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Abstract

Given a hermitian line bundle ÿ → ý on a closed Rie-

mannianmanifold (ýÿ, ý), the self-dual Yang–Mills–Higgs

energies are a natural family of functionals

ýÿ(ÿ, ∇) ∶= ∫
ý

(
|∇ÿ|2 + ÿ2|ý∇|2 + (1 − |ÿ|2)2

4ÿ2

)

defined for couples (ÿ, ∇) consisting of a section ÿ ∈

Γ(ÿ) and a hermitian connection ∇ with curvature ý∇.

While the critical points of these functionals have been

well-studied in dimension two by the gauge theory com-

munity, it was shown in [52] that critical points in higher

dimension converge as ÿ → 0 (in an appropriate sense) to

minimal submanifolds of codimension two, with strong

parallels to the correspondence between the Allen–Cahn

equations and minimal hypersurfaces. In this paper, we

complement this idea by showing the Γ-convergence of ýÿ
to (2ÿ times) the codimension two area: more precisely,

given a family of couples (ÿÿ, ∇ÿ)with supÿ ýÿ(ÿÿ, ∇ÿ) < ∞,

we prove that a suitable gauge invariant Jacobian ý(ÿÿ, ∇ÿ)

converges to an integral (ÿ − 2)-cycle Γ, in the homology

class dual to the Euler class ý1(ÿ), with mass 2ÿý(Γ) ≤
lim inf ÿ→0 ýÿ(ÿÿ, ∇ÿ). We also obtain a recovery sequence,

for any integral cycle in this homology class. Finally, we

apply these techniques to compare min-max values for

the (ÿ − 2)-area from the Almgren–Pitts theory with those
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obtained from the Yang–Mills–Higgs framework, showing

that the former values always provide a lower bound for the

latter. As an ingredient, we also establish a Huisken-type

monotonicity result along the gradient flow of ýÿ.

1 INTRODUCTION

1.1 Background and motivation

The discovery in the late 1970s of deep connections between minimal hypersurfaces and the
Allen–Cahn equations opened up a rich line of investigation, shedding light onto the structure
of solutions of semilinear elliptic equations and the existence theory for minimal hypersurfaces.
Likeminimal hypersurfaces, which arise as critical points of the (ÿ − 1)-area functional, solutions
of the Allen–Cahn equations

ÿΔÿ =
1

ÿ
ÿ′(ÿ) (1.1)

(where ÿ > 0 andÿ ∶ ℝ → [0,∞) is a double-well potential) arise naturally as critical points for
the Allen–Cahn energies

ýÿ(ÿ) ∶= ∫
Ω

(
ÿ

2
|ýÿ|2 + ÿ(ÿ)

ÿ

)

onÿ1,2(Ω,ℝ). A recurring theme in the study of the correspondence between solutions of (1.1)
and minimal hypersurfaces is the convergence not only of critical points, but of the variational
theory for the functionalsýÿ to that of the (ÿ − 1)-area on the space of (ÿ − 1)-boundaries as ÿ → 0.
The earliest results in this directionwere obtained byModica andMortola [47]who established the
asymptotic convergence of ýÿ to (a constant multiple of) the perimeter functional for Caccioppoli
sets, in the framework ofΓ-convergence introduced a fewyears earlier byDeGiorgi [18]. DeGiorgi’s
Γ-convergence provides a natural weak notion of convergence for variational problems involving
a singular perturbation, well-suited to establishing convergence of minimizers to minimizers (see
[11] and [17] for a contemporary treatment of Γ-convergence, and [1] for its application to the
study of phase transitions). The work of Modica–Mortola was later generalized by Modica [46]
and Sternberg [62], in their resolution of some conjectures of Gurtin [25].
While the Γ-convergence results of [46, 47], and [62] imply that energy-minimizing solutions

of (1.1) (rather, their level sets and energy measures) converge to area-minimizing hypersurfaces,
a series of results obtained over the last 5 years [20, 22, 24] show that the min-max theory for the
Allen–Cahn functionals ýÿ likewise converges to the min-max theory for the area functional on
(ÿ − 1)-boundaries in the geometric measure theory framework developed by Almgren and Pitts
[50]. Building on the analytic work of [33] and [66], these and related results have established
the min-max theory for the Allen–Cahn functionals as a valuable regularization of the Almgren–
Pitts min-max construction of minimal hypersurfaces, finding use, for instance, in Chodosh and
Mantoulidis’s work on the Multiplicity One conjecture in three-manifolds [16].
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In view of these and other applications, it is natural to seek an analogous correspondence
between certain geometric elliptic systems and minimal submanifolds of higher codimension. In
[49], the second- and third-named authors proposed a natural analog in codimension two, with
the role of the Allen–Cahn equations taken on by a well-studied family of elliptic systems from
gauge theory. Specifically, [49] considers the self-dualý(1)-Yang–Mills–Higgs energies: the gauge-
invariant functionals ýÿ(ÿ, ∇) acting on a section ÿ ∈ Γ(ÿ) and metric-compatible connection ∇

on a hermitian line bundle ÿ → ý by

ýÿ(ÿ, ∇) ∶= ∫
ý

(
|∇ÿ|2 + ÿ2|ý∇|2 + 1

4ÿ2
(1 − |ÿ|2)2

)
.

The functionals ýÿ are distinguished from formally similar functionals—such as ∫
ý
(|∇ÿ|2 +

ÿ|ý∇|2 + 1

4ÿ2
(1 − |ÿ|2)2) for ÿ b ÿ2—by their so-called self-duality: namely, ýÿ enjoys additional

symmetry properties, such that minimizers of ýÿ for bundles ÿ → Σ2 over a Riemann surface Σ2

satisfy a special first-order system known as the vortex equations.
The study of these functionals has a long history, which we do not attempt to survey here. In

his thesis work [64, 65], Taubes classified finite-energy critical points of ýÿ for the trivial bundle
ÿ ≅ ℂ × ℝ2 → ℝ2, showing that all such critical points satisfy the first-order vortex equations,
are determined—up to gauge equivalence—by the finite zero set ÿ−1{0} ⊂ ℂ (counted with mul-
tiplicity), and have quantized energy ýÿ(ÿ, ∇) = 2ÿý ∈ 2ÿℕ corresponding to the mass of the
zero set ý = |ÿ−1{0}| (see [64, 65], and [35] for details). The asymptotic analysis as ÿ → 0 of
the rescaled functionals ýÿ was first taken up by Hong, Jost, and Struwe, who showed in [31]
that for minimizers (ÿÿ, ∇ÿ) of ýÿ on line bundles ÿ → Σ2 over a Riemann surface Σ, energy
and curvature concentrate (subsequentially) as ÿ → 0 at a collection of | deg(ÿ)| points in Σ,
outside of which ÿÿ converges to a unit section ÿ0 and ∇ÿ to a flat connection ∇0 for which
∇0ÿ0 = 0.
The results of [49] provide a far-reaching generalization of Hong–Jost–Struwe’s analysis, char-

acterizing the limiting behavior of arbitrary critical points on line bundles over a base manifold
ýÿ of general dimension. Namely, it is shown in [49] that for sequences (ÿÿ, ∇ÿ) of critical points
satisfying a uniform energy bound ýÿ(ÿÿ, ∇ÿ) ≤ ÿ, the energy densities

ÿÿ(ÿÿ, ∇ÿ) ∶= |∇ÿÿÿ|2 + ÿ2|ý∇ÿ
|2 + (1 − |ÿÿ|2)2

4ÿ2

converge subsequentially weakly in (ÿ0)∗ to (the weight measure of) a stationary integral (ÿ − 2)-

varifold ý iný—that is, a (possibly singular) minimal variety of codimension two. In particular,
this gives a codimension-two analog to the results of Hutchinson–Tonegawa [33] for the Allen–
Cahn equations, showing that critical points for ýÿ converge cleanly to critical points of the (ÿ −

2)-area functional in the ÿ → 0 limit.We note, moreover, that the analysis in [49] depends strongly
on the specific choice of coupling constants in the definition of ýÿ, suggesting that the self-dual
ý(1)-Yang–Mills–Higgs energies provide more or less the unique codimension-two analog for the
Allen–Cahn energies, at least among similar functionals of Yang–Mills–Higgs type.

Remark 1.1. In particular, the convergence behavior for critical points (ÿÿ, ∇ÿ) of ýÿ in the ÿ(1)
energy regime is considerably simpler than its counterpart for the non-gauged Ginzburg–Landau
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energies

ÿÿ ∶ ÿ1,2(ý,ℂ) → ℝ, ÿÿ(ÿ) ∶= ∫
ý

(
|ýÿ|2 + (1 − |ÿ|2)2

4ÿ2

)

in the ÿ(| log ÿ|) energy regime, whose critical points in general exhibit partial energy concentra-
tion along a stationary, rectifiable (not necessarily integral) (ÿ − 2)-varifold (cf., [7, 8, 15, 27, 30, 41,
42, 55, 61, 63] for details of the asymptotic analysis of the complex Ginzburg–Landau equations, as
well as [9, 10, 51–53, 57] for related results for other functionals of Yang–Mills–Higgs type whose
behavior resembles that of ÿÿ). As remarked in [49], the variational theory for the functionals ÿÿ

is best understood as a relaxation of that for the Dirichlet energy on singular ÿ1-valued maps, and
its relation to geometric measure theory and minimal submanifolds is subtle, and qualitatively
quite different from that of the Allen–Cahn or self-dual Yang–Mills–Higgs energies.

Building on the ideas of [49], the aim of the present paper is to understand to what extent
the variational theory for the functionals ýÿ converges to that of the (ÿ − 2)-area, in the spirit of
similar results for theAllen–Cahn functionals. Our chief analytic result provides a key step toward
answering this question, establishing the Γ-convergence of the functionals ýÿ for pairs (ÿ, ∇) on a
hermitian line bundle ÿ → ý to themass functional on the space of integral (ÿ − 2)-cycles dual to
ý1(ÿ). This convergence result—whose precise formulation we give in the following subsection—
may be thought of as a codimension-two analog of the classical results of Modica and Mortola;
and in spite of the very different setting, its proof bears a surprising resemblance to the original
arguments in [47]. In addition to implying the convergence of ýÿ-minimizing pairs (ÿÿ, ∇ÿ) to
area-minimizing (ÿ − 2)-cycles, the Γ-convergence framework—together with some topological
arguments—allows us to compare the energy of min-max critical points for ýÿ to the areas of
correspondingmin-maxminimal varieties, along the lines of the comparison results for theAllen–
Cahn and Almgren–Pitts min-max constructions obtained in [22, 24].

1.2 Convergence results for the self-dual Yang–Mills–Higgs energies

Let ÿ → ýÿ be a hermitian line bundle over a closed, oriented Riemannian manifold (ýÿ, ý).
Given a metric connection ∇ on ÿ, recall that the curvature ý∇ ∈ Ω2(ý) ⊗ ýý(ÿ) is given by

ý∇(ÿ, ý)ÿ ∶= [∇ÿ , ∇ý]ÿ − ∇[ÿ,ý]ÿ = −ÿÿ∇(ÿ, ý)ÿ (1.2)

for some two-form ÿ∇ ∈ Ω2(ý), which we will frequently identify with ý∇ when there is no con-
fusion. Given a pair (ÿ, ∇) consisting of a section ÿ ∈ Γ(ÿ) and metric connection∇, we define as
in [49] the two-form ÿ(ÿ,∇) ∈ Ω2(ý) by

ÿ(ÿ,∇)(ÿ, ý) ∶= 2ïÿ∇ÿÿ,∇ýÿð,
which is easily seen to satisfy the pointwise bound |ÿ(ÿ)| ≤ |∇ÿ|2 (cf., [49, Section 2]). For the
Γ-convergence results, we will be particularly interested in the two-forms

ý(ÿ,∇) ∶= ÿ(ÿ,∇) + (1 − |ÿ|2)ÿ∇ = ýï∇ÿ, ÿÿð + ÿ∇, (1.3)
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whose role should be compared to that of the one-forms
√
2ÿ(ÿ) ⋅ ýÿ for real-valued functions

ÿ ∶ ý → ℝ in the work of Modica–Mortola [47].
As with any Γ-convergence result, our main theorem consists of two parts. First, we show that

for any family of pairs (ÿÿ, ∇ÿ) with

sup
ÿ>0

ýÿ(ÿÿ, ∇ÿ) ≤ Λ < ∞,

there exists a subsequence (ÿÿÿ , ∇ÿÿ ), with ÿÿ → 0, to which we can associate a limiting integral
(ÿ − 2)-cycle Γ with 2ÿý(Γ) ≤ Λ. Second, we show that any integral (ÿ − 2)-cycle dual to ý1(ÿ)
can be obtained in this way. More precisely, we have the following.

Theorem 1.2 (ÿ-convergence). For a hermitian line bundle ÿ → ý as above, the following hold:

(i) Liminf inequality. Given a family (ÿÿ, ∇ÿ) of smooth sections with |ÿÿ| ≤ 1 and metric connec-

tions with uniformly bounded energies ýÿ(ÿÿ, ∇ÿ) ≤ Λ, there exists an integral (ÿ − 2)-cycle Γ

Poincaré dual to ý1(ÿ) ∈ ÿ2(ý;ℤ), the Euler class of ÿ, such that, up to a subsequence,

ý(ÿÿ, ∇ÿ) ⇀ 2ÿΓ, as ÿ → 0,

as currents. Moreover, the following liminf inequality holds:

2ÿý(Γ) ≤ lim inf
ÿ→0

ýÿ(ÿÿ, ∇ÿ).

(ii) Recovery sequence. Given an integral (ÿ − 2)-cycle Γwhose homology class [Γ] ∈ ÿÿ−2(ý;ℤ) is

dual to ý1(ÿ) ∈ ÿ2(ý;ℤ), there exists a family (ÿÿ, ∇ÿ) of smooth sections and connections on

ÿ such that

ý(ÿÿ, ∇ÿ) ⇀ 2ÿΓ, as ÿ → 0,

as currents, and

lim
ÿ→0

ýÿ(ÿÿ, ∇ÿ) = 2ÿý(Γ).

Remark 1.3. Since the curvature forms ÿÿ ∶= ÿý∇ÿ
satisfy

ý(ÿÿ, ∇ÿ) = ÿÿ + ýï∇ÿÿÿ, ÿÿÿð,

if ýÿ(ÿÿ, ∇ÿ) = ÿ(1), the boundedness of ï∇ÿÿÿ, ÿÿÿð in ÿ2(ý) together with part (i) above implies
that the curvatures ÿÿ also have a subsequential limit as currents. Simple examples show that
this limit may fail to coincide with 2ÿΓ under our assumptions—for example, by taking ÿÿ c
1 and ∇ÿ = ý − ÿÿ for a fixed one-form ÿ with ýÿ b 0 on the trivial bundle ℂ ×ý. However,
assuming that ∇ÿ is critical for the energy ýÿ(ÿÿ, ⋅)—hence, a minimizer by convexity of ýÿ in
∇ÿ—the corresponding Euler–Lagrange equation (2.3) gives ï∇ÿÿÿ, ÿÿÿð ⇀ 0, since ÿ2ÿÿ → 0 in
ÿ2(ý). Thus, in this case

2ÿΓ = lim
ÿ→0

ÿÿ
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as currents. Together with Corollary 1.4 below, this implies that for a sequence of minimizers

(ÿÿ, ∇ÿ), the curvature forms
1

2ÿ
ÿÿ converge subsequentially to an integral, area-minimizing cycle

Γwhose associated varifold agreeswith the energy concentration varifoldý from [49, Theorem 1.1]
(up to a subsequence). This answers a question raised in [49].

Readers familiar with the Γ-convergence theory developed for the normalized Ginzburg–

Landau functionals
ÿÿ

| log ÿ| in recent decades (see in particular [2–4, 13, 38]) will notice some formal

similarities between the above result and analogs for the functionals
ÿÿ

| log ÿ| . Namely, the results of
[3] and [38] show that for any complex-valued map ÿ ∶ ý → ℂ with

ÿÿ(ÿ) ≤ 2ÿΛ log(1∕ÿ)

and 0 < ÿ ≪ 1 sufficiently small, the Jacobian 2-form

ýÿ ∶= 2ýÿ1 ∧ ýÿ2

(which coincides with bothÿ(ÿ,∇) and ý(ÿ,∇)when∇ is the standard flat connection on the triv-
ial bundle) is weakly close to (2ÿ times) an integral (ÿ − 2)-boundary Γ of massý(Γ) ≤ Λ + ý(1).
The proof requires some delicate analysis: in particular, the mass ‖ýÿ‖ÿ1 of the Jacobians them-
selves is not bounded in general by the energy

ÿÿ(ÿ)

| log ÿ| for small ÿ, and the proof of the associated
Γ-convergence result relies instead on a subtle application of the degree estimates of Sandier [54]
and Jerrard [36] (see also [56, 59]).
In our setting, by contrast, the two-forms ý(ÿ,∇) are easily seen to enjoy a pointwise bound

|ý(ÿ,∇)| ≤ |∇ÿ|2 + (1 − |ÿ|2)|ý∇| ≤ |∇ÿ|2 + ÿ2|ý∇|2 + 1

4ÿ2
(1 − |ÿ|2)2 (1.4)

by the energy integrand ÿÿ(ÿ, ∇), so that ‖ý(ÿ,∇)‖ÿ1 ≤ ýÿ(ÿ, ∇) automatically. As a consequence,
to prove part (i) of Theorem 1.2, the only challenge lies in showing that the limiting (ÿ − 2)-cycle
Γ is integer rectifiable (and lies in the correct homology class).
To achieve this, we establish a compactness result for sectionsÿÿ ∈ Γ(ÿ)withýÿ(ÿÿ, ∇ÿ) = ÿ(1),

showing that they converge subsequentially (after change of gauge) to a singular unit section,

whose topological singular set Γ coincides with the limit of
1

2ÿ
ý(ÿÿ, ∇ÿ). These singular unit

sections (modulo the action of the gauge group) provide a natural codimension-two analog of
Caccioppoli sets, and it is not difficult to see that their topological singular sets are integral (ÿ − 2)-
cycles (indeed, this is a consequence of results in [3] and [37]). Again, we note that the broad
outlines of the argument are very much reminiscent of those in [47] for the Allen–Cahn energies,

with the bound (1.4) playing the role of the simple estimate |√2ÿ(ÿ) ⋅ ýÿ| ≤ ÿ

2
|ýÿ|2 + ÿ(ÿ)

ÿ
for

real-valued functions ÿ ∶ ý → ℝ.

1.3 Applications to the study of minimizers and min-max
constructions

As an immediate corollary of Theorem 1.2, we see thatminimizers ofýÿ converge to (ÿ − 2)-cycles
which are area-minimizing in their homology class, answering a question raised in [49].
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Corollary 1.4. Let ÿ → ý be a nontrivial hermitian line bundle over a closed, oriented ÿ-manifold

(ýÿ, ý). If (ÿÿ, ∇ÿ)minimize ýÿ(ÿ, ∇) among all pairs (ÿ, ∇) on ÿ, then

lim
ÿ→0

ýÿ(ÿÿ, ∇ÿ) = 2ÿmin {ý(Γ) ∣ Γ ∈ ÿ−2(ý;ℤ) Poincaré dual to ý1(ÿ)}, (1.5)

and along a subsequence ÿ = ÿÿ → 0, we have weak convergence

lim
ÿ→0

ý(ÿÿ, ∇ÿ) = lim
ÿ→0

ÿ∇ÿ
= 2ÿΓ

of ý(ÿÿ, ∇ÿ) and the curvaturesÿ∇ÿ
to an (ÿ − 2)-cycleΓminimizingmass in the homology class dual

to ý1(ÿ).

With Theorem 1.2 in place, the proof of the corollary follows standard lines: by part (i)
of the theorem, we know that the forms ý(ÿÿ, ∇ÿ) for a minimizing family (ÿÿ, ∇ÿ) converge
subsequentially to an integral (ÿ − 2)-cycle Γ, in the correct homology class, of mass ý(Γ) ≤
1

2ÿ
lim inf ÿ→0 ýÿ(ÿÿ, ∇ÿ), providing one inequality in (1.5). The opposite inequality follows from

part (ii) of the theorem, which guarantees the existence of a recovery sequence (ÿÿ, ∇ÿ) for amass-
minimizing cycle Γ. The convergence of the curvature two-forms ÿ∇ÿ

follows from the discussion
in Remark 1.3.
For the min-max applications, we will focus on the trivial bundle ÿ = ℂ ×ý → ý over a given

closed, oriented (ýÿ, ý). We then consider a Banach space ÿ consisting of pairs (ÿ, ∇ = ý − ÿÿ),
equipped with an appropriate norm, with respect to which ýÿ is a smooth functional satisfying a
variant of the Palais–Smale condition (as in Section 5 below or Section 7 of [49]). Removing from
ÿ the degenerate set

ÿ0 ∶= {(ÿ,∇) ∈ ÿ ∶ ÿ c 0}

(on which ýÿ ∼ 1∕ÿ2 blows up as ÿ → 0), we see that the action of the gauge group of maps  =

Maps(ý, ÿ1) given by

ÿ ⋅ (ÿ,∇) ∶= (ÿ ⋅ ÿ,∇ − ÿÿ∗(ýÿ))

restricts to an action on the complement ÿ ⧵ ÿ0.
For the purposes of intuition, we can view the gauge-invariant functionals ýÿ as functions on

the moduli space

 ∶= (ÿ ⧵ ÿ0)∕,
whose topology may be compared with that of the space

ý ∶= ÿýÿ−1(ý;ℤ) ⊆ ÿ−2(ý;ℤ)

of integral (ÿ − 2)-boundaries iný, equippedwith the flatmetric. Indeed,we claim (see Section 5)
that there are geometrically natural isomorphisms between the homotopy groups

Φ ∶ ÿý(, ∗) → ÿý(ý, 0),
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where ∗∈  denotes the collection of pairs (ÿ, ∇) ∈ ÿ with |ÿ| c 1 and ∇ÿ = 0, and 0 ∈ ý is
the 0-cycle. (Intuitively, one can think of this isomorphism as being induced by the zero locus
map (ÿ, ∇) ↦ ÿ−1{0}, but of course this will not define a continuous map into ý in practice.) This
isomorphism is nontrivial only when ý = 1 or 2.
For ý = 1, 2, to any class ÿ ∈ ÿý(ý, 0), one can associate a min-max width

ÿ(ÿ) ∶= inf
ÿ∈ÿ

sup
ý∈ÿý

ý(ÿ(ý)) (1.6)

for the (ÿ − 2)-area functional. In practice, we work with the discretized variantÿ∗(ÿ) of these
min-maxwidths introduced byAlmgren and Pitts (see [50], or Section 5 below), which correspond
to the masses of stationary (ÿ − 2)-varifolds. Likewise, for each nontrivial class ÿ ∈ ÿý(, ∗) and
ÿ > 0, one can consider the min-max energies

ÿ(ÿ) ∶= inf
ý∈ÿ

max
ý∈ÿý

ýÿ(ý(ý)),

which are realized as critical values of the functionals ýÿ. (In practice, rather than working with
families in ÿý(, ∗), in Section 5 we work equivalently with the families [0, 1] → ÿ and ÿ̄2 → ÿ

giving their lifts in the Banach spaceÿ.) In rough terms, the results of Section 5 yield the following
comparison.

Theorem 1.5 (Min-max comparison). Let be the moduli space of pairs (ÿ, ∇) with ÿ ≢ 0 and ý

the space of integral (ÿ − 2)-boundaries as above. With respect to the aforementioned isomorphism

Φ ∶ ÿý(, ∗) → ÿý(ý, 0), the min-max energies satisfy

lim inf
ÿ→0

ÿ(ÿ) ≥ ÿ∗(Φ(ÿ)) (1.7)

for any ÿ ∈ ÿý(, ∗). In particular, the mass of the stationary integral (ÿ − 2)-varifold ýýýÿ

associated to the critical points (ÿÿ, ∇ÿ) by the results of [49] is bounded below by the mass of the

corresponding min-max (ÿ − 2)-varifold ýÿýÿ produced by Almgren’s min-max construction.

