (1) dlt//o1 v/2W(t) dt. Similarly, the study
of I'-convergence for functionals of Ginzburg-Landau type is closely related to the theory of
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distributional Jacobians for circle-valued (and, more generally, sphere-valued [2, 3, 37]) maps, but
the structure theory of these Jacobians does not play a direct role in the I'-convergence proofs,
since these results are not typically accompanied by compactness results for the given sequence
of complex-valued maps.

For our results, it will likewise be useful to identify the space Z,_,(M; Z) of integral (n — 2)-
cycles in M with the topological singularities (distributional Jacobians) of certain singular unit
sections of hermitian line bundles on M, arising as a limit of the two-forms J(u, V) for smooth pairs
(u, V). To this end, we seek to extend the definition of the (n — 2)-currentJ(u, V) to alarger class of
pairs (u, V) of lower regularity, generalizing the distributional Jacobian for complex-valued maps.

First, we need to understand the continuity of J(u, V) as a map into the space of (n — 2)-currents
D,,_,(M) with the (C')* metric. Given p € (1, ) and a fixed reference connection V,on L — M,
we introduce the norm

@, VIp == Nlulle@ny + IVottlliean + 11V = VollLea

on the space of smooth pairs u € I'(L) and V = V, — ia, and denote by X, (L) the metric space
obtained as the completion of the space of smooth pairs

u,V) =, Vy—ia), where |u| <1

with respect to the norm || - || ,. Note that, in a local trivialization, elements of X ,(L) can be iden-
tified with pairs (u, @) where « is a one-form in L? and u is a WP map to the unit disk D C C.
The precise definition of the norm || - ||, is somewhat arbitrary, and other equivalent norms
would work just as well. With respect to this norm, it is not difficult to check that the assign-
ment (u, V) » J(u, V) satisfies the desired continuity properties, summarized in the following
proposition.

Proposition 3.1. For a fixed reference connection Vyon L — M and p € (1, 2), given pairs (u, V)
and (v, V') satisfying |u| <1, |v| £ 1, and ||(u, V) — (v, V’)||p < 1, we see that the one-forms 5(u, V)
and B(v, V') given by (2.7) satisfy
18w, V) = B, V)lIrary < C(PX + [, VI, V) = (v, V’)Ilﬁ_l- (3.1)
Consequently, the assignment (u, V) — J(u, V) extends continuously to a map
Xp@), 1l - 1Ip) = (Dpa(M),(CH*)
where (D,,_,(M), (C')*) denotes the space of (n — 2)-currents equipped with the (C'(M))* norm.

Proof. Writing V = V, — i and V' = V,, — iy for a, 7 € Q' (M), it follows from (2.7) that

B, V) — (v, V") = (Vou, iu) — (Vou,iv) + (1 — |u|a — (1 - [v]*)y
= (Vo(u —v),iu) + (Vyu,i(u — v))

+ 1 = [ul®(e—n) + (o> = [ul®)n.
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682 | PARISE ET AL.

In particular, since |u| <1 and |v| < 1, letting p’ denote the Holder conjugate of p, we deduce
that

/ 1B, V) — Bw, V)
M

< / (IVo(u —v)| + [Voullu — vl + |a =7l + 2In||lu —v])
M

< IVo(u = V)l + 1IVoLllLean 1t — VIl e )
+ IV = V'liziany + 21V = Vollean lu = vl Ly g
< Clllw, V) = @, VOl + (I, Wl + 11, VOl Iu = vll e )]
< Cllw, V) = (0, V)l + (G, Il + 11, V)l = ol ]
for a constant C = C(p, M), where we used the fact that ||u — || (5s) < 2 in the last inequality.

Assuming that ||(u, V) — (v, V)| p < 1, the estimate (3.1) easily follows.
Now, by the characterization (2.6) of J(u, V), for any ¢ € Q"*~2(M), we have

0V =50, V0.01 = | [ g v) =B v A¢]
M

-| [ .9) - pw. vy Ak
M
< 1B, V) = B, VliianldS llcran-

The second equality follows from Stokes’ theorem. Together with the estimate (3.1), this implies
that

I (w, V) = I, VOllcranys < C(p, M)A + 11, DI, V) = (@, VI,

when ||(u, V) — (v, V)| p < 1. In particular, the assignment (u, V) = J(u, V) is continuous with
respect to the norms || - ||, and (C1(M))*, and therefore admits the desired extension

Xp@), 1l - 1Ip) = (Dpa (M), (C1)"). O
Consider now the subset of X ,(L) given by
V(L) :={u, V) € X,(L) : |u| =1 almost everywhere},
that is, the set of pairs (u, V) € X,(L) where u belongs to the space

U,(L) :={u € WHP(M,L) : |u| = 1 almost everywhere}
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of WLP unit sections. Note that for any (u, V) € V,(L) we have

Bu, V) = B, Vo),

so we can view both § and J = df + @, as functions on U',(L), independent of the connection V.
Notice that the definition of S(u) still depends on the initial choice of reference connection V,,
but of course the assignment U},  u ~ J(u) remains gauge-invariant and independent of V. In
particular, in any local trivialization—in which u becomes identified with a WP map to S! and
Vo = d — iay—we have S(u) = (du, iu) — ay, and J(u) = d{du, iu) coincides with the standard
distributional Jacobian.

The remainder of the subsection is devoted to recording some key properties of the operator
J : Up(L) = D,—»(M). At the local level, note that this reduces to the study of topological singu-
larities for maps in WP(M, S1), and the arguments that follow are largely drawn from [3] and
[37].

Proposition 3.2. For any u,v € U),(L), there exists an integer rectifiable (n — 1)-current S €
1,_1(M; Z) of mass

M) < 52 [ Vo ollu—ol

such that
J() —J(v) = 2738,

as currents. Moreover, J(u) = J(v) ifand only ifu = ¢e'¥v for some ¢ : M — S* harmonicand €
WLP(M, R)—that is, if u and v differ by a change of gauge.

Proof. To prove the first statement, we introduce the map
D : Up(L) X Up(L) » WHP(M, ST)
given by setting
D(u,v) 1= e Wilyp
in any local trivialization; indeed, note that the complex-valued map u0 is invariant under
change of gauge. By direct computation, one can check that the map w := ®(u, v) satisfies the

identity

(dw,iw) = p(u) — (V) — d(u,iv) = (Vy(u + v),i(u — v)).

/|dw|s/ Vot + 0)lu o],
M M

Hence
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684 | PARISE ET AL.

and the distributional Jacobian Jw = d{dw, iw) satisfies

Jw =d[Bw) — (V)] =J(u) - J(v).

By [2, Theorem 3.8], we can appeal to the coarea formula for maps in Wh1(M, S') to deduce the
existence of an integer rectifiable current S € 7,,_;(M; Z) of mass

M(S)si/ |dw|s/ Vot + 0)lu o]
27 M M

such that
2708S = Jw = J(u) —J(v),

proving the first part of the proposition.

For the latter statement, note that J(u) —J(v) = 0 if and only if the map w = ®(u,v) €
WLP(M, SY) satisfies Jw = 0. But it is easy to check (cf., [19]) that a map w € WHP(M, S!) satis-
fies Jw = 0 if and only if w = ¢e'¥ for some ¢ : M — S! harmonic and p € WHP(M, R). Indeed,
if Jw = 0 then the one-form (dw, iw) is closed, and thus decomposes as h + di with h harmonic,
so that ¢ = e~¥w is a harmonic map. The reverse direction is immediate. O

Corollary 3.3. Ifu € U),(L) is such that J(u) has finite mass, then i](u) isanintegral (n — 2)-cycle
in the homology class dual to ¢,(L) € H*(M; Z).

Proof. By Proposition 4.2 below, note that there exists at least one u, € U,(L) such that 2—] (ug)
is given by a prescribed integral (in fact, polyhedral) cycle P € Z,,_,(M; Z) dual to c;(L). As a
consequence, for any u € U'p(L), it follows from Proposition 3.2 that

1
5= = J(up)) = 85
for an integer rectifiable S € 1,,_,(M; Z) of finite mass.

In particular, if M(J (1)) < oo, then it follows that M(S) + M(8S) < o, and we can deduce from
[60, Theorem 30.3] that dS is itself an integral (n — 2)-cycle. In particular,

1 1
%J(u) = EJ(UQ)'F&S =P+4dS

is then an integral (n — 2)-cycle homologous to P, proving the claim. O

3.2 | Proof of Theorem 1.2, part (i)

To complete the proof of the liminf part of the I-convergence theorem, it remains to establish
a compactness result for sections u. coming from couples (u, V,) in X, (modulo gauge trans-
formations) under the assumption of a uniform energy bound E.(u., V.) < A. As in the previous
section, we will continue to work with a fixed smooth reference connection V, on the line bundle
L—-> M.
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Lemma 3.4. Let (u, V) satisfy lu| <1 and E.(u, V) < A. Then there is a gauge-equivalent pair
W', V") for which

IV = Vollen + Vot lley < C(p, M, L, A)
forall p € (1, %).
Proof. Writing the initial connection as
V=V,-in
for a one-form 7 € Q' (M), consider the Hodge decomposition
n=d*§+dy +h(),

where £ € Q*(M), ) € C®(M), and h(z) is harmonic. Since the gradients of S!-valued harmonic
maps form a lattice in the space 7'(M) of harmonic one-forms, note that we can find a harmonic
map f : M — S! such that

1£(d8) — h(N)l L ary < C(M).
Now, letting
¢:=e¥f: M-S,
we see that
a:=1—¢"(d6) =n— f*(dd) —dyp = d*§ + [h(n) — f*(dO)].
Thus, making the change of gauge
W', V") :=(¢p7! - u,V +ip*(do)),
we see that the new connection V' is given by
V' =V, —ia,

where a is co-closed, and the harmonic component h(x) = h(n) — f*(d6) of the Hodge
decomposition a = d*§ + h(a) satisfies [|h(a)||fenr) < C.

To obtain the desired bound for | V' — V|| ey = llllLpar), it remains to estimate the co-exact
component d*£. To this end, note that £ can be assumed exact and is given by

£ = Ay\(dn),

by definition of the Hodge decomposition. By the LP regularity theory for the Hodge Laplacian
and a standard duality argument, we have an automatic bound of the form

Id*&llLeary < Cp, MNldnllyw-1oary = C(P, MIAD | 107 (apy- (3.2)

for any p € (1, o).
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686 | PARISE ET AL.

Now, by definition (2.7) of the one-form 3(u, V), we have
n=Bu,V)—(Vu,iu),
while (2.6) gives
J(u, V) = d(Bu, V)) + wp.
We therefore see that
dn =Ju,V) —wy — d{(Vu,iu),

and for any ¢ € Q*(M), it follows that

[ansy= [ Gwn-enr- [ @uin.g)
M M M

= / T, V) — g, §) —/((Vu, iu),d*¢)

M M
< W@ DlisranliSlicoan + I1Fv, llran IS]coarn
+ CIVu, i) [l 2o IS lwr2ean)-

We know already that ||J7(u, V)l < Ec(u, V) < A, and since V) is a fixed reference connection,
we automatically have ||Fy,[lz1) < C(M, L) independent of (u, V). Moreover, since |u| < 1, we
also see that

I{Va, iuYllr2an < IIVUllr2an < Ee(u, V)2,

Combining the preceding estimates, it follows that

/ (dn,¢) < COL,L A lleoo, + 1 lwrzaan):
M

and by the Sobolev embedding W'4(M) < C°(M) for q > n (as well as the obvious embedding
Whi(M) < Wh2(M) for g > n > 2), we deduce in particular that

ldnllowray) < C(g, M, L,A)
for any q > n. Together with (3.2), this implies that
ld*EllLey < C(p, M, L, A)
foralll<p< %, and consequently
IV = Volleawy = lallony < Nd*EllLoy + 1@ Loy < C(p, M, L, A) (3.3)

forpe(d, Ll), giving the desired estimate for V/ — V.
ne
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In particular, since V'u' = Vou' —iau/, for1 < p < Ll it also follows that
e

Vo Iy < WV'W oury + Nlalloary < IVUllLony + llalieany < C(p, M, L, A),
as claimed. O

With the preceding lemma in place, we can now finish the proof of the liminf part of the I'-
convergence statement.

Proof of Theorem 1.2(i). Given a family (u., V. = Vo —ia.) with |u.| < 1 and uniformly bounded
energy E.(u., V.) < A, we may assume without loss of generality that the change of gauge given
in the preceding lemma has already been applied to (u., V.), so that

lleeelloany + IVouelleary < C(p, M, L, A)

forl<p< Ll In this case, it follows that the sections u, are uniformly bounded in WP norm
n—

”ue”WlsP(M) = “ue”LP(M) + ||V0ue||Lp(M),

so by the Rellich-Kondrachov theorem, we can pass to a subsequence such that u. converges
strongly in LP(M, L) to a limiting section u € W'P(M, L). Moreover, since the sections u, satisfy
the pointwise bound |u,| < 1, we see that the convergence u. — u must be strong in LY(M, L) for
every q € [1, o), and therefore the limiting section u must satisfy

/ (1= [uf)’ = lim / (1= |u?) < limeE.(u, V) = 0;
M e—0 M =0

that is, |u| = 1 almost everywhere, so u € U),(L).
By (2.7) and a straightforward calculation, one can check that

Buc, Vo) = Bw) = (Voue, i) — (Vou, i) + (1 — Juc|)ae
= (Vo(ue + ), i(ue —w)) + (1 — |ug|)ae + d{ue, iu),
so that the difference J(u., V.) — J(u) = d[B(u,, V.) — B(u)] satisfies
1T (e, Vo) = Tl crmyy
< CIVo(ue +u), i(ue —w)) + (1 = luc|)acllian
< CUIVouellLeuy + IV oull Lopllue = ull ) + CliellLoan 1T = luel*ll e o)

<C(p,M,L,A)(lluc — u”Lp’(M) + 11— |ue|2”Lp’(M))-

Since u, — u strongly in LY for p > 1, taking the limit as € — 0, we have that the right-hand
side goes to 0, establishing the desired convergence J(u,, V.) — J(u) in (C')*. Finally, lower
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688 PARISE ET AL.

semicontinuity of the mass gives the obvious bound

M@ (w)) < lim iglf MU (ue, V) < lim iglf E.(u;, Vo) <A,
(g €—>

and by Corollary 3.3, it follows that %J (u) defines an integral (n — 2)-cycle in the correct
7T
homology class. O

Remark 3.5. Alternatively, one can also give another proof of the liminf inequality via techniques
similar to those used in Alberti et al. [2, 3] for functionals of Ginzburg-Landau type. Though this
method would be slightly more involved than the proof given here, the automatic mass bound
1T (e, VOllrry £ Ee(ue, Ve) again simplifies several steps, reducing the problem to establishing
the integrality of the limiting cycle.

4 | RECOVERY SEQUENCE

In this section we prove existence of a recovery sequence, thus establishing the other half of
the I'-convergence and finishing the proof of Theorem 1.2. The proof is constructive in nature
and exploits in a crucial way the two-dimensional solutions of the vortex equations appearing in
Theorem 4.5. We start by recalling a few basic facts from algebraic topology.

Proposition 4.1. Any cohomology class a« € H*>(M; Z) is the Euler class ¢, (L) of some complex line
bundle L - M. Also, the Euler class classifies the line bundle up to isomorphism.

Indeed, it is well known that any complex line bundle arises as the pullback of the canonical line
bundle on CP* by means of a continuous map f : M — CP®, with a correspondence between
the homotopy class [ f] and the isomorphism class of the line bundle. For a specific choice of the
generator 1 of H2(CP®; Z), we then have ¢;(L) = f*1. On the other hand, CP* is an Eilenberg-
MacLane space K(Z,2): hence, any a € H>(M; Z) equals f*A for a unique homotopy class [f];
see, for example, [29, Theorem 4.57]. For a more elementary proof using the exponential sheaf
sequence, see for instance [23, pp. 139-140].

We know from Section 3 that the homology class of a limit cycle I is dual to the Euler class of
the bundle. Conversely, given a hermitian line bundle L — M and a cycle I’ whose homology class
[T]is dual to ¢; (L), we now show how to realize T as the limit of i.l (ue, V.), for appropriate pairs
of sections and connections on L, as in part (ii) of Theorem 1.2.

The next proposition provides a useful variant of Federer’s polyhedral approximation theorem
(cf., [21, Lemma 4.2.19]) for our setting, providing a polyhedral approximation of a given cycle T,
which can be realized as the distributional Jacobian J(v) of an appropriate singular unit section.
Locally, this is a simpler version of the main result from [2], with appropriate modifications for
the manifold setting.

Proposition 4.2. Given an integral (n — 2)-cycle T’ € Z,_,(M; Z), there exists a triangulation of
M and an integer-valued function k on the collection {A} of its (n — 2)-simplices, each with a fixed

orientation, such that the integral current

P =3, k(A)A
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is a cycle arbitrarily close to T in the flat topology, with M(P) arbitrarily close to M(T). Also, assuming
that [T'] is dual to ¢, (L), there exists a section v € U,(L) N C®(M \ S,,_,), for p € (1,2), such that

J(v) =27P
and, with respect to a reference connection V,,
[Voul < C(u)dist(, S,-5) 7", (4.
where S,,_, is the (n — 2)-skeleton of the triangulation.

Proof. In order to approximate I, we modify Federer’s classic approximation result [21,
Lemma 4.2.19] as follows. Given § > 0, using the same proof we can find a finite collection of
disjoint C' embeddings F; : B"~? — M and multiplicities a; € Z such that

M(T) <5, whereT :=T — Zjaij(B"_z).

Moreover, we can find a triangulation of M such that each piece F j(B"‘Z) is a subcomplex, for
instance triangulating first a tubular neighborhood of each and then extending to a triangulation
of the complement, using [48, Theorem 10.6]. We can also refine the triangulation in such a way
that each simplex has diameter less than a given p > 0 and admits a diffeomorphism f to (a scaled
copy of) the standard simplex with Lip(f) + Lip(f~!) < C, for a universal constant C(n).

We now argue as in the deformation theorem (see [21, Theorem 4.2.9] or [60, Theorem 29.1]),
using our triangulation in place of the Euclidean grid. Since we are in a manifold, we cannot easily
average over translations; but, recalling that the simplices are identified with the standard one,
we can average instead over the center of the retraction.

Namely, given the standard k-dimensional simplex A¥, denote %Ak the rescaled simplex with

the same center. Since %Ak has positive distance from the boundary dA¥, for any point p € éAk
the radial retraction r), : Ak \{p} - dAK is locally Lipschitz outside {p} and satisfies |drp(x)| <
C(k)|x — p|~'. Then, for 0 < m < k, given a normal rectifiable m-current W on A*, with C = C(k)
we have

/ / (dr,GOI™ dIW|(x) L5 (p)
EAk Ak

sc// Ix = p|~" dLk(p) d|W|(x)
Ak lAk
2

< CM(W).

Hence, there exists p such that the inner integral on the left-hand side is bounded by C(k)M(W)
(and [|W]|({p}) = 0if m = 0). A standard cut-off argument shows that the pushforward (r,), W is
a well-defined current whose mass is bounded by the same quantity. If W has no boundary in the
interior of AK, as in the proof of the deformation theorem it is easy to check that the difference
W —(r,).W = dV forsome (m + 1)-current V with M(V) < C(k)M(W). Scaling by a factor p gives
the same result for a current W supported on the scaled simplex, with the bounds M((r,). W) <
C(k)M(W) and M(V) < C(k)pM(W).
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690 | PARISE ET AL.

The same argument applies to an m-current supported on the k-skeleton of our triangulation,
assuming that 0 < m < k and that the boundary of the current is supported on the (k — 1)-
skeleton, since the retractions on each k-simplex paste together. In particular, this holds for the
(n — 2)-current T, with k = n, since

oT = - ¥ a;0(F;(B"2)

is supported on the (n — 3)-skeleton. We can thus construct a retraction r to the (n — 1)-skeleton
such that T/ :=r,T satisfies T = T’ + dR’, with

M(T') < CM(T) and M(R") < CoM(T),

where T’ is an integral current supported on the (n — 1)-skeleton. We can repeat the same on
the (n — 1)-skeleton and retract T’ to a current T”' supported on the (n — 2)-skeleton, such that
T' =T" + 8R", with

M(T"”) < CM(T’) and M(R") < CoM(T").

Since 8T"" = 8T vanishes on the interior of each (n — 2)-simplex, by the constancy theorem T" is
a linear combination (with integer coefficients) of the (n — 2)-simplices. Thus, defining

P:=T"+3 a;F;(B"),
we have I' — P = (R’ + R"") and
IM(P) — M(T)| < M(P —T) < M(T) + M(T") + M(T") < C¢,
together with
M(R) + M(R") < Cpd < C§

(assuming p < 1), which gives F(T', P) < Cé. Up to a small perturbation, we can assume that our
C! triangulation is in fact smooth, with P satisfying the same bounds.

In the sequel, we assume that [I'] is dual to ¢; (L) and we prove the second part of the statement.

Let us now fix a smooth section w, : M — L which is transverse to the zero section, the exis-
tence of which is guaranteed, for instance, by [40, Theorem IV.2.1]. The implicit function theorem
implies then that S, 1= wy 10} is a smooth (n — 2)-submanifold. Moreover, it comes equipped
with the canonical orientation such that a positive basis {vs, ..., v, } of TSy, extended with vectors
{u1, vy} such that {dwo[v; ], dwo[v,]} is a positive basis of L,, gives a positive basis {v;, ..., v,} of
T,M. With this orientation, letting v, := IZ_ZI’ we have J(vy) = 27S, and [M] — ¢;(L) = [Sy] =
[T].

We can then find another triangulation of M such that S, is a union of (n — 2)-simplices. Using
(the proof of) [48, Theorem 10.4], viewing the two triangulations as embeddings f; : ¢; —» M and
f> : C; = M of simplicial complexes, up to a subdivision of each C; we can find new embeddings
f { and f ; such that (the image of) each simplex in each complex is also a simplex in the other
complex (possibly parametrized in a different way). We call 5',’c (the support of) the k-skeleton of
this common triangulation.
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Note that, since f l’ can be taken arbitrarily close to f;, we can define the piecewise smooth
diffeomorphism F; := f l’ o fl._1 : M — M and write F;(x) = exp,.(V;(x)) (with V;(x) piecewise
smooth), and then let F; ;(x) := exp (tV;(x)) for all ¢ € [0, 1], which gives a homotopy between
the identity and F;. In particular, letting P’ := F;(P) and S(’) 1= F,(Sy), in homology we have

[P'] = [P] = [T] = [So] = [Sg].

Also, [M(P") — M(P)| and F(P, P’) are arbitrarily small.

We claim that J(v)) = 27S;, where v] := IZ_ZI and w is obtained by parallel transport of w

along the curves ¢ — F;(x) for x € M (with respect to some fixed connection V). This claim
is clear outside of S/ .. Also, Proposition 3.2 gives [i] )] = [il (V)] = [So] = [S}]. In par-
ticular, the difference i] (v(’)) — S(’) is supported on 8;1_3 and is the boundary of an integral
(n — 1)-current. Up to retracting the latter to S; _;» We can assume it to be a linear combination of
the simplices composing Sr’l _, (by the constancy theorem). Hence, its boundary J (v(’)) - 2715(’J is
also a linear combination of the (n — 2)-simplices composing S}’1 _,»and must then vanish, proving

the claim.
Since [P'] = [Sy] and P’ — S is supported on S/ _,, arguing as above we can write

P -5y =3(2kiR; )

for a collection {R;} of (n — 1)-simplices in the triangulation. We have the following elementary
fact.

Lemma 4.3. There existsamap 0 € C®(M \ UJ. spt(dR;), S*) with
and |do| < C dist(-, Uj Spt(aRj))_l.

Proof. The proof is a straightforward application of the techniques in [3, Section 4]. Indeed, for a
geodesic ball U; C M covering R}, the arguments of [3] can be applied to obtain a map v} U -~
S1, locally Lipschitz outside spt(dR ;), satisfying J (v;.) = 270R; and |dv;.| < Cdist(-, spt(dR j))_l.
The map v;, restricted to dU;, can be lifted to a real-valued map (viewing S! as a quotient of R):
this is trivial when n > 3, since U is diffeomorphic to S"=1 which is simply connected; it holds
also when n = 2, since the degree of v;. on the circle dU; is zero, as it is the sum of its (opposite)
degrees +1 around the two points constituting dR;. Hence, v;. admits a continuous extension to
/

i is smooth outside spt(dR;), while

obeying the same bound. We can then take U : = Hj(v;.)kf. O

M \ spt(dR;). Up to regularization, we can also arrange that v

We can now conclude the proof of the proposition. Since J (v(’)) = 27S), the product v := v
then has

J(v) = J(©) + J(v)) = 27(P" = S)) + 27S|, = 27P’.
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692 | PARISE ET AL.