While we have restricted our attention here to the comparison of one- and two-parameter min-
max constructions associated to the homotopy groups of and ý, we believe that the techniques
used in the proof of Theorem 1.5 should apply to all naturalmin-max constructions for the energies
ýÿ, with appropriate modifications to the topological part of the argument. In particular, while
Theorem 1.5 can be compared to [24, Proposition 8.19] in the Allen–Cahn setting, we expect that
the same ideas can be used to prove an analog of [22, Theorem 6.1] treating higher-parameter
families detecting cohomology classes inÿ∗(; ℤ) of higher degree.
Moreover, let us point out that in the Allen–Cahn setting, Akashdeep Dey has recently suc-

ceeded in proving a bound in the opposite direction [20], concluding that themin-max energies for
the Allen–Cahn functionals in fact coincide with the corresponding Almgren–Pitts widths in the
ÿ → 0 limit. Though establishing a codimension-two analog ofDey’s bound for the self-dual Yang–
Mills–Higgs functionals lies beyond the scope of the present paper, we optimistically conjecture
that such an estimate should hold, giving equality in (1.7).
A key element in the proof of the min-max comparison theorem is the ÿ2 gradient flow

associated to the Yang–Mills–Higgs energies: that is, the following system of coupled nonlinear
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parabolic equations:

⎧
⎪«⎪¬

ÿýÿý = −∇∗
ý∇ýÿý +

1

2ÿ2
(1 − |ÿý|2)ÿý,

ÿýÿý = −ý∗ýÿý + ÿ−2ïÿÿý, ∇ýÿýð,
(1.8)

subject to some initial data (ÿ0, ∇0 = ý − ÿÿ0). The necessity of its introduction is due to some
technical difficulties emerging in the proof of Theorem 1.5 when passing from maps continu-
ous in the flat norm, which are given by the Γ-convergence theory, to maps continuous in the
mass norm, the relevant ones in the Almgren–Pitts setting. Indeed, the former can exhibit a phe-
nomenon called concentration of mass whereby the energy density accumulates at small scales,
preventing a direct application of the so-called interpolation theory developed by Marques, Neves
and collaborators, which would give a corresponding continuous map in the mass norm. (We
note that, in codimension one, the concentration-of-mass problem can be avoided by appealing
to results of Zhou [67].)
Since we expect the gradient flow of ýÿ to approximate a (weak) mean curvature flow of codi-

mension two, a Huisken-type monotonicity formula should be expected to hold, thus providing
the desired (ÿ − 2)-energy density bounds at all scales after running the flow for a fixed amount
of time (uniformly in ÿ). This provides us with a canonical regularization preventing concentra-
tion of mass, without increasing the total energy. At the end of the paper, we check that the flow
satisfies long-time existence, uniqueness and continuous dependence on the initial data.

2 NOTATION AND PRELIMINARIES

Let (ýÿ, ý) be a closed, oriented Riemannian manifold and let ÿ → ý be a complex line bundle
over ý, endowed with a hermitian structure ï⋅, ⋅ð. We will denote byÿ ∶ ÿ → ℝ the nonlinear
potential

ÿ(ÿ) ∶=
1

4
(1 − |ÿ|2)2,

and for a hermitian connection ∇ on ÿ, a section ÿ ∈ Γ(ÿ), and a parameter ÿ ∈ (0, 1), we denote
by ýÿ(ÿ, ∇) the scaled Yang–Mills–Higgs energy

ýÿ(ÿ, ∇) ∶= ∫
ý

(|∇ÿ|2 + ÿ2|ý∇|2 + ÿ−2ÿ(ÿ)) dvolý = ∫
ý

ÿÿ(ÿ, ∇) dvolý, (2.1)

where dvolý denotes the volume form oný, ÿÿ(ÿ, ∇) is the energy density and ý∇ is the curvature
of ∇. As discussed in the introduction, working with ý(1)-connections allows us to identify ý∇
with the real, closed, two-form ÿ = ÿ∇ via

ý∇(ÿ, ý)ÿ = [∇ÿ , ∇ý]ÿ − ∇[ÿ,ý]ÿ = −ÿÿ∇(ÿ, ý)ÿ. (2.2)

The Euler–Lagrange equations for critical points of (2.1) are given by

⎧
⎪«⎪¬

∇∗∇ÿ =
1

2ÿ2
(1 − |ÿ|2)ÿ,

ÿ2ý∗ÿ∇ = ï∇ÿ, ÿÿð.
(2.3)
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Here ∇∗ denotes the formal adjoint of ∇ and ý∗ the formal adjoint of ý. We refer to [49, Sec-
tion 2] for further details and to the appendix of the same paper for the regularity of solutions to
these equations.
A key feature of the energies ýÿ is their gauge-invariance: that is, for any ÿ ∈  = Maps(ý, ÿ1),

the energy ýÿ(ÿ, ∇) is invariant under the change of gauge

ÿ ⋅ (ÿ,∇) = (ÿÿ,∇ − ÿÿ∗(ýÿ)),

corresponding to a fiberwise rotation of ÿ. As discussed in the introduction, an important first step
in understanding the Γ-convergence theory for ýÿ is identifying an appropriate gauge-invariant
analog of the Jacobian two-form 2ýÿ1 ∧ ýÿ2 for complex-valued maps. To this end, for a pair
(ÿ, ∇), we consider the two-forms ÿ(ÿ,∇) given by

ÿ(ÿ,∇)(ÿ, ý) ∶= 2ïÿ∇ÿÿ,∇ýÿð,

for vector fields ÿ and ý, and define the gauge-invariant Jacobians

ý(ÿ,∇) ∶= ÿ(ÿ,∇) + (1 − |ÿ|2)ÿ∇.

A straightforward computation shows that

ýï∇ÿ, ÿÿð = ÿ(ÿ) − |ÿ|2ÿ∇ = ý(ÿ,∇) − ÿ∇, (2.4)

from which we deduce that ý(ÿ,∇) is closed and cohomologous to ÿ. Moreover, as mentioned in
the introduction, it is easy to check thatÿ(ÿ,∇) satisfies the pointwise estimate |ÿ(ÿ,∇)| ≤ |∇ÿ|2,
which together with Young’s inequality implies

|ý(ÿ,∇)| ≤ |∇ÿ|2 + ÿ2|ÿ∇|2 + 1

4ÿ2
(1 − |ÿ|2)2 = ÿÿ(ÿ, ∇), (2.5)

so that ý(ÿ,∇) has ÿ1 norm bounded above by ýÿ(ÿ, ∇). Throughout the paper, we identify ý(ÿ,∇)
with an (ÿ − 2)-current, with the assignment

ïý(ÿ,∇), ÿð ∶= ∫
ý

ý(ÿ,∇) ∧ ÿ

for all ÿ ∈ Ωÿ−2(ý); under this identification, note that the mass of ý(ÿ,∇) is precisely

ý(ý(ÿ,∇)) = ‖ý(ÿ,∇)‖ÿ1(ý) ≤ ýÿ(ÿ, ∇).

Finally, given a smooth reference connection ∇0 on ÿ with associated curvature two-form ÿ0,
it will be useful to note that, by (2.4), we can write

ý(ÿ,∇) = ý(ÿ(ÿ,∇)) + ÿ0 (2.6)
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where

ÿ(ÿ,∇ = ∇0 − ÿÿ) ∶= ï∇ÿ, ÿÿð + ÿ = ï∇0ÿ, ÿÿð + (1 − |ÿ|2)ÿ, (2.7)

implicitly using the fact that ∇ can be written as ∇0 − ÿÿ, for ÿ ∈ Ω1(ý), so that ÿ∇ = ÿ0 + ýÿ.

2.1 Notions from geometric measure theory

For the convenience of the reader, we collect here some terminology and notation from geomet-
ric measure theory used throughout the paper. We follow [60] and we refer the reader to it for
further details.
We denote by ý(ý;ℤ) the space of integer rectifiable ý-currents with finite mass. Recall that

an integral ý-current is an integer rectifiable ý-current whose boundary has finite mass (and, as a
consequence, is itself an integer rectifiable (ý − 1)-current). We denote by ýý(ý;ℤ) the space of
ý-dimensional integral currents iný and byý(ý;ℤ) the subset of those currents ÿ ∈ ýý(ý;ℤ)

satisfying ÿÿ = 0.
Given ÿ ∈ ýý(ý;ℤ) we denote by |ÿ| the associated integral varifold and by ‖ÿ‖ the induced

Radon measure oný. The definition of mass used in this paper is

ý(ÿ) ∶= sup{ÿ(ÿ) ∣ ÿ ∈ Ωý(ý), ‖ÿ‖ÿ0(ý) ≤ 1},

where the last norm is understood with respect to the Euclidean norm on covectors. Setting
ý(ÿ, ÿ) ∶= ý(ÿ − ÿ) for ÿ, ÿ ∈ ý(ý;ℤ) we obtain a metric on ý(ý;ℤ) known as the mass
metric. We can topologize the space ý(ý;ℤ) differently via the so-called flat distance

(ÿ, ÿ) ∶= inf {ý(ÿ) + ý(ý) ∣ ÿ − ÿ = ÿ + ÿý, ÿ ∈ ý(ý;ℤ), ý ∈ ý+1(ý;ℤ)},

for ÿ, ÿ ∈ ý(ý;ℤ). Writing (ÿ) = (ÿ, 0), note that we trivially have
(ÿ) ≤ ý(ÿ) for all ÿ ∈ ý(ý;ℤ).

Some further concepts from geometric measure theory relevant to the min-max comparison are
introduced in Section 5 below.

3 THE LIMINF INEQUALITY

3.1 The distributional gauge-invariant Jacobian and singular unit
sections

In the classical Γ-convergence theory for the Allen–Cahn energies, it is important to iden-
tify the space of (ÿ − 1)-boundaries in ý with the distributional derivatives of functions in
ýý(ý, {−1, 1}), which arise as limits of the functions Φ(ÿÿ) for real-valued functions ÿÿ ∶

ý → ℝ with ýÿ(ÿÿ) = ÿ(1), where Φ(ý) ∶= ∫ ý

0

√
2ÿ(ý) ýý ∕ ∫ 1

0

√
2ÿ(ý) ýý. Similarly, the study

of Γ-convergence for functionals of Ginzburg–Landau type is closely related to the theory of
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distributional Jacobians for circle-valued (and, more generally, sphere-valued [2, 3, 37]) maps, but
the structure theory of these Jacobians does not play a direct role in the Γ-convergence proofs,
since these results are not typically accompanied by compactness results for the given sequence
of complex-valued maps.
For our results, it will likewise be useful to identify the space ÿ−2(ý;ℤ) of integral (ÿ − 2)-

cycles in ý with the topological singularities (distributional Jacobians) of certain singular unit
sections of hermitian line bundles oný, arising as a limit of the two-forms ý(ÿ,∇) for smooth pairs
(ÿ, ∇). To this end,we seek to extend the definition of the (ÿ − 2)-current ý(ÿ,∇) to a larger class of
pairs (ÿ, ∇) of lower regularity, generalizing the distributional Jacobian for complex-valuedmaps.
First, we need to understand the continuity of ý(ÿ,∇) as amap into the space of (ÿ − 2)-currents

ÿ−2(ý)with the (ÿ1)∗ metric. Given ý ∈ (1,∞) and a fixed reference connection∇0 on ÿ → ý,
we introduce the norm

‖(ÿ, ∇)‖ý ∶= ‖ÿ‖ÿý(ý) + ‖∇0ÿ‖ÿý(ý) + ‖∇ −∇0‖ÿý(ý)

on the space of smooth pairs ÿ ∈ Γ(ÿ) and ∇ = ∇0 − ÿÿ, and denote by ÿý(ÿ) the metric space
obtained as the completion of the space of smooth pairs

(ÿ, ∇) = (ÿ,∇0 − ÿÿ), where |ÿ| ≤ 1

with respect to the norm ‖ ⋅ ‖ý. Note that, in a local trivialization, elements of ÿý(ÿ) can be iden-
tified with pairs (ÿ, ÿ) where ÿ is a one-form in ÿý and ÿ is aÿ1,ý map to the unit disk ÿ̄ ⊂ ℂ.
The precise definition of the norm ‖ ⋅ ‖ý is somewhat arbitrary, and other equivalent norms
would work just as well. With respect to this norm, it is not difficult to check that the assign-
ment (ÿ, ∇) ↦ ý(ÿ,∇) satisfies the desired continuity properties, summarized in the following
proposition.

Proposition 3.1. For a fixed reference connection ∇0 on ÿ → ý and ý ∈ (1, 2), given pairs (ÿ, ∇)

and (ÿ, ∇′) satisfying |ÿ| ≤ 1, |ÿ| ≤ 1, and ‖(ÿ, ∇) − (ÿ,∇′)‖ý ≤ 1, we see that the one-forms ÿ(ÿ,∇)

and ÿ(ÿ,∇′) given by (2.7) satisfy

‖ÿ(ÿ,∇) − ÿ(ÿ,∇′)‖ÿ1(ý) ≤ ÿ(ý)(1 + ‖(ÿ, ∇)‖ý)‖(ÿ, ∇) − (ÿ,∇′)‖ý−1ý . (3.1)

Consequently, the assignment (ÿ, ∇) ↦ ý(ÿ,∇) extends continuously to a map

(ÿý(ÿ), ‖ ⋅ ‖ý) → (ÿ−2(ý), (ÿ1)∗)

where (ÿ−2(ý), (ÿ1)∗) denotes the space of (ÿ − 2)-currents equipped with the (ÿ1(ý))∗ norm.

Proof. Writing ∇ = ∇0 − ÿÿ and ∇′ = ∇0 − ÿÿ for ÿ, ÿ ∈ Ω1(ý), it follows from (2.7) that

ÿ(ÿ,∇) − ÿ(ÿ,∇′) = ï∇0ÿ, ÿÿð − ï∇0ÿ, ÿÿð + (1 − |ÿ|2)ÿ − (1 − |ÿ|2)ÿ
= ï∇0(ÿ − ÿ), ÿÿð + ï∇0ÿ, ÿ(ÿ − ÿ)ð
+ (1 − |ÿ|2)(ÿ − ÿ) + (|ÿ|2 − |ÿ|2)ÿ.
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In particular, since |ÿ| ≤ 1 and |ÿ| ≤ 1, letting ý′ denote the Hölder conjugate of ý, we deduce
that

∫
ý

|ÿ(ÿ,∇) − ÿ(ÿ,∇′)|

≤ ∫
ý

(|∇0(ÿ − ÿ)| + |∇0ÿ||ÿ − ÿ| + |ÿ − ÿ| + 2|ÿ||ÿ − ÿ|)

≤ ‖∇0(ÿ − ÿ)‖ÿ1(ý) + ‖∇0ÿ‖ÿý(ý)‖ÿ − ÿ‖ÿý′ (ý)

+ ‖∇ −∇′‖ÿ1(ý) + 2‖∇′ − ∇0‖ÿý(ý)‖ÿ − ÿ‖ÿý′ (ý)

≤ ÿ[‖(ÿ, ∇) − (ÿ,∇′)‖ý + (‖(ÿ, ∇)‖ý + ‖(ÿ, ∇′)‖ý)‖ÿ − ÿ‖ÿý′ (ý)]

≤ ÿ[‖(ÿ, ∇) − (ÿ,∇′)‖ý + (‖(ÿ, ∇)‖ý + ‖(ÿ, ∇′)‖ý)‖ÿ − ÿ‖ý−1
ÿý(ý)

]

for a constant ÿ = ÿ(ý,ý), where we used the fact that ‖ÿ − ÿ‖ÿ∞(ý) ≤ 2 in the last inequality.
Assuming that ‖(ÿ, ∇) − (ÿ,∇′)‖ý ≤ 1, the estimate (3.1) easily follows.
Now, by the characterization (2.6) of ý(ÿ,∇), for any ÿ ∈ Ωÿ−2(ý), we have

|ïý(ÿ,∇) − ý(ÿ, ∇′), ÿð| = |||∫
ý

ý(ÿ(ÿ,∇) − ÿ(ÿ,∇′)) ∧ ÿ
|||

=
|||∫

ý

(ÿ(ÿ,∇) − ÿ(ÿ,∇′)) ∧ ýÿ
|||

≤ ‖ÿ(ÿ,∇) − ÿ(ÿ,∇)‖ÿ1(ý)‖ýÿ‖ÿ1(ý).

The second equality follows from Stokes’ theorem. Together with the estimate (3.1), this implies
that

‖ý(ÿ,∇) − ý(ÿ, ∇′)‖(ÿ1(ý))∗ ≤ ÿ(ý,ý)(1 + ‖(ÿ, ∇)‖ý)‖(ÿ, ∇) − (ÿ,∇′)‖ý

when ‖(ÿ, ∇) − (ÿ,∇′)‖ý ≤ 1. In particular, the assignment (ÿ, ∇) ↦ ý(ÿ,∇) is continuous with
respect to the norms ‖ ⋅ ‖ý and (ÿ1(ý))∗, and therefore admits the desired extension

(ÿý(ÿ), ‖ ⋅ ‖ý) → (ÿ−2(ý), (ÿ1)∗). □

Consider now the subset of ÿý(ÿ) given by

ý(ÿ) ∶= {(ÿ,∇) ∈ ÿý(ÿ) ∶ |ÿ| c 1 almost everywhere},

that is, the set of pairs (ÿ, ∇) ∈ ÿý(ÿ) where ÿ belongs to the space

ý(ÿ) ∶= {ÿ ∈ ÿ1,ý(ý, ÿ) ∶ |ÿ| c 1 almost everywhere}
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ofÿ1,ý unit sections. Note that for any (ÿ, ∇) ∈ ý(ÿ) we have

ÿ(ÿ,∇) = ÿ(ÿ,∇0),

so we can view both ÿ and ý = ýÿ + ÿ0 as functions on ý(ÿ), independent of the connection ∇.
Notice that the definition of ÿ(ÿ) still depends on the initial choice of reference connection ∇0,
but of course the assignmentý ∋ ÿ ↦ ý(ÿ) remains gauge-invariant and independent of ∇0. In
particular, in any local trivialization—in which ÿ becomes identified with aÿ1,ý map to ÿ1 and
∇0 = ý − ÿÿ0—we have ÿ(ÿ) = ïýÿ, ÿÿð − ÿ0, and ý(ÿ) = ýïýÿ, ÿÿð coincides with the standard
distributional Jacobian.
The remainder of the subsection is devoted to recording some key properties of the operator

ý ∶ ý(ÿ) → ÿ−2(ý). At the local level, note that this reduces to the study of topological singu-
larities for maps in ÿ1,ý(ý, ÿ1), and the arguments that follow are largely drawn from [3] and
[37].

Proposition 3.2. For any ÿ, ÿ ∈ ý(ÿ), there exists an integer rectifiable (ÿ − 1)-current ÿ ∈

ÿ−1(ý;ℤ) of mass

ý(ÿ) ≤ 1

2ÿ ∫
ý

|∇0(ÿ + ÿ)||ÿ − ÿ|

such that

ý(ÿ) − ý(ÿ) = 2ÿÿÿ,

as currents. Moreover, ý(ÿ) = ý(ÿ) if and only if ÿ = ÿÿÿÿÿ for some ÿ ∶ ý → ÿ1 harmonic and ÿ ∈

ÿ1,ý(ý,ℝ)—that is, if ÿ and ÿ differ by a change of gauge.

Proof. To prove the first statement, we introduce the map

Φ ∶ ý(ÿ) ×ý(ÿ) → ÿ1,ý(ý, ÿ1)

given by setting

Φ(ÿ, ÿ) ∶= ÿ−ÿïÿ,ÿÿðÿÿ̄

in any local trivialization; indeed, note that the complex-valued map ÿÿ̄ is invariant under
change of gauge. By direct computation, one can check that the map ý ∶= Φ(ÿ, ÿ) satisfies the
identity

ïýý, ÿýð = ÿ(ÿ) − ÿ(ÿ) − ýïÿ, ÿÿð = ï∇0(ÿ + ÿ), ÿ(ÿ − ÿ)ð.

Hence

∫
ý

|ýý| ≤ ∫
ý

|∇0(ÿ + ÿ)||ÿ − ÿ|,
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and the distributional Jacobian ýý = ýïýý, ÿýð satisfies

ýý = ý[ÿ(ÿ) − ÿ(ÿ)] = ý(ÿ) − ý(ÿ).

By [2, Theorem 3.8], we can appeal to the coarea formula for maps inÿ1,1(ý, ÿ1) to deduce the
existence of an integer rectifiable current ÿ ∈ ÿ−1(ý;ℤ) of mass

ý(ÿ) ≤ 1

2ÿ ∫
ý

|ýý| ≤ ∫
ý

|∇0(ÿ + ÿ)||ÿ − ÿ|

such that

2ÿÿÿ = ýý = ý(ÿ) − ý(ÿ),

proving the first part of the proposition.
For the latter statement, note that ý(ÿ) − ý(ÿ) = 0 if and only if the map ý = Φ(ÿ, ÿ) ∈

ÿ1,ý(ý, ÿ1) satisfies ýý = 0. But it is easy to check (cf., [19]) that a map ý ∈ ÿ1,ý(ý, ÿ1) satis-
fies ýý = 0 if and only if ý = ÿÿÿÿ for some ÿ ∶ ý → ÿ1 harmonic and ÿ ∈ ÿ1,ý(ý,ℝ). Indeed,
if ýý = 0 then the one-form ïýý, ÿýð is closed, and thus decomposes as ℎ + ýÿ with ℎ harmonic,
so that ÿ = ÿ−ÿÿý is a harmonic map. The reverse direction is immediate. □

Corollary 3.3. Ifÿ ∈ ý(ÿ) is such that ý(ÿ)has finitemass, then
1

2ÿ
ý(ÿ) is an integral (ÿ − 2)-cycle

in the homology class dual to ý1(ÿ) ∈ ÿ2(ý;ℤ).

Proof. By Proposition 4.2 below, note that there exists at least one ÿ0 ∈ ý(ÿ) such that
1

2ÿ
ý(ÿ0)

is given by a prescribed integral (in fact, polyhedral) cycle ÿ ∈ ÿ−2(ý;ℤ) dual to ý1(ÿ). As a
consequence, for any ÿ ∈ ý(ÿ), it follows from Proposition 3.2 that

1

2ÿ
(ý(ÿ) − ý(ÿ0)) = ÿÿ

for an integer rectifiable ÿ ∈ ÿ−1(ý;ℤ) of finite mass.
In particular, ifý(ý(ÿ)) < ∞, then it follows thatý(ÿ) + ý(ÿÿ) < ∞, and we can deduce from

[60, Theorem 30.3] that ÿÿ is itself an integral (ÿ − 2)-cycle. In particular,

1

2ÿ
ý(ÿ) =

1

2ÿ
ý(ÿ0) + ÿÿ = ÿ + ÿÿ

is then an integral (ÿ − 2)-cycle homologous to ÿ, proving the claim. □

3.2 Proof of Theorem 1.2, part (i)

To complete the proof of the lim inf part of the Γ-convergence theorem, it remains to establish
a compactness result for sections ÿÿ coming from couples (ÿÿ, ∇ÿ) in ÿý (modulo gauge trans-
formations) under the assumption of a uniform energy bound ýÿ(ÿÿ, ∇ÿ) ≤ Λ. As in the previous
section, we will continue to work with a fixed smooth reference connection∇0 on the line bundle
ÿ → ý.
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Lemma 3.4. Let (ÿ, ∇) satisfy |ÿ| ≤ 1 and ýÿ(ÿ, ∇) ≤ Λ. Then there is a gauge-equivalent pair

(ÿ′, ∇′) for which

‖∇′ − ∇0‖ÿý(ý) + ‖∇0ÿ
′‖ÿý(ý) ≤ ÿ(ý,ý, ÿ, Λ)

for all ý ∈ (1,
ÿ

ÿ−1
).

Proof. Writing the initial connection as

∇ = ∇0 − ÿÿ

for a one-form ÿ ∈ Ω1(ý), consider the Hodge decomposition

ÿ = ý∗ÿ + ýÿ + ℎ(ÿ),

where ÿ ∈ Ω2(ý), ÿ ∈ ÿ∞(ý), and ℎ(ÿ) is harmonic. Since the gradients of ÿ1-valued harmonic
maps form a lattice in the space1(ý) of harmonic one-forms, note that we can find a harmonic
map ÿ ∶ ý → ÿ1 such that

‖ÿ∗(ýÿ) − ℎ(ÿ)‖ÿ∞(ý) ≤ ÿ(ý).

Now, letting

ÿ ∶= ÿÿÿÿ ∶ ý → ÿ1,

we see that

ÿ ∶= ÿ − ÿ∗(ýÿ) = ÿ − ÿ∗(ýÿ) − ýÿ = ý∗ÿ + [ℎ(ÿ) − ÿ∗(ýÿ)].

Thus, making the change of gauge

(ÿ′, ∇′) ∶= (ÿ−1 ⋅ ÿ, ∇ + ÿÿ∗(ýÿ)),

we see that the new connection ∇′ is given by

∇′ = ∇0 − ÿÿ,

where ÿ is co-closed, and the harmonic component ℎ(ÿ) = ℎ(ÿ) − ÿ∗(ýÿ) of the Hodge
decomposition ÿ = ý∗ÿ + ℎ(ÿ) satisfies ‖ℎ(ÿ)‖ÿ∞(ý) ≤ ÿ.
To obtain the desired bound for ‖∇′ − ∇0‖ÿý(ý) = ‖ÿ‖ÿý(ý), it remains to estimate the co-exact

component ý∗ÿ. To this end, note that ÿ can be assumed exact and is given by

ÿ = Δ−1
ÿ (ýÿ),

by definition of the Hodge decomposition. By the ÿý regularity theory for the Hodge Laplacian
and a standard duality argument, we have an automatic bound of the form

‖ý∗ÿ‖ÿý(ý) ≤ ÿ(ý,ý)‖ýÿ‖ÿ−1,ý(ý) = ÿ(ý,ý)‖ýÿ‖(ÿ1,ý′ (ý))∗ (3.2)

for any ý ∈ (1,∞).
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Now, by definition (2.7) of the one-form ÿ(ÿ,∇), we have

ÿ = ÿ(ÿ,∇) − ï∇ÿ, ÿÿð,

while (2.6) gives

ý(ÿ,∇) = ý(ÿ(ÿ,∇)) + ÿ0.