Thus, replacing P with P/, this new cycle and the map v have all the desired properties (with
respect to the perturbed triangulation), and the proof of Proposition 4.2 is complete. [l

We now show how to obtain a recovery sequence (u., V) for any such polyhedral approxima-
tion P of T'. Once this is done, the result follows for any integral (n — 2)-cycle I' by the preceding
proposition and a diagonal argument.

Fix a triangulation of M as in the conclusion of Proposition 4.2. For an (n — 2)-simplex A, fix a
diffeomorphism A — A from the standard simplex A. For § > 0 small, we denote by As the image
of the set of points in A with distance at least § from the boundary. Given p € A \ dA, we denote
by B;*(p) the ball of radius r in the normal bundle to A at p; for a set S of such points, we then set
B,l(S) = Up cs B;L(p). Note that there exists ¢’ > 0 independent of & such that the exponential

map is a diffeomorphism from BéL/ 5(As) to its image and such that, setting

Vs(8) 1= exp(B 5(85)), (4.2)

we have V5(A) N V5(A") = @ for A # A’. We can also require that the closest point to expp(v) in

the (n — 2)-skeleton | J A is p, whenever v € Bj s(p)and p € As. With these preparations in place,
we come now to the main result of this section.

Proposition 4.4. Fore > 0 small enough, there exists a family of smooth couples (u., V.) such that
J(u,, V) = 2P, ase— 0,
as currents, and
li_l}})Es(ue, V.) = 2zM(P).

Throughout the proof, we will use the following key fact, for a proof of which we refer the reader
to [35, Theorem III.2.3].

Theorem 4.5. For the trivial line bundle L — C, given any integer k, € Z there exists a smooth
couple (u., V) which is (locally) critical for the energy E., has uZ*{0} = {0} and

Ee(ue’ Ve) = 277:|k0|~

Moreover, |u.| < 1and, writing V. = d — ia,, we have the decay for gauge invariant quantities

1—|u|? C(k
|V uc| + % +¢lda,| < %e—dko)lzl/e. (4.3)

Finally, we can require that u, = |u.|e™*® for |z| > ¢, which gives

luz(d6)] < Clko)lzI™",  |duc| + lae| < C(ko) minfe™", |z| '} (4.4)

Note that the pairs (u,, V) can be obtained from (u;, V) by scaling. The exponential decay is
proved in [35, Theorem II1.8.1]; see also the proof of [49, Corollary 5.4]. As for the last part, by a
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change of gauge we can assume u; /|u; | = e/% for |z| > 1. Observing that
(Viug, iug) = |ug |*(u5(d9) — ay),

we deduce (4.4) from the smoothness of the pair and the decay for |V,u,|; the conclusion for
arbitrary € then follows.

We proceed now to the proof of Proposition 4.4, from which the final part of the I'-convergence
result stated in Theorem 1.2 will follow.

Proof of Proposition 4.4. Let P be a polyhedral cycle and v € U,(L) a singular unit section with
J(v) = 27P as in the conclusion of Proposition 4.2. Fix an (n — 2)-simplex A, a small parameter

d>0,andsetd := 6—3,5. Let kg = k(A) be the constant multiplicity with which A appears in the

polyhedral cycle P. In the sequel, we will identify V5(A) with As X B§,1’ with respect to a fixed
trivialization of the normal bundle to A. Also, we fix a trivialization of L on Vs(A); hence, we can
identify the section v with a smooth S'-valued map on V5(A) \ A.

We fix a couple (ul,d —ial) as in Theorem 4.5, with degree k, defined on the trivial bundle
on C. With a slight abuse of notation, we still call u. and a. their pullback under the projection
Vs(A) = As x B2, — B2, C C. Note that, for any p € P, v has degree k, on the loop 6 ~ (p, Ae’®),
since J(v) = 27 P. Hence, we can write

ul

—= =ev (4.5)

||

with f : C\ {0} > R smooth and depending on €. We then define the new sections
e 1= [1— x(1 - ul])]e*/ v,

and one-forms

& 1= ya;+ (1 - x)(u)*(d6) +d((x — DY),

where y : C - R is a smooth cut-off function such that 0 < y <1, |dy| < 2/1 and

@ 1 for|z| <4,
Z) =
X 0 for|z| > 24.

Note that the newly defined couples of sections and connections reduce to

o (ul,al) for |z| < 4,
(ua ae) = .
(v,v*(dB)) for |z| > 24.

In particular, the energy density e.(ii.,d — i&,) of this couple vanishes for |z| > 24. Also, 1 —
|| = x(1 — |ul]), so that the inequality

A-1a?) < -y (4.6)
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694 | PARISE ET AL.

holds. Moreover, on the region Q; := {1 < |z| < 24}, using that (u.)*(d0) is closed we compute
da. = ydal +dy A (al — (ul)*(de)).

Since (Viul,iul) = |ul|>((ul)*(d6) — a), in view of (4.3) we can conclude that

1 +€e//1e_c/1/€ @7)

eldac| < eldal| + 2l | Viail| < €
on Q,, provided that 1 /¢ is big enough. Also,
diie = O(ldx|(1 — |ug)) + O(ldlucl|) + itic(d(x f) + v*(dO)),
and recalling that v*(d6) = (u.)*(d6) — df, we conclude that
(d —ia.)a. = O(ldx|(1 — [u) + O(dlull) + ixt(u)*(do) — al).
Denoting V, := d — i&, and using that |d|ul|| < |V.ul|, we obtain the decay

1+ c—://le_dt/€

|V ii| <C -

(4.8)
on ;.

Choose now & = () := ¢3/4, so that A(¢)/e — o as € — 0. Since the slices exp(B? 5( p)) are
orthogonal to A and have area comparable with A2, we deduce from (4.6), (4.7) and (4.8) that the
energy of the couple (ii., V,) satisfies

E. (i, Ve) = 27|ko| H""2(A)(A + 0(1)) + O(8%e2e~%/¢)

= 27|ko|H"~*(A) + 0(1),

with o(1) an infinitesimal term as ¢ — 0.

Denote by K := | sptdA the (n — 3)-skeleton of the triangulation. Let us choose C’ > 1 such
that g € Bcrs(K) whenever dist(q, S,,—,) < ¢’8 and g & J, V5(A) (recall that ¢’, defined above
(4.2), depends only on the triangulation). Note that the pairs glue together to give a pair (éi,, V) on
the set M \ Ber5(K) by declaring that (4., V) is given by (v, V,,) on the complement of | J A Vs(d),
with V,, the unique connection making v a parallel section. In order to have a pair defined on all
of M, we pick a smooth cut-off function ps defined by

05 = {O on BZC’S(K)’ (49)

11 onM\BysK),

satisfying the additional bound |dps| < 1. With V, a fixed reference connection, we claim that
the couple

(ue: Ve) = (p5ae’ (1 - ,O5)V0 + péve)
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has the desired properties. As a first trivial observation, note that near K the pair (u., V) is given
by (0, V), that is, the trivial section with the reference connection.
Next, since vol(B,(K)) = O(r?), we have the estimate

lim (Idps|? + €72) < lim(8(e) ™2 +€72) - CS(e)® = 0, (4.10)
e—=0 e—=0
Bycr5(K)

since 8(¢) = ¢3/4. Fixing again a simplex A, we write V, = d — iar, with respect to the chosen
trivialization near A. Thus,

Ve=d—i(1—pslay —ips@.
Note that V. u. = @i.dps + ps Vil and that the trivialization can be chosen to guarantee |a,| +

|dap| < C(M,L). In view of (4.10), in order to show that the energy of the couple (u., V.) on
B,c1s(K) is infinitesimal, we just have to show that the two quantities

/ (195 Voul + E1F1_pyyvorosv. 2
Byers(K)\U, Vs(D)

and
/ (105 Voiel? + 2\F i ppy5ospss. 1)
B4C/5(K)OV5(A)

converge to zero (since the contribution of V.ii. is infinitesimal on B, s(K)). The first assertion
follows from (4.1) and the fact that the integrand equals ¢?|Fy 0 |? when the distance from S,,_, is
at most ¢’8, while elsewhere we have the bounds
lpsVoul < C57
and
IF(1—ps)Votpsv, | < C +1dps|(C + [0*(dO)]) < C67%;
indeed, these bounds imply that the integral is bounded by

[0(67%) + O(e*) + O(e*5~H)] - O(8),

which is infinitesimal. As for the second assertion, by (4.10) it is enough to prove that, for p € As,

2
/ <|d12€|2 + €—2|&€|2> < Clog(e™).
(DB, 0

Indeed, since |Vyii.| < C + |dii.| and

IF(l—p5)V0+p566| < C+|dps|(C + |ac|) + |Fv€|,
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696 | PARISE ET AL.

the last claim implies that on each slice the integral is at most O(log(¢ 1)), and the conclusion
follows since the set of points p whose slice intersects Byc/5(K) has volume O(6).

However, by (4.1) and (4.4), dv, dy, . and (u})*(d6) at the point (p, z) are all bounded by
CS~! on the region {1 < |z| < 31 = ¢'8}, which implies |[df| < C§~! and |f]| < C by (4.5) (the
last conclusion follows up to translating f by a constant). Since this region has area 0(5?), its
contribution is bounded. On the other hand, (i, &) = (u’,a.) on {|z| < A}; using again (4.4), the
last claim follows.

Finally, note that J(u., V.) — 27P as currents. Indeed, with the same computations as above,
we obtain that Vyu, is bounded in L? independently of €, for any p < 2. But u, — v almost
everywhere, hence weakly in wbLP(M, L), which gives

J(u., V) = J(v) = 27P,

again as currents as € goes to 0. [

5 | COMPARISON OF THE MIN-MAX CONSTRUCTIONS

With the I'-convergence result established, we turn now to the proof of the min-max comparison
described in Theorem 1.5. The outline of the proof is broadly similar to that of the analogous
result of Guaraco [24, Proposition 8.19] in the Allen—Cahn setting. First, we employ Theorem 1.2
to extract from continuous families of pairs (u, V) discretized families of (n — 2)-boundaries with
mass bounded above by E.(u., V.) + o(1). To complete the proof of Theorem 1.5, we then have
to show that the homotopy class of this associated family of cycles is determined by that of the
family of pairs (u, V) in the desired way.

The details of the proof are somewhat more involved than their codimension-one analog, since
the map from pairs (u, V) to the space of (n — 2)-boundaries is less explicit, and the homotopy
groups of the space of (n — 2)-boundaries are slightly more complicated. In the next subsection,
we recall the relevant definitions from Almgren’s min-max methods, and define carefully the min-
max values to which Theorem 1.5 applies.

5.1 | Natural min-max constructions for E.

Throughout this section, let L = C X M — M be the trivial line bundle over a closed, oriented
n-manifold (M", g) of dimension n > 3. Fixing a trivialization of L, the space of pairs (u, V) con-
sisting of sections u € I'(L) and hermitian connections V can then be identified with pairs (u, @),
where u : M — C is a complex-valued map and a« € Q!(M) is a one-form such that V = d — ia.

For a fixed p > n, we will view E, as a functional on the Banach space X consisting of pairs
(u, V)whereu € [WH? N LP](M) and V = d — ia for « € WH2(M) (with topology induced by the
norm ||dull 2oy + lulleary + llallwizan)), equipped with the Finsler structure

1@, Bllw,v) 2= Ivlicen + 1VOll20) + 18120y + DBl L2y (5.1)

where D is the (Levi-Civita) covariant derivative of the one-form (. It is straightforward to check
(cf., [49, Section 7]) that the energies E, define C' functionals on X, and an adaptation of the proof
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of [49, Proposition 7.6] shows that they satisfy a variant (modulo gauge transformations) of the
Palais-Smale condition with respect to the Finsler structure (5.1), making X an appropriate setting
for the min-max construction of critical points (provided the nonlinear potential W is modified
as described in [49, Section 7]).