We therefore see that

ýÿ = ý(ÿ,∇) − ÿ0 − ýï∇ÿ, ÿÿð,

and for any ÿ ∈ Ω2(ý), it follows that

∫
ý

ïýÿ, ÿð = ∫
ý

ïý(ÿ,∇) − ÿ0, ÿð − ∫
ý

ïýï∇ÿ, ÿÿð, ÿð

= ∫
ý

ïý(ÿ,∇) − ÿ0, ÿð − ∫
ý

ïï∇ÿ, ÿÿð, ý∗ÿð

≤ ‖ý(ÿ,∇)‖ÿ1(ý)‖ÿ‖ÿ0(ý) + ‖ý∇0
‖ÿ1(ý)‖ÿ‖ÿ0(ý)

+ ÿ‖ï∇ÿ, ÿÿð‖ÿ2(ý)‖ÿ‖ÿ1,2(ý).

Weknowalready that ‖ý(ÿ,∇)‖ÿ1(ý) ≤ ýÿ(ÿ, ∇) ≤ Λ, and since∇0 is a fixed reference connection,
we automatically have ‖ý∇0

‖ÿ1(ý) ≤ ÿ(ý, ÿ) independent of (ÿ, ∇). Moreover, since |ÿ| ≤ 1, we
also see that

‖ï∇ÿ, ÿÿð‖ÿ2(ý) ≤ ‖∇ÿ‖ÿ2(ý) ≤ ýÿ(ÿ, ∇)
1∕2.

Combining the preceding estimates, it follows that

∫
ý

ïýÿ, ÿð ≤ ÿ(ý, ÿ, Λ)(‖ÿ‖ÿ0(ý) + ‖ÿ‖ÿ1,2(ý)),

and by the Sobolev embedding ÿ1,ÿ(ý) ↪ ÿ0(ý) for ÿ > ÿ (as well as the obvious embedding
ÿ1,ÿ(ý) ↪ ÿ1,2(ý) for ÿ > ÿ ≥ 2), we deduce in particular that

‖ýÿ‖(ÿ1,ÿ(ý))∗ ≤ ÿ(ÿ,ý, ÿ, Λ)

for any ÿ > ÿ. Together with (3.2), this implies that

‖ý∗ÿ‖ÿý(ý) ≤ ÿ(ý,ý, ÿ, Λ)

for all 1 < ý <
ÿ

ÿ−1
, and consequently

‖∇′ − ∇0‖ÿý(ý) = ‖ÿ‖ÿý(ý) ≤ ‖ý∗ÿ‖ÿý(ý) + ‖ℎ(ÿ)‖ÿý(ý) ≤ ÿ(ý,ý, ÿ, Λ) (3.3)

for ý ∈ (1,
ÿ

ÿ−1
), giving the desired estimate for ∇′ − ∇0.
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In particular, since ∇′ÿ′ = ∇0ÿ
′ − ÿÿÿ′, for 1 < ý <

ÿ

ÿ−1
, it also follows that

‖∇0ÿ
′‖ÿý(ý) ≤ ‖∇′ÿ′‖ÿý(ý) + ‖ÿ‖ÿý(ý) ≤ ‖∇ÿ‖ÿý(ý) + ‖ÿ‖ÿý(ý) ≤ ÿ(ý,ý, ÿ, Λ),

as claimed. □

With the preceding lemma in place, we can now finish the proof of the liminf part of the Γ-
convergence statement.

Proof of Theorem 1.2(i). Given a family (ÿÿ, ∇ÿ = ∇0 − ÿÿÿ) with |ÿÿ| ≤ 1 and uniformly bounded
energy ýÿ(ÿÿ, ∇ÿ) ≤ Λ, we may assume without loss of generality that the change of gauge given
in the preceding lemma has already been applied to (ÿÿ, ∇ÿ), so that

‖ÿÿ‖ÿý(ý) + ‖∇0ÿÿ‖ÿý(ý) ≤ ÿ(ý,ý, ÿ, Λ)

for 1 < ý <
ÿ

ÿ−1
. In this case, it follows that the sections ÿÿ are uniformly bounded inÿ1,ý norm

‖ÿÿ‖ÿ1,ý(ý) = ‖ÿÿ‖ÿý(ý) + ‖∇0ÿÿ‖ÿý(ý),

so by the Rellich–Kondrachov theorem, we can pass to a subsequence such that ÿÿ converges
strongly in ÿý(ý, ÿ) to a limiting section ÿ ∈ ÿ1,ý(ý, ÿ). Moreover, since the sections ÿÿ satisfy
the pointwise bound |ÿÿ| ≤ 1, we see that the convergence ÿÿ → ÿmust be strong in ÿÿ(ý, ÿ) for
every ÿ ∈ [1,∞), and therefore the limiting section ÿmust satisfy

∫
ý

(1 − |ÿ|2)2 = lim
ÿ→0∫ý (1 − |ÿÿ|2)2 ≤ lim

ÿ→0
ÿ2ýÿ(ÿÿ, ∇ÿ) = 0;

that is, |ÿ| c 1 almost everywhere, so ÿ ∈ ý(ÿ).
By (2.7) and a straightforward calculation, one can check that

ÿ(ÿÿ, ∇ÿ) − ÿ(ÿ) = ï∇0ÿÿ, ÿÿÿð − ï∇0ÿ, ÿÿð + (1 − |ÿÿ|2)ÿÿ
= ï∇0(ÿÿ + ÿ), ÿ(ÿÿ − ÿ)ð + (1 − |ÿÿ|2)ÿÿ + ýïÿÿ, ÿÿð,

so that the difference ý(ÿÿ, ∇ÿ) − ý(ÿ) = ý[ÿ(ÿÿ, ∇ÿ) − ÿ(ÿ)] satisfies

‖ý(ÿÿ, ∇ÿ) − ý(ÿ)‖(ÿ1(ý))∗

≤ ÿ‖ï∇0(ÿÿ + ÿ), ÿ(ÿÿ − ÿ)ð + (1 − |ÿÿ|2)ÿÿ‖ÿ1(ý)

≤ ÿ(‖∇0ÿÿ‖ÿý(ý) + ‖∇0ÿ‖ÿý(ý))‖ÿÿ − ÿ‖ÿý′ (ý) + ÿ‖ÿÿ‖ÿý(ý)‖1 − |ÿÿ|2‖ÿý′ (ý)

≤ ÿ(ý,ý, ÿ, Λ)(‖ÿÿ − ÿ‖ÿý′ (ý) + ‖1 − |ÿÿ|2‖ÿý′ (ý)).

Since ÿÿ → ÿ strongly in ÿý
′
for ý > 1, taking the limit as ÿ → 0, we have that the right-hand

side goes to 0, establishing the desired convergence ý(ÿÿ, ∇ÿ) → ý(ÿ) in (ÿ1)∗. Finally, lower

 1
0
9
7
0
3
1
2
, 2

0
2
4
, 1

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/cp

a.2
2
1
5
0

 b
y

 C
o

rn
ell U

n
iv

ersity
 L

ib
rary

, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [0
1

/1
0

/2
0

2
4

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



688 PARISE et al.

semicontinuity of the mass gives the obvious bound

ý(ý(ÿ)) ≤ lim inf
ÿ→0

ý(ý(ÿÿ, ∇ÿ)) ≤ lim inf
ÿ→0

ýÿ(ÿÿ, ∇ÿ) ≤ Λ,

and by Corollary 3.3, it follows that
1

2ÿ
ý(ÿ) defines an integral (ÿ − 2)-cycle in the correct

homology class. □

Remark 3.5. Alternatively, one can also give another proof of the liminf inequality via techniques
similar to those used in Alberti et al. [2, 3] for functionals of Ginzburg–Landau type. Though this
method would be slightly more involved than the proof given here, the automatic mass bound
‖ý(ÿÿ, ∇ÿ)‖ÿ1(ý) ≤ ýÿ(ÿÿ, ∇ÿ) again simplifies several steps, reducing the problem to establishing
the integrality of the limiting cycle.

4 RECOVERY SEQUENCE

In this section we prove existence of a recovery sequence, thus establishing the other half of
the Γ-convergence and finishing the proof of Theorem 1.2. The proof is constructive in nature
and exploits in a crucial way the two-dimensional solutions of the vortex equations appearing in
Theorem 4.5. We start by recalling a few basic facts from algebraic topology.

Proposition 4.1. Any cohomology class ÿ ∈ ÿ2(ý;ℤ) is the Euler class ý1(ÿ) of some complex line

bundle ÿ → ý. Also, the Euler class classifies the line bundle up to isomorphism.

Indeed, it iswell known that any complex line bundle arises as the pullback of the canonical line
bundle on ℂℙ

∞ by means of a continuous map ÿ ∶ ý → ℂℙ
∞, with a correspondence between

the homotopy class [ÿ] and the isomorphism class of the line bundle. For a specific choice of the
generator ÿ ofÿ2(ℂℙ

∞
; ℤ), we then have ý1(ÿ) = ÿ∗ÿ. On the other hand, ℂℙ∞ is an Eilenberg–

MacLane space ÿ(ℤ, 2): hence, any ÿ ∈ ÿ2(ý;ℤ) equals ÿ∗ÿ for a unique homotopy class [ÿ];
see, for example, [29, Theorem 4.57]. For a more elementary proof using the exponential sheaf
sequence, see for instance [23, pp. 139–140].
We know from Section 3 that the homology class of a limit cycle Γ is dual to the Euler class of

the bundle. Conversely, given a hermitian line bundle ÿ → ý and a cycle Γwhose homology class

[Γ] is dual to ý1(ÿ), we now show how to realize Γ as the limit of
1

2ÿ
ý(ÿÿ, ∇ÿ), for appropriate pairs

of sections and connections on ÿ, as in part (ii) of Theorem 1.2.
The next proposition provides a useful variant of Federer’s polyhedral approximation theorem

(cf., [21, Lemma 4.2.19]) for our setting, providing a polyhedral approximation of a given cycle Γ,
which can be realized as the distributional Jacobian ý(ÿ) of an appropriate singular unit section.
Locally, this is a simpler version of the main result from [2], with appropriate modifications for
the manifold setting.

Proposition 4.2. Given an integral (ÿ − 2)-cycle Γ ∈ ÿ−2(ý;ℤ), there exists a triangulation of

ý and an integer-valued function ý on the collection {Δ} of its (ÿ − 2)-simplices, each with a fixed

orientation, such that the integral current

ÿ ∶=
∑

Δý(Δ)Δ
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is a cycle arbitrarily close to Γ in the flat topology, withý(ÿ) arbitrarily close toý(Γ). Also, assuming

that [Γ] is dual to ý1(ÿ), there exists a section ÿ ∈ ý(ÿ) ∩ ÿ∞(ý ⧵ ÿ−2), for ý ∈ (1, 2), such that

ý(ÿ) = 2ÿÿ

and, with respect to a reference connection ∇0,

|∇0ÿ| ≤ ÿ(ÿ) dist(⋅,ÿ−2)
−1, (4.1)

where ÿ−2 is the (ÿ − 2)-skeleton of the triangulation.

Proof. In order to approximate Γ, we modify Federer’s classic approximation result [21,
Lemma 4.2.19] as follows. Given ÿ > 0, using the same proof we can find a finite collection of
disjoint ÿ1 embeddings ýÿ ∶ ý̄ÿ−2 → ý and multiplicities ÿÿ ∈ ℤ such that

ý(ÿ) < ÿ, where ÿ ∶= Γ −
∑

ÿÿÿýÿ(ý
ÿ−2).

Moreover, we can find a triangulation of ý such that each piece ýÿ(ý̄
ÿ−2) is a subcomplex, for

instance triangulating first a tubular neighborhood of each and then extending to a triangulation
of the complement, using [48, Theorem 10.6]. We can also refine the triangulation in such a way
that each simplex has diameter less than a given ÿ > 0 and admits a diffeomorphism ÿ to (a scaled
copy of) the standard simplex with Lip(ÿ) + Lip(ÿ−1) ≤ ÿ, for a universal constant ÿ(ÿ).
We now argue as in the deformation theorem (see [21, Theorem 4.2.9] or [60, Theorem 29.1]),

using our triangulation in place of the Euclidean grid. Sincewe are in amanifold, we cannot easily
average over translations; but, recalling that the simplices are identified with the standard one,
we can average instead over the center of the retraction.

Namely, given the standard ý-dimensional simplex Δý, denote
1

2
Δý the rescaled simplex with

the same center. Since
1

2
Δý has positive distance from the boundary ÿΔý, for any point ý ∈

1

2
Δý

the radial retraction ÿý ∶ Δý ⧵ {ý} → ÿΔý is locally Lipschitz outside {ý} and satisfies |ýÿý(ý)| ≤
ÿ(ý)|ý − ý|−1. Then, for 0 ≤ ÿ < ý, given a normal rectifiableÿ-currentÿ onΔý, withÿ = ÿ(ý)

we have

∫ 1

2
Δý ∫Δý

|ýÿý(ý)|ÿ ý|ÿ|(ý) ýý(ý)

≤ ÿ ∫
Δý ∫ 1

2
Δý

|ý − ý|−ÿ ýý(ý) ý|ÿ|(ý)

≤ ÿý(ÿ).

Hence, there exists ý such that the inner integral on the left-hand side is bounded by ÿ(ý)ý(ÿ)

(and ‖ÿ‖({ý}) = 0 ifÿ = 0). A standard cut-off argument shows that the pushforward (ÿý)∗ÿ is
a well-defined current whose mass is bounded by the same quantity. Ifÿ has no boundary in the
interior of Δý, as in the proof of the deformation theorem it is easy to check that the difference
ÿ − (ÿý)∗ÿ = ÿý for some (ÿ + 1)-currentýwithý(ý) ≤ ÿ(ý)ý(ÿ). Scaling by a factorÿ gives
the same result for a currentÿ supported on the scaled simplex, with the boundsý((ÿý)∗ÿ) ≤
ÿ(ý)ý(ÿ) andý(ý) ≤ ÿ(ý)ÿý(ÿ).
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690 PARISE et al.

The same argument applies to anÿ-current supported on the ý-skeleton of our triangulation,
assuming that 0 ≤ ÿ < ý and that the boundary of the current is supported on the (ý − 1)-
skeleton, since the retractions on each ý-simplex paste together. In particular, this holds for the
(ÿ − 2)-current ÿ, with ý = ÿ, since

ÿÿ = −
∑

ÿÿÿÿ(ýÿ(ý
ÿ−2))

is supported on the (ÿ − 3)-skeleton. We can thus construct a retraction ÿ to the (ÿ − 1)-skeleton
such that ÿ′ ∶= ÿ∗ÿ satisfies ÿ = ÿ′ + ÿý′, with

ý(ÿ′) ≤ ÿý(ÿ) and ý(ý′) ≤ ÿÿý(ÿ),

where ÿ′ is an integral current supported on the (ÿ − 1)-skeleton. We can repeat the same on
the (ÿ − 1)-skeleton and retract ÿ′ to a current ÿ′′ supported on the (ÿ − 2)-skeleton, such that
ÿ′ = ÿ′′ + ÿý′′, with

ý(ÿ′′) ≤ ÿý(ÿ′) and ý(ý′′) ≤ ÿÿý(ÿ′).

Since ÿÿ′′ = ÿÿ vanishes on the interior of each (ÿ − 2)-simplex, by the constancy theorem ÿ′′ is
a linear combination (with integer coefficients) of the (ÿ − 2)-simplices. Thus, defining

ÿ ∶= ÿ′′ +
∑

ÿÿÿýÿ(ý
ÿ−2),

we have Γ − ÿ = ÿ(ý′ + ý′′) and

|ý(ÿ) − ý(Γ)| ≤ ý(ÿ − Γ) ≤ ý(ÿ) + ý(ÿ′) + ý(ÿ′′) ≤ ÿÿ,

together with

ý(ý′) + ý(ý′′) ≤ ÿÿÿ ≤ ÿÿ

(assuming ÿ ≤ 1), which gives (Γ, ÿ) ≤ ÿÿ. Up to a small perturbation, we can assume that our
ÿ1 triangulation is in fact smooth, with ÿ satisfying the same bounds.
In the sequel, we assume that [Γ] is dual to ý1(ÿ) and we prove the second part of the statement.
Let us now fix a smooth section ý0 ∶ ý → ÿ which is transverse to the zero section, the exis-

tence of which is guaranteed, for instance, by [40, Theorem IV.2.1]. The implicit function theorem
implies then that ÿ0 ∶= ý−1

0 {0} is a smooth (ÿ − 2)-submanifold. Moreover, it comes equipped
with the canonical orientation such that a positive basis {ÿ3, … , ÿÿ} of ÿýÿ0, extended with vectors
{ÿ1, ÿ2} such that {ýý0[ÿ1], ýý0[ÿ2]} is a positive basis of ÿý, gives a positive basis {ÿ1, … , ÿÿ} of

ÿýý. With this orientation, letting ÿ0 ∶=
ý0

|ý0|
, we have ý(ÿ0) = 2ÿÿ0 and [ý] ⌢ ý1(ÿ) = [ÿ0] =

[Γ].
We can then find another triangulation ofý such that ÿ0 is a union of (ÿ − 2)-simplices. Using

(the proof of) [48, Theorem 10.4], viewing the two triangulations as embeddings ÿ1 ∶ 1 → ý and
ÿ2 ∶ 2 → ý of simplicial complexes, up to a subdivision of each ÿ we can find new embeddings
ÿ′
1 and ÿ′

2 such that (the image of) each simplex in each complex is also a simplex in the other
complex (possibly parametrized in a different way). We call  ′

ý
(the support of) the ý-skeleton of

this common triangulation.
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Note that, since ÿ′
ÿ
can be taken arbitrarily close to ÿÿ , we can define the piecewise smooth

diffeomorphism ýÿ ∶= ÿ′
ÿ
◦ÿ−1

ÿ
∶ ý → ý and write ýÿ(ý) = expý(ýÿ(ý)) (with ýÿ(ý) piecewise

smooth), and then let ýÿ,ý(ý) ∶= expý(ýýÿ(ý)) for all ý ∈ [0, 1], which gives a homotopy between
the identity and ýÿ . In particular, letting ÿ

′ ∶= ý1(ÿ) and ÿ
′
0 ∶= ý2(ÿ0), in homology we have

[ÿ′] = [ÿ] = [Γ] = [ÿ0] = [ÿ′0].

Also, |ý(ÿ′) − ý(ÿ)| and (ÿ, ÿ′) are arbitrarily small.
We claim that ý(ÿ′0) = 2ÿÿ′0, where ÿ

′
0 ∶=

ý′
0

|ý′
0|
and ý′

0 is obtained by parallel transport of ý0

along the curves ý ↦ ýý(ý) for ý ∈ ý (with respect to some fixed connection ∇0). This claim

is clear outside of  ′
ÿ−3. Also, Proposition 3.2 gives [

1

2ÿ
ý(ÿ′0)] = [

1

2ÿ
ý(ÿ0)] = [ÿ0] = [ÿ′0]. In par-

ticular, the difference
1

2ÿ
ý(ÿ′0) − ÿ′0 is supported on  ′

ÿ−3 and is the boundary of an integral

(ÿ − 1)-current. Up to retracting the latter to  ′
ÿ−1, we can assume it to be a linear combination of

the simplices composing  ′
ÿ−1 (by the constancy theorem). Hence, its boundary ý(ÿ

′
0) − 2ÿÿ′0 is

also a linear combination of the (ÿ − 2)-simplices composing ′
ÿ−2, andmust then vanish, proving

the claim.
Since [ÿ′] = [ÿ′0] and ÿ

′ − ÿ′0 is supported on  ′
ÿ−2, arguing as above we can write

ÿ′ − ÿ′0 = ÿ
(∑

ÿýÿýÿ

)

for a collection {ýÿ} of (ÿ − 1)-simplices in the triangulation. We have the following elementary
fact.

Lemma 4.3. There exists a map ÿ̃ ∈ ÿ∞(ý ⧵
⋃

ÿ spt(ÿýÿ), ÿ
1) with

ý(ÿ̃) = 2ÿÿ(
∑

ÿýÿýÿ)

and |ýÿ̃| ≤ ÿ dist(⋅,
⋃

ÿ spt(ÿýÿ))
−1.

Proof. The proof is a straightforward application of the techniques in [3, Section 4]. Indeed, for a
geodesic ball ý̄ÿ ⊂ ý covering ýÿ , the arguments of [3] can be applied to obtain a map ÿ

′
ÿ
∶ ý̄ÿ →

ÿ1, locally Lipschitz outside spt(ÿýÿ), satisfying ý(ÿ
′
ÿ) = 2ÿÿýÿ and |ýÿ′ÿ| ≤ ÿ dist(⋅, spt(ÿýÿ))

−1.

Themap ÿ′
ÿ
, restricted to ÿýÿ , can be lifted to a real-valuedmap (viewing ÿ

1 as a quotient ofℝ):

this is trivial when ÿ ≥ 3, since ÿýÿ is diffeomorphic to ÿ
ÿ−1, which is simply connected; it holds

also when ÿ = 2, since the degree of ÿ′
ÿ
on the circle ÿýÿ is zero, as it is the sum of its (opposite)

degrees ±1 around the two points constituting ÿýÿ . Hence, ÿ
′
ÿ
admits a continuous extension to

ý ⧵ spt(ÿýÿ). Up to regularization, we can also arrange that ÿ
′
ÿ
is smooth outside spt(ÿýÿ), while

obeying the same bound. We can then take ÿ̃ ∶=
∏

ÿ(ÿ
′
ÿ
)ýÿ . □

We can now conclude the proof of the proposition. Since ý(ÿ′0) = 2ÿÿ′0, the product ÿ ∶= ÿ̃ÿ′0
then has

ý(ÿ) = ý(ÿ̃) + ý(ÿ′0) = 2ÿ(ÿ′ − ÿ′0) + 2ÿÿ′0 = 2ÿÿ′.
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692 PARISE et al.

Thus, replacing ÿ with ÿ′, this new cycle and the map ÿ have all the desired properties (with
respect to the perturbed triangulation), and the proof of Proposition 4.2 is complete. □

We now show how to obtain a recovery sequence (ÿÿ, ∇ÿ) for any such polyhedral approxima-
tion ÿ of Γ. Once this is done, the result follows for any integral (ÿ − 2)-cycle Γ by the preceding
proposition and a diagonal argument.
Fix a triangulation ofý as in the conclusion of Proposition 4.2. For an (ÿ − 2)-simplex Δ, fix a

diffeomorphism Δ̄ → Δ from the standard simplex Δ̄. For ÿ > 0 small, we denote by Δÿ the image
of the set of points in Δ̄ with distance at least ÿ from the boundary. Given ý ∈ Δ ⧵ ÿΔ, we denote
by ý⟂

ÿ (ý) the ball of radius ÿ in the normal bundle to Δ at ý; for a set ÿ of such points, we then set
ý⟂
ÿ (ÿ) ∶=

⋃
ý∈ÿ ý

⟂
ÿ (ý). Note that there exists ý

′ > 0 independent of ÿ such that the exponential

map is a diffeomorphism from ý⟂
ý′ÿ
(Δÿ) to its image and such that, setting

ýÿ(Δ) ∶= exp(ý⟂
ý′ÿ
(Δÿ)), (4.2)

we have ýÿ(Δ) ∩ ýÿ(Δ
′) = ∅ for Δ b Δ′. We can also require that the closest point to expý(ÿ) in

the (ÿ − 2)-skeleton
⋃

Δ isý, whenever ÿ ∈ ý⟂
ý′ÿ
(ý) andý ∈ Δÿ.With these preparations in place,

we come now to the main result of this section.

Proposition 4.4. For ÿ > 0 small enough, there exists a family of smooth couples (ÿÿ, ∇ÿ) such that

ý(ÿÿ, ∇ÿ) ⇀ 2ÿÿ, as ÿ → 0,

as currents, and

lim
ÿ→0

ýÿ(ÿÿ, ∇ÿ) = 2ÿý(ÿ).

Throughout the proof, wewill use the following key fact, for a proof ofwhichwe refer the reader
to [35, Theorem III.2.3].

Theorem 4.5. For the trivial line bundle ÿ → ℂ, given any integer ý0 ∈ ℤ there exists a smooth

couple (ÿÿ, ∇ÿ) which is (locally) critical for the energy ýÿ, has ÿ
−1
ÿ {0} = {0} and

ýÿ(ÿÿ, ∇ÿ) = 2ÿ|ý0|.

Moreover, |ÿÿ| ≤ 1 and, writing ∇ÿ = ý − ÿÿÿ, we have the decay for gauge invariant quantities

|∇ÿÿÿ| + 1 − |ÿÿ|2
ÿ

+ ÿ|ýÿÿ| ≤ ÿ(ý0)

ÿ
ÿ−ý(ý0)|ÿ|∕ÿ. (4.3)

Finally, we can require that ÿÿ = |ÿÿ|ÿÿý0ÿ for |ÿ| ≥ ÿ, which gives

|ÿ∗ÿ (ýÿ)| ≤ ÿ(ý0)|ÿ|−1, |ýÿÿ| + |ÿÿ| ≤ ÿ(ý0)min{ÿ−1, |ÿ|−1}. (4.4)

Note that the pairs (ÿÿ, ∇ÿ) can be obtained from (ÿ1, ∇1) by scaling. The exponential decay is
proved in [35, Theorem III.8.1]; see also the proof of [49, Corollary 5.4]. As for the last part, by a
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change of gauge we can assume ÿ1∕|ÿ1| = ÿÿý0ÿ for |ÿ| ≥ 1. Observing that

ï∇1ÿ1, ÿÿ1ð = |ÿ1|2(ÿ∗1(ýÿ) − ÿ1),

we deduce (4.4) from the smoothness of the pair and the decay for |∇1ÿ1|; the conclusion for
arbitrary ÿ then follows.
We proceed now to the proof of Proposition 4.4, fromwhich the final part of the Γ-convergence

result stated in Theorem 1.2 will follow.

Proof of Proposition 4.4. Let ÿ be a polyhedral cycle and ÿ ∈ ý(ÿ) a singular unit section with
ý(ÿ) = 2ÿÿ as in the conclusion of Proposition 4.2. Fix an (ÿ − 2)-simplex Δ, a small parameter

ÿ > 0, and set ÿ ∶=
ý′

3
ÿ. Let ý0 = ý(Δ) be the constant multiplicity with which Δ appears in the

polyhedral cycle ÿ. In the sequel, we will identify ýÿ(Δ) with Δÿ × ý2
3ÿ
, with respect to a fixed

trivialization of the normal bundle to Δ. Also, we fix a trivialization of ÿ on ýÿ(Δ); hence, we can
identify the section ÿ with a smooth ÿ1-valued map on ýÿ(Δ) ⧵ Δ.
We fix a couple (ÿ′ÿ, ý − ÿÿ′ÿ) as in Theorem 4.5, with degree ý0, defined on the trivial bundle

on ℂ. With a slight abuse of notation, we still call ÿ′ÿ and ÿ
′
ÿ their pullback under the projection

ýÿ(Δ) = Δÿ × ý2
3ÿ

→ ý2
3ÿ

⊂ ℂ. Note that, for any ý ∈ ÿ, ÿ has degree ý0 on the loop ÿ ↦ (ý, ÿÿÿÿ),
since ý(ÿ) = 2ÿÿ. Hence, we can write

ÿ′ÿ

|ÿ′ÿ|
= ÿÿÿÿ (4.5)

with ÿ ∶ ℂ ⧵ {0} → ℝ smooth and depending on ÿ. We then define the new sections

ÿ̃ÿ ∶= [1 − ÿ(1 − |ÿ′ÿ|)]ÿÿÿÿÿ,

and one-forms

ÿ̃ÿ ∶= ÿÿ′ÿ + (1 − ÿ)(ÿ′ÿ)
∗(ýÿ) + ý((ÿ − 1)ÿ),

where ÿ ∶ ℂ → ℝ is a smooth cut-off function such that 0 ≤ ÿ ≤ 1, |ýÿ| ≤ 2∕ÿ and

ÿ(ÿ) =

{
1 for |ÿ| ≤ ÿ,

0 for |ÿ| ≥ 2ÿ.

Note that the newly defined couples of sections and connections reduce to

(ÿ̃ÿ, ÿ̃ÿ) =

{
(ÿ′ÿ, ÿ

′
ÿ) for |ÿ| < ÿ,

(ÿ, ÿ∗(ýÿ)) for |ÿ| > 2ÿ.

In particular, the energy density ÿÿ(ÿ̃ÿ, ý − ÿÿ̃ÿ) of this couple vanishes for |ÿ| > 2ÿ. Also, 1 −
|ÿ̃ÿ| = ÿ(1 − |ÿ′ÿ|), so that the inequality

(1 − |ÿ̃ÿ|2)2 ≤ (1 − |ÿ′ÿ|2)2 (4.6)
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holds. Moreover, on the region Ωÿ ∶= {ÿ < |ÿ| < 2ÿ}, using that (ÿ′ÿ)
∗(ýÿ) is closed we compute

ýÿ̃ÿ = ÿýÿ′ÿ + ýÿ ∧ (ÿ′ÿ − (ÿ′ÿ)
∗(ýÿ)).

Since ï∇′
ÿÿ

′
ÿ, ÿÿ

′
ÿð = |ÿ′ÿ|2((ÿ′ÿ)∗(ýÿ) − ÿ′ÿ), in view of (4.3) we can conclude that

ÿ|ýÿ̃ÿ| ≤ ÿ|ýÿ′ÿ| + 2ÿ

ÿ
|ÿ′ÿ|−1|∇′

ÿÿ
′
ÿ| ≤ ÿ

1 + ÿ∕ÿ

ÿ
ÿ−ýÿ∕ÿ (4.7)

on Ωÿ, provided that ÿ∕ÿ is big enough. Also,

ýÿ̃ÿ = ÿ(|ýÿ|(1 − |ÿ′ÿ|)) + ÿ(|ý|ÿ′ÿ||) + ÿÿ̃ÿ(ý(ÿÿ) + ÿ∗(ýÿ)),

and recalling that ÿ∗(ýÿ) = (ÿ′ÿ)
∗(ýÿ) − ýÿ, we conclude that

(ý − ÿÿ̃ÿ)ÿ̃ÿ = ÿ(|ýÿ|(1 − |ÿ′ÿ|)) + ÿ(|ý|ÿ′ÿ||) + ÿÿÿ̃ÿ((ÿ
′
ÿ)
∗(ýÿ) − ÿ′ÿ).

Denoting ∇̃ÿ ∶= ý − ÿÿ̃ÿ and using that |ý|ÿ′ÿ|| ≤ |∇′
ÿÿ

′
ÿ|, we obtain the decay

|∇̃ÿÿ̃ÿ| ≤ ÿ
1 + ÿ∕ÿ

ÿ
ÿ−ýÿ∕ÿ (4.8)

on Ωÿ.
Choose now ÿ = ÿ(ÿ) ∶= ÿ3∕4, so that ÿ(ÿ)∕ÿ → ∞ as ÿ → 0. Since the slices exp(ý⟂

ý′ÿ
(ý)) are

orthogonal to Δ and have area comparable with ÿ2, we deduce from (4.6), (4.7) and (4.8) that the
energy of the couple (ÿ̃ÿ, ∇̃ÿ) satisfies

ýÿ(ÿ̃ÿ, ∇̃ÿ) = 2ÿ|ý0|ÿ−2(Δ)(1 + ý(1)) + ÿ(ÿ2ÿ−2ÿ−ýÿ∕ÿ)

= 2ÿ|ý0|ÿ−2(Δ) + ý(1),

with ý(1) an infinitesimal term as ÿ → 0.
Denote by ÿ ∶=

⋃
spt ÿΔ the (ÿ − 3)-skeleton of the triangulation. Let us choose ÿ′ > 1 such

that ÿ ∈ ýÿ′ÿ(ÿ) whenever dist(ÿ,ÿ−2) ≤ ý′ÿ and ÿ ∉
⋃

Δ ýÿ(Δ) (recall that ý
′, defined above

(4.2), depends only on the triangulation). Note that the pairs glue together to give a pair (ÿ̃ÿ, ∇̃ÿ) on
the setý ⧵ ý̄ÿ′ÿ(ÿ) by declaring that (ÿ̃ÿ, ∇̃ÿ) is given by (ÿ, ∇ÿ) on the complement of

⋃
Δ ýÿ(Δ),

with ∇ÿ the unique connection making ÿ a parallel section. In order to have a pair defined on all
ofý, we pick a smooth cut-off function ÿÿ defined by

ÿÿ =

{
0 on ý2ÿ′ÿ(ÿ),

1 oný ⧵ ý4ÿ′ÿ(ÿ),
(4.9)

satisfying the additional bound |ýÿÿ| ≤ ÿ−1. With ∇0 a fixed reference connection, we claim that
the couple

(ÿÿ, ∇ÿ) ∶= (ÿÿÿ̃ÿ, (1 − ÿÿ)∇0 + ÿÿ∇̃ÿ)
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has the desired properties. As a first trivial observation, note that near ÿ the pair (ÿÿ, ∇ÿ) is given
by (0, ∇0), that is, the trivial section with the reference connection.
Next, since vol(ýÿ(ÿ)) = ÿ(ÿ3), we have the estimate

lim
ÿ→0∫ý4ÿ′ÿ(ÿ)

(|ýÿÿ|2 + ÿ−2) ≤ lim
ÿ→0

(ÿ(ÿ)−2 + ÿ−2) ⋅ ÿÿ(ÿ)3 = 0, (4.10)

since ÿ(ÿ) = ÿ3∕4. Fixing again a simplex Δ, we write ∇0 = ý − ÿÿΔ with respect to the chosen
trivialization near Δ. Thus,

∇ÿ = ý − ÿ(1 − ÿÿ)ÿΔ − ÿÿÿÿ̃ÿ.

Note that ∇ÿÿÿ = ÿ̃ÿýÿÿ + ÿÿ∇ÿÿ̃ÿ and that the trivialization can be chosen to guarantee |ÿΔ| +
|ýÿΔ| ≤ ÿ(ý, ÿ). In view of (4.10), in order to show that the energy of the couple (ÿÿ, ∇ÿ) on
ý4ÿ′ÿ(ÿ) is infinitesimal, we just have to show that the two quantities

∫
ý4ÿ′ÿ(ÿ)⧵

⋃
Δ ýÿ(Δ)

(|ÿÿ∇0ÿ|2 + ÿ2|ý(1−ÿÿ)∇0+ÿÿ∇ÿ
|2)

and

∫
ý4ÿ′ÿ(ÿ)∩ýÿ(Δ)

(|ÿÿ∇0ÿ̃ÿ|2 + ÿ2|ý(1−ÿÿ)∇0+ÿÿ∇̃ÿ
|2)

converge to zero (since the contribution of ∇̃ÿÿ̃ÿ is infinitesimal on ý4ÿ′ÿ(ÿ)). The first assertion
follows from (4.1) and the fact that the integrand equals ÿ2|ý∇0

|2 when the distance from ÿ−2 is
at most ý′ÿ, while elsewhere we have the bounds

|ÿÿ∇0ÿ| ≤ ÿÿ−1

and

|ý(1−ÿÿ)∇0+ÿÿ∇ÿ
| ≤ ÿ + |ýÿÿ|(ÿ + |ÿ∗(ýÿ)|) ≤ ÿÿ−2;

indeed, these bounds imply that the integral is bounded by

[ÿ(ÿ−2) + ÿ(ÿ2) + ÿ(ÿ2ÿ−4)] ⋅ ÿ(ÿ3),

which is infinitesimal. As for the second assertion, by (4.10) it is enough to prove that, for ý ∈ Δÿ,

∫
{ý}×ý2

3ÿ

(
|ýÿ̃ÿ|2 + ÿ2

ÿ2
|ÿ̃ÿ|2

)
≤ ÿ log(ÿ−1).

Indeed, since |∇0ÿ̃ÿ| ≤ ÿ + |ýÿ̃ÿ| and

|ý(1−ÿÿ)∇0+ÿÿ∇̃ÿ
| ≤ ÿ + |ýÿÿ|(ÿ + |ÿ̃ÿ|) + |ý∇̃ÿ

|,
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696 PARISE et al.

the last claim implies that on each slice the integral is at most ÿ(log(ÿ−1)), and the conclusion
follows since the set of points ý whose slice intersects ý4ÿ′ÿ(ÿ) has volume ÿ(ÿ).
However, by (4.1) and (4.4), ýÿ, ýÿ, ÿ′ÿ and (ÿ′ÿ)

∗(ýÿ) at the point (ý, ÿ) are all bounded by
ÿÿ−1 on the region {ÿ ≤ |ÿ| ≤ 3ÿ = ý′ÿ}, which implies |ýÿ| ≤ ÿÿ−1 and |ÿ| ≤ ÿ by (4.5) (the
last conclusion follows up to translating ÿ by a constant). Since this region has area ÿ(ÿ2), its
contribution is bounded. On the other hand, (ÿ̃ÿ, ÿ̃ÿ) = (ÿ′ÿ, ÿ

′
ÿ) on {|ÿ| ≤ ÿ}; using again (4.4), the

last claim follows.
Finally, note that ý(ÿÿ, ∇ÿ) ⇀ 2ÿÿ as currents. Indeed, with the same computations as above,

we obtain that ∇0ÿÿ is bounded in ÿý independently of ÿ, for any ý < 2. But ÿÿ → ÿ almost
everywhere, hence weakly inÿ1,ý(ý, ÿ), which gives

ý(ÿÿ, ∇ÿ) ⇀ ý(ÿ) = 2ÿÿ,

again as currents as ÿ goes to 0. □

5 COMPARISON OF THEMIN-MAX CONSTRUCTIONS

With the Γ-convergence result established, we turn now to the proof of the min-max comparison
described in Theorem 1.5. The outline of the proof is broadly similar to that of the analogous
result of Guaraco [24, Proposition 8.19] in the Allen–Cahn setting. First, we employ Theorem 1.2
to extract from continuous families of pairs (ÿ, ∇) discretized families of (ÿ − 2)-boundaries with
mass bounded above by ýÿ(ÿÿ, ∇ÿ) + ý(1). To complete the proof of Theorem 1.5, we then have
to show that the homotopy class of this associated family of cycles is determined by that of the
family of pairs (ÿ, ∇) in the desired way.
The details of the proof are somewhat more involved than their codimension-one analog, since

the map from pairs (ÿ, ∇) to the space of (ÿ − 2)-boundaries is less explicit, and the homotopy
groups of the space of (ÿ − 2)-boundaries are slightly more complicated. In the next subsection,
we recall the relevant definitions fromAlmgren’smin-maxmethods, and define carefully themin-
max values to which Theorem 1.5 applies.

5.1 Natural min-max constructions for ýÿ

Throughout this section, let ÿ = ℂ ×ý → ý be the trivial line bundle over a closed, oriented
ÿ-manifold (ýÿ, ý) of dimension ÿ ≥ 3. Fixing a trivialization of ÿ, the space of pairs (ÿ, ∇) con-
sisting of sections ÿ ∈ Γ(ÿ) and hermitian connections∇ can then be identified with pairs (ÿ, ÿ),
where ÿ ∶ ý → ℂ is a complex-valued map and ÿ ∈ Ω1(ý) is a one-form such that ∇ = ý − ÿÿ.
For a fixed ý > ÿ, we will view ýÿ as a functional on the Banach space ÿ̂ consisting of pairs

(ÿ, ∇)where ÿ ∈ [ÿ1,2 ∩ ÿý](ý) and∇ = ý − ÿÿ for ÿ ∈ ÿ1,2(ý) (with topology induced by the
norm ‖ýÿ‖ÿ2(ý) + ‖ÿ‖ÿý(ý) + ‖ÿ‖ÿ1,2(ý)), equipped with the Finsler structure

‖(ÿ, ÿ)‖(ÿ,∇) ∶= ‖ÿ‖ÿý(ý) + ‖∇ÿ‖ÿ2(ý) + ‖ÿ‖ÿ2(ý) + ‖ÿÿ‖ÿ2(ý), (5.1)

where ÿ is the (Levi-Civita) covariant derivative of the one-form ÿ. It is straightforward to check
(cf., [49, Section 7]) that the energiesýÿ defineÿ

1 functionals on ÿ̂, and an adaptation of the proof
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of [49, Proposition 7.6] shows that they satisfy a variant (modulo gauge transformations) of the
Palais–Smale conditionwith respect to the Finsler structure (5.1), making ÿ̂ an appropriate setting
for the min-max construction of critical points (provided the nonlinear potentialÿ is modified
as described in [49, Section 7]).

Remark 5.1. The Palais–Smale result stated in [49, Proposition 7.6] for ýÿ in ÿ̂ is not quite correct
as written when the base manifold ý has ÿ1(ý;ℚ) b 0. This is due to the fact that a sequence
(ÿÿ , ∇ÿ) for ýÿ which is Palais–Smale with respect to the natural Banach norm on ÿ̂ may fail
to yield another Palais–Smale sequence under the change of gauge (ÿÿÿÿ , ∇ÿ − ÿ∗

ÿ
(ýÿ)) for a

sequence of harmonic map ÿÿ ∶ ý → ÿ1. However, it is easy to check that the Palais–Smale prop-
erty with respect to the Finsler structure (5.1) is preserved under harmonic change of gauge, and
[49, Proposition 7.6] holds with the Banach norm replaced by this Finsler structure.

Though the space ÿ̂ itself is topologically trivial, the functionals ýÿ have a richmin-max theory
in the ÿ → 0 limit, owing to the topology of the moduli space

 ∶= (ÿ̂ ⧵ ÿ0)∕,
where ÿ0 ∶= {(ÿ, ÿ) ∈ ÿ̂ ∶ ÿ c 0} and  ∶= ÿ2,2(ý, ÿ1) is the gauge group. Indeed, writing

ý ∶= {(ÿ, ÿ) ∈ ÿ̂ ∶ ý∗ÿ = 0},

note that there is a natural retraction ÿÿ ∶ ÿ̂ → ý given by passing to the Coulomb gauge

ÿÿ(ÿ, ÿ) ∶= (ÿ−ÿÿÿÿ, ÿ − ýÿÿ),

where ÿÿ ∈ ÿ2,2(ý,ℝ) is the unique solution of

ý∗ýÿÿ = ý∗ÿ and ∫
ý

ÿÿ = 0.

It is clear that the quotient map ý ⧵ ÿ0 →  is surjective. The elements of  sending a given
couple iný ⧵ ÿ0 to a couple in the same space are precisely the harmonicmaps = Harm(ý, ÿ1),
so we can identify (homeomorphically) with the quotient

 = (ý ⧵ ÿ0)∕.

Moreover, note that the harmonic ÿ1-valued maps  contain ÿ1 as a subgroup (by identification
with the constant maps), and the quotient∕ÿ1 has a natural identification

∕ÿ1 ≅ [ý ∶ ÿ1] ≅ ÿ1(ý;ℤ),

since each homotopy class in [ý ∶ ÿ1] is uniquely represented in up to rotations. We can then
view as the quotient

 = [(ý ⧵ ÿ0)∕ÿ
1]∕ÿ1(ý;ℤ),
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698 PARISE et al.

of the quotient space (ý ⧵ ÿ0)∕ÿ
1 by the free and properly discontinuous action of ÿ1(ý;ℤ).

Moreover, we have the following facts, allowing to extract the algebraic topology invariants of.

Proposition 5.2. The projection ý ⧵ ÿ0 → (ý ⧵ ÿ0)∕ÿ
1 is a fiber bundle and, hence, a weak fibra-

tion. The former space has trivial homotopy groups, while the latter is weakly homotopy equivalent

to ℂℙ
∞
, and is the universal cover of.

Proof. Let ý ∶= (ý ⧵ ÿ0)∕ÿ
1 and denote ÿ ∶ ý ⧵ ÿ0 → ý the projection. Given (ÿ, ÿ) ∈ ý ⧵ ÿ0,

we can find a measurable set ý ⊆ ý such that ∫
ý
ÿ b 0. In particular, there exists ÿ > 0 such that

∫
ý
ÿ b 0 for all couples (ÿ, ÿ) with distance less than ÿ from the ÿ1-orbit of (ÿ, ∇)—namely, such

that ‖(ÿ, ÿ) − ÿÿÿ ⋅ (ÿ, ÿ)‖ÿ̂ < ÿ for some ÿÿÿ ∈ ÿ1. These couples form an open set ÿ−1(ý), for ý
open in the quotient ý. It is then easy to check that the map

ÿ−1(ý) → ÿ1 × ý, (ÿ, ÿ) ↦
(∫

ý
ÿ ∕ | ∫

ý
ÿ|, ÿ((ÿ, ÿ))

)

gives a local trivialization over ý. Hence, ÿ is a fiber bundle and thus a weak fibration (see [29,
Proposition 4.48]).
To check the second statement, note that ý (deformation) retracts onto ÿ̂∕ÿ1, where ÿ̂ is the

unit sphere of the Banach space [ÿ1,2 ∩ ÿý](ý,ℂ), viewed as a subset of ÿ̂with trivial connection
component.Given a dense, linearly independent set {ÿý}

∞
ý=1

in this Banach space,we denote byÿý

the linear span of {ÿ1, … , ÿý} and by ÿý ∶ [ÿ1,2 ∩ ÿý](ý,ℂ) → ÿý the nearest point projection,
which is well-defined and continuous since ÿý is finite-dimensional and the Banach space is
strictly convex.
Letting ÿ̂ý ∶= ÿ̂ ∩ ÿý, note that the union ÿ ∶=

⋃
ý(ÿ̂

ý∕ÿ1), endowed with the topology
induced by the subspaces ÿ̂ý∕ÿ1, is homeomorphic to ℂℙ∞, and the identity map ÿ ∶ ÿ → ÿ̂∕ÿ1

is continuous. We claim that, for any compact set ÿ ⊂ ÿ̂∕ÿ1, the inclusion ÿ ↪ ÿ̂∕ÿ1 can be
deformed to amapÿ → ÿ̂ý∕ÿ

1 for someý (withinmaps into ÿ̂∕ÿ1). This implies that ÿ induces iso-
morphisms ÿ∗ on homotopy groups, because then any map ÿ

ý → ÿ̂∕ÿ1 can be deformed to a map
with values in ÿ̂ý∕ÿ1 for some ý (hence ÿ∗ is surjective), and a homotopy in ÿ̂∕ÿ1 between two
maps ÿý → ÿ̂ý∕ÿ1 can be deformed to a homotopy in ÿ̂ý

′
∕ÿ1 with ý′ ≥ ý (hence ÿ∗ is injective).

To prove the claim, note that for any [ÿ] ∈ ÿ̂∕ÿ1 there exists ý such that the distance from ÿ

to ÿý is less than 1, and the same holds on a neighborhood of [ÿ]. By compactness of ÿ, we can

find ý such that this is true for all the elements of ÿ. The map ([ÿ], ý) ↦
(1−ý)ÿ+ýÿý(ÿ)

‖(1−ý)ÿ+ýÿý(ÿ)‖ÿ̂
gives the

desired deformation.
The fact that ÿ̂, and hence ý∕ÿ0, have trivial homotopy groups is proved in the same way. The

last conclusion follows from the well-known fact that ℂℙ∞ is simply connected. □

We conclude that the path-connected space has ÿ1() ≅ ÿ1(ý;ℤ), as well as ÿ2() ≅ ℤ,
and ÿý() = 0 for ý ≥ 3; or equivalently, for ý > 0,

ÿý() ≅ ÿÿ−2+ý(ý;ℤ).

The results of this section concern the min-max energies associated to the generator of
ÿ2(), and to each class ÿ ∈ ÿÿ−1(ý;ℤ) ≅ ÿ1() (with basepoint the trivial pair (ÿ0 c 1,∇0 c
ý) mod ). In practice, we work with their lifts to maps ÿ̄2 → ÿ̂ and [0, 1] → ÿ̂.

 1
0
9
7
0
3
1
2
, 2

0
2
4
, 1

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/cp

a.2
2
1
5
0

 b
y

 C
o

rn
ell U

n
iv

ersity
 L

ib
rary

, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [0
1

/1
0

/2
0

2
4

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



CONVERGENCE OF THE SELF-DUAL ý(1)-YANG–MILLS–HIGGS ENERGIES TO THE (ÿ − 2)-AREA FUNCTIONAL 699

As in [49], consider the collection

2 ⊂ ÿ0(ÿ̄2, ÿ̂)

of continuous families

ÿ̄2 ∋ ÿ ↦ (ÿÿ , ∇ÿ) ∈ ÿ̂

parametrized by the closed unit disk ÿ̄2 ⊂ ℂ, subject to the boundary condition

ÿÿ c ÿ and ∇ÿ c ý for ÿ ∈ ÿÿ2 = ÿ1.

By the long exact sequence for homotopy groups in weak fibrations, families in 2 (avoiding ÿ0)
descend to the generators of ÿ2(). It was shown in [49, Section 7] by explicit construction and
a simple degree argument that the associated min-max energies

ÿ(2) ∶= inf
ý∈2 max

ÿ∈ÿ̄2
ýÿ(ýÿ) (5.2)

are uniformly bounded from above and below as ÿ → 0, arise as the energies ýÿ(ÿÿ, ∇ÿ) of
nontrivial critical points (ÿÿ, ∇ÿ) for ýÿ, and converge subsequentially to the mass of a (non-
trivial) stationary integral (ÿ − 2)-varifold, up to a factor of 2ÿ. Likewise, for each nontrivial
ÿ ∈ ÿÿ−1(ý;ℤ), we can consider the collection

ÿ ⊂ ÿ0([0, 1], ÿ̂)

of continuous families [0, 1] ∋ ý ↦ (ÿý, ∇ý) ∈ ÿ̂ satisfying

(ÿ0, ∇0) c (1, ý), (ÿ1, ∇1) c (ÿ, ý − ÿÿ∗(ýÿ)),

whereÿ ∈ ÿ∞(ý, ÿ1) is amap in the homotopy class dual to ÿ (i.e., generic fibers ofÿ are homolo-
gous to ÿ). Families inÿ (avoidingÿ0) descend to loops in, whose class inÿ1() is determined
by ÿ, and we will likewise consider their min-max energies

ÿ(ÿ) ∶= inf
ý∈ÿ max

ý∈[0,1]
ýÿ(ýý).