Remark 5.1. The Palais-Smale result stated in [49, Proposition 7.6] for E, in X is not quite correct
as written when the base manifold M has H'(M; Q) # 0. This is due to the fact that a sequence

(uj, V;) for E; which is Palais-Smale with respect to the natural Banach norm on X may fail
to yield another Palais-Smale sequence under the change of gauge (¢;u;,V; — ¢;7(d6)) for a

sequence of harmonic map ¢; : M — S'. However, it is easy to check that the Palais-Smale prop-
erty with respect to the Finsler structure (5.1) is preserved under harmonic change of gauge, and
[49, Proposition 7.6] holds with the Banach norm replaced by this Finsler structure.

Though the space X itselfis topologically trivial, the functionals E, have a rich min-max theory
in the ¢ — 0 limit, owing to the topology of the moduli space

M =X\ X/S,
where X, :={(u,a) € X : u=0}and G := W?2(M, S") is the gauge group. Indeed, writing
Y :={u,a) e X : d*a =0},
note that there is a natural retraction p- : X — Y given by passing to the Coulomb gauge
pe(u,a) 1= (e"P=u,a — dpy),

where ¢, € W*?(M, R) is the unique solution of
d*dp, = d*a and / @, = 0.
M

It is clear that the quotient map Y \ X, — M is surjective. The elements of G sending a given
couplein Y \ X, toa couple in the same space are precisely the harmonic maps H = Harm(M, S*),
so we can identify M (homeomorphically) with the quotient

M = (Y \ Xp)/H.

Moreover, note that the harmonic S!-valued maps H contain S* as a subgroup (by identification
with the constant maps), and the quotient # /S* has a natural identification

H/S'~[M : S')|~ H'(M; Z),

since each homotopy class in [M : S']is uniquely represented in H up to rotations. We can then
view M as the quotient

M =Y\ Xo)/S'I/H'(M; 2),
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698 | PARISE ET AL.

of the quotient space (Y \ X,)/S! by the free and properly discontinuous action of H'(M; Z).
Moreover, we have the following facts, allowing to extract the algebraic topology invariants of M.

Proposition 5.2. The projection Y \ X, — (Y \ X,)/S" is a fiber bundle and, hence, a weak fibra-
tion. The former space has trivial homotopy groups, while the latter is weakly homotopy equivalent
to CP™, and is the universal cover of M.

Proof. LetQ := (Y \ X,)/S! and denote 7 : Y \ X, — Q the projection. Given (u,a) € Y \ X,
we can find a measurable set E C M such that fE u # 0. In particular, there exists § > 0 such that
fE v # 0 for all couples (v, ) with distance less than § from the S!-orbit of (u, V)—namely, such
that [|(v, B) — € - (u, a)||x < & for some e® € S'. These couples form an open set 7~ (U), for U
open in the quotient Q. It is then easy to check that the map

7N = S'xU, @8 (fo/1 ol 2@ 8)

gives a local trivialization over U. Hence, 7 is a fiber bundle and thus a weak fibration (see [29,
Proposition 4.48]).

To check the second statement, note that Q (deformation) retracts onto $/S', where $ is the
unit sphere of the Banach space [W1? n LP](M, C), viewed as a subset of X with trivial connection
component. Given a dense, linearly independent set {u };” | in this Banach space, we denote by H ¢
the linear span of {u, ..., us} and by 7, : [W52 0 LP](M,C) — H' the nearest point projection,
which is well-defined and continuous since H? is finite-dimensional and the Banach space is
strictly convex.

Letting $* := SN H’, note that the union P :=[J,($’/S'), endowed with the topology
induced by the subspaces S¢ /S?, is homeomorphic to CP*, and the identity map i : P — $/S!
is continuous. We claim that, for any compact set K ¢ §/S', the inclusion K < $/S' can be
deformed toamap K — S, /S for some ¢ (within maps into $/S'). This implies that i induces iso-
morphisms i, on homotopy groups, because then any map S¥ — §/S! can be deformed to a map
with values in S¢ /S! for some ¢ (hence i, is surjective), and a homotopy in $/S! between two
maps S — $¢ /S can be deformed to a homotopy in Na /St with ¢/ > ¢ (hence i, is injective).

To prove the claim, note that for any [u] € $/S" there exists ¢ such that the distance from u
to H' is less than 1, and the same holds on a neighborhood of [u]. By compactness of K, we can

find ¢ such that this is true for all the elements of K. The map ([u],t) — _tutize@)

gives the
IA-Du+imeWlig

desired deformation.
The fact that S, and hence Y /X, have trivial homotopy groups is proved in the same way. The
last conclusion follows from the well-known fact that CP* is simply connected. O

We conclude that the path-connected space M has 7;(M) = H'(M; Z), as well as m,(M) = Z,
and 7 (M) = 0 for k > 3; or equivalently, for k > 0,

k(M) = Hy 1k (M; 2).
The results of this section concern the min-max energies associated to the generator of

(M), and to each class A € H,,_;(M; Z) = 7,(M) (with basepoint the trivial pair (uy =1,V =
d) mod Q). In practice, we work with their lifts to maps D> — X and [0,1] — X.
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CONVERGENCE OF THE SELF-DUAL U(1)-YANG-MILLS-HIGGS ENERGIES TO THE (n — 2)-AREA FUNCTIONAL 699

As in [49], consider the collection
¢, c CO(D%,X)
of continuous families
D3y (u,V,)eX
parametrized by the closed unit disk D? C C, subject to the boundary condition
u,=y and V,=d foryedD?=5"

By the long exact sequence for homotopy groups in weak fibrations, families in C, (avoiding X))
descend to the generators of 77,(M). It was shown in [49, Section 7] by explicit construction and
a simple degree argument that the associated min-max energies

&(G) 1= Flggz ;2%’5 E.(F)) (5.2)

are uniformly bounded from above and below as € — 0, arise as the energies E.(u., V.) of
nontrivial critical points (u., V.) for E., and converge subsequentially to the mass of a (non-
trivial) stationary integral (n — 2)-varifold, up to a factor of 27. Likewise, for each nontrivial
A € H,,_1(M; Z), we can consider the collection

Cz € C°([0,11.X)
of continuous families [0,1] 3 ¢ — (u,, V,) € X satisfying
(ug, Vo) = (1,d),  (uy, V1) = (¢, d — ig*(dO)),

where ¢ € C®(M, S') is amap in the homotopy class dual to A (i.e., generic fibers of ¢ are homolo-
gous to 4). Families in C; (avoiding X)) descend to loops in M, whose class in 77 (M) is determined
by 4, and we will likewise consider their min-max energies

£() 1= jnf max E.(F,).

Remark 5.3. Note that a family as above, with energy bounded by a given A (fixed), must avoid
the degenerate set of couples X, for € small enough. Using Proposition 5.2, one can check that the
min-max values defined above coincide with the corresponding ones for the homotopy groups
of M.

5.2 | Natural min-max constructions for the (n — 2)-mass functional

By Almgren’s thesis [5], we know that the space Z C Z,_,(M; Z) of integral (n — 2)-boundaries
in M, equipped with the flat topology, has homotopy groups identical to those of M; namely,

ﬂk(Z, O) = Hn—2+k(M; Z)

w100 Aq (172 vdo/Z001°01/10p/w0o" Kay1mKxeaqriaurfuoy/:sdny woiy papeofumod *T 20T ‘TIE0L60T

“Kreiquy Ansaatun [y

dYy) SUONIPUOD) PUE SWLIDL Y1 39§ “[$Z0Z/01/10] U0 Aeiqr] dutuQ Adqim

oo Kot

royue

So[n1 10§ AIRIQI] AUIUQ AB[1AL UO (SUOY

ASULDI' SUOWWO)) dANEa1) [qearjdde ayy Aq pautoos axe saponIe Y asn Jo



700 | PARISE ET AL.

for k > 0, while 7,(Z) = 0.In [6] (see also [50]), Almgren associates to each class in 7, (Z,,(M; Z))
a stationary integral k-varifold by means of a discretized min-max construction, which replaces
continuous families of cycles in the flat topology with discrete families satisfying an approximate
continuity condition with respect to the stronger mass topology. For our comparison results, it
is convenient to work with discrete families which are fine in flat norm and exhibit no concen-
tration of mass; by the interpolation arguments of [45, Section 13] and [43, Theorem 2.10], the
associated min-max masses coincide with the masses of the stationary varifolds produced by
Almgren.

Remark 5.4. While Theorems 2.10 and 2.11 of [43] are stated for cycles with Z /2Z coefficients, the
coefficient group plays no role in these arguments.

Following the notation of [43, Section 2], for m = 1 or 2, denote by I" the m-cube I'"" = [0, 1]™,
and for j € N, denote by I(1, j) the cube complex on I' with 1-cells (or edges)

[0,37/],[377,2-377],...,[1=37,1]
and 0-cells (or vertices) [0], [37/],...,[1 — 37/],[1]. Likewise, denote by I(2, j) the cell complex
12, ) =1(1, j) ® I(1, j)

on I? given by subdividing I? into 3%/ squares of area 3-%/, and denote by I(im, j); the collection
of k-cells of I(m, j). Given an assignment ¢ : I(m, j)y = Z,_,(M; Z), we will say that it has (flat)
fineness f(¢) < § if

F(p(x), p(y¥)) < & for all adjacent vertices x,y € I(m, j)o.

If ¢ : I(m, j)g = Z,_2(M;2Z) satisfies ¢(x) =0 for x € 0I" and f(¢p) < § for § < &), suf-
ficiently small, then Almgren’s construction [5] assigns to ¢ a homology class ¥(¢) €
H,_>,n(M; Z), as follows. For each (oriented) one-cell e = [x,y] € I(m, j);, provided § > 0 is
sufficiently small, we can find an integral (n — 1)-current S, € I,,_;(M; Z) such that

95, = ¢(y) —¢(x) and M(S,) < ey

for a given small constant €, > 0. If m = 1, then summing over all one-cells e € I(1, j); gives an
(n —1)-cycle

S= Zee](l,j)l Se € Z,.1M; 2)

whose homology class ¥(¢) := [S] € H,,_1(M; Z) does not depend on the choice of small-mass
fill-ins S,. If m = 2, then for each 2-cell (] € I(2, j), we denote by S € Z,_1(M; Z) the (n — 1)-
cycleSy =3, o0 Se given by summing the fill-ins S, over all oriented edges e of 9[], and consider
the (unique) n-current Q- € I,(M; Z) such that

vol(M)

6QD = SD and M(QD) < )
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CONVERGENCE OF THE SELF-DUAL U(1)-YANG-MILLS-HIGGS ENERGIES TO THE (n — 2)-AREA FUNCTIONAL 701

Summing over all 2-cells [] € I(2, j), then gives an n-cycle

Q= ZDGI(ZJ)Z Q|:| € zZ,M;Z)
whose homology class W(¢) : = [Q] € H,(M; Z)isindependent of the choice of small-mass fill-ins

Se.
Now, for 7 > 0 and a discrete family

¢ I(m, j)o = Zn—2(M; 2),
define the quantity

m(¢,7) :=sup{ll¢(l(B,(p)) | x € I(m, j)o, p € M},

giving the maximum amount of mass of a cycle in the family inside a ball of radius 7. For § €
(0,6y)and A € H,,_»,,,(M; Z), and a constant Cy = Cy(M, 1) < oo to be chosen later, denote by
Ags(1) the collection of families

¢ I(m, j)o = Z,-2(M; Z)

such that

(¢ r)

f(p) <6, sup

r>8

< Cos (5.3)

and
Y(¢) =4 € Hyrym(M; 2).

Then consider the approximate min-max widths
Ws(@) i=inf{ max M@O)| ¢ € A5}, (54)
y€I(m,j)o

and define the min-max width

W() :=inf { liminf max M(gbk(y))} (5.5)

k—oo yel(m,ji

where the infimum is taken over all sequences ¢y : I(m, ji)g = Z,_o(M;Z) such that §,; >
f(¢r) — 0,limsup,_,  m(¢y,r) = 0asr — 0, and ¥(¢;) = A. Clearly,

W(A) < lim Wg(4) = sup Ws(4). (5.6)
6—0 550

Since we are ruling out concentration of mass in the limit, we can appeal to the interpolation
arguments of [45, Section 13] and [43, Theorem 2.10] to deduce that the widths W(4) coincide
with Almgren’s min-max widths, and are therefore realized as the masses of stationary integral
(n — 2)-varifolds in M.
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702 | PARISE ET AL.