Remark 5.3. Note that a family as above, with energy bounded by a given Λ (fixed), must avoid
the degenerate set of couplesÿ0 for ÿ small enough. Using Proposition 5.2, one can check that the
min-max values defined above coincide with the corresponding ones for the homotopy groups
of.

5.2 Natural min-max constructions for the (ÿ − ÿ)-mass functional

By Almgren’s thesis [5], we know that the space ý ⊆ ÿ−2(ý;ℤ) of integral (ÿ − 2)-boundaries
iný, equipped with the flat topology, has homotopy groups identical to those of; namely,

ÿý(ý, 0) ≅ ÿÿ−2+ý(ý;ℤ)
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700 PARISE et al.

for ý > 0, whileÿ0(ý) = 0. In [6] (see also [50]), Almgren associates to each class inÿý(ÿ(ý;ℤ))

a stationary integral ý-varifold by means of a discretized min-max construction, which replaces
continuous families of cycles in the flat topology with discrete families satisfying an approximate
continuity condition with respect to the stronger mass topology. For our comparison results, it
is convenient to work with discrete families which are fine in flat norm and exhibit no concen-
tration of mass; by the interpolation arguments of [45, Section 13] and [43, Theorem 2.10], the
associated min-max masses coincide with the masses of the stationary varifolds produced by
Almgren.

Remark 5.4. While Theorems 2.10 and 2.11 of [43] are stated for cycles withℤ∕2ℤ coefficients, the
coefficient group plays no role in these arguments.

Following the notation of [43, Section 2], forÿ = 1 or 2, denote by ýÿ theÿ-cube ýÿ = [0, 1]ÿ,
and for ÿ ∈ ℕ, denote by ý(1, ÿ) the cube complex on ý1 with 1-cells (or edges)

[0, 3−ÿ], [3−ÿ , 2 ⋅ 3−ÿ], … , [1 − 3−ÿ , 1]

and 0-cells (or vertices) [0], [3−ÿ], … , [1 − 3−ÿ], [1]. Likewise, denote by ý(2, ÿ) the cell complex

ý(2, ÿ) = ý(1, ÿ) ⊗ ý(1, ÿ)

on ý2 given by subdividing ý2 into 32ÿ squares of area 3−2ÿ , and denote by ý(ÿ, ÿ)ý the collection
of ý-cells of ý(ÿ, ÿ). Given an assignment ÿ ∶ ý(ÿ, ÿ)0 → ÿ−2(ý;ℤ), we will say that it has (flat)
fineness ÿ (ÿ) < ÿ if

(ÿ(ý), ÿ(ÿ)) < ÿ for all adjacent vertices ý, ÿ ∈ ý(ÿ, ÿ)0.

If ÿ ∶ ý(ÿ, ÿ)0 → ÿ−2(ý;ℤ) satisfies ÿ(ý) = 0 for ý ∈ ÿýÿ and ÿ (ÿ) < ÿ for ÿ < ÿý suf-
ficiently small, then Almgren’s construction [5] assigns to ÿ a homology class Ψ(ÿ) ∈

ÿÿ−2+ÿ(ý;ℤ), as follows. For each (oriented) one-cell ÿ = [ý, ÿ] ∈ ý(ÿ, ÿ)1, provided ÿ > 0 is
sufficiently small, we can find an integral (ÿ − 1)-current ÿÿ ∈ ýÿ−1(ý;ℤ) such that

ÿÿÿ = ÿ(ÿ) − ÿ(ý) and ý(ÿÿ) ≤ ÿý

for a given small constant ÿý > 0. Ifÿ = 1, then summing over all one-cells ÿ ∈ ý(1, ÿ)1 gives an
(ÿ − 1)-cycle

ÿ =
∑

ÿ∈ý(1,ÿ)1
ÿÿ ∈ ÿ−1(ý;ℤ)

whose homology class Ψ(ÿ) ∶= [ÿ] ∈ ÿÿ−1(ý;ℤ) does not depend on the choice of small-mass
fill-ins ÿÿ. Ifÿ = 2, then for each 2-cell□ ∈ ý(2, ÿ)2 we denote by ÿ□ ∈ ÿ−1(ý;ℤ) the (ÿ − 1)-
cycle ÿ□ =

∑
ÿ∈ÿ□ ÿÿ given by summing the fill-insÿÿ over all oriented edges ÿ of ÿ□, and consider

the (unique) ÿ-current ý□ ∈ ýÿ(ý;ℤ) such that

ÿý□ = ÿ□ and ý(ý□) <
vol(ý)

2
.
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Summing over all 2-cells□ ∈ ý(2, ÿ)2 then gives an ÿ-cycle

ý =
∑

□∈ý(2,ÿ)2
ý□ ∈ ÿ(ý;ℤ)

whose homology classΨ(ÿ) ∶= [ý] ∈ ÿÿ(ý;ℤ) is independent of the choice of small-mass fill-ins
ÿÿ.
Now, for ÿ > 0 and a discrete family

ÿ ∶ ý(ÿ, ÿ)0 → ÿ−2(ý;ℤ),

define the quantity

ÿ(ÿ, ÿ) ∶= sup{‖ÿ(ý)‖(ýÿ(ý)) ∣ ý ∈ ý(ÿ, ÿ)0, ý ∈ ý},

giving the maximum amount of mass of a cycle in the family inside a ball of radius ÿ. For ÿ ∈

(0, ÿý) and ÿ ∈ ÿÿ−2+ÿ(ý;ℤ), and a constant ÿ0 = ÿ0(ý, ÿ) < ∞ to be chosen later, denote by
ÿ(ÿ) the collection of families

ÿ ∶ ý(ÿ, ÿ)0 → ÿ−2(ý;ℤ)

such that

ÿ (ÿ) < ÿ, sup
ÿ>ÿ

ÿ(ÿ, ÿ)

ÿÿ−2
≤ ÿ0, (5.3)

and

Ψ(ÿ) = ÿ ∈ ÿÿ−2+ÿ(ý;ℤ).

Then consider the approximate min-max widths

ÿÿ(ÿ) ∶= inf
{

max
ÿ∈ý(ÿ,ÿ)0

ý(ÿ(ÿ)) ∣ ÿ ∈ ÿ(ÿ)
}
, (5.4)

and define the min-max width

ÿ(ÿ) ∶= inf
{
lim inf
ý→∞

max
ÿ∈ý(ÿ,ÿý)0

ý(ÿý(ÿ))
}
, (5.5)

where the infimum is taken over all sequences ÿý ∶ ý(ÿ, ÿý)0 → ÿ−2(ý;ℤ) such that ÿý >

ÿ (ÿý) → 0, lim supý→∞ÿ(ÿý, ÿ) → 0 as ÿ → 0, and Ψ(ÿý) = ÿ. Clearly,

ÿ(ÿ) ≤ lim
ÿ→0

ÿÿ(ÿ) = sup
ÿ>0

ÿÿ(ÿ). (5.6)

Since we are ruling out concentration of mass in the limit, we can appeal to the interpolation
arguments of [45, Section 13] and [43, Theorem 2.10] to deduce that the widths ÿ(ÿ) coincide
with Almgren’s min-max widths, and are therefore realized as the masses of stationary integral
(ÿ − 2)-varifolds iný.
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702 PARISE et al.

We can now state a more precise version of Theorem 1.5.

Theorem 5.5. The min-max energies ÿ(2) and ÿ(ÿ) for ÿ ∈ ÿÿ−1(ý;ℤ) satisfy

lim inf
ÿ→0

ÿ(2) ≥ 2ÿÿ([ý]) (5.7)

and

lim inf
ÿ→0

ÿ(ÿ) ≥ 2ÿÿ(ÿ). (5.8)

The remainder of the section is devoted to its proof.

5.3 Taming min-max families to avoid energy concentration

To ensure that themin-max energies ÿ are bounded below by themasses of cycles satisfying (5.3),
we first argue that the energies ÿ are almost achieved as themaximum energy in families (ÿÿ , ∇ÿ)

satisfying a uniform energy density bound

∫
ýÿ(ý)

ÿÿ(ÿÿ , ∇ÿ) ≤ ÿÿÿ−2

for ÿ(ý, ÿ) > 0 sufficiently small and ÿ ≥ ÿ.

Lemma 5.6. Given ÿ > 0 and Λ < ∞, there exists ÿ(ý,Λ) < ∞ such that the following holds. If

ÿ < ÿ, for any family ý ∈ 2 ⊂ ÿ0(ÿ̄2, ÿ̂) (or ý ∈ ÿ ⊂ ÿ0([0, 1], ÿ̂) for ÿ ∈ ÿÿ−1(ý;ℤ)) satisfying

max
ÿ

ýÿ(ýÿ) < Λ, (5.9)

there exists another family ý′ = (ÿ′, ∇′) ∈ 2 (resp. ÿ) of smooth couples such that
max
ÿ

ýÿ(ý
′
ÿ) < Λ

and

max
ÿ, ÿ≥ÿ, ý∈ý

∫
ýÿ(ý)

ÿÿ(ÿ
′
ÿ , ∇

′
ÿ)

ÿÿ−2
≤ ÿ(ý,Λ).

Proof. First, given a family ý ∈ 2 or ý ∈ ÿ satisfying (5.9), we can apply a uniformmollification
to obtain a new family ý̃ also satisfying (5.9) that defines a continuous map into the space of
smooth pairs (ÿÿ , ∇ÿ), equipped with the ÿ∞ topology. Thus, we may assume without loss of
generality that the original family ý defines a continuous map into the space of smooth pairs.
In Section 6 below, we investigate a natural ÿ2 gradient flow system for the energies ýÿ, given

by a flow of pairs (ÿý, ∇ý = ý − ÿÿý) satisfying

ÿýÿý = −∇∗
ý∇ýÿý +

1

2ÿ2
(1 − |ÿý|2)ÿý (5.10)

 1
0
9
7
0
3
1
2
, 2

0
2
4
, 1

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/cp

a.2
2
1
5
0

 b
y

 C
o

rn
ell U

n
iv

ersity
 L

ib
rary

, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [0
1

/1
0

/2
0

2
4

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



CONVERGENCE OF THE SELF-DUAL ý(1)-YANG–MILLS–HIGGS ENERGIES TO THE (ÿ − 2)-AREA FUNCTIONAL 703

and

ÿýÿý = −ý∗ýÿý + ÿ−2ïÿÿý, ∇ýÿýð. (5.11)

As discussed in Section 6, it is not difficult to establish long-time existence for the flow, and con-
tinuous dependence on smooth initial data. Moreover, it is obvious that minimizers of ýÿ are
stationary under the flow; as a consequence, given a family ÿ ↦ ýÿ = (ÿÿ , ∇ÿ) in 2 (resp. ÿ)
mapping continuously into the space of smooth pairs as above, we may define a new family
ý′ ∈ 2 (resp. ÿ) by letting ý′

ÿ = (ÿ′ÿ , ∇
′
ÿ) be the solution of (5.10)–(5.11) at time ý = 2with initial

data (ÿÿ , ∇ÿ) = ýÿ . Since the gradient flow decreases energy, it is obvious that

max
ÿ

ýÿ(ý
′
ÿ) ≤ max

ÿ
ýÿ(ýÿ) < Λ.

Finally, by Proposition 6.3 below (the main result of Section 6), we have the density estimate

∫
ýÿ(ý)

ÿÿ(ÿ
′
ÿ , ∇

′
ÿ) ≤ ÿ(ý,Λ)ÿÿ−2

for all ÿ ≥ ÿ, so that the family ý′ satisfies the desired properties. □

Remark 5.7. Note, moreover, that we may always deform an initial family (ÿÿ , ∇ÿ) to one (ÿÿ , ∇ÿ)

with |ÿÿ| ≤ 1 pointwise, without increasing the energy, by setting ÿÿ ∶=
ÿÿ

max{1,|ÿÿ|}
. In particular,

for the purposes of estimating the min-max energies, we may always assume that our families
(ÿÿ , ∇ÿ) satisfy |ÿÿ| ≤ 1 pointwise, without loss of generality.

To prove Theorem 5.5, we will use this lemma in concert with the following technical lemma,
which follows in a straightforward way from the results of Section 3.

Lemma 5.8. GivenΛ,ÿ0 ∈ (0,∞), for any ÿ > 0 there exists ÿ0(ý,Λ, ÿ, ÿ0) such that, if ÿ ∈ (0, ÿ0)

and (ÿ, ∇) is a smooth pair satisfying |ÿ| ≤ 1,

ýÿ(ÿ, ∇) ≤ Λ,

and

max
ÿ≥ÿ, ý∈ý ÿ2−ÿ ∫

ýÿ(ý)

ÿÿ(ÿ, ∇) ≤ ÿ0,

then there exist a smooth ÿ ∶ ý → ÿ1 and a unit section ÿ ∈ ý(ÿ) (i.e., ÿ ∈ ÿ1,ý(ý, ÿ1)) for all

ý ∈ (1,
ÿ

ÿ−1
), satisfying

‖ÿ − ÿ‖ÿ1(ý) ≤ ÿ, (5.12)

‖ý(ÿ−1ÿ)‖ÿý(ý) ≤ ÿ(ý,ý,Λ), (5.13)

ý(ý(ÿ)) ≤ Λ, (5.14)
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and

‖ý(ÿ)‖(ýÿ(ý)) ≤ 2ÿ0ÿ
ÿ−2 (5.15)

for all ý ∈ ý and ÿ ≥ ÿ. Moreover, the map ÿ is chosen such that

‖ÿ∗(ýÿ) − Π(ÿ)‖ÿ2(ý) ≤ ÿ(ý),

where ∇ = ý − ÿÿ andΠ(ÿ) is the closed component of the Hodge decomposition of ÿ.

Proof. The proof follows a straightforward argument by contradiction, using the analysis of Sec-
tion 3. If the statement were false, then we could find some fixed ÿ > 0, a sequence ÿÿ → 0, and
pairs (ÿÿ , ∇ÿ = ý − ÿÿÿ) such that

ýÿÿ (ÿÿ , ∇ÿ) ≤ Λ, (5.16)

and

max
ÿ≥ÿ, ý∈ý ÿ2−ÿ ∫

ýÿ(ý)

ÿÿÿ (ÿÿ , ∇ÿ) ≤ ÿ0, (5.17)

for which there are no ÿÿ ∶ ý → ÿ1 and ÿÿ ∈ ý(ÿ) satisfying (5.12)–(5.15). By Lemma 3.4 (and
its proof), we can find maps ÿÿ ∶ ý → ÿ1 such that

‖ý(ÿ−1ÿ ÿÿ)‖ÿý(ý) ≤ ÿ(ý,ý,Λ) and ‖ÿÿ − ÿ∗ÿ (ýÿ)‖ÿý(ý) ≤ ÿ(ý,ý,Λ)

for every ý ∈ (1,
ÿ

ÿ−1
), while

‖ÿ∗
ÿ
(ýÿ) − Π(ÿÿ)‖ÿ2(ý) ≤ ÿ(ý).

In particular, the maps ÿ−1
ÿ
ÿÿ are uniformly bounded inÿ

1,ý for ý ∈ (1,
ÿ

ÿ−1
), and—as discussed

in the proof of Theorem 1.2(i)—a subsequence therefore converges strongly in ÿ1 and weakly in
ÿ1,ý to a singular unit section ÿ ∈ ý(ÿ) (i.e., ÿ ∈ ÿ1,ý(ý, ÿ1), since ÿ is now trivial), while the
gauge-invariant (ÿ − 2)-currents ý(ÿÿ , ∇ÿ) converge weakly to ý(ÿ). Moreover, by (5.16), (5.17), and
the lower semicontinuity of mass under weak convergence, we see that

ý(ý(ÿ)) ≤ lim inf
ÿ→∞

ý(ý(ÿÿ , ∇ÿ)) ≤ ýÿÿ (ÿÿ , ∇ÿ) ≤ Λ

and

‖ý(ÿ)‖(ýÿ(ý)) ≤ lim inf
ÿ→∞

‖ý(ÿÿ , ∇ÿ)‖(ýÿ(ý)) ≤ lim inf
ÿ→∞ ∫

ýÿ(ý)

ÿÿÿ (ÿÿ , ∇ÿ) ≤ ÿ0ÿ
ÿ−2

for all ÿ ≥ ÿ and ý ∈ ý. In particular, for ÿ sufficiently large, we see that ÿÿ and ÿÿÿ satisfy (5.12)–
(5.15) (in place of ÿ and ÿ) with respect to ÿÿ , giving the desired contradiction. □

Remark 5.9. In particular, recall from Corollary 3.3 that for any ÿ ∈ ý(ÿ)withý(ý(ÿ)) < ∞, we
have ý(ÿ) = 2ÿΓ for an integral (ÿ − 2)-cycle Γ ∈ ÿ−2(ý;ℤ).
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5.4 Filling in cycles by filling maps

The results of the preceding subsection will allow us to relate min-max families ý ∈ 2 or ý ∈ ÿ
for the energies ýÿ to certain discrete families of (ÿ − 2)-cycles with the desired mass bounds.
In what follows, we collect some technical lemmas which will allow us to identify the images of
those families of (ÿ − 2)-cycles under the Almgren isomorphism.

Lemma 5.10. Given ÿ, ÿ ∈ ÿ1,ý(ý, ÿ1), for ý ∈ (1, 2), there exists ý ∈ ÿ1,ý(ý × [0, 1], ÿ1)

satisfying the boundary condition

ý(ý, 0) = ÿ(ý, 0), and ý(ý, 1) = ÿ(ý, 1),

in the trace sense, for which the estimate

‖ÿýý‖ÿý(ý×[0,1]) ≤ ÿ(ý)‖ÿ − ÿ‖ÿý(ý)

holds, and such that the pushforward ÿ∗[ý(ý)] of the distributional Jacobian ý(ý) under the

projection ÿ ∶ ý × [0, 1] → ý satisfies

ý(ÿ∗[ý(ý)]) ≤ ÿ ∫
ý

|ÿ − ÿ|(|ýÿ| + |ýÿ|).

Proof. The proof combines ideas from [12, Section 3] and [28]. First, we mollify ÿ and ÿ to obtain
maps ÿÿ, ÿÿ ∈ ÿ∞(ý,ÿ2) with

‖ÿÿ − ÿ‖ÿ1,ý(ý) + ‖ÿÿ − ÿ‖ÿ1,ý(ý) < ÿ.

Let ýÿ ∶ ý × [0, 1] → ÿ2 be the linear interpolation

ýÿ(ý, ý) ∶= (1 − ý)ÿÿ(ý) + ýÿÿ(ý).

Consider then the (ÿ − 1)-currents

Γÿÿ ∶= ÿ∗[ý
−1
ÿ
{ÿ}]

given by pushing forward the (ÿ − 1)-dimensional submanifold ý−1
ÿ
{ÿ} for every regular value

ÿ ∈ ÿ. Then for any ÿ ∈ Ωÿ−1(ý), and each regular value ÿ ∈ ÿ of ýÿ, we have

ïΓÿÿ , ÿð = ∫
ý−1
ÿ

{ÿ}

ÿ∗(ÿ)

= ∫
ý−1
ÿ

{ÿ}

∗

(
ÿ ∧

ý(ýÿ)

|ý(ýÿ)|
)
ýÿ−1

= ∫
ý−1
ÿ

{ÿ}

∗ (ÿ ∧ ýý ∧ ÿÿýý(ýÿ))|ý(ýÿ)|−1 ýÿ−1.

In particular, since

|ÿÿýý(ýÿ)| ≤ 2|ÿýýÿ||ýý ∧ ýýÿ| ≤ 2|ÿÿ − ÿÿ|(|ýÿÿ| + |ýÿÿ|),
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706 PARISE et al.

it follows that

ý(Γÿÿ) ≤ ∫
ý−1
ÿ

{ÿ}

|ÿÿ − ÿÿ|(|ýÿÿ| + |ýÿÿ|)
1

2
|ý(ýÿ)|

ýÿ−1,

and applying the standard coarea formula for the smooth map ýÿ, we arrive at

∫
ÿ

ý(Γÿÿ) ≤ ∫
ý

|ÿÿ − ÿÿ|(|ýÿÿ| + |ýÿÿ|). (5.18)

Now, for each ÿ ∈ ÿ1∕4, fix a map Φÿ ∈ ÿ∞(ÿ1 ⧵ {ÿ}, ÿ
1) satisfying

Φÿ(ÿ) =

⎧
⎪«⎪¬

ÿ−ÿ

|ÿ−ÿ| for ÿ ∈ ÿ1∕4(ÿ) ⊂ ÿ1∕2,
ÿ

|ÿ| for |ÿ| ≥ 3∕4,
(5.19)

and

|ýΦÿ(ÿ)| ≤ ÿ

|ÿ − ÿ| on ÿ1

for some fixed constant ÿ. Then, writing

ýÿ,ÿ ∶= Φÿ◦ýÿ,

if ÿ ∈ ÿ1∕4 is a regular value of ýÿ, we see that ýÿ,ÿ belongs toÿ
1,ý(ý × [0, 1], ÿ1) and satisfies

ý(ýÿ,ÿ) = 2ÿý−1
ÿ
{ÿ}, as well as

‖ýýÿ,ÿ‖ýÿý(ý×[0,1])
≤ ÿ ∫

ý×[0,1]

|ýýÿ|(ý, ý)ý|ýÿ(ý, ý) − ÿ|−ý ýý ýý

and

‖ÿýýÿ,ÿ‖ýÿý(ý×[0,1])
≤ ÿ ∫

ý×[0,1]

|ÿÿ − ÿÿ|ý(ý)|ýÿ(ý, ý) − ÿ|−ý ýý ýý.

Integrating the latter two estimates over ÿ ∈ ÿ1∕4 and applying Fubini’s theorem, we see that

∫
ÿ1∕4

‖ýýÿ,ÿ‖ýÿý(ý×[0,1])
ýÿ ≤ ∫

ý×[0,1]

|ýýÿ(ý, ý)|ý
(
∫
ÿ1∕4

|ýÿ(ý, ý) − ÿ|−ý ýÿ
)
ýý ýý

≤ ÿ(ý)‖ýýÿ‖ýÿý(ý×[0,1])
,

and similarly

∫
ÿ1∕4

‖ÿýýÿ,ÿ‖ýÿý(ý×[0,1])
≤ ÿ(ý)‖ÿÿ − ÿÿ‖ýÿý(ý)

.

Combining these estimates together with (5.18), we can find ÿ = ÿÿ ∈ ÿ1∕4 such that

‖ýýÿ,ÿ‖ÿý(ý×[0,1]) ≤ ÿ(ý)‖ýýÿ‖ÿý(ý×[0,1])
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CONVERGENCE OF THE SELF-DUAL ý(1)-YANG–MILLS–HIGGS ENERGIES TO THE (ÿ − 2)-AREA FUNCTIONAL 707

and

‖ÿýýÿ,ÿ‖ÿý(ý×[0,1]) ≤ ÿ(ý)‖ÿÿ − ÿÿ‖ýÿý(ý)
,

together with

ý(ÿ∗[ý(ýÿ,ÿ)]) = 2ÿý(Γÿÿ) ≤ ÿ ∫
ý

|ÿÿ − ÿÿ|(|ýÿÿ| + |ýÿÿ|).

Since ýÿ,ÿÿ is bounded inÿ1,ý(ý × [0, 1], ÿ1), we may take a subsequential limit

ý = lim
ÿ→0

ýÿ,ÿÿ

as ÿ → 0, to obtain a map ý ∈ ÿ1,ý(ý × [0, 1], ÿ1) with the desired properties. □

Remark 5.11. On a manifold with Lipschitz boundary (ý, ÿý) of dimension ÿ (e.g., ý = ý ×

[0, 1] or ý = ý × [0, 1]2 where ý is our underlying manifold), given a map ý ∈ ÿ1,ý(ý, ÿ1) ∩

ÿ1,ý(ÿý, ÿ1), recall that the (interior) distributional Jacobian ý(ý) is the (ÿ − 2)-current given
by

ïý(ý), ÿð ∶= ∫
ý

ý∗(ýÿ) ∧ ýÿ + ∫
ÿý

ý∗(ýÿ) ∧ ÿ. (5.20)

In the sequel, we endow ý × [0, 1] with the orientation such that ý × {1} is oriented as ý.
Using the product orientation oný × [0, 1]2 and the induced one on the boundaryý × ÿ[0, 1]2,
note that ÿ ∧ ÿ is positively oriented on the latter manifold when ÿ is a positively oriented ÿ-vector
ofý and ÿ is tangent to ÿ[0, 1]2, pointing counter-clockwise.

Remark 5.12. The distributional Jacobian behaves well when concatenating maps. Indeed, for
any two ý1, ý2 ∈ ÿ1,ý(ý × [0, 1], ÿ1) ∩ ÿ1,ý(ý × {0, 1}, ÿ1), if ý1 ∗ ý2 ∶ ý × [0, 1] → ÿ1 is the
usual concatenation, we have that

ÿ∗[ý(ý1 ∗ ý2)] = ÿ∗[ý(ý1)] + ÿ∗[ý(ý2)].

Reasoning by induction one can then prove that the above identity holds for an arbitrary
finite concatenation.

Lemma 5.13. Let ý ∈ ÿ1,ý(ý × ý2, ÿ1) ∩ ÿ1,ý(ý × ÿý2, ÿ1). Letting ÿ ∶ ý × ý2 → ý be the

canonical projection, the ÿ-current

Ξ ∶= ÿ∗[ý(ý)] ∈ ÿ(ý)

depends only on ý|ý×ÿý2 , is given by

ïΞ, ÿ dvolýð = 2ÿ ∫
ý

ÿ(ý) deg
(
ý|{ý}×ÿý2

)
ýý,

and satisfies

ý(Ξ) ≤ ‖ÿýý‖ÿ1(ý×ÿý2),

where ÿýý denotes the partial derivative of ý along the ÿý2 direction.
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708 PARISE et al.

Proof. Since any ÿ-form ÿ ∈ Ωÿ(ýÿ) is closed, (5.20) implies

ïý(ý), ÿ∗ÿð = ∫
ý×ÿý2

ý∗(ýÿ) ∧ ÿ∗ÿ = ∫
ý

ÿ(ý)

(
∫
{ý}×ÿý2

ý∗(ýÿ)

)
ýý,

from which the desired results follow. □

Hence, if ý1, ý2 ∈ ÿ1,ý(ý × ý2, ÿ1) ∩ ÿ1,ý(ý × ÿý2, ÿ1) are two such maps, satisfying

ý1(ý, 1, ý) = ý2(ý, 0, ý),

and Φ = ý1 ∗ ý2 is the map given by concatenating along one face of the square, that is,

Φ(ý, ý, ý) ∶=

{
ý1(ý, 2ý, ý) oný × [0, 1∕2] × ý,

ý2(ý, 2ý − 1, ý) oný × [1∕2, 1] × ý,
(5.21)

we have

ÿ∗[ý(ý1)] + ÿ∗[ý(ý2)] = ÿ∗[ý(ý1 ∗ ý2)]. (5.22)

Of course, the same statement holds if we define ý1 ∗ ý2 by concatenation along any other face
of ý2.

5.5 One-parameter families corresponding to ÿÿ(ÿ−ÿ(ý;ℤ), ÿ)

We come now to the proof of the second inequality in Theorem 5.5, comparing the one-parameter
min-max constructions for the ý(1)-Higgs energies and the (ÿ − 2)-mass. That is, for any ÿ ∈

ÿÿ−1(ý;ℤ), our goal in this section is to prove that

lim inf
ÿ→0

ÿ(ÿ) ≥ 2ÿÿ(ÿ). (5.23)

To this end, fix 0 b ÿ ∈ ÿÿ−1(ý;ℤ) and a small constant ÿ > 0. Let ÿ ∈ ÿ∞(ý, ÿ1) be a fixed
but arbitrary map whose (regular) fibers lie in ÿ ∈ ÿÿ−1(ý;ℤ). Recall that, by definition of ÿ,
the endpoints (ÿ0, ∇0) and (ÿ1, ∇1) of a family (ÿý, ∇ý)ý∈[0,1] in ÿ are given by

(ÿ0, ∇0) = (1, ý) and (ÿ1, ∇1) = (ÿÿÿÿ, ý − ÿ(ÿ∗(ýÿ) + ýÿ)),

for some ÿ ∶ ý → ℝ, and after making the gauge transformation which replaces (ÿý, ∇ý) with
(ÿ−ÿýÿÿý, ∇ý − ÿý ýÿ), this is equivalent to considering only those families with (ÿ1, ∇1) = (ÿ, ý −

ÿÿ∗(ýÿ)).
We claim that

Λ ∶= lim inf
ÿ→0

ÿ(ÿ) < ∞. (5.24)

Proof of (5.24). Since the proof is very similar to the one for two-parameter families, given in [49,
Section 7], we just sketch it. Identifyingý with a simplicial complex ý̃ in some Euclidean space
ℝÿ, by means of a triangulation ofý, we can find a piecewise affine map ÿ̃ ∶ ℝÿ → ℂ such that
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ÿ̃ = 1 far from ý̃ and |ÿ̃ − ÿ| < 1

2
on ý̃ (provided the triangulation was chosen fine enough). Let

ÿ be a small regular value of ÿ̃.
By composing ÿ̃ with a piecewise affine homeomorphism of ℂ, we can assume that ÿ = 0 and

that ÿ̃−1(ÿ̄1∕2) is an ÿ(ÿ)-neighborhood of ÿ̃−1(0), with the bound |ýÿ̃| = ÿ(ÿ−1). In particular,
the fiber ÿ̃−1(0) is contained in finitely many affine (ÿ − 2)-planes ÿÿ . With a slight perturbation
of ý̃, which does not intersect ÿ̃−1(ÿ̄1∕2), we can assume that all the simplices in ý̃ are transverse
to each ÿÿ (when both are translated to the origin).
Now, since ÿ̃ c 1 outside of a compact set, we can find a vector ÿ ∈ ℝÿ such that ÿ̃(ý − ÿ) = 1

for all ý ∈ ý̃, and for ý ∈ [0, 1], define

ÿ̃ý(ý) ∶= ÿ̃(ý − (1 − ý)ÿ),

so that ÿ̃1 = ÿ̃ and ÿ̃0 = 1 on ý̃. The preimage ÿ̃−1
ý (ÿ̄1∕2) of ÿ̄1∕2 in ý̃ is then contained in an

ÿ(ÿ) neighborhood of [ÿ̃−1{0} + (1 − ý)ÿ] ∩ ý̃, which has volume ÿ(ÿ2).
Identifying these ÿ̃ý with Lipschitz maps in Lip(ý,ℂ) via the bi-Lipschitz identification ý ≅

ý̃, we canmollify ÿ̃ý—for example, by convolvingwith the heat kernel for some very small time—
to obtain a continuous path of maps [0, 1] ∋ ý ↦ ÿ̃ý ∈ ÿ∞(ý,ℂ) such that

ÿ̃0 c 1, |ÿ̃1 − ÿ| < 1

2
, and vol(ÿ̃−1

ý (ÿ̄1∕2)) ≤ ÿÿ2.

Applying [49, Proposition 7.13] to these maps then gives a family (ÿý, ∇ý)ý∈[0,1] with uniformly

bounded energy from (1, ý) to (ÿ̄, ý − ÿÿ̄∗(ýÿ)), where ÿ̄ =
ÿ̃

|ÿ̃| . Note that since |ÿ̃ − ÿ| < 1

2
, ÿ̄

must be homotopic to ÿ, for example, via the path

[0, 1] ∋ ý ↦
(1 − ý)ÿ̃ + ýÿ

|(1 − ý)ÿ̃ + ýÿ| .

Thus, concatenating the family ý ↦ (ÿý, ∇ý) with (ÿý, ý − ÿÿ∗
ý (ýÿ)), for a homotopy ÿý from ÿ̄ to

ÿ, we get a family in ÿ with the same energy, as desired. □

Now, consider a small ÿ ∈ (0, ÿ) such that

ÿ(ÿ) ≤ Λ + ÿ < Λ + 1. (5.25)

By Lemma 5.6 and Remark 5.7, we can find a family [0, 1] ∋ ý ↦ (ÿý, ∇ý = ý − ÿÿý) in ÿ ⊂
ÿ0([0, 1], ÿ̂) such that |ÿý| ≤ 1,

max
ý∈[0,1]

ýÿ(ÿý, ∇ý) ≤ ÿ(ÿ) + ÿ ≤ Λ + 2, (5.26)

and

max
ý∈[0,1], ÿ≥ÿ, ý∈ý ÿ2−ÿ ∫

ýÿ(ý)

ÿÿ(ÿý, ∇ý) ≤ ÿ0(ý,Λ). (5.27)

Now, by the continuity of the path ý ↦ (ÿý, ∇ý = ý − ÿÿý) in ÿ̂, we may select a finite sequence
of times

0 = ý0 < ý1 < ⋯ < ýý=3ý = 1
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such that

‖ÿýÿ+1 − ÿýÿ‖ÿ1,2(ý) + ‖ÿýÿ+1 − ÿýÿ‖ÿ1,2(ý) < ÿ.

In what follows, we write ÿÿ = ÿýÿ and ÿÿ = ÿýÿ . Suppose now that ÿ < ÿ0(ý,Λ + 2, ÿ, ÿ0) as in
Lemma 5.8, and for each ÿ = 1, … ,ý = 3ý, let

ÿÿ ∈ ÿ1,ý(ý, ÿ1) and ÿÿ ∶ ý → ÿ1

be as in the conclusion of Lemma 5.8, so that

‖ÿÿ − ÿÿ‖ÿ1(ý) ≤ ÿ,

and

‖ý(ÿ−1
ÿ
ÿÿ)‖ÿý(ý) ≤ ÿ(ý,ý,Λ) (5.28)

for ý ∈ (1,
ÿ

ÿ−1
), while

ý(ý(ÿÿ)) ≤ Λ + 2ÿ,

together with

max
ÿ≥ÿ, ý∈ý

‖ý(ÿÿ)‖(ýÿ(ý))
ÿÿ−2

≤ 2ÿ0,

and

‖ÿ∗
ÿ
(ýÿ) − Π(ÿÿ)‖ÿ2(ý) ≤ ÿ(ý). (5.29)

In this way, we get a sequence

1 = ÿ0, ÿ1, … , ÿý = ÿ inÿ1,ý(ý, ÿ1)

such that

‖ÿÿ+1 − ÿÿ‖ÿ1(ý) ≤ ÿÿ

and the integral (ÿ − 2)-cycles ÿÿ ∶=
1

2ÿ
ý(ÿÿ) satisfy

2ÿý(ÿÿ) ≤ Λ + 2ÿ

and

max
ÿ≥ÿ, ý∈ý

‖ÿÿ‖(ýÿ(ý))
ÿÿ−2

≤ ÿ0.

Moreover, for each ÿ = 0, … ,ý − 1, the following holds.

Lemma 5.14. For ý ∈ [1,
ÿ

ÿ−1
), there exists ýÿ ∈ ÿ1,ý(ý × [0, 1], ÿ1) with boundary values

ýÿ(ý, 0) = ÿÿ(ý), ýÿ(ý, 1) = ÿÿ+1(ý),
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satisfying

‖ÿýýÿ‖ÿý(ý×[0,1]) ≤ ÿ(ý)‖ÿÿ+1 − ÿÿ‖ÿý(ý) ≤ ÿ(ý)ÿ1∕ý

and

ý(ÿ∗[ý(ýÿ)]) ≤ ÿ(ý,ý,Λ)ÿ1−1∕ý.

Proof. To begin, apply Lemma 5.10 with ÿ = ÿ−1ÿ ÿÿ and ÿ = ÿ−1ÿ ÿÿ+1, to obtain a map ý̃ ∈

ÿ1,ý(ý × [0, 1]) which restricts to ÿ−1ÿ ÿÿ and ÿ
−1
ÿ ÿÿ+1 oný × {0, 1}, and satisfies

‖ÿýý̃‖ÿý(ý×[0,1]) ≤ ÿ(ý)‖ÿ−1ÿ (ÿÿ − ÿÿ+1)‖ÿý(ý) = ÿ(ý)‖ÿÿ+1 − ÿÿ‖ÿý(ý)

and

ý(ÿ∗[ý(ý̃)]) ≤ ÿ ∫
ý

|ÿ−1
ÿ
(ÿÿ − ÿÿ+1)|(|ý(ÿ−1ÿ ÿÿ)| + |ý(ÿ−1

ÿ
ÿÿ+1)|)

≤ ‖ÿÿ − ÿÿ+1‖ÿý′ (ý)(‖ý(ÿ−1ÿ ÿÿ)‖ÿý(ý) + ‖ý(ÿ−1ÿ ÿÿ+1)‖ÿý(ý)).

Now, we know that

‖ÿÿ − ÿÿ+1‖ÿý′ (ý) ≤ ÿ(ý)‖ÿÿ+1 − ÿÿ‖1−1∕ýÿ1(ý)
≤ ÿ(ý)ÿ1−1∕ý

and

‖ý(ÿ−1
ÿ
ÿÿ)‖ÿý(ý) ≤ ÿ(ý,ý,Λ),

while

‖ý(ÿ−1
ÿ
ÿÿ+1)‖ÿý(ý)

= ‖ÿ∗
ÿ+1

(ýÿ) − ÿ∗
ÿ
(ýÿ)‖ÿý(ý)

≤ ‖ý(ÿ−1ÿ+1ÿÿ+1)‖ÿý(ý) + ‖ÿ∗ÿ+1(ýÿ) − ÿ∗ÿ (ýÿ)‖ÿý(ý)

≤ ÿ(ý,ý,Λ) + ‖ÿ∗
ÿ+1

(ýÿ) − Π(ÿÿ+1)‖ÿý(ý) + ‖ÿ∗
ÿ
(ýÿ) − Π(ÿÿ)‖ÿý(ý)

+ ‖Π(ÿÿ − ÿÿ+1)‖ÿý(ý)

≤ ÿ(ý,ý,Λ),

which together with the preceding estimates gives

ý(ÿ∗[ý(ý̃)]) ≤ ÿ(ý,ý,Λ)ÿ1−1∕ý.

Taking ýÿ ∶= ÿÿý̃, one sees that ýÿ satisfies the conclusions of the claim, since ý(ýÿ) = ý(ý̃) and
ÿýýÿ = ÿÿÿýý̃.

In particular, by (5.20), we see that the (ÿ − 1)-currents Γÿ ∶=
1

2ÿ
ÿ∗[ý(ýÿ)] ∈ ÿ−1(ý;ℤ) give

fill-ins

ÿΓÿ = ÿÿ+1 − ÿÿ
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of small mass (taking ý =
ÿ+1

ÿ
)

ý(Γÿ) ≤ ÿ(ý,Λ)ÿ1∕(ÿ+1).

Thus, the sequence ÿ0, ÿ1, … , ÿý=3ý defines a discrete family

ÿ ∶ ý(1, ý)0 → ÿ−2(ý;ℤ)

with

ÿ(ÿ, ÿ) ≤ ÿ0ÿ
ÿ−2 for ÿ ≥ ÿ,

together with

max
ÿ

ý(ÿÿ) ≤ 1

2ÿ
(Λ + 2ÿ),

and

ÿ (ÿ) ≤ ÿ(ý,Λ)ÿ1∕(ÿ+1).

Moreover, for ÿ < ÿ0(ý,Λ) sufficiently small, the class Ψ(ÿ) ∈ ÿÿ−1(ý;ℤ) associated to ÿ by
Almgren’s isomorphism is given by

Ψ(ÿ) ∶= [Γ],

where

Γ ∶=
∑ý−1

ÿ=0 Γÿ .

Now, by Remark 5.12, we can identify Γ with the projected Jacobian

2ÿΓ = ÿ∗[ý(ý0 ∗ ý1 ∗ ⋯ ∗ ýý−1)] = ÿ∗[ý(ý)]

of the concatenated map ý ∶= ý0 ∗ ⋯ ∗ ýý−1 ∶ ý × [0, 1] → ÿ1, which satisfies

ý(ý, 0) = 1 and ý(ý, 1) = ÿ(ý).

In particular, for any ÿ ∈ Ωÿ−1(ýÿ), it follows that

2ÿïΓ, ÿð = ∫
ý×[0,1]

ý∗(ýÿ) ∧ ýÿ + ∫
ý

ÿ∗(ýÿ) ∧ ÿ.

Hence, the action of Γ on closed (ÿ − 1)-forms agrees with that of
1

2ÿ
∫
ý
ÿ∗(ýÿ) ∧ ⋅. In particular,

since there is no torsion inÿÿ−1(ý;ℤ), it follows that

[Γ] = [ÿ−1{ÿ}] = ÿ ∈ ÿÿ−1(ý;ℤ),

as desired.
That is, letting ÿ(ÿ) ∶= max{ÿ, ÿÿ1∕(ÿ+1)}, we see that ÿ ∈ ÿ(ÿ)(ÿ), so that

ÿÿ(ÿ)(ÿ) ≤ max
ÿ

ý(ÿÿ) ≤ 1

2ÿ
(Λ + 2ÿ) =

1

2ÿ
lim inf
ÿ→0

ÿ(ÿ) + 1

ÿ
ÿ.
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Finally, taking the limit as ÿ → 0 and using (5.6), we get the desired estimate (5.23).

5.6 Two-parameter families and the generator of ÿÿ(ÿ−ÿ(ý;ℤ), ÿ)

In this subsection, we complete the proof of Theorem 5.5, establishing the inequality for the two-
parameter families

lim inf
ÿ→0

ÿ(2) ≥ 2ÿÿ([ý]). (5.30)

To begin, set

Λ ∶= lim inf
ÿ→0

ÿ(2),
which is finite (see [49, Section 7]), and fix some small ÿ > 0. Again let ÿ → ý be the trivial line
bundle, and consider a two-parameter family

ÿ̄2 ∋ ÿ ↦ (ÿÿ , ∇ÿ = ý − ÿÿÿ)

belonging to 2 ⊂ ÿ0(ÿ̄2, ÿ̂), so that

(ÿÿ, ∇ÿ) c (ÿ, ý) for all ÿ ∈ ÿÿ = ÿ1.

Choose a small ÿ ∈ (0, ÿ) such that

ÿ(2) ≤ Λ + ÿ;

by Lemma 5.6 and the subsequent remark, we can select our family ÿ̄ ∋ ÿ ↦ (ÿÿ , ∇ÿ) in 2 such
that |ÿÿ| ≤ 1,

max
ÿ∈ÿ̄

ýÿ(ÿÿ , ∇ÿ) ≤ Λ + 2ÿ,

and

max
ÿ∈ÿ̄, ÿ≥ÿ, ý∈ý ÿ2−ÿ ∫

ýÿ(ý)

ÿÿ(ÿÿ , ∇ÿ) ≤ ÿ0(ý,Λ).

Now, identifying ÿ̄ with the square ý2 = [0, 1]2 in the usual bi-Lipschitz way, by the continu-
ity of the family ý2 ≅ ÿ̄ ∋ ÿ ↦ (ÿÿ , ∇ÿ) ∈ ÿ̂, we can choose ý sufficiently large that the discrete
assignment

ý(2, ý)0 ∋ ÿ ↦ (ÿÿ, ∇ÿ) = (ÿÿ, ý − ÿÿÿ) ∈ ÿ̂

satisfies

‖ÿÿ − ÿÿ‖ÿ1,2(ý) + ‖ÿÿ − ÿÿ‖ÿ1,2(ý) < ÿ

for any adjacent vertices ÿ, ÿ ∈ ý(2, ý)0. By Lemma 5.8, for each vertex ÿ ∈ ý(2, ý)0, there exist

ÿÿ ∈ ÿ1,ý(ý, ÿ1) and ÿÿ ∶ ý → ÿ1
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such that

‖ÿÿ − ÿÿ‖ÿ1(ý) ≤ ÿ

and

‖ý(ÿ−1ÿ ÿÿ)‖ÿý(ý) ≤ ÿ(ý,ý,Λ)

for ý ∈ [1,
ÿ

ÿ−1
), while

ý(ý(ÿÿ)) ≤ Λ + 2ÿ,

together with

max
ÿ≥ÿ, ý∈ý

‖ý(ÿÿ)‖(ýÿ(ý))
ÿÿ−2

≤ 2ÿ0,

and

‖ÿ∗ÿ(ýÿ) − Π(ÿÿ)‖ÿ2(ý) ≤ ÿ(ý).

The following lemma, and its proof, is identical to Lemma 5.14.

Lemma 5.15. For each pair of adjacent vertices ÿ, ÿ ∈ ý(2, ý)0, there exists ýÿ,ÿ ∈ ÿ1,ý(ý ×

[0, 1], ÿ1) satisfying the boundary conditions

ýÿ,ÿ(ý, 0) = ÿÿ(ý) and ýÿ,ÿ(ý, 1) = ÿÿ(ý),

while for every ý ∈ [1,
ÿ

ÿ−1
),

‖ÿýýÿ,ÿ‖ÿý(ý×[0,1]) ≤ ÿ(ý)‖ÿÿ − ÿÿ‖ÿý(ý) ≤ ÿ(ý)ÿ1∕ý,

and

ý(ÿ∗[ý(ýÿ,ÿ)]) ≤ ÿ(ý,ý,Λ)ÿ1−1∕ý.

Remark 5.16. If the vertices ÿ, ÿ lie on the boundary ÿý2, so that ÿÿ and ÿÿ are constant maps to
ÿ1, then we take ÿÿ = ÿÿ, ÿÿ = ÿÿ, and simply letýÿ,ÿ be the geodesic interpolation in ÿ

1 between
the two constants.

In particular, for each pair of adjacent vertices ÿ, ÿ ∈ ý(2, ý)0, the (ÿ − 1)-current

Γÿ,ÿ ∶=
1

2ÿ
ÿ∗[ý(ýÿ,ÿ)] ∈ ÿ−1(ý;ℤ)

provides a small-mass fill-in

ÿΓÿ,ÿ = ÿÿ − ÿÿ
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for the difference of the integral (ÿ − 2)-cycles ÿÿ ∶=
1

2ÿ
ý(ÿÿ); namely, taking ý =

ÿ+1

ÿ
in the

preceding lemma, we have

ý(Γÿ,ÿ) ≤ ÿ(ý,Λ)ÿ
1

ÿ+1 .

Thus, setting ÿ(ÿ) ∶= ÿÿ gives a discrete family

ÿ ∶ ý(2, ý)0 → ÿ−2(ý;ℤ)

satisfying

ÿ(ÿ, ÿ) ≤ ÿ0ÿ
ÿ−2 for ÿ ≥ ÿ,

together with

max
ÿ∈ý(2,ý)0

ý(ÿÿ) ≤ 1

2ÿ
(Λ + 2ÿ),

and

ÿ (ÿ) ≤ ÿ(ý,Λ)ÿ
1

ÿ+1 .

It remains to show that the homology class Ψ(ÿ) ∈ ÿÿ(ý;ℤ) associated to ÿ by Almgren’s
isomorphism is the fundamental class [ý].
For each 2-cell □ ∈ ý(2, ý)2 with vertices ÿ, ÿ, ý, ý (ordered counter-clockwise), let ý ∶ ý ×

ÿ□ → ÿ1 be the concatenation given by ýÿ,ÿ along the edge [ÿ, ÿ] of ÿ□, ýÿ,ý on [ÿ, ý], and so
on.We apply Lemma 5.10 to interpolate between ý and 1, obtaining an extension ý□ ∈ ÿ1,ý(ý ×

□, ÿ1) ∩ ÿ1,ý(ý × ÿ□, ÿ1) of the map ý, so that

Ξ□ ∶=
1

2ÿ
ÿ∗[ý(ý□)] ∈ ÿ(ý;ℤ)

has boundary

ÿΞ□ =
1

2ÿ
ÿ∗[ý(ý)] = Γÿ,ÿ + Γÿ,ý + Γý,ý + Γý,ÿ.

In particular, since ‖ÿýýÿ,ÿ‖ÿý(ý×[ÿ,ÿ]) ≤ ÿ(ý)ÿ1∕ý = ÿ(ÿ)ÿÿ∕(ÿ+1) (and similarly for the other
edges), it follows from Lemma 5.13 that Ξ□ is the (unique) small-mass fill-in of Γÿ,ÿ +⋯+ Γý,ÿ,
provided ÿ < ÿ0(ý,Λ) is sufficiently small. In particular, we see that

Ψ(ÿ) = [
∑

□∈ý(2,ý)2
Ξ□] ∈ ÿÿ(ý;ℤ).

By concatenating the maps ý1 and ý2 associated to adjacent boxes □1,□2 along the shared
edge, we obtain a map Φ = ý1 ∗ ý2 which satisfies

ÿ∗[ý(Φ)] = 2ÿΞ□1
+ 2ÿΞ□2

.

In particular, concatenating all maps along each row of the grid, we obtain a column of maps,
which we may again concatenate to obtain finally a map

ý ∈ ÿ1,ý(ý × ý2, ÿ1) ∩ ÿ1,ý(ý × ÿý2, ÿ1)
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for which

ÿ∗[ý(ý)] = 2ÿ
∑

□Ξ□.