‘We can now state a more precise version of Theorem 1.5.

Theorem 5.5. The min-max energies £.(C,) and E.(A) for A € H,_1(M; Z) satisfy

lim i&lf E.(Cy) = 2nW([M]) (5.7)
€—>
and
lim ionf E) = 27W(A). (5.8)
€E—>

The remainder of the section is devoted to its proof.

5.3 | Taming min-max families to avoid energy concentration

To ensure that the min-max energies &, are bounded below by the masses of cycles satisfying (5.3),
we first argue that the energies £ are almost achieved as the maximum energy in families (u,, V)
satisfying a uniform energy density bound

/ ec(uy, Vy) < Cr"—2
B(p)

for e(M, §) > 0 sufficiently small and r > §.

Lemma 5.6. Given § > 0 and A < oo, there exists C(M,A) < oo such that the following holds. If
€ < 8, forany family F € C, c C°(D*,X) (orF € C; c €°([0,1],X) for A € H,_;(M; Z)) satisfying

max E.(F)) < A, (5.9)
Y

there exists another family F' = (u’, V') € C, (resp. C;) of smooth couples such that

max E(F}) < A
Y

and

/ eE(u;y V;))
max R A <C(M,N).
v,r>68, pEM rn—2

Proof. First, given afamily F € C, or F € C; satisfying (5.9), we can apply a uniform mollification
to obtain a new family F also satisfying (5.9) that defines a continuous map into the space of
smooth pairs (u,, V,), equipped with the C* topology. Thus, we may assume without loss of
generality that the original family F defines a continuous map into the space of smooth pairs.

In Section 6 below, we investigate a natural L? gradient flow system for the energies E., given
by a flow of pairs (u;, V; = d — ia;) satistying

1
atut = —vatut + 2_62(1 - |ut|2)ut (5.10)
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CONVERGENCE OF THE SELF-DUAL U(1)-YANG-MILLS-HIGGS ENERGIES TO THE (n — 2)-AREA FUNCTIONAL 703

and
5[(1[ b —d*dOC[ + €_2<iut, V[u[>. (5.11)

As discussed in Section 6, it is not difficult to establish long-time existence for the flow, and con-
tinuous dependence on smooth initial data. Moreover, it is obvious that minimizers of E. are
stationary under the flow; as a consequence, given a family y — F), = (u,,V,) in C, (resp. C;)
mapping continuously into the space of smooth pairs as above, we may define a new family
F' € C, (resp. C;) by letting F}, = (u}, V},) be the solution of (5.10)-(5.11) at time ¢ = 2 with initial
data (u,, V,) = F,. Since the gradient flow decreases energy, it is obvious that

max E,(F) < max E.(F,) < A.
y y
Finally, by Proposition 6.3 below (the main result of Section 6), we have the density estimate

/ e.(u}, V1) < COM, A2
B.(p)

for all r > ¢, so that the family F’ satisfies the desired properties. O

Remark 5.7. Note, moreover, that we may always deform an initial family (u,, V) to one (v, V,)
S
max{1,uy |}
for the purposes of estimating the min-max energies, we may always assume that our families
(uy, V) satisty |u,| < 1 pointwise, without loss of generality.

with |vy| <1 pointwise, without increasing the energy, by setting v, := In particular,

To prove Theorem 5.5, we will use this lemma in concert with the following technical lemma,
which follows in a straightforward way from the results of Section 3.

Lemma 5.8. Given A, C, € (0, ), for any § > 0 there exists (M, A, 8, Cy) such that, ife € (0, ¢)
and (u, V) is a smooth pair satisfying |u| < 1,

Ee(us V) S A’

and

max rz‘”/ e.(u, V) < C,
r20.peM B, (p)

then there exist a smooth ¢ : M — S' and a unit section v € V(L) (i.e, v € WHP(M,SY)) for all
pe(, Ll), satisfying
e

llu — vl <98, (5.12)
A~ V)lILrry < C(p, M, A), (513)

M (V) < A, (5.14)
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704 | PARISE ET AL.

and
IT@)II(B(p)) < 2Cor" > (5.15)
forallp € M and r > 6. Moreover, the map ¢ is chosen such that
ll¢*(d6) — ()l r2ar) < C(M),
where V = d — ia and T1(«) is the closed component of the Hodge decomposition of a.

Proof. The proof follows a straightforward argument by contradiction, using the analysis of Sec-
tion 3. If the statement were false, then we could find some fixed § > 0, a sequence ¢; — 0, and
pairs (u;, V; = d — ia;) such that

E; (uj, Vi) <A, (5.16)

and

2—n
max r e.(u:,V;) <Cy, 5.17
r>8, peM '/Br(p) Ej( Vi) 0 (5.17)

for which there are no ¢; : M — St and v i € Up(L) satistying (5.12)-(5.15). By Lemma 3.4 (and
its proof), we can find maps ¢; : M — S! such that

“d(¢j—1uj)”LP(M) <C(p,M,A) and |la; =7 (@)l < C(p, M, A)

for every p € (1, ﬁ), while

I(d6) — T1(et)ll 2y < CCM).

In particular, the maps ¢j‘1u ; are uniformly bounded in W'? for p € (1, ﬁ), and—as discussed
in the proof of Theorem 1.2(i)—a subsequence therefore converges strongly in L' and weakly in
WP to a singular unit section v € V(L) (i.e., v € WP(M,S"), since L is now trivial), while the
gauge-invariant (n — 2)-currents J(u;, V ;) converge weakly to J(v). Moreover, by (5.16), (5.17), and

the lower semicontinuity of mass under weak convergence, we see that

M(I(v)) < liminf M (u;, V) < B (u;, V) <A
j—oo
and

V@I, (p) < imint 176, Y JIB,(p) < limin [ e, ), ¥)) < Cor™

forallr > 6 and p € M. In particular, for j sufficiently large, we see that ¢; and ¢ ;v satisfy (5.12)-
(5.15) (in place of ¢ and v) with respect to u;, giving the desired contradiction. O

Remark 5.9. In particular, recall from Corollary 3.3 that for any v € U},(L) with M(J(v)) < oo, we
have J(v) = 2zT for an integral (n — 2)-cycle T’ € Z,,_,(M; Z).
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5.4 | Filling in cycles by filling maps

The results of the preceding subsection will allow us to relate min-max families F € C, or F € C;
for the energies E. to certain discrete families of (n — 2)-cycles with the desired mass bounds.
In what follows, we collect some technical lemmas which will allow us to identify the images of
those families of (n — 2)-cycles under the Almgren isomorphism.

Lemma 5.10. Given u,v € W-P(M,S'), for p € (1,2), there exists w € WHP(M x [0,1],S1)
satisfying the boundary condition

w(x,0) = u(x,0), and w(x,1)=ruv(x,1),
in the trace sense, for which the estimate

I10: wllLevxo)) < C(PIu — vl

holds, and such that the pushforward m.[J(w)] of the distributional Jacobian J(w) under the
projection  : M X [0,1] - M satisfies

MGz, W) < € / lu = v|((dul + |do]).
M

Proof. The proof combines ideas from [12, Section 3] and [28]. First, we mollify u and v to obtain
maps us, vy € C*(M, D?) with

llus — ullwrrny + llvs — vllwrean < 6.
Let ws : M x [0,1] — D? be the linear interpolation
ws(x,t) := (1 = us(x) + tvs(x).
Consider then the (n — 1)-currents
ré = [wy ]

given by pushing forward the (n — 1)-dimensional submanifold wgl{y} for every regular value
y € D. Then for any ¢ € Q"~(M), and each regular value y € D of ws, we have

19,8y = (&)
/wal{y}
— ](U.)5) )dHn_l
/w;l{y} * <§ 4 [J(ws)I

- / 5 (¢ AdE Aty J(Ws)I (W) ~L dHm L,
wy 'y}

In particular, since

lts,J(ws)| < 2[0,ws||dt A dws| < 2|lus — vs|(ldus| + |dus)),
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706 | PARISE ET AL.

it follows that

M) < / lus — Uall(ldual + |dus|) dHn-,
w3y} Elf(wa)l

and applying the standard coarea formula for the smooth map ws, we arrive at

/ M) < / lus — vsl(Idus| + dos]). (5.18)
D M

Now, for each y € D, /4, fixa map @, € C*(D; \ {y}, S1) satisfying

=y forz e D1/4(y) C Dl/Za
@,2) == G19)
= for |z| > 3/4,

|z|
and

c
|d®,(z)] < —— on D
Y lz—yl !

for some fixed constant C. Then, writing
Ws.y = CI)yOUJ5,

ifye D4 is a regular value of wg, we see that W5,y belongs to WLP(M x [0,1],S!) and satisfies
J(ws ) = 27ngl{y}, as well as

lews 1 agsonyy < € / |dws|(x, P [ws(x, ) = Y|P dx d
’ Mx[0,1]
and
16,5y I g0y < C / lus — 05 1P(O)ws(x, £) — y| P dx dt.
’ Mx[0,1]

Integrating the latter two estimates over y € D, /4 and applying Fubini’s theorem, we see that

[ dws, g dv < | |dw5<x,r)|P( /
D ’ Mx[0,1] D

1/4

lws(x, 1) —y|7P dy> dx dt

1/4

< CDdws17 470017

and similarly

/ 16:ws y 1o aro ) < CPts = Vsl
D

1/4

Combining these estimates together with (5.18), we can find y = y5 € D, /4 such that

ldws , lLpvx(oa)) < CPIdws | Leaixo))
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CONVERGENCE OF THE SELF-DUAL U(1)-YANG-MILLS-HIGGS ENERGIES TO THE (n — 2)-AREA FUNCTIONAL 707

and

10:ws, lLevxqo,17) < C(P)Ilus — Uallfp(M),

together with

M. [ (ws,)]) = 22M(TS) < / lus — vs|(Idus] + dvs]).
M

Since ws , is bounded in WLP(M x [0,1],S'), we may take a subsequential limit
w=limw
6—0 S.¥s
as § — 0, to obtain a map w € WHP(M x [0,1], S') with the desired properties. O

Remark 5.11. On a manifold with Lipschitz boundary (N, JdN) of dimension m (e.g., N = M X
[0,1] or N = M x [0,1]? where M is our underlying manifold), given a map w € W'P(N,SY) n
WLP(AN, SY), recall that the (interior) distributional Jacobian J(w) is the (m — 2)-current given
by

W), &) := / w*(d6) A d¢ + /a w*(dO) A L. (5.20)
N N

In the sequel, we endow M X [0, 1] with the orientation such that M x {1} is oriented as M.
Using the product orientation on M X [0, 1]? and the induced one on the boundary M x [0, 1]?,
note that T A v is positively oriented on the latter manifold when v is a positively oriented n-vector
of M and 7 is tangent to 8[0, 1], pointing counter-clockwise.

Remark 5.12. The distributional Jacobian behaves well when concatenating maps. Indeed, for
any two w;, w, € WHP(M x [0,1],SY) n WhP(M x {0,1},SY), if wy * w, : M x[0,1] — S! is the
usual concatenation, we have that

[T (wy # w))] = 7 [J(w)] + 7. [T (w)].

Reasoning by induction one can then prove that the above identity holds for an arbitrary
finite concatenation.

Lemma 5.13. Let F € W'P(M x I%,SY) n WHP(M x 012, SY). Letting m : M xI> — M be the
canonical projection, the n-current

E 1= m,J(F)] € Dy(M)

depends only on F|pxs12, is given by
(B, dvoly) = 271'/ p(x) deg (Flxarz ) dx,
M
and satisfies

M(ZE) < 10:F I vxarz)s

where 0, F denotes the partial derivative of F along the I direction.
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708 | PARISE ET AL.

Proof. Since any n-form { € Q"(M") is closed, (5.20) implies

JE). 7Y = /M PRCOISES /M ;<x>< /{ }XaﬂF*(dm) dx,

from which the desired results follow. O
Hence, if F;, F, € WHP(M x I?,SY) n WHP(M x 312, S1) are two such maps, satisfying
Fl(x, 1, t) = Fz(x, 0, t),

and ® = F; * F, is the map given by concatenating along one face of the square, that is,

O(x.s.1) 1= {Fl(x, 2s,t) onM x[0,1/2] X1, (5.21)
Fy(x,2s—1,t) onM x[1/2,1] X1,
we have
7 [J(F)] + 7 [J(Fy)] = 7, [J(Fy * Fy)]. (5.22)

Of course, the same statement holds if we define F; % F, by concatenation along any other face
of I.

5.5 | One-parameter families corresponding to 7,(Z, ,(M; Z),0)

We come now to the proof of the second inequality in Theorem 5.5, comparing the one-parameter
min-max constructions for the U(1)-Higgs energies and the (n — 2)-mass. That is, for any 1 €
H,_,(M; Z), our goal in this section is to prove that

lim %‘lf EA) = 27W(A). (5.23)
€E—

To this end, fix 0 # 1 € H,_;(M; Z) and a small constant § > 0. Let p € C*(M, S') be a fixed
but arbitrary map whose (regular) fibers lie in 1 € H,,_;(M; Z). Recall that, by definition of C;,
the endpoints (1, V) and (u;, V;) of a family (u;, V;);c[o,1] in C; are given by

(g, Vo) = (1,d) and (w;,Vy) = (9, d — i(*(d0) + do)),

for some ¢ : M — R, and after making the gauge transformation which replaces (u;, V,) with
(e~"®u,,V, — it dp), this is equivalent to considering only those families with (u;, V;) = (¥,d —
i9*(do)).

We claim that

A :=lim iglf E(A) < . (5.24)
€E—

Proof of (5.24). Since the proof is very similar to the one for two-parameter families, given in [49,
Section 7], we just sketch it. Identifying M with a simplicial complex M in some Euclidean space
R’, by means of a triangulation of M, we can find a piecewise affine map ) : Rl — C such that
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¢ = 1 far from M and |¢ — 9| < % on M (provided the triangulation was chosen fine enough). Let
y be a small regular value of 9.

By composing i) with a piecewise affine homeomorphism of C, we can assume that y = 0 and
that §)~'(D; /,) is an O(¢)-neighborhood of $~1(0), with the bound |d| = O(¢™!). In particular,
the fiber () 1(0) is contained in finitely many affine (L — 2)-planes P j- With a slight perturbation
of M, which does not intersect )~ (D, /2), we can assume that all the simplices in M are transverse
to each P; (when both are translated to the origin).

Now, since ¢ = 1 outside of a compact set, we can find a vector v € RE such that p(x —v) = 1
for all x € M, and for t € [0, 1], define

$(x) 1= P(x = (1 =),

so that §); = P and 9, = 1 on M. The preimage $; (D, ;) of Dy, in M is then contained in an
O(¢) neighborhood of [ ~1{0} + (1 — t)v] N M, which has volume O(e?).

Identifying these ¥, with Lipschitz maps in Lip(M, C) via the bi-Lipschitz identification M =
M, we can mollify 1), —for example, by convolving with the heat kernel for some very small time—
to obtain a continuous path of maps [0,1] 3 t — 3, € C®(M, C) such that

N ~ 1 o
Yo=1 [t -9l < 5 and vol(; (D)) < Ce?.

Applying [49, Proposition 7.13] to these maps then gives a family (u;, V;);e[o,1; With uniformly
bounded energy from (1,d) to (,d — igp*(d6)), where P = Ii_l Note that since ¢ — p| < %, P
must be homotopic to ¢, for example, via the path

1— 8
0,1]5 5 Q=W+
(X = 5)% + s
Thus, concatenating the family ¢ — (u;, V,) with (3, d — i9(d6)), for a homotopy 1, from 9 to
1, we get a family in C, with the same energy, as desired. O
Now, consider a small ¢ € (0, §) such that
EM)SA+S6<A+1. (5.25)

By Lemma 5.6 and Remark 5.7, we can find a family [0,1] 3¢~ (1, V, =d —ia;) in C; C
C°([0,1],X) such that |u,| <1,

max E.(u,V;) <EQA)+e<A+2, (5.26)
te[0,1]
and
max rz_”/ e.(u;, Vy) < Co(M, A). (5.27)
tel0,1], r>¢, peM B,(p)

Now, by the continuity of the path t ~ (u;, V, = d — ia;) in X, we may select a finite sequence
of times

0=t0<t1<"'<tN:3k=1
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710 | PARISE ET AL.

such that

e, — e llwizany + ey, — allwizan < 6.

In what follows, we write u; = u; and a; = ;. Suppose now that € < ¢y(M,A +2,5,Cy) as in
Lemma 5.8, and foreach i = 1,..., N = 3k, let

v, € WHP(M,SY) and ¢, : M — S!
be as in the conclusion of Lemma 5.8, so that
llu; — villiany <6,
and
Id(@; " v)llecvry < C(ps M, A) (5.28)
forp e (1, nl), while

-1

MU (v;)) < A+ 28,

together with
J()|I(B
M@IB®)
r>8, pEM rn—2
and
167(d6) — (el 2ay < C(M). (5.29)

In this way, we get a sequence
1 = v, 01, ...,0y = % in WHP(M, S1)
such that
lVis1 — villLiny < CS
and the integral (n — 2)-cycles T; := il (v;) satisfy
2iM(T;) < A+ 26

and

ITIBAPY) _

Co.
r>8, peM rn—2 0

Moreover, for each i = 0, ..., N — 1, the following holds.
Lemma 5.14. Forp € [1, Ll), there exists w; € WHP(M x [0, 1], S1) with boundary values
e

wi(x’o) = Ui(x)’ wi(x’ 1) = Ui+1(x)a
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satisfying
18, willLoarxqo.1p) < CPNVi1 — Vill Loy < C(p)SY/P
and

M (7. [J(w;)]) < C(p, M, A)S' /P,

Proof. To begin, apply Lemma 5.10 with u = ¢ 'v; and v = ¢ 'v;4;, to obtain a map w €

WhP(M x [0,1]) which restricts to ¢ 'v; and ¢7'v;; on M x {0, 1}, and satisfies
185l Lovxqonp < CPINE; Wi = vix Doy = CPNVir1 — Vill Lo
and

Mz, [J(@)]) < C / 167 ;= v )@ 0] + 1@ o)D)
M

<|lv — Ui+1”Lp’(M)(”d(¢i_1vi)”LP(M) + ”d(¢i_1vi+1)”LP(M))-
Now, we know that
10 = Vil (upy < CPINVir = vill i < C(p)SI1/P
and
ld(#;  vllLruy < C(p, M, A),

while

(¢ virDlLean

= lluz, ,(d6) — ¢ (@O Loy

< ”d(¢,‘_+110i+1)”LP(M) + NI}, ,(dO) — ¢ (dO)lLr )

< C(p, M, A) + |19}, ,(d6) — I(eti Dl ey + lp; (dO) — Tl Loany

+ 1Mo — ap )z

<C(p,M,A),

which together with the preceding estimates gives
M(z . [J(W)]) < C(p, M, A)§'~1/P,

Taking w; :=
0w; = $;0,W.

In particular, by (5.20), we see that the (n — 1)-currents I'; := iﬂ.’* [T(w)] € 1,_1(M; Z) give

fill-ins

ol =T —T;

¢, 0, one sees that w; satisfies the conclusions of the claim, since J(w;) = J(W) and
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of small mass (taking p = ”T“)
M(T;) < C(M, A)§Y/(+D),
Thus, the sequence T, T, ..., Ty—s« defines a discrete family

B I, k)y = Zp—o(M;2Z)

with
m(B,r) < Cyr"? forr >3,
together with
1
) < —
max M(T;) < 2ﬂ(A + 26),
and

£(8) < C(M, A)§Y/(n+D),

Moreover, for § < §,(M, A) sufficiently small, the class ¥(8) € H,_;(M; Z) associated to § by
Almgren’s isomorphism is given by

¥(B) =T,
where
r:=y"'r.
Now, by Remark 5.12, we can identify I" with the projected Jacobian
27T = 7, [J(wo * wy * -+ x wy_1)] = 7, [J(W)]
of the concatenated map w := wy * --- * wy_; : M x[0,1] — S', which satisfies

w(x,0) =1 and w(x,1)=1(x).

In particular, for any ¢ € Q"~1(M"), it follows that
27(T, ¢) :/ w*(d6) A d¢ +/ PH(dO) A L.
Mx[0,1] M

Hence, the action of I on closed (n — 1)-forms agrees with that of zi fM »*(dO) A -. In particular,
T
since there is no torsion in H,_;(M; Z), it follows that

[T]=[y~{6}l =1 € H,_.,(M; 2),

as desired.
That is, letting 7(8) := max{s, C5'/("*D}, we see that € A, s)(4), so that

1 1 .. . 1
W, (5(4) < max M(T) < 5—(A +28) = > limnf £.(2) + —5.
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Finally, taking the limit as § — 0 and using (5.6), we get the desired estimate (5.23).

5.6 | Two-parameter families and the generator of 7,(Z,_,(M; Z),0)

In this subsection, we complete the proof of Theorem 5.5, establishing the inequality for the two-
parameter families

lim iglf &.(Cy) = 2nW([M]). (5.30)
[ d
To begin, set
A :=lim iglf &.(Cy),
€—

which is finite (see [49, Section 7]), and fix some small § > 0. Again let L — M be the trivial line
bundle, and consider a two-parameter family

D*sye (u,,V,=d—iay)
belonging to C, c C°(D?,X), so that
(45, Vo) = (6,d) forall@ €D =S
Choose a small ¢ € (0, 8) such that
E(C) <A+ 6;

by Lemma 5.6 and the subsequent remark, we can select our family D 2 y (uy,Vy) in C, such
that [u,| <1,

max Ee(uy, Vy) <A+26,
yeD

and

_max Fz_n/ ec(uy, V) < Co(M, A).
y€D,r>8, peM B, (p)

Now, identifying D with the square I? = [0, 1]? in the usual bi-Lipschitz way, by the continu-
ity of the familyI>’ D >y ~ (uy,V,) € X, we can choose k sufficiently large that the discrete
assignment

12,k)g 3 a - (ug,Vy) = (ug,d —iay) € X
satisfies
lug — upllwrzony + llag — apllwrzan <6
for any adjacent vertices a, b € I1(2, k),. By Lemma 5.8, for each vertex a € 1(2, k),, there exist

v, € WHP(M,SY) and ¢, : M — S!
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such that
lug — vl £ 6
and
”d(qsc;lva)“LP(M) < C(p’M’A)
for p € [1, L), while
n—1
MU (vg)) < A + 23,

together with

17 (Wa)II(B,(P))

< 2C
r>8, pEM rn—2 0

and
lI¢a(d8) — a2y < C(M).
The following lemma, and its proof, is identical to Lemma 5.14.

Lemma 5.15. For each pair of adjacent vertices a,b € 1(2,k),, there exists w,, € WP(M X
[0,1], SY) satisfying the boundary conditions

Wap(x,0) = v,(x) and wqp(x,1) = vy(x),

while for every p € [1, %),

18w b learxqon)) < CPIV = vallran < C(p)SYP,
and
M(7, [T (wg p)]) < C(p, M, A)S /P,

Remark 5.16. If the vertices a, b lie on the boundary 912, so that u, and u; are constant maps to
S, then we take v, = ug, vy = uy, and simply let w,, ;, be the geodesic interpolation in S* between
the two constants.

In particular, for each pair of adjacent vertices a, b € I1(2, k), the (n — 1)-current

1

7 7T [](wa,b)] €1,.,(M;2)

Fa,b =
provides a small-mass fill-in

Olyp=Tp—T,
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CONVERGENCE OF THE SELF-DUAL U(1)-YANG-MILLS-HIGGS ENERGIES TO THE (n — 2)-AREA FUNCTIONAL | 715

for the difference of the integral (n — 2)-cycles T, := i] (vq); namely, taking p = HTH in the
preceding lemma, we have

1

M(Tq.p) < C(M, A)§ 1.
Thus, setting f(a) := T, gives a discrete family

B 1(2,k)g = Zp—2(M; 2)

satisfying
m(B3,r) < Cor" 2 forr > 6,
together with
max M(T,) < L(A + 29),
a€l(2,k)y 27
and

£(8) < C(M, A)§ .

It remains to show that the homology class ¥(3) € H,(M; Z) associated to § by Almgren’s
isomorphism is the fundamental class [M].