On the other hand, it is clear from the construction that the restriction of ý to ý × ÿý2 has the
form

ý(ý, ý) = ℎ(ý)

for a fixed homeomorphism ℎ ∶ ÿý2 → ÿ1. In particular, it follows that

deg
(
ý|{ý}×ÿý2

)
= 1

for all ý ∈ ý, so that

2ÿ
∑

□Ξ□ = ÿ∗[ý(ý)] = 2ÿ[ý],

by Lemma 5.13.
Thus, Ψ(ÿ) = [ý], as desired, and again setting ÿ(ÿ) ∶= max{ÿ, ÿÿ1∕(ÿ+1)}, we see that ÿ ∈

ÿ(ÿ)([ý]), and consequently

ÿÿ(ÿ)([ý]) ≤ max
ÿ∈ý(2,ý)0

ý(ÿÿ) ≤ 1

2ÿ
(Λ + 2ÿ) =

1

2ÿ
lim inf
ÿ→0

ÿ(2) + 1

ÿ
ÿ.

Taking the limit as ÿ → 0 and using (5.6), we then get the desired estimate (5.30), completing the
proof of Theorem 5.5.

6 HUISKEN-TYPEMONOTONICITY ALONG THE GRADIENT
FLOW

In Lemma 5.6 of the previous section, we made use of the fact that a continuous family of pairs
ÿ ↦ (ÿÿ , ∇ÿ) may be deformed to a family (ÿ

′
ÿ , ∇

′
ÿ) with ýÿ(ÿ

′
ÿ , ∇

′
ÿ) ≤ ýÿ(ÿÿ , ∇ÿ) satisfying uni-

form bounds on the (ÿ − 2)-energy densities ÿ2−ÿ ∫
ýÿ(ý)

ÿÿ(ÿ
′
ÿ , ∇

′
ÿ) in terms of the initial energies

ýÿ(ÿÿ , ∇ÿ). We achieve this by showing that the natural ÿ
2 gradient flow for these energies sat-

isfies a variant of Huisken’s monotonicity formula [32] for the codimension-two mean curvature
flow. In addition to its applications above, the result may be of independent interest, in that it pro-
vides strong evidence that these gradient flows provide a regularization of the codimension-two
Brakke flow—a relationship which we plan to explore further in future work. We also show that
this ýÿ-gradient flow satisfies long-time existence and continuous dependence on initial data (the
fact that we are working with the abelian gauge group ý(1) is of course crucial here).

6.1 Definition, Bochner identities, and bounds for the gradient flow

Let ÿ → ý be the trivial line bundle over a closed, oriented Riemannian manifold (ýÿ, ý). We
will assume ÿ ≥ 3 throughout this section.
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CONVERGENCE OF THE SELF-DUAL ý(1)-YANG–MILLS–HIGGS ENERGIES TO THE (ÿ − 2)-AREA FUNCTIONAL 717

We will say that the smooth couples (ÿý, ∇ý = ý − ÿÿý)ý∈[0,∞) solve the gradient flow equa-
tions for ýÿ if they satisfy the coupled nonlinear heat equations

⎧
⎪«⎪¬

ÿýÿý = −∇∗
ý∇ýÿý +

1

2ÿ2
(1 − |ÿý|2)ÿý,

ÿýÿý = −ý∗ýÿý + ÿ−2ïÿÿý, ∇ýÿýð.
(6.1)

Note that they are formally the gradient flow of
1

2
ýÿ with respect to the ÿ

2-scalar product

ï(ÿ, ÿ), (ÿ, ÿ)ð = ∫
ý

(ïÿ, ÿð + ÿ2ïÿ, ÿð),

where ÿ and ÿ are sections, and ÿ and ÿ are one-forms. We defer the proof of long-time existence,
uniqueness and continuous dependence on initial data to the end of the section. In what follows,
we will also assume that the initial section ÿ0 ∈ Γ(ÿ) satisfies |ÿ0| ≤ 1 pointwise.
Assuming the initial data (ÿ0, ∇0) satisfies the energy bound

ýÿ(ÿ0, ∇0) ≤ Λ, (6.2)

it is easy to see that we have

ýÿ(ÿý, ∇ý) ≤ Λ

for all ý > 0, as the energy is decreasing along the flow. Similar to results for the stationary case
in [49] (and analogous work of Ilmanen for the parabolic Allen–Cahn equation in codimension
one [34]), a key ingredient in establishing the desired monotonicity result will be bounding the
discrepancy function

ÿý ∶= ÿ|ýÿý| − 1 − |ÿý|2
2ÿ

(6.3)

along the flow.
As in the stationary case [49, Section 3], it is straightforward to check that solutions of (6.1)

satisfy the following identities: letting

ÿý ∶= ýÿý

and

ÿ(ÿý, ∇ý)(ÿÿ , ÿý) ∶= 2ïÿ∇ÿÿÿ,∇ÿýÿð,

we have

ÿ2(ÿý + Δÿ)ÿý = ÿ(ÿý, ∇ý) − |ÿý|2ÿý, (6.4)

from which one obtains the parabolic Bochner identity

−ÿ2(ÿý + ý∗ý)
1

2
|ÿý|2 = |ÿý|2|ÿý|2 + ÿ2|ÿÿý|2 − ïÿ(ÿý, ∇ý), ÿýð + ÿ22(ÿý, ÿý), (6.5)
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718 PARISE et al.

where2 denotes the Weitzenböck curvature operator for two-forms. Also,

−(ÿý + ý∗ý)
1

2
|ÿý|2 = |∇ýÿý|2 − 1

2ÿ2
(1 − |ÿý|2)|ÿý|2. (6.6)

Remark 6.1. It is an easy consequence of (6.6) and the parabolic maximum principle that |ÿý| ≤ 1

for all ý > 0, for initial sections ÿ0 satisfying |ÿ0| ≤ 1.

By a combination of (6.5) and (6.6), similarly to [49], we find that the discrepancy function in
(6.3) satisfies the weak differential inequality

−(ÿý + ý∗ý + ÿ−2|ÿý|2)ÿý ≥ −ÿ0(ý)ÿ|ÿý|. (6.7)

Equivalently, writing

ÿ̄ý ∶= ÿ−ÿ0ýÿý,

we have

−(ÿý + ý∗ý + ÿ−2|ÿý|2)ÿ̄ý ≥ −ÿ0ÿ
−ÿ0ý

1 − |ÿý|2
2ÿ

≥ −
ÿ0

2ÿ
(1 − |ÿý|2). (6.8)

Now, let ÿ(ý, ý, ÿ) be the heat kernel ofý, so that

(ÿý + ý∗ý)ÿ(ý, ⋅, ÿ) = 0 and lim
ý→0

ÿ(ý, ⋅, ÿ) = ÿÿ .

Define then

ÿ(ý, ý) ∶= ∫
ý

ÿ(ý, ý, ÿ)|ÿ0|(ÿ) ýÿ

and

ÿ(ý, ý) ∶= ∫
ý

0
∫
ý

ÿ(ý − ý, ý, ÿ)
ÿ0

2ÿ
(1 − |ÿý|2)(ÿ) ýÿ ýý.

Thus, ÿ is the nonnegative solution of the heat equation −(ÿý + ý∗ý)ÿ = 0, with initial condition
ÿ(0, ý) = |ÿ0(ý)|. By Duhamel’s principle, ÿ is the nonnegative solution of the inhomogeneous
heat equation

−(ÿý + ý∗ý)ÿ = −
ÿ0

2ÿ
(1 − |ÿý|2),

with boundary data ÿ(0, ý) = 0. In particular, it follows from (6.8) that

−(ÿý + ý∗ý + ÿ−2|ÿý|2)(ÿ̄ý − ÿý − ÿý) ≥ |ÿý|2
ÿ2

(ÿý + ÿý) ≥ 0, (6.9)

while ÿ0 − ÿ0 − ÿ0 = ÿ0 − |ÿ0| ≤ 0. Hence, the parabolic maximum principle (for continuous
weak solutions) implies the pointwise bound

ÿ̄ý ≤ ÿý + ÿý. (6.10)
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We now use the following well-known asymptotics for the heat kernel on a compact manifold
(see, e.g., [39]).

Proposition 6.2. Let Ω ∶= {(ý, ÿ) ∈ ý ×ý ∶ ý(ý, ÿ) <
1

2
inj(ý)}. There exists a function ÿ0 ∶

Ω → (0,∞) with ÿ0(ý, ý) = 1 and such that

(4ÿý)ÿ∕2ÿý(ý,ÿ)
2∕(4ý)ÿ(ý, ý, ÿ) → ÿ0(ý, ÿ)

uniformly onΩ, as ý → 0+ (while ÿ(ý, ý, ÿ) → 0 on the complement).

In particular, since |ÿ(ý, ý, ÿ)| ≤ ÿ(ÿ,ý) for any ý ≥ ÿ > 0, one has

∫
ý

ÿ(ý, ý, ÿ)ý ýÿ ≤ ÿ(ý)max{ý(1−ý)ÿ∕2, 1}.

Since |ÿý| ≤ 1 by Remark 6.1, we have automatically

‖‖‖
1

ÿ
(1 − |ÿý|2)‖‖‖ÿ∞(ý)

≤ 1

ÿ
and

‖‖‖
1

ÿ
(1 − |ÿý|2)‖‖‖ÿ2(ý)

≤ 2
√
Λ

for every ý, and interpolating we see that

‖‖‖
1

ÿ
(1 − |ÿý|2)‖‖‖ÿÿ(ý)

≤ ÿ(ý,Λ)ÿ(2−ÿ)∕ÿ

for 2 ≤ ÿ ≤ ∞. It follows that, for ý ∈ (1,
ÿ

ÿ−2
) with Hölder conjugate ÿ,

ÿ(ý, ý) ≤ ∫
ý

0

‖ÿ(ý − ý, ý, ÿ)‖ÿý(ý)ÿÿ
(2−ÿ)∕ÿ ýý

≤ ÿÿ(2−ÿ)∕ÿ ∫
ý

0

(ý − ý)
ÿ(1−ý)

2ý ýý

≤ ÿ(ý,ý,Λ)ÿ(2−ÿ)∕ÿ
(

ÿ

2ý
−

ÿ − 2

2

)−1

ý
ÿ

2ý
−

ÿ−2

2 ,

provided that ÿ ≥ 2. In particular, taking ý ∶=
ÿ−1

ÿ−2
and ÿ ∶= ÿ − 1, we arrive at an estimate of the

form

ÿ(ý, ý) ≤ ÿ1(ý,Λ)ÿ
3−ÿ

ÿ−1 ý
ÿ−2

2(ÿ−1) .

Now, let

ÿý ∶= ÿ̄ý − ÿý ≤ ÿý ≤ ÿ1ÿ
3−ÿ

ÿ−1 ý
ÿ−2

2(ÿ−1) ,

and setting

ÿý ∶= ÿý − ÿ1ÿ
3−ÿ

ÿ−1 ý
ÿ−2

2(ÿ−1) (1 − |ÿý|2),
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720 PARISE et al.

note that

ÿý ≤ ÿ1ÿ
3−ÿ

ÿ−1 ý
ÿ−2

2(ÿ−1) |ÿý|2

pointwise. On the other hand, recalling (6.8), note that ÿý satisfies

− (ÿý + ý∗ý)ÿý

≥ |ÿý|2
ÿ2

ÿ̄ý −
ÿ0

2ÿ
(1 − |ÿý|2) + ÿ1ÿ

3−ÿ

ÿ−1 ý
ÿ−2

2(ÿ−1) (2|∇ýÿý|2 − ÿ−2(1 − |ÿý|2)|ÿý|2)

≥ |ÿý|2
ÿ2

ÿý −
ÿ0

2ÿ
(1 − |ÿý|2),

and since |ÿý|2 ≥ ýÿ
ÿ−3

ÿ−1 ý
2−ÿ

2(ÿ−1)ÿý, it follows that on {ÿ > 0} we have

−(ÿý + ý∗ý)ÿý ≥ ÿ−2(ýÿ
ÿ−3

ÿ−1 ý
2−ÿ

2(ÿ−1)ÿ2
ý − ÿ0ÿ).

Note that ÿ0 = ÿ0 − |ÿ0| ≤ 0. For any ÿ > 0, if ÿ has a positive maximum on [0, ÿ] × ý at some
point (ý, ý) with ý > 0, then the last weak subequation implies that here

ýÿ
ÿ−3

ÿ−1 ý
2−ÿ

2(ÿ−1)ÿ2
ý − ÿ0ÿ ≤ 0,

or equivalently

ÿý ≤ ÿÿ
1

ÿ−1 ý
ÿ−2

4(ÿ−1) ≤ ÿÿ
1

ÿ−1 ÿ
ÿ−2

4(ÿ−1) .

The same inequality holds then on all of [0, ÿ] × ý. Since ÿ was arbitrary, we obtain

ÿý ≤ ÿÿ
1

ÿ−1 ý
ÿ−2

4(ÿ−1)

for all ý ≥ 0. Recalling the definitions of ÿ, ÿ, ÿ̄ and ÿ, the preceding estimate tells us that

ÿý ≤ ÿÿÿý
(
ÿý + ÿ

1

ÿ−1 + ÿ
2

ÿ−1
1 − |ÿ|2

ÿ

)
, (6.11)

whereÿ is the solution of the heat equationwith initial dataÿ0 = |ÿ0|, for a constantÿ = ÿ(ý,Λ).
Finally, noting that

ÿý ≤ ÿ‖ÿ0‖ÿ1(ý) ≤ ÿ(ý,Λ) for ý ≥ 1,

it follows from the above that

ÿý ≤ ÿÿÿý(1 + ÿ
2

ÿ−1

√
ÿÿ(ÿý, ∇ý)) for ý ≥ 1. (6.12)

6.2 Huisken-type monotonicity and (ÿ − ÿ)-energy-density bounds

As above, let (ÿý, ∇ý) be a solution of the gradient flow with ýÿ(ÿ0, ∇0) ≤ Λ and |ÿ0| ≤ 1. Mimick-
ing the computations leading to Huisken’s monotonicity for the mean curvature flow [32], let us
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introduce ℎ(ý, ý), a positive solution of the backward heat equation

ÿýℎ = ý∗ýℎ

on [0, ÿ) × ý, with ∫
ý
ℎ = 1. Write ÿý ∶= ÿÿ(ÿý, ∇ý) to lighten the notation and set

Φℎ(ý) ∶= ∫
ý

ℎÿý.

Integration by parts combined with the gradient flow equations allows us to deduce that

Φ′
ℎ
(ý) = ∫

ý

(ÿýℎÿý + ℎÿýÿý)

= ∫
ý

[(ý∗ýℎ)ÿý + ℎ(2ï∇ÿ̇ − ÿÿ̇ÿ, ∇ÿð + 2ÿ2ïýÿ̇, ýÿð − ÿ−2(1 − |ÿ|2)ïÿ, ÿ̇ð)]

= ∫
ý

[ïýℎ, ýÿýð − 2ℎ(|ÿ̇|2 + ÿ2|ÿ̇|2) − 2(ï∇ýℎÿ, ÿ̇ð + ÿ2ýÿ(ýℎ, ÿ̇))]

(where we dropped the subscript ý from ÿý, ÿý, ÿ̇ý, and ÿ̇ý). Next, recall from [49, Section 4] the
stress-energy tensor

ÿÿ(ÿ, ∇) ∶= ÿÿ(ÿ, ∇)ý − 2∇ÿ∗∇ÿ − 2ÿ2ýÿ∗ýÿ,

and note (cf., [49, Section 4]) that we have the identities

div(ÿÿ) = 2ï∇ÿ,∇∗∇ÿð + ý
ÿ(ÿ)

ÿ2
+ 2ÿ(ïÿÿ, ∇ÿð, ⋅) − 2ÿ2ÿ(ý∗ÿ, ⋅)

= −2ï∇ÿ, ÿ̇ð − 2ÿ2ýÿ(⋅, ÿ̇),

where the second equality follows from (6.1), and throughout we identify one-forms with their
metric dual vector fields. Since ýÿý = div(ÿýý), we can now rewrite the term ïýℎ, ýÿýð in our
computation of Φ′

ℎ
(ý) as

ïýℎ, ýÿýð = ïýℎ, div(ÿÿ) + 2 div(∇ÿ∗∇ÿ + ÿ2ýÿ∗ýÿ)ð,
and apply the formula for div(ÿÿ) to see that

Φ′
ℎ
(ý) = 2∫

ý

ïýℎ, div(∇ÿ∗∇ÿ + ÿ2ýÿ∗ýÿ)ð

− 2∫
ý

ℎ(|ÿ̇|2 + ÿ2|ÿ̇|2) − 4∫
ý

(ï∇ýℎÿ, ÿ̇ð + ÿ2ýÿ(ýℎ, ÿ̇))

= −2∫ ïÿ2ℎ,∇ÿ∗∇ÿ + ÿ2ýÿ∗ýÿð

− 2∫
ý

(ℎ|ÿ̇ + ℎ−1∇ýℎÿ|2 + ÿ2ℎ|ÿ̇ + ℎ−1ÿýℎýÿ|2)

+ 2∫
ý

ℎ−1(|∇ýℎÿ|2 + ÿ2|ÿýℎýÿ|2)
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722 PARISE et al.

≤ −2∫ ïÿ2ℎ,∇ÿ∗∇ÿ + ÿ2ýÿ∗ýÿð + 2∫
ý

ℎ−1(|∇ýℎÿ|2 + ÿ2|ÿýℎýÿ|2).

Now, setting

ÿý ∶= ∇ÿ∗∇ÿ + ÿ2ýÿ∗ýÿ,

so that the stress-energy tensor ÿÿ(ÿ, ∇) becomes simply ÿÿ(ÿ, ∇)ý − 2ÿý, we can rewrite the
preceding inequality as

Φ′
ℎ
(ý) ≤ −2∫

ý

ïÿý, ÿ2ℎ − ℎ−1ýℎ ⊗ ýℎð. (6.13)

On the other hand, by Hamilton’smatrix Harnack estimate for the heat equation, see [26, p. 132],
there exist constants ÿ(ý) and ý(ý) such that, for ý ∈ [ÿ − 1, ÿ),

ÿ2ℎ −
ýℎ ⊗ ýℎ

ℎ
+

1

2(ÿ − ý)
ℎý ≥ −ÿ[(1 + ℎ log(ý∕(ÿ − ý)ÿ∕2)]ý.

Applying this in (6.13), we see that for ý ∈ [ÿ − 1, ÿ) the following inequality holds:

Φ′
ℎ
(ý) ≤ ∫

ý

(
ℎ

ÿ − ý
+ ÿ + ÿℎ log(ý∕(ÿ − ý)ÿ∕2)

)
ïÿý, ýð.

Now, recalling (6.12), observe that

ïÿý, ýð = |∇ÿ|2 + 2ÿ2|ýÿ|2

= ÿý + ÿ2|ýÿ|2 − (1 − |ÿ|2)2
4ÿ2

= ÿý + ÿý

(
ÿ|ýÿ| + 1

2ÿ
(1 − |ÿ|2)

)

≤ (1 + ÿÿÿýÿ
2

ÿ−1 )ÿý + ÿÿÿý
√
ÿý

for ý ≥ 1. In particular, setting ÿÿ ∶=
2

ÿ−1
, for ÿ ∈ [2, 3] and ý ∈ [ÿ − 1, ÿ) it then follows that

Φ′
ℎ
(ý) ≤ 1 + ÿÿÿÿ

ÿ − ý
Φℎ(ý) +

ÿ

ÿ − ý ∫ý ℎ
√
ÿý + ÿ ∫

ý

ÿý + ÿ log(ý∕(ÿ − ý)ÿ∕2)Φℎ(ý)

≤ 1 + ÿ2ÿ
ÿÿ

ÿ − ý
Φℎ(ý) +

ÿ2

ÿ − ý
Φℎ(ý)

1∕2 + ÿ2 + ÿ2 log(ý∕(ÿ − ý)ÿ∕2)Φℎ(ý)

for some ÿ2(ý,Λ), where we also used the trivial inequality ïÿý, ýð ≤ 2ÿý. Thus, setting

Ψℎ(ý) ∶= (ÿ − ý)1+ÿ2ÿ
ÿÿ ÿÿ(ý)Φℎ(ý),

where |ÿ(ý)| ≤ ÿ(ý,Λ) is the bounded function on [ÿ − 1, ÿ) given by

ÿ(ý) ∶= −∫
ý

1

ÿ2 log(ý∕(ÿ − ý)ÿ∕2) ýý,
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we see that

Ψ′
ℎ
(ý) ≤ ÿ(ÿ − ý)−1∕2Ψℎ(ý)

1∕2 + ÿ

for ý ∈ [ÿ − 1, ÿ) ⊆ [1, 3). From this differential inequality, we can conclude that

Ψℎ(ý) ≤ ÿ(ý,Λ)(Ψℎ(ÿ − 1) + 1), (6.14)

for any ý ∈ [ÿ − 1, ÿ) ⊆ [1, 3).
Specializing, fix ÿ ∈ [2, 3] and ý0 ∈ ý, and let

ℎ(ý, ý) = ℎÿ,ý0(ý, ý) ∶= ÿ(ÿ − ý, ý, ý0),

where ÿ is the heat kernel on ý. Then, for ý ∈ [ÿ − 1, ÿ), the inequality in (6.14) leads to an
estimate of the form

(ÿ − ý)1+ÿÿ
ÿÿ ∫

ý

ÿ(ÿ − ý, ý, ý0)ÿÿ(ÿý, ∇ý) ýý

≤ ÿ ∫
ý

ÿ(1, ý, ý0)ÿÿ(ÿÿ−1, ∇ÿ−1) + ÿ

≤ ÿýÿ(ÿÿ−1, ∇ÿ−1) + ÿ

≤ ÿ(ý,Λ).

In particular, taking ý ∶= 2 and ÿ ∶= 2 + ÿ2 for ÿ ∈ (0, 1], we see that

ÿ2+2ÿÿ
ÿÿ ∫

ý

ÿ(ÿ2, ý, ý0)ÿÿ(ÿ2, ∇2) ýý ≤ ÿ(ý,Λ). (6.15)

Since

inf
ÿ∈(0,1]

ÿ2ÿÿ
ÿÿ = ý(ý,Λ) > 0,

it follows that

max
ÿ≤ÿ≤1

(
ÿ2 ∫

ý

ÿ(ÿ2, ý, ý0)ÿÿ(ÿ2, ∇2) ýý

)
≤ ÿ(ý,Λ). (6.16)

Finally, using again Lemma 6.2, it follows that

ÿ2−ÿ ∫
ýÿ(ý0)

ÿÿ(ÿ2, ∇2) ≤ ÿ(ý,Λ) for ÿ ≤ ÿ ≤ 1.

Thus, we have arrived at the following bound.

Proposition 6.3. If (ÿý, ∇ý) is a solution of the gradient flow (6.1) for ýÿ with initial energy bound

ýÿ(ÿ0, ∇0) ≤ Λ, then at time 2 the pair (ÿ2, ∇2) satisfies

∫
ýÿ(ý0)

ÿÿ(ÿ2, ∇2) ≤ ÿ(ý,Λ)ÿÿ−2, (6.17)

for all ÿ ∈ [ÿ, 1] and ý0 ∈ ý.
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724 PARISE et al.

Since (ÿ2, ∇2) depends continuously on the initial couple (ÿ0, ∇0), this provides in particular
the regularization that we needed in the previous section.

Remark 6.4. Note that, in analogy with the monotonicity formula for critical couples, if we just
used the trivial bound ïÿý, ýð ≤ 2ÿý we would have obtained

Φ′
ℎ
(ý) ≤ 2

ÿ − ý
Φℎ(ý) + ÿ + ÿ log(ý∕(ÿ − ý)ÿ∕2)Φℎ(ý),

leading to

(ÿ − ý)2 ∫
ý

ℎÿ,ý0(ý, ⋅)ÿý ≤ ÿ(ý,Λ)

and hence a non-sharp bound ÿÿÿ−4 for the energy of (ÿ2, ∇2) on a ball ýÿ(ý0). This would have
sufficed for our present purposes (of ruling out concentration of mass in the min-max families)
only when ÿ > 4.

6.3 Long-time existence of the gradient flow

In this last part we show long-term existence, uniqueness and continuous dependence on initial
conditions for the gradient flow ofýÿ, on the trivial line bundle. To do so, it is convenient to pass to
the Coulomb gauge. Namely, given a smooth couple (ÿ, ÿ), we can always find a change of gauge

(ÿ, ÿ) = (ÿÿÿÿ, ÿ + ýÿ) with ý∗ÿ = 0. (6.18)

Indeed, it is enough to take a solution ÿ ∶ ý → ℝ of ý∗ÿ + ý∗ýÿ = 0, that is, Δÿÿ = −ý∗ÿ. The
solution is unique once we impose ∫

ý
ÿ = 0.