For each 2-cell [] € I(2, k), with vertices a, b, c,d (ordered counter-clockwise), let F : M X
8] — S! be the concatenation given by w,, along the edge [a, b] of d[J, w; . on [b,c], and so
on. We apply Lemma 5.10 to interpolate between F and 1, obtaining an extension F; € WhP(M x
0,SYH N WhP(M x 31, S') of the map F, so that

L] . 1 .
20 = ET[*[‘I(FD)] S In(M, Z)

has boundary
- 1
0B = 5 -/ = Top +Tpe + Tea + laa

In particular, since [|6,wqpllLeix(ap)) < C(p)SYP = C(n)8™/"+V) (and similarly for the other
edges), it follows from Lemma 5.13 that 2 is the (unique) small-mass fill-in of I'y j, + -+ + Tg 4,
provided § < §y(M, A) is sufficiently small. In particular, we see that

v(p) = [ZDEI(Z,I{)ZED] € H,(M; Z).

By concatenating the maps F; and F, associated to adjacent boxes [];,[ ], along the shared
edge, we obtain a map ® = F; * F, which satisfies

7'[*[]((1))] = 27TE|:|1 + 27TE|:|2.

In particular, concatenating all maps along each row of the grid, we obtain a column of maps,
which we may again concatenate to obtain finally a map

FeWbP(MxI?,SY)nWbhP(M x dI2,S1)
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716 | PARISE ET AL.

for which
. [J(F)] = 2”2D5D~

On the other hand, it is clear from the construction that the restriction of F to M x 4I2 has the
form

F(x,t) = h(t)
for a fixed homeomorphism h : oI 258 1n particular, it follows that

deg (Flyyxorz) = 1
for all x € M, so that
ZHZDED = . [J(F)] = 2n[M],

by Lemma 5.13.
Thus, ¥(8) = [M], as desired, and again setting 7(5) := max{s, C8Y+Y we see that § €
Ay 5)([M]), and consequently

1 1 .. . 1
W, 5 ([M]) < aenll(g,)l(c)o M(T,) < 271_(A + 298) 2 III;ILIglf E(C) + 7r6

Taking the limit as § — 0 and using (5.6), we then get the desired estimate (5.30), completing the
proof of Theorem 5.5.

6 | HUISKEN-TYPE MONOTONICITY ALONG THE GRADIENT
FLOW

In Lemma 5.6 of the previous section, we made use of the fact that a continuous family of pairs
y = (uy,Vy) may be deformed to a family (uj, V) with E(uj}, V}) < E.(u,, V,) satisfying uni-
form bounds on the (n — 2)-energy densities r>~" B.(p) ee(u}’,, V’y) in terms of the initial energies
E.(uy, V). We achieve this by showing that the natural L? gradient flow for these energies sat-
isfies a variant of Huisken’s monotonicity formula [32] for the codimension-two mean curvature
flow. In addition to its applications above, the result may be of independent interest, in that it pro-
vides strong evidence that these gradient flows provide a regularization of the codimension-two
Brakke flow—a relationship which we plan to explore further in future work. We also show that
this E.-gradient flow satisfies long-time existence and continuous dependence on initial data (the
fact that we are working with the abelian gauge group U(1) is of course crucial here).

6.1 | Definition, Bochner identities, and bounds for the gradient flow

Let L - M be the trivial line bundle over a closed, oriented Riemannian manifold (M", g). We
will assume n > 3 throughout this section.
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CONVERGENCE OF THE SELF-DUAL U(1)-YANG-MILLS-HIGGS ENERGIES TO THE (n — 2)-AREA FUNCTIONAL | 717

We will say that the smooth couples (u;, V; = d —ia;);c[0,0) SOlve the gradient flow equa-
tions for E. if they satisfy the coupled nonlinear heat equations

B = =ViVor + — (1 = [Py,
(6.1)
atOCt = _d*da[ + E_Z(iu[, Vtut>.

Note that they are formally the gradient flow of %Ee with respect to the L?-scalar product

(), (0. 8) = / (u,0) + €X{a0, BY),
M

where u and v are sections, and « and 8 are one-forms. We defer the proof of long-time existence,
uniqueness and continuous dependence on initial data to the end of the section. In what follows,
we will also assume that the initial section u, € T'(L) satisfies |uy| < 1 pointwise.

Assuming the initial data (u,, V) satisfies the energy bound

Ec(up, Vo) <A, (6.2)
it is easy to see that we have
Ec(u;, V) <A

for all t > 0, as the energy is decreasing along the flow. Similar to results for the stationary case
in [49] (and analogous work of Ilmanen for the parabolic Allen-Cahn equation in codimension
one [34]), a key ingredient in establishing the desired monotonicity result will be bounding the
discrepancy function

2
1—Ju|

§ 1=¢ldoy| — %€

(6.3)
along the flow.
As in the stationary case [49, Section 3], it is straightforward to check that solutions of (6.1)
satisfy the following identities: letting
w, :=do;

and

(g, Videj,e) 1= 2(iVe,u, Vo u),
we have

(0 + Aoy = Py, Vo) — | Py, (6.4)

from which one obtains the parabolic Bochner identity

1
—€*(0, + d*d)§|wt|2 = lu Pl |* + €2 |Day | = $(uy, Vo), @p) + Ry @), (6.5)
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718 | PARISE ET AL.

where R, denotes the Weitzenbdck curvature operator for two-forms. Also,
@+ d* D)3l = Vaul? = =5 (1 ) (6.6)
2 2¢2

Remark 6.1. It is an easy consequence of (6.6) and the parabolic maximum principle that |u,| < 1
for all t > 0, for initial sections u satisfying |u,| < 1.

By a combination of (6.5) and (6.6), similarly to [49], we find that the discrepancy function in
(6.3) satisfies the weak differential inequality

—(0; + d*d + e 2w, [)E; 2 —Co(M)e|a;|. (6.7)
Equivalently, writing
E 1= eC0tg,

we have

, . 1— |ul?
_(at + d’sd + 6_2|ut|2)§t Z _Coe_cot%

C
> =521 = lul). (6.8)
Now, let K(¢, x, y) be the heat kernel of M, so that
(6, + d*d)K(t,-,y) =0 and yn&K(t, 5Y) =0,

Define then

Wﬂ%=/K@MM%Wﬁy

M

and

t
C
v = [ K520 - ey ds
0 JM

Thus, ¢ is the nonnegative solution of the heat equation —(3; + d*d)¢ = 0, with initial condition
©(0,x) = |£(x)|. By Duhamel’s principle, 1 is the nonnegative solution of the inhomogeneous
heat equation

, C
~@ +d*dyp = —2 (1= ),
€
with boundary data (0, x) = 0. In particular, it follows from (6.8) that

|uz|2

—(0; +d*d + €_2|ut|2)(§t P —p) 2 (®: +9) 20, (6.9)

€2

while &, — 1y — @9 = €y — |&ol < 0. Hence, the parabolic maximum principle (for continuous
weak solutions) implies the pointwise bound

E <o+ (6.10)

]
2
3
3
s
IS
3
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g
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CONVERGENCE OF THE SELF-DUAL U(1)-YANG-MILLS-HIGGS ENERGIES TO THE (n — 2)-AREA FUNCTIONAL | 719

We now use the following well-known asymptotics for the heat kernel on a compact manifold
(see, e.g., [39]).

Proposition 6.2. Let Q :={(x,y) € M XM : d(x,y) < %inj(M)}. There exists a function v, :
Q — (0, 00) with vy(x, x) = 1 and such that

(470)"/ 264V EAOK (1, x, y) = vg(x, y)
uniformly on Q, ast — 0" (while K(t, x,y) — 0 on the complement).

In particular, since |K(t, x,y)| < C(r,M) for any t > 7 > 0, one has
/ K(t,x,y)P dy < C(p) max{t(1—Pn/2 1},
M

Since |u;| < 1 by Remark 6.1, we have automatically

a-twp| . <2 and |20

LoM) ~ €

<2vVA

LX(M )

for every t, and interpolating we see that
1
(1 - Ju)? H < C(M, N)e@-0/4
[z =1, <corn

for 2 < g < . It follows that, for p € (1, %) with Holder conjugate q,

t
P, x) < / [|IK(t — s,x,y)||Lp(M)c€(2—q)/q ds
0

n(-p)
SCG(Z—Q)/Q/ (t—s) 2 ds
0

-1 n no
< C(p,M,A)e@—q)/q(L _n- 2) a-nt

2p 2
provided that g > 2. In particular, taking p : = "—_i and q := n — 1, we arrive at an estimate of the
n—
form
3-n _n=2
P(t, x) < C1(M, A)en-1t2n-1),
Now, let
_ 3_ n—2
N =8 — @ <P < Cren1p20mn,

and setting

3-n _n—2

fi i=n = Cren1t20-D (1 — |uy|?),
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720 | PARISE ET AL.

note that
3—_n n—-2
fr < Crentt2eon |y, |?
pointwise. On the other hand, recalling (6.8), note that f, satisfies

—(0; +d*d)f;

lu ). Co 2 in 2 2 2 2., 12
2 gt_Z_e(l_ [u;]%) + Cren-1£200-0 (2| Vu | — e 2(1 = |ug|*)[u, %)
|u,|? Co
2 - fi= 20 =l

n-3 _2-n

and since |u;|? > cen-1t20-D f,, it follows that on {f > 0} we have
n_—3 2—n
—(8, + d*d)f; > e 2(cen-1£20-D f2 — Cye).
Note that fo = &, — |£y] < 0. For any 7 > 0, if f has a positive maximum on [0, 7] X M at some

point (¢, x) with t > 0, then the last weak subequation implies that here

n-3 _2-n

cen-1t20-D) f2 — Coe <0,

or equivalently

1 n-2 1 n—2

fi £ Cen1t40-1 < Cen-1740-D)

The same inequality holds then on all of [0, 7] X M. Since T was arbitrary, we obtain

1 n—2
fi < Cen—1t4n-1

for all t > 0. Recalling the definitions of f, 7, € and ¢, the preceding estimate tells us that

1 21— |ul?
§ SCeC‘<qot +en-l +en—1+>, (6.11)

where @ is the solution of the heat equation with initial data ¢, = ||, for a constantC = C(M, A).
Finally, noting that

@ < Clléolliny < CM,A) fort>1,

it follows from the above that

2
& <ce'(1+en1v/e(u,V,) fort>1. (6.12)

6.2 | Huisken-type monotonicity and (n — 2)-energy-density bounds

As above, let (u;, V;) be a solution of the gradient flow with E.(u(, Vo) < A and |uy| < 1. Mimick-
ing the computations leading to Huisken’s monotonicity for the mean curvature flow [32], let us
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CONVERGENCE OF THE SELF-DUAL U(1)-YANG-MILLS-HIGGS ENERGIES TO THE (n — 2)-AREA FUNCTIONAL 721

introduce h(t, x), a positive solution of the backward heat equation
d;h =d*dh

on [0,T) X M, with fM h =1. Write e, := e.(u;, V;) to lighten the notation and set

Dy(t) = / he,.
M

Integration by parts combined with the gradient flow equations allows us to deduce that
fb’h(t) = / (0;he, + ho,e;)
M
= / [(d*dh)e; + h(2(V1 — i&u, Vu) + 2e*(dé&, da) — e2(1 — |u|*){u,u))]
M

= / [(dh,de;) — 2h(|t]? + €2|&|?) — 2({V gpu, ) + e*da(dh, &))]
M

(where we dropped the subscript ¢ from u;, «;, t;, and ¢&;). Next, recall from [49, Section 4] the
stress-energy tensor

T.(u,V) :=e.(u,V)g — 2Vu*Vu — 2e’da*da,
and note (cf., [49, Section 4]) that we have the identities

W(u)
c2

div(T,) = 2(Vu, V*Vu) +d + 20((iu, Vu), ) — 26?w(d*w, -)
= —2(Vu, 1) — 2e2da(-, &),
where the second equality follows from (6.1), and throughout we identify one-forms with their

metric dual vector fields. Since de; = div(e;g), we can now rewrite the term (dh, de;) in our
computation of @) (t) as

(dh,de;) = (dh,div(T.) + 2div(Vu*Vu + e’da*da)),

and apply the formula for div(T,) to see that

(b;l(t) = 2/ (dh,div(Vu*Vu + e’da*da))
M
— 2/ h(|u)? + €2 |&|?) - 4/ ((Vgpu, 1) + e2da(dh, &))
M M
= —2/(D2h, Vu*Vu + e’ da*da)
- 2/ (hlu + h‘lvdhulz + Ezhld + ]’l_lldhddlz)
M

+2/ W (|Vgpul? + € |igpdal?)
M
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722 PARISE ET AL.

< —2/(D2h, Vu*Vu + e*da*da) + 2/ h=Y(|\Vgpul? + €2 |gpdal?).
M

Now, setting
P, := Vu*Vu + e’da*da,

so that the stress-energy tensor T.(u, V) becomes simply e.(u, V)g — 2P,, we can rewrite the
preceding inequality as

(1) < —2/ (P,,D*h — h~'dh ® dh). (6.13)

M

On the other hand, by Hamilton’s matrix Harnack estimate for the heat equation, see [26, p. 132],
there exist constants C(M) and B(M) such that, fort € [T — 1,T),

dh ®dh 1

D2h —
h h 2T —1t)

hg > —C[(1 + hlog(B/(T — t)"/?)]g.
Applying this in (6.13), we see that for t € [T — 1, T) the following inequality holds:

@ (1) < /M (% +C + Chlog(B/(T — t)”/2)> (P;,8).

Now, recalling (6.12), observe that
(P, g) = |Vul? + 2¢%|dal?

- uP)’

2 2
=e¢, +e|ldal® —
 + €?|da =

=e + §t<€|d05| + 2%.(1 - |u|2)>

2
< (14 CeClen1)e, + CeCly/Je,

for t > 1. In particular, setting «,, := il, forT € [2,3] and t € [T — 1,T) it then follows that
'

’ 1+ Cea" C n/2
O () < ———Pu() + = s hy/e; +C Met + Clog(B/(T — t)?)®,(t)

1+ C2€“"
< ———— =

C
<= = ®u(0)'/7 + Cs + Cylog(B/(T — 1)"/)® (1)

Pu(t) + 7=

for some C,(M, A), where we also used the trivial inequality (P;, g) < 2e;. Thus, setting
Wu(0) 1= (T = )+ e Oy (1),

where |{(t)| < C(M, A) is the bounded function on [T — 1, T) given by

t
¢@) = —/ C, log(B/(T — s)"/?)ds,
1
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CONVERGENCE OF THE SELF-DUAL U(1)-YANG-MILLS-HIGGS ENERGIES TO THE (n — 2)-AREA FUNCTIONAL 723

we see that
@) (1) < C(T — )~/2%,(0)/* + C
fort € [T —1,T) C[1, 3). From this differential inequality, we can conclude that
Y, () SCM,AN)(PR(T—-1)+ 1), (6.14)

foranyt € [T —1,T) C [1,3).
Specializing, fix T € [2, 3] and x, € M, and let

h(t,x) = hT,xO(t,x) :=K(T —t, x,xg),

where K is the heat kernel on M. Then, for t € [T —1,T), the inequality in (6.14) leads to an
estimate of the form

(T — t)L+Ce / K(T —t,x, xp)e.(us, Vi) dx
M

< C/ K(1,x,xp)ec(ur—1, Vr_1) +C
M
< CE(ur—1,Vr_1)+C
< C(M,A).
In particular, taking t :=2and T := 2+ &2 for § € (0, 1], we see that
§2+2Cesn / K (82, x,x0)e.(uy, V5)dx < C(M, A). (6.15)
M
Since
inf €2€<”" = ¢(M,A) > 0,
€€(0,1]
it follows that
max <52/ K (82, x, xq)e.(uy, V) dx) < C(M,A). (6.16)
€<6<1 M
Finally, using again Lemma 6.2, it follows that

52‘"/ e.(uy,V,) <C(M,A) fore <5 <1.
Bs(xo)

Thus, we have arrived at the following bound.

Proposition 6.3. If (u;, V,) is a solution of the gradient flow (6.1) for E. with initial energy bound
E (ug, Vo) < A, then at time 2 the pair (u,, V,) satisfies

/ ec(uy, Vy) < C(M, A)r'"2, (6.17)
Br(xo)

forallr € [e,1] and x, € M.
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724 | PARISE ET AL.

Since (u,, V,) depends continuously on the initial couple (uy, V), this provides in particular
the regularization that we needed in the previous section.

Remark 6.4. Note that, in analogy with the monotonicity formula for critical couples, if we just
used the trivial bound (P;, g) < 2e, we would have obtained

®p(t) + C + Clog(B/(T — )" 2)® (1),

2
(1) < =—
h(t)_T—t

leading to
@ =17 [ o (t.9e, < CO40)
M

and hence a non-sharp bound C8"~* for the energy of (u,, V) on a ball Bs(x,). This would have
sufficed for our present purposes (of ruling out concentration of mass in the min-max families)
only when n > 4.

6.3 | Long-time existence of the gradient flow

In this last part we show long-term existence, uniqueness and continuous dependence on initial
conditions for the gradient flow of E,, on the trivial line bundle. To do so, it is convenient to pass to
the Coulomb gauge. Namely, given a smooth couple (u, @), we can always find a change of gauge

,B) = (€®u,a +db) withd*g = 0. (6.18)

Indeed, it is enough to take a solution 8 : M — R of d*a + d*d6 = 0, that is, A6 = —d*a. The
solution is unique once we impose fM 6=0.

In the sequel, we denote Q := —A;d* : QY(M) — Q°(M) the corresponding operator, with
values into mean-zero functions. By standard elliptic regularity, this operator maps H*(M)
continuously into H**1(M), for any k € N.

Given a smooth solution (u;, ;) to the gradient flow equations, let §; = Qa;. Omitting the time
dependence and passing to the Coulomb gauge as in (6.18) we get 6 = ¢~2Q(iu, Vu). Thus, setting
V :=d—if =V —idb, we obtain

B=a+dé
= —d*da + ¢ 2((iu, Vu) + dQ{iu, Vu))
= —Ayf + e %((iv, Vv) + dQ(iv, Vv)),
since by gauge invariance d*da = d*df = Ay and (iu, Vu) = (iv, Vv). Similarly,
U = e%u + iel®Bu

=-V*Vu + 21?(1 — v]»)v + €72(Q(iv, Vv))iv.

Let P : Q(M) — Q!(M) denote the Hodge projection on the co-closed part of a one-form. Since
—dQA equals the exact part of 4, we have A + dQA = PA forany 1 € Q'(M). Thus, expanding V*V
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in terms of j, the equations (6.1) give the new system

U+ d*dv = —21.(‘3,(10) — |ﬁ|2U + %(1 — |U|2)U + 6_2(Q<iv, dv — l.ﬁU>)l.U,
* (6.19)
B+ Ay = e~2P(iv, dv — ipv).

Conversely, given a couple (uy, ) and setting 6, := Qa,, from a smooth solution (vy, ;)
of (6.19) with initial condition (e®ou,, &, + df,) one recovers a smooth solution (u;,;) to the
original system (6.1), by letting 6 = 6, solve 8, = e~2Q(iv;,(d — i,)v,), and setting (u,a) :=
(e v, 8 — do).

Thus, we reduce ourselves to establishing the long-term existence, uniqueness and continuous
dependence for (6.19). We will use the following classical fact from the theory of linear parabolic
equations.

Lemma 6.5. Given f, € Qf(M) smooth on [0,T] X M, with 0 < T < 1, the (unique) solution w; to
o;w; + Agw, = f; with initial condition w, = 0 satisfies

lwllcoqo,ry,ax+1amy) < CCk, €, MO Nl 210, 77,1% (0

where the norms are shorthand for max,ejo 1) l|{w || ge+1(r) and (foT IIf: ”?—I"(M) d)l/2,

As a consequence, we get a well-defined operator
Tex : L*([0,T], H (M) = C°([0, T], H+' (M)

mapping f to w.
Using this lemma, short-time existence and uniqueness easily follow using the Banach fixed-
point theorem. Namely, fix an integer k > % and, given a smooth initial condition (v, B,), let w®

denote the constant couple w? = (vg, Bo)- For R > 0, the subset S of
Yr 1= CO[0, T, H*'(M) x H* (M),

given by the couples w; with initial value wy = (vy, By) and |Jlw — w0||yT < R, forms a complete
metric space with the distance induced by Y. To any w = (v, 8) € S we can associate the solution
F(w) = (v/,8) of

U+ d*dv’ = —2i(B, dv) — |B]%v + %(1 — [v?)v + €~2(Q(iv, dv — iBvY)iv,

B’ + ApB’ = e 2P(iv,dv — iBv).

Denoting G(w,) and H(w,) the right-hand sides of the two equations, note that they belong to
CO([0, T, H*(M)), since H*(M) is an algebra and P and Q map H*(M) into itself. Hence, F(w) €
Y is well-defined. For the same reason, letting R’ := R + ||v,| arain) + 11Boll ek, note that for
afixed t € [0, T] we have

IGw}) — Gl pkary < CM, RDNw} — w | it (ayseerecan)
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and similarly
IHw;) — Hw) | gkvry < CM, R w} — w || ks vy (v »
whenever w!, w? € S. As a consequence, Lemma 6.5 gives
IFW) = Fw?)lly, < CM,ROVT|w! = w?ly,.

Hence, for T small enough, we have ||[F(w') — F(w?)l|y, < %Ile — w?|ly, and, by continuity,
IF(w®) — w°|ly, <R/2;in particular,

IFw) = wlly, <IF)—FWOlly, + IFw®) —w’lly, <R

for w € S, and thus F(w) € S as well. The Banach fixed-point theorem applies and gives a unique
w € S with F(w) = w, as desired. Since R was arbitrary, this also establishes uniqueness in this
regularity class.
Let [0, T') be the maximal time of existence in the same class. From standard L? regularity theory
for linear parabolic equations, it then follows that the solution (v, 8) is smooth on [0, T) X M.
We shall now prove long-time existence of the flow. Assume by contradiction that T < co. As we
already saw in Section 6.1, the corresponding solution (u, ¢t) to the original system (6.1) satisfies

sup |da| < 0.
[0,T)xM

In a similar fashion, we can derive a bound for |Vu|. Indeed, as in [49, Section 3], we have the
Bochner identity

3|ul?

-1
-, + dd*)lqul2 = |V2u|?> + ————|Vu|?> = 2(w, p(u, V)) + R1(Vu, Vu)
2 2e2

and, in particular, using the bound [¢(u, V)| < |Vu|?, we easily deduce the weak subequation

y 3lul? -1
—(0, + d*d)|Vu| > 2—€2qu| —2|wl||Vu| — C(M)|Vul.
Recalling that
N e 1 S 171 Sl ] S
—(6t+d d) _6_2 c —E|Vu| ,
112
we obtain for the difference w := |Vu| — I that

€

2 2
u 2 1—|u
—(6t+d*d)w2uw+|Vu| —|Vu|—#—2|w|—C(M) .
€2 € 2¢2
For any 0 < 7 < T, if w attains a positive maximum on [0, 7] X M at some point (¢, x) with t > 0,
it then follows that here

|ul

21vu < 22 ok con
€ - 2¢2 )
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Hence,

1 2 €
[Vu| §—+[ sup w < E+e[ S};p |w|+§C(M)+|IV0u0||Lm(M)
0,T)xM 0,T)xM

on all of [0, T) x M. By gauge invariance, we then get

sup |df| < o0 and sup |dv —ifv]| < oo.
[0,T)xM [0,T)xM

In particular, the co-exact part of 3, is also bounded. From (6.1) it follows that

1d

.12 204 12
u;|“+e’la =—=—F_(u;,a;),
/M(|[| |6l?) = =5 5 Beur, )

from which we deduce the bound /OT /i |&1? < oo just by integrating the above expression. In
particular, & € L([0, T], L2(M)), giving & € C°([0, T], L>(M)). Thus, the harmonic part «" in the
Hodge decomposition of ¢, stays bounded. Since ﬁth = oc[h and $ has no exact part, this implies
that

sup || < 0.
[0,T)xM

Also, note that |v| = |u| < 1asasimple application of the maximum principle to the equation sat-
isfied by |u|?, provided |u,| < 1, implying

sup |dv| < oo.
[0,T)xM

From LP regularity theory (see, e.g., [58]), it follows that v, 8 € LP([0, T], W*P(M)) for all k € N,
1 < p < oo and, hence, v and B extend smoothly to [0, T] X M. Since we can extend the solution
past T, we arrive at a contradiction. This shows that T = oo. Finally, continuous dependence (in
the smooth topology) on the initial condition for the system (6.1) follows from the same property
for (6.19), whose proof can be found for instance in [14, 44].
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