In the sequel, we denote ý ∶= −Δ−1
ÿ ý∗ ∶ Ω1(ý) → Ω0(ý) the corresponding operator, with

values into mean-zero functions. By standard elliptic regularity, this operator maps ÿý(ý)

continuously into ÿý+1(ý), for any ý ∈ ℕ.
Given a smooth solution (ÿý, ÿý) to the gradient flow equations, let ÿý = ýÿý. Omitting the time

dependence and passing to the Coulomb gauge as in (6.18) we get ÿ̇ = ÿ−2ýïÿÿ, ∇ÿð. Thus, setting
∇̃ ∶= ý − ÿÿ = ∇ − ÿýÿ, we obtain

ÿ̇ = ÿ̇ + ýÿ̇

= −ý∗ýÿ + ÿ−2(ïÿÿ, ∇ÿð + ýýïÿÿ, ∇ÿð)
= −Δÿÿ + ÿ−2(ïÿÿ, ∇̃ÿð + ýýïÿÿ, ∇̃ÿð),

since by gauge invariance ý∗ýÿ = ý∗ýÿ = Δÿÿ and ïÿÿ, ∇ÿð = ïÿÿ, ∇̃ÿð. Similarly,
ÿ̇ = ÿÿÿÿ̇ + ÿÿÿÿÿ̇ÿ

= −∇̃∗∇̃ÿ +
1

2ÿ2
(1 − |ÿ|2)ÿ + ÿ−2(ýïÿÿ, ∇̃ÿð)ÿÿ.

Let ÿ ∶ Ω1(ý) → Ω1(ý) denote the Hodge projection on the co-closed part of a one-form. Since
−ýýÿ equals the exact part of ÿ, we have ÿ + ýýÿ = ÿÿ for any ÿ ∈ Ω1(ý). Thus, expanding ∇̃∗∇̃
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in terms of ÿ, the equations (6.1) give the new system

⎧
⎪«⎪¬

ÿ̇ + ý∗ýÿ = −2ÿïÿ, ýÿð − |ÿ|2ÿ + 1

2ÿ2
(1 − |ÿ|2)ÿ + ÿ−2(ýïÿÿ, ýÿ − ÿÿÿð)ÿÿ,

ÿ̇ + Δÿÿ = ÿ−2ÿïÿÿ, ýÿ − ÿÿÿð.
(6.19)

Conversely, given a couple (ÿ0, ÿ0) and setting ÿ0 ∶= ýÿ0, from a smooth solution (ÿý, ÿý)

of (6.19) with initial condition (ÿÿÿ0ÿ0, ÿ0 + ýÿ0) one recovers a smooth solution (ÿý, ÿý) to the
original system (6.1), by letting ÿ = ÿý solve ÿ̇ý = ÿ−2ýïÿÿý, (ý − ÿÿý)ÿýð, and setting (ÿ, ÿ) ∶=

(ÿ−ÿÿÿ, ÿ − ýÿ).
Thus, we reduce ourselves to establishing the long-term existence, uniqueness and continuous

dependence for (6.19). We will use the following classical fact from the theory of linear parabolic
equations.

Lemma 6.5. Given ÿý ∈ Ωý(ý) smooth on [0, ÿ] × ý, with 0 < ÿ ≤ 1, the (unique) solution ýý to

ÿýýý + Δÿýý = ÿý with initial condition ý0 = 0 satisfies

‖ý‖ÿ0([0,ÿ],ÿý+1(ý)) ≤ ÿ(ý, ý,ý)‖ÿ‖ÿ2([0,ÿ],ÿý(ý)),

where the norms are shorthand formaxý∈[0,ÿ] ‖ýý‖ÿý+1(ý) and (∫ ÿ

0
‖ÿý‖2ÿý(ý)

ýý)1∕2.

As a consequence, we get a well-defined operator

ÿý,ý ∶ ÿ2([0, ÿ],ÿý(ý)) → ÿ0([0, ÿ],ÿý+1(ý))

mapping ÿ to ý.
Using this lemma, short-time existence and uniqueness easily follow using the Banach fixed-

point theorem. Namely, fix an integer ý >
ÿ

2
and, given a smooth initial condition (ÿ0, ÿ0), let ý

0

denote the constant couple ý0
ý = (ÿ0, ÿ0). For ý > 0, the subset ÿ of

ýÿ ∶= ÿ0([0, ÿ],ÿý+1(ý) × ÿý(ý)),

given by the couples ýý with initial value ý0 = (ÿ0, ÿ0) and ‖ý − ý0‖ýÿ
≤ ý, forms a complete

metric space with the distance induced byýÿ . To anyý = (ÿ, ÿ) ∈ ÿwe can associate the solution
ý(ý) = (ÿ′, ÿ′) of

⎧
⎪«⎪¬

ÿ̇′ + ý∗ýÿ′ = −2ÿïÿ, ýÿð − |ÿ|2ÿ + 1

2ÿ2
(1 − |ÿ|2)ÿ + ÿ−2(ýïÿÿ, ýÿ − ÿÿÿð)ÿÿ,

ÿ̇′ + Δÿÿ
′ = ÿ−2ÿïÿÿ, ýÿ − ÿÿÿð.

Denoting ÿ(ýý) and ÿ(ýý) the right-hand sides of the two equations, note that they belong to
ÿ0([0, ÿ],ÿý(ý)), sinceÿý(ý) is an algebra and ÿ and ýmapÿý(ý) into itself. Hence, ý(ý) ∈
ýÿ is well-defined. For the same reason, letting ý

′ ∶= ý + ‖ÿ0‖ÿý+1(ý) + ‖ÿ0‖ÿý(ý), note that for
a fixed ý ∈ [0, ÿ] we have

‖ÿ(ý1
ý ) − ÿ(ý2

ý )‖ÿý(ý) ≤ ÿ(ý, ý′)‖ý1
ý − ý2

ý ‖ÿý+1(ý)×ÿý(ý)
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726 PARISE et al.

and similarly

‖ÿ(ý1
ý ) − ÿ(ý2

ý )‖ÿý(ý) ≤ ÿ(ý, ý′)‖ý1
ý − ý2

ý ‖ÿý+1(ý)×ÿý(ý),

whenever ý1, ý2 ∈ ÿ. As a consequence, Lemma 6.5 gives

‖ý(ý1) − ý(ý2)‖ýÿ
≤ ÿ(ý, ý′)

√
ÿ‖ý1 − ý2‖ýÿ

.

Hence, for ÿ small enough, we have ‖ý(ý1) − ý(ý2)‖ýÿ
≤ 1

2
‖ý1 − ý2‖ýÿ

and, by continuity,

‖ý(ý0) − ý0‖ýÿ
≤ ý∕2; in particular,

‖ý(ý) − ý0‖ýÿ
≤ ‖ý(ý) − ý(ý0)‖ýÿ

+ ‖ý(ý0) − ý0‖ýÿ
≤ ý

forý ∈ ÿ, and thus ý(ý) ∈ ÿ as well. The Banach fixed-point theorem applies and gives a unique
ý ∈ ÿ with ý(ý) = ý, as desired. Since ý was arbitrary, this also establishes uniqueness in this
regularity class.
Let [0, ÿ̄) be themaximal time of existence in the same class. From standardÿ2 regularity theory

for linear parabolic equations, it then follows that the solution (ÿ, ÿ) is smooth on [0, ÿ̄) × ý.
We shall nowprove long-time existence of the flow. Assume by contradiction that ÿ̄ < ∞. Aswe

already saw in Section 6.1, the corresponding solution (ÿ, ÿ) to the original system (6.1) satisfies

sup
[0,ÿ̄)×ý

|ýÿ| < ∞.

In a similar fashion, we can derive a bound for |∇ÿ|. Indeed, as in [49, Section 3], we have the
Bochner identity

− (ÿý + ýý∗)
1

2
|∇ÿ|2 = |∇2ÿ|2 + 3|ÿ|2 − 1

2ÿ2
|∇ÿ|2 − 2ïÿ, ÿ(ÿ,∇)ð +1(∇ÿ,∇ÿ)

and, in particular, using the bound |ÿ(ÿ,∇)| ≤ |∇ÿ|2, we easily deduce the weak subequation

−(ÿý + ý∗ý)|∇ÿ| ≥ 3|ÿ|2 − 1

2ÿ2
|∇ÿ| − 2|ÿ||∇ÿ| − ÿ(ý)|∇ÿ|.

Recalling that

−(ÿý + ý∗ý)
1 − |ÿ|2

ÿ
=

|ÿ|2
ÿ2

1 − |ÿ|2
ÿ

−
2

ÿ
|∇ÿ|2,

we obtain for the difference ý ∶= |∇ÿ| − 1−|ÿ|2
ÿ

that

− (ÿý + ý∗ý)ý ≥ |ÿ|2
ÿ2

ý + |∇ÿ|
(
2

ÿ
|∇ÿ| − 1 − |ÿ|2

2ÿ2
− 2|ÿ| − ÿ(ý)

)
.

For any 0 < ÿ < ÿ̄, if ý attains a positive maximum on [0, ÿ] × ý at some point (ý, ý) with ý > 0,
it then follows that here

2

ÿ
|∇ÿ| ≤ 1 − |ÿ|2

2ÿ2
+ 2|ÿ| + ÿ(ý).
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Hence,

|∇ÿ| ≤ 1

ÿ
+ sup

[0,ÿ̄)×ý
ý ≤ 2

ÿ
+ ÿ sup

[0,ÿ̄)×ý
|ÿ| + ÿ

2
ÿ(ý) + ‖∇0ÿ0‖ÿ∞(ý)

on all of [0, ÿ̄) × ý. By gauge invariance, we then get

sup
[0,ÿ̄)×ý

|ýÿ| < ∞ and sup
[0,ÿ̄)×ý

|ýÿ − ÿÿÿ| < ∞.

In particular, the co-exact part of ÿý is also bounded. From (6.1) it follows that

∫
ý

(|ÿ̇ý|2 + ÿ2|ÿ̇ý|2) = −
1

2

ý

ýý
ýÿ(ÿý, ÿý),

from which we deduce the bound ∫ ÿ̄

0
∫
ý
|ÿ̇|2 < ∞ just by integrating the above expression. In

particular, ÿ̇ ∈ ÿ1([0, ÿ̄], ÿ2(ý)), giving ÿ ∈ ÿ0([0, ÿ̄], ÿ2(ý)). Thus, the harmonic part ÿℎý in the
Hodge decomposition of ÿý stays bounded. Since ÿ

ℎ
ý = ÿℎý and ÿ has no exact part, this implies

that

sup
[0,ÿ̄)×ý

|ÿ| < ∞.

Also, note that |ÿ| = |ÿ| ≤ 1 as a simple application of themaximumprinciple to the equation sat-
isfied by |ÿ|2, provided |ÿ0| ≤ 1, implying

sup
[0,ÿ̄)×ý

|ýÿ| < ∞.

From ÿý regularity theory (see, e.g., [58]), it follows that ÿ, ÿ ∈ ÿý([0, ÿ̄],ÿý,ý(ý)) for all ý ∈ ℕ,
1 < ý < ∞ and, hence, ÿ and ÿ extend smoothly to [0, ÿ̄] × ý. Since we can extend the solution
past ÿ̄, we arrive at a contradiction. This shows that ÿ̄ = ∞. Finally, continuous dependence (in
the smooth topology) on the initial condition for the system (6.1) follows from the same property
for (6.19), whose proof can be found for instance in [14, 44].

ACKNOWLEDGMENTS

The authors thank Y. Liokumovich for answering questions about the interpolation results of
[43]. D.S. acknowledges the support of the National Science Foundation under grant DMS-
2002055. D.P. acknowledges the support of the UK Engineering and Physical Sciences Research
Council (EPSRC) grant EP/L016516/1 and would like to thank N. Wickramasekera for constant
encouragement and interest in this work.

REFERENCES

1. G. Alberti, Variational models for phase transitions, an approach via Γ-convergence, Calculus of variations

and partial differential equations (Pisa, 1996), Springer, Berlin, 2000, pp. 95–114.

2. G. Alberti, S. Baldo, and G. Orlandi, Functions with prescribed singularities, J. Eur. Math. Soc. (JEMS) 5 (2003),

no. 3, 275–311.

3. G. Alberti, S. Baldo, and G. Orlandi, Variational convergence for functionals of Ginzburg–Landau type, Indiana

Univ. Math. J. 54 (2005), no. 5, 1411–1472.

4. R. Alicandro and M. Ponsiglione, Ginzburg–Landau functionals and renormalized energy: a revised Γ-

convergence approach, J. Funct. Anal. 266 (2014), no. 8, 4890–4907.

 1
0
9
7
0
3
1
2
, 2

0
2
4
, 1

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/cp

a.2
2
1
5
0

 b
y

 C
o

rn
ell U

n
iv

ersity
 L

ib
rary

, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [0
1

/1
0

/2
0

2
4

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



728 PARISE et al.

5. F. J. Almgren, Jr., The homotopy groups of the integral cycle groups, Topology 1 (1962), 257–299.

6. F. J. Almgren, Jr., The theory of varifolds (mimeographed notes), 1965.

7. F. Bethuel, H. Brezis, and F. Hélein, Ginzburg–Landau vortices, Progress in nonlinear differential equations

and their applications, vol. 13, Birkhäuser Boston, Inc., Boston, MA, 1994.

8. F. Bethuel, H. Brezis, and G. Orlandi, Asymptotics for the Ginzburg–Landau equation in arbitrary dimensions,

J. Funct. Anal. 186 (2001), no. 2, 432–520.

9. F. Bethuel and T. Rivière, Vorticité dans les modèles de Ginzburg–Landau pour la supraconductivité (Exp. No.

xvi), Séminaire sur les Équations aux Dérivées Partielles, 1993–1994, École Polytech., Palaiseau, 1994.

10. F. Bethuel and T. Rivière, Vortices for a variational problem related to superconductivity, Ann. Inst. H. Poincaré

Anal. Non Linéaire 12 (1995), no. 3, 243–303.

11. A. Braides, Γ-convergence for beginners, Oxford lecture series in Mathematics and its applications, vol. 22,

Oxford University Press, Oxford, 2002.

12. G. Canevari and G. Orlandi, Topological singular set of vector-valued maps, I: applications to manifold-

constrained Sobolev and BV spaces, Calc. Var. Partial Differ. Equ. 58 (2019), no. 2, art. 72.

13. G. Canevari and G. Orlandi, Topological singular set of vector-valued maps, II: Γ-convergence for Ginzburg–

Landau type functionals, Arch. Rational Mech. Anal. 241 (2021), 1065–1135.

14. T. Cazenave and A. Haraux, An introduction to semilinear evolution equations, Oxford lecture series in

Mathematics and its applications, vol. 13, The Clarendon Press, Oxford University Press, New York, 1998,

pp. xiv+186.

15. D. R. Cheng, Asymptotics for the Ginzburg–Landau equation on manifolds with boundary under homogeneous

Neumann condition, J. Funct. Anal. 278 (2020), no. 4, 108364+93.

16. O. Chodosh and C. Mantoulidis, Minimal surfaces and the Allen–Cahn equation on 3-manifolds: index,

multiplicity, and curvature estimates, Ann. of Math. (2) 191 (2020), no. 1, 213–328.

17. G. Dal Maso, An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their

Applications, vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1993.

18. E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis.

Mat. Nat. 58 (1975), no. 6, 842–850.

19. F. Demengel,Une caractérisation des applications deÿ1,ý(ýý , ÿ1) qui peuvent être approchées par des fonctions

régulières, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 7, 553–557.

20. A. Dey,A comparison of the Almgren–Pitts and the Allen–Cahnmin-max theory, Geom. Funct. Anal. 32 (2022),

980–1040.

21. H. Federer, Geometric measure theory, Springer, Berlin Heidelberg, 2014.

22. P. Gaspar and M. A. M. Guaraco, The Allen–Cahn equation on closed manifolds, Calc. Var. Partial Differ. Equ.

57 (2018), no. 4, art. 101.

23. P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley & Sons, Inc., New York, 1994.

24. M.A.M.Guaraco,Min-max for phase transitions and the existence of embeddedminimal hypersurfaces, J. Differ.

Geom. 108 (2018), no. 1, 91–133.

25. M. E. Gurtin, Some results and conjectures in the gradient theory of phase transitions, Metastability and

incompletely posed problems (Minneapolis, Minn., 1985), IMA Vol. Math. Appl., vol. 3, Springer, New York,

1987, pp. 135–146.

26. R. S. Hamilton, Monotonicity formulas for parabolic flows on manifolds, Comm. Anal. Geom. 1 (1993), no. 1,

127–137.

27. Z.-C. Han and Y. Y. Li,Degenerate elliptic systems and applications to Ginzburg–Landau type equations, I, Calc.

Var. Partial Differ. Equ. 4 (1996), no. 2, 171–202.

28. R. Hardt, D. Kinderlehrer, and F. Lin, Stable defects of minimizers of constrained variational principles, Ann.

Inst. H. Poincaré Anal. Non Linéaire 5 (1988), no. 4, 297–322.

29. A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.

30. M.-C. Hong, Asymptotic behavior for minimizers of a Ginzburg–Landau-type functional in higher dimensions

associated with ÿ-harmonic maps, Adv. Differ. Equ. 1 (1996), no. 4, 611–634.

31. M.-C. Hong, J. Jost, and M. Struwe, Asymptotic limits of a Ginzburg–Landau type functional, Geometric

analysis and the calculus of variations, Int. Press, Cambridge, MA, 1996. 99–123.

32. G. Huisken,Asymptotic behavior for singularities of themean curvature flow, J. Differ. Geom. 31 (1990), 285–299.

 1
0
9
7
0
3
1
2
, 2

0
2
4
, 1

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/cp

a.2
2
1
5
0

 b
y

 C
o

rn
ell U

n
iv

ersity
 L

ib
rary

, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [0
1

/1
0

/2
0

2
4

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



CONVERGENCE OF THE SELF-DUAL ý(1)-YANG–MILLS–HIGGS ENERGIES TO THE (ÿ − 2)-AREA FUNCTIONAL 729

33. J. E. Hutchinson and Y. Tonegawa, Convergence of phase interfaces in the van derWaals–Cahn–Hilliard theory,

Calc. Var. Partial Differ. Equ. 10 (2000), no. 1, 49–84.

34. T. Ilmanen, Convergence of the Allen–Cahn equation to Brakke’s motion by mean curvature, J. Differ. Geom. 38

(1993), no. 2, 417–461.

35. A. Jaffe and C. H. Taubes, Vortices andmonopoles, Progress in Physics, vol. 2, Birkhäuser, Boston,Mass., 1980.

36. R. L. Jerrard, Lower bounds for generalized Ginzburg–Landau functionals, SIAM J. Math. Anal. 30 (1999), no.

4, 721–746.

37. R. L. Jerrard and H. M. Soner, Functions of bounded higher variation, Indiana Univ. Math. J. 51 (2002), no. 3,

645–677.

38. R. L. Jerrard and H. M. Soner, The Jacobian and the Ginzburg–Landau energy, Calc. Var. Partial Differ. Equ.

14 (2002), no. 2, 151–191.

39. Y. Kannai, Off diagonal short time asymptotics for fundamental solution of diffusion equation, Comm. Partial

Differ. Equ. 2 (1977), no. 8, 781–830.

40. A. A. Kosinski, Differential manifolds, Pure and applied Mathematics, vol. 138, Academic Press, Inc., Boston,

MA, 1993.

41. F. Lin and T. Rivière, Complex Ginzburg–Landau equations in high dimensions and codimension two area

minimizing currents, J. Eur. Math. Soc. (JEMS) 1 (1999), no. 3, 237–311.

42. F. Lin and T. Rivière, A quantization property for static Ginzburg–Landau vortices, Comm. Pure Appl. Math.

54 (2001), no. 2, 206–228.

43. Y. Liokumovich, F. C. Marques, and A. Neves,Weyl law for the volume spectrum, Ann. of Math. 187 (2018), no.

3, 933–961.

44. C. Mantegazza and L. Martinazzi, A note on quasilinear parabolic equations on manifolds, Ann. Sc. Norm.

Super. Pisa Cl. Sci. (5) 11 (2012), no. 4, 857–874.

45. F. C. Marques and A. Neves, Min-max theory and the Willmore conjecture, Ann. of Math. 179 (2014), no. 2,

683–782.

46. L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech.

Anal. 98 (1987), no. 2, 123–142.

47. L. Modica and S. Mortola, Un esempio di Γ−-convergenza, Boll. Un. Mat. Ital. B 14 (1977), no. 1, 285–299.

48. J. R. Munkres, Elementary differential topology (revised edition), Annals of Mathematics Studies, vol. 54,

Princeton University Press, Princeton, NJ, 1961.

49. A. Pigati and D. Stern, Minimal submanifolds from the Abelian Higgs model, Inventiones mathematicae 223

(2021), no. 3, 1027–1095.

50. J. T. Pitts, Existence and regularity of minimal surfaces on Riemannian manifolds, Mathematical notes, vol. 27,

Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1981.

51. T. Rivière, Line vortices in theU(1)-Higgs model, ESAIM Contrôle Optim. Calc. Var. 1 (1996), 77–167.

52. T. Rivière,Asymptotic analysis for theGinzburg–Landau equations, Boll. Un.Mat. Ital. B 2 (1999), no. 3, 537–575.

53. T. Rivière, Towards Jaffe and Taubes conjectures in the strongly repulsive limit, Manuscripta Math. 108 (2002),

no. 2, 217–273.

54. E. Sandier, Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal. 152 (1998), no. 2,

379–403.

55. E. Sandier,Ginzburg–Landauminimizers fromℝÿ+1 toℝÿ andminimal connections, Indiana Univ. Math. J. 50

(2001), no. 4, 1807–1844.

56. E. Sandier and S. Serfaty, A product-estimate for Ginzburg–Landau and corollaries, J. Funct. Anal. 211 (2004),

no. 1, 219–244.

57. E. Sandier and S. Serfaty, Vortices in themagnetic Ginzburg–Landaumodel, Progress in nonlinear differential

equations and their applications, vol. 70, Birkhäuser Boston, Inc., Boston, MA, 2007.

58. W. Schlag, Schauder and ÿý estimates for parabolic systems via Campanato spaces, Comm. Partial Differ. Equ.

21 (1996), no. 7–8, 1141–1175.

59. S. Serfaty and I. Tice, Lorentz space estimates for the Ginzburg–Landau energy, J. Funct. Anal. 254 (2008), no.

3, 773–825.

60. L. Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, vol.

3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983, pp. 272

 1
0
9
7
0
3
1
2
, 2

0
2
4
, 1

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/cp

a.2
2
1
5
0

 b
y

 C
o

rn
ell U

n
iv

ersity
 L

ib
rary

, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [0
1

/1
0

/2
0

2
4

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



730 PARISE et al.

61. D. Stern, Existence and limiting behavior of min-max solutions of the Ginzburg–Landau equations on compact

manifolds, J. Differ. Geom. 118 (2021), no. 2, 335–371.

62. P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch. Rational Mech.

Anal. 101 (1988), no. 3, 209–260.

63. M. Struwe, On the asymptotic behavior of minimizers of the Ginzburg–Landau model in 2 dimensions, Differ.

Integral Equ. 7 (1994), no. 5–6, 1613–1624.

64. C. H. Taubes, Arbitrary ý-vortex solutions to the first order Ginzburg–Landau equations, Comm. Math. Phys.

72 (1980), no. 3, 277–292.

65. C. H. Taubes, On the equivalence of the first and second order equations for gauge theories, Comm. Math. Phys.

75 (1980), no. 3, 207–227.

66. Y. Tonegawa and N. Wickramasekera, Stable phase interfaces in the van der Waals–Cahn–Hilliard theory, J.

Reine Angew. Math. 668 (2012), 191–210.

67. X. Zhou,Min-max hypersurface in manifold of positive Ricci curvature, J. Differ. Geom. 105 (2017), no. 2, 291–

343.

 1
0
9
7
0
3
1
2
, 2

0
2
4
, 1

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/cp

a.2
2
1
5
0

 b
y

 C
o

rn
ell U

n
iv

ersity
 L

ib
rary

, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [0
1

/1
0

/2
0

2
4

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se


	Convergence of the self-dual -Yang-Mills-Higgs energies to the -area functional
	Abstract
	1 | INTRODUCTION
	1.1 | Background and motivation
	1.2 | Convergence results for the self-dual Yang-Mills-Higgs energies
	1.3 | Applications to the study of minimizers and min-max constructions

	2 | NOTATION AND PRELIMINARIES
	2.1 | Notions from geometric measure theory

	3 | THE LIMINF INEQUALITY
	3.1 | The distributional gauge-invariant Jacobian and singular unit sections
	3.2 | Proof of Theorem 1.2, part (i)

	4 | RECOVERY SEQUENCE
	5 | COMPARISON OF THE MIN-MAX CONSTRUCTIONS
	5.1 | Natural min-max constructions for 
	5.2 | Natural min-max constructions for the -mass functional
	5.3 | Taming min-max families to avoid energy concentration
	5.4 | Filling in cycles by filling maps
	5.5 | One-parameter families corresponding to 
	5.6 | Two-parameter families and the generator of 

	6 | HUISKEN-TYPE MONOTONICITY ALONG THE GRADIENT FLOW
	6.1 | Definition, Bochner identities, and bounds for the gradient flow
	6.2 | Huisken-type monotonicity and -energy-density bounds
	6.3 | Long-time existence of the gradient flow

	ACKNOWLEDGMENTS
	REFERENCES